The graphs of Hoffman-Singleton, Higman-Sims, McLaughlin, and the Hermitian curve of degree 6 in characteristic 5

Ichiro Shimada

Hiroshima University
2014.06. Tohoku

Let $\Gamma=(V, E)$ be a graph, where

- V is the set of vertices and
- $E \subset\binom{V}{2}$ is the set of edges.

We assume that V is finite.
For $p \in V$, we put

$$
L(p):=\left\{p^{\prime} \in V \mid p p^{\prime} \in E\right\} .
$$

We say that Γ is regular of degree k if $k:=|L(p)|$ does not depend on $p \in V$.
We say that Γ is a strongly regular graph with the parameter $(v, k, \lambda, \mu)(\operatorname{srg}(v, k, \lambda, \mu))$ if Γ is regular of degree k with $|V|=v$ such that, for distinct vertices $p, p^{\prime} \in V$, we have

$$
\left|L(p) \cap L\left(p^{\prime}\right)\right|= \begin{cases}\lambda & \text { if } p p^{\prime} \in E \\ \mu & \text { otherwise }\end{cases}
$$

Definition-Example

We put $[m]:=\{1,2, \ldots, m\}$.
The triangular graph $T(m)$ is defined to be the graph (V, E) such that

- $V=\binom{[m]}{2}$, and

■ $E=\left\{\left\{\{i, j\},\left\{i^{\prime}, j^{\prime}\right\}\right\} \mid\{i, j\} \cap\left\{i^{\prime}, j^{\prime}\right\} \neq \emptyset\right\}$.
Then $T(m)$ is

$$
\operatorname{srg}(m(m-1) / 2,2(m-2), m-2,4)
$$

Definition-Theorem

- The Hoffman-Singleton (HfSg) graph is the unique $\operatorname{srg}(50,7,0,1)$.
- The Higman-Sims graph ($\mathbf{H g S m}$) is the unique $\operatorname{srg}(100,22,0,6)$.
- The McLaughlin graph (McL) is the unique $\operatorname{srg}(275,112,30,56)$.

Theorem

■ $\operatorname{Aut}(\mathbf{H f S g}) \supset \operatorname{PSU}_{3}\left(\mathbb{F}_{25}\right)$ as index 2 subgroup.
■ $\operatorname{Aut}(\mathbf{H g S m}) \supset H S$ as index 2 subgroup.

- $\operatorname{Aut}(\mathbf{M c L}) \supset M c L$ as index 2 subgroup.

These graphs are related to the Leech lattice. A part of Table 10.4 of Conway-Sloane's book:

Name	Order	Structure
.533	$2^{4} \cdot 3^{2} \cdot 5^{3} \cdot 7$	$\mathrm{PSU}_{3}\left(\mathbb{F}_{25}\right)$
$\cdot 7$	$2^{9} \cdot 3^{2} \cdot 5^{3} \cdot 7 \cdot 11$	HS
$.10_{33}$	$2^{10} \cdot 3^{2} \cdot 5^{3} \cdot 7 \cdot 11$	HS .2
.332	$2^{9} \cdot 3^{2} \cdot 5^{3} \cdot 7 \cdot 11$	HS
.5	$2^{8} \cdot 3^{6} \cdot 5^{3} \cdot 7 \cdot 11$	$\mathrm{McL.2}$
$.8_{32}$	$2^{7} \cdot 3^{6} \cdot 5^{3} \cdot 7 \cdot 11$	McL
.322	$2^{7} \cdot 3^{6} \cdot 5^{3} \cdot 7 \cdot 11$	$M c L$
.522	$2^{7} \cdot 3^{6} \cdot 5^{3} \cdot 7 \cdot 11$	$M c L .2$

Constructions of these graphs by the Leech lattice are known.
The aim of this talk:
We present algebro-geometric constructions of these graphs.

Hermitian curve

We fix a power $q:=p^{\nu}$ of an odd prime integer p, and work over an algebraically closed field of characteristic p. We consider the Hermitian curve

$$
X: x^{q+1}+y^{q+1}+z^{q+1}=0
$$

of degree $q+1$.
We say that a point P of X is special if P satisfies the following equivalent conditions.
(i) P is an $\mathbb{F}_{q^{2}}$-rational point of X.
(ii) $T_{P} \cap X=\{P\}$, where $T_{P} \subset \mathbb{P}^{2}$ is the tan. line to X at P.
(iii) P is a Weierstrass point of the curve X.

We denote by \mathcal{P}_{X} the set of special points of X. We have

$$
\left|\mathcal{P}_{X}\right|=q^{3}+1
$$

and $\operatorname{Aut}(X)=\operatorname{PGU}_{3}\left(\mathbb{F}_{q^{2}}\right)$ acts on \mathcal{P}_{X} double-transitively.

Definition

A smooth conic $C \subset \mathbb{P}^{2}$ is totally tangent to X if C is tangent to X at distinct $q+1$ points. Let \mathcal{Q}_{X} denote the set of smooth conics totally tangent to X.

Since the conic $x^{2}+y^{2}+z^{2}=0$ is a member of \mathcal{Q}_{x}, we have $\mathcal{Q}_{x} \neq \emptyset$.

Theorem (Segre, S.-)

Suppose that and $q \geq 5$. Then $\operatorname{Aut}(X)$ acts on \mathcal{Q}_{X} transitively with the stab. subgr. isom. to $\mathrm{PGL}_{2}\left(\mathbb{F}_{q}\right)$. Hence

$$
\left|\mathcal{Q}_{x}\right|=q^{2}\left(q^{3}+1\right)
$$

Moreover, every $C \in \mathcal{Q}_{X}$ is defined over $\mathbb{F}_{q^{2}}$ and satisfies $C \cap X \subset \mathcal{P}_{X}$.

Definition

A line $L \subset \mathbb{P}^{n}$ is a special secant line of X if L contains distinct two points of \mathcal{P}_{X}.
We denote by \mathcal{S}_{X} the set of special secant lines of X.
We have

$$
\left|\mathcal{S}_{X}\right|=q^{4}-q^{3}+q^{2} .
$$

Every $L \in \mathcal{S}_{X}$ intersects X transversely, and satisfies $L \cap X \subset \mathcal{P}_{X}$.

Definition

A special secant line L of X is said to be a special secant line of $Q \in \mathcal{Q}_{X}$ if L passes through two distinct points of $Q \cap X$. We denote by $\mathcal{S}(Q)$ the set of special secant lines of Q.

We obviously have $|\mathcal{S}(Q)|=q(q+1) / 2$.

Construction I

We work over an algebraically closed field of characteristic 5, and consider the Hermitian curve

$$
X: x^{6}+y^{6}+z^{6}=0
$$

of degree 6. We have

$$
|\operatorname{Aut}(X)|=378000, \quad\left|\mathcal{P}_{X}\right|=126, \quad\left|\mathcal{Q}_{X}\right|=3150, \quad\left|\mathcal{S}_{X}\right|=525
$$

We define a graph $G=(V, E)$ by

- $V:=\mathcal{Q}_{X}$, and

■ $E:=\left\{Q Q^{\prime}|\quad| Q \cap Q^{\prime} \mid=4\right.$ and $\left.\left|\mathcal{S}(Q) \cap \mathcal{S}\left(Q^{\prime}\right)\right|=3\right\}$.

Proposition

The graph G has exactly 150 connected components, and each connected component is isomorphic to the triangular graph $T(7)$, which is $\operatorname{srg}(21,10,5,4)$.

Let \mathcal{D} denote the set of connected components of G. Each $D \in \mathcal{D}$ is a collection of $3150 / 150=21$ conics in \mathcal{Q}_{X}.

Proposition

Let $D \in \mathcal{D}$ be a connected component of G. Then

$$
Q \cap Q^{\prime} \cap X=\emptyset
$$

for any distinct conics $Q, Q^{\prime} \in D$.
Since

$$
|D| \times|Q \cap X|=126=\left|\mathcal{P}_{X}\right|
$$

each connected component D of G gives rise to a decomposition of \mathcal{P}_{X} into a disjoint union of 21 sets of 6 points.

Proposition

Suppose that $Q \in \mathcal{Q}_{X}$ and $D^{\prime} \in \mathcal{D}$ satisfy $Q \notin D^{\prime}$. Then one of the following holds:
($\alpha) \quad\left|Q \cap Q^{\prime} \cap X\right|= \begin{cases}2 & \text { for } 3 \text { conics } Q^{\prime} \in D^{\prime}, \\ 0 & \text { for } 18 \text { conics } Q^{\prime} \in D^{\prime} .\end{cases}$
(β) $\quad\left|Q \cap Q^{\prime} \cap X\right|= \begin{cases}2 & \text { for } 1 \text { conic } Q^{\prime} \in D^{\prime}, \\ 1 & \text { for } 4 \text { conics } Q^{\prime} \in D^{\prime}, \\ 0 & \text { for } 16 \text { conics } Q^{\prime} \in D^{\prime} .\end{cases}$
$(\gamma) \quad\left|Q \cap Q^{\prime} \cap X\right|= \begin{cases}1 & \text { for } 6 \text { conics } Q^{\prime} \in D^{\prime}, \\ 0 & \text { for } 15 \text { conics } Q^{\prime} \in D^{\prime} .\end{cases}$

We define $t\left(Q, D^{\prime}\right)$ to be α, β or γ according to the cases.

Proposition

Suppose that $D, D^{\prime} \in \mathcal{D}$ are distinct, and hence disjoint as subsets of \mathcal{Q}_{X}. Then one of the following holds:

$$
\begin{aligned}
& \left(\beta^{21}\right) \quad t\left(Q, D^{\prime}\right)=\beta \quad \text { for all } Q \in D \text {. } \\
& \left(\gamma^{21}\right) \quad t\left(Q, D^{\prime}\right)=\gamma \quad \text { for all } Q \in D \text {. } \\
& \left(\alpha^{15} \gamma^{6}\right) \quad t\left(Q, D^{\prime}\right)= \begin{cases}\alpha & \text { for } 15 \text { conics } Q \in D, \\
\gamma & \text { for } 6 \text { conics } Q \in D .\end{cases} \\
& \left(\alpha^{3} \gamma^{18}\right) \quad t\left(Q, D^{\prime}\right)= \begin{cases}\alpha & \text { for } 3 \text { conics } Q \in D, \\
\gamma & \text { for } 18 \text { conics } Q \in D .\end{cases}
\end{aligned}
$$

We define $T\left(D, D^{\prime}\right)$ to be $\beta^{21}, \gamma^{21}, \alpha^{15} \gamma^{6}$ or $\alpha^{3} \gamma^{18}$ according to the cases. We have $T\left(D, D^{\prime}\right)=T\left(D^{\prime}, D\right)$.

We define $H=(V, E)$ by
■ $V:=\mathcal{D}$,

- $E:=\left\{D D^{\prime} \mid T\left(D, D^{\prime}\right)=\alpha^{15} \gamma^{6}\right\}$.

Theorem

The graph H has exactly three connected components, and each connected component is the Hoffman-Singleton graph.

Proposition

If D and D^{\prime} are in the same connected component of H, then

$$
T\left(D, D^{\prime}\right)=\gamma^{21} \text { or } \alpha^{15} \gamma^{6} .
$$

If D and D^{\prime} are in different connected components of H, then

$$
T\left(D, D^{\prime}\right)=\beta^{21} \text { or } \alpha^{3} \gamma^{18} .
$$

We denote by $\mathcal{C}_{1}, \mathcal{C}_{2}, \mathcal{C}_{3}$ the set of vertices of the connected components of H.
The orbit of an element $D \in \mathcal{D}$ by the subgroup $\operatorname{PSU}_{3}\left(\mathbb{F}_{25}\right) \subset \operatorname{Aut}(X)$ of index 3 is one of \mathcal{C}_{i}.
We define $H^{\prime}=\left(V^{\prime}, E^{\prime}\right)$ by

- $V^{\prime}:=\mathcal{D}$,
- $E^{\prime}:=\left\{D D^{\prime} \mid T\left(D, D^{\prime}\right)=\alpha^{15} \gamma^{6}\right.$ or $\left.\beta^{21}\right\}$.

Then H^{\prime} is a connected regular graph of valency 37 .

Theorem

For any i and j with $i \neq j$, the restriction $\mathrm{H}^{\prime} \mid\left(\mathcal{C}_{i} \cup \mathcal{C}_{j}\right)$ of H^{\prime} to $\mathcal{C}_{i} \cup \mathcal{C}_{j}$ is the Higman-Sims graph.

Using our results, we can recast the construction of the McLaughlin graph by Inoue into a simpler form.

Let \mathcal{E}_{1} denote the set of edges of the Hoffman-Singleton graph $H \mid \mathcal{C}_{1}$; that is,

$$
\mathcal{E}_{1}:=\left\{\left\{D_{1}, D_{2}\right\} \mid D_{1}, D_{2} \in \mathcal{C}_{1}, \quad T\left(D_{1}, D_{2}\right)=\alpha^{15} \gamma^{6}\right\}
$$

We define a symmetric relation \sim on \mathcal{E}_{1} by
$\left\{D_{1}, D_{2}\right\} \sim\left\{D_{1}^{\prime}, D_{2}^{\prime}\right\}$ if and only if
■ $\left\{D_{1}, D_{2}\right\}$ and $\left\{D_{1}^{\prime}, D_{2}^{\prime}\right\}$ are disjoint, and
■ there exists an edge $\left\{D_{1}^{\prime \prime}, D_{2}^{\prime \prime}\right\} \in \mathcal{E}_{1}$ that has a common vertex with each of $\left\{D_{1}, D_{2}\right\}$ and $\left\{D_{1}^{\prime}, D_{2}^{\prime}\right\}$.

Theorem

Let $H^{\prime \prime}$ be the graph whose set of vertices is $\mathcal{E}_{1} \cup \mathcal{C}_{2} \cup \mathcal{C}_{3}$, and whose set of edges consists of
$\square\left\{E, E^{\prime}\right\}$, where $E, E^{\prime} \in \mathcal{E}_{1}$ are distinct and satisfy $E \sim E^{\prime}$,
$\square\{E, D\}$, where $E=\left\{D_{1}, D_{2}\right\} \in \mathcal{E}_{1}, D \in \mathcal{C}_{2} \cup \mathcal{C}_{3}$, and both of $T\left(D_{1}, D\right)$ and $T\left(D_{2}, D\right)$ are $\alpha^{3} \gamma^{18}$, and

- $\left\{D, D^{\prime}\right\}$, where $D, D^{\prime} \in \mathcal{C}_{2} \cup \mathcal{C}_{3}$ are distinct and satisfy and $T\left(D, D^{\prime}\right)=\alpha^{15} \gamma^{6}$ or $\alpha^{3} \gamma^{18}$.
Then $H^{\prime \prime}$ is the McLaughlin graph.

Proof of Theorems.

We make the list of defining equations of the conics in $\mathcal{Q} \times$, and calculate the adjacency matrices of G, H, H^{\prime} and $H^{\prime \prime}$. We then show that
$H \mid \mathcal{C}_{i}$ is $\operatorname{srg}(50,7,0,1)$,
$H^{\prime} \mid\left(\mathcal{C}_{i} \cup \mathcal{C}_{j}\right)$ is $\operatorname{srg}(100,22,0,6)$, and $H^{\prime \prime}$ is $\operatorname{srg}(275,112,30,56)$.

Remark

There are many other geometric ways to define the edges of H and H^{\prime}.

Remark

The above construction can be expressed in terms of the structure of subgroups of $\operatorname{Aut}(X)=\mathrm{PGU}_{3}\left(\mathbb{F}_{25}\right)$, as follows.

For an element a of a set A on which $\operatorname{Aut}(X)=\operatorname{PGU}_{3}\left(\mathbb{F}_{25}\right)$ acts, we denote by $\operatorname{stab}(a)$ the stabilizer subgroup in $\mathrm{PGU}_{3}\left(\mathbb{F}_{25}\right)$ of a.
For $Q \in \mathcal{Q}_{X}$, we have $\operatorname{stab}(Q) \cong \operatorname{PGL}_{2}\left(\mathbb{F}_{5}\right) \cong \mathfrak{S}_{5}$.

Theorem

Let Q and Q^{\prime} be distinct elements of \mathcal{Q}_{x}.
Then Q and Q^{\prime} are adjacent in the graph G if and only if $\operatorname{stab}(Q) \cap \operatorname{stab}\left(Q^{\prime}\right) \cong \mathfrak{A}_{4}$, and
Q and Q^{\prime} are in the same connected component of G if and only if $\left\langle\operatorname{stab}(Q), \operatorname{stab}\left(Q^{\prime}\right)\right\rangle \cong \mathfrak{A}_{7}$.

Proposition

For each $D \in \mathcal{D}$, the action of $\operatorname{stab}(D)$ on the triangular graph $D \cong T(7)$ identifies $\operatorname{stab}(D)$ with the subgroup \mathfrak{A}_{7} of $\operatorname{Aut}(T(7)) \cong \mathfrak{S}_{7}$.

Theorem

Let D and D^{\prime} be distinct elements of \mathcal{D}. Then $T\left(D, D^{\prime}\right)$ is

$$
\begin{cases}\beta^{21} & \text { if and only if } \operatorname{stab}(D) \cap \operatorname{stab}\left(D^{\prime}\right) \cong \operatorname{PSL}_{2}\left(\mathbb{F}_{7}\right), \\ \gamma^{21} & \text { if and only if } \operatorname{stab}(D) \cap \operatorname{stab}\left(D^{\prime}\right) \cong \mathfrak{A}_{5}, \\ \alpha^{15} \gamma^{6} & \text { if and only if } \operatorname{stab}(D) \cap \operatorname{stab}\left(D^{\prime}\right) \cong \mathfrak{A}_{6}, \\ \alpha^{3} \gamma^{18} & \text { if and only if } \operatorname{stab}(D) \cap \operatorname{stab}\left(D^{\prime}\right) \cong\left(\mathfrak{A}_{4} \times 3\right): 2 .\end{cases}
$$

Remark

By ATLAS, we see that the maximal subgroups of \mathfrak{A}_{7} are $\mathfrak{A}_{6}, \quad \mathrm{PSL}_{2}\left(\mathbb{F}_{7}\right), \quad \mathrm{PSL}_{2}\left(\mathbb{F}_{7}\right), \quad \mathfrak{S}_{5}, \quad\left(\mathfrak{A}_{4} \times 3\right): 2$.

Construction II

Let Y be a smooth projective surface.
A divisor D on Y is numerically equivalent to zero if

$$
D \cdot C=0 \quad \text { for any curve } C \text { on } Y
$$

where $D \cdot C$ is the intersection number of D and C on Y.
Let S_{Y} be the \mathbb{Z}-module of numerical equivalence classes of divisors on Y. Then S_{Y} with the symmetric bilinear form $\langle\cdot, \cdot\rangle$ induced by the intersection pairing becomes a lattice, which is called the Néron-Severi lattice of Y.

We work over an algebraically closed field of characteristic 5, and consider the smooth surface Y defined by

$$
w^{2}=x^{6}+y^{6}+z^{6}
$$

in the weighted projective space $\mathbb{P}(3,1,1,1)$. Then Y is a double over of \mathbb{P}^{2} branched along the Hermitian curve $X \subset \mathbb{P}^{2}$.

Proposition

The Néron-Severi lattice S_{Y} is isomorphic to the unique lattice characterized by the following properties:

- S_{Y} is even, hyperbolic, and of rank 22,

■ $S_{Y}^{\vee} / S_{Y} \cong(\mathbb{Z} / 5 \mathbb{Z})^{2}$.
In S_{Y}, we have the class

$$
h_{0} \in S_{Y}
$$

of the pull-back of a line of \mathbb{P}^{2} by the double covering $Y \rightarrow \mathbb{P}^{2}$.

Conway theory

Let U be the hyperbolic plane

$$
\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)
$$

and let Λ be the negative definite Leech lattice.
We put

$$
L_{26}=U \oplus \Lambda
$$

which is an even unimodular hyperbolic lattice of rank 26 .
Vectors of L_{26} are written as (a, b, λ), where $a, b \in \mathbb{Z}$,
$(a, b) \in U$ and $\lambda \in \Lambda$.
Let $\mathcal{P}\left(L_{26}\right)$ be the connected component of $\left\{v \in L_{26} \otimes \mathbb{R} \mid v^{2}>0\right\}$ that contains

$$
w_{0}:=(1,0,0)
$$

on its boundary.

Each vector $r \in L_{26}$ with $r^{2}=-2$ defines a reflection

$$
s_{r}: x \mapsto x+\langle x, r\rangle r .
$$

Let $W\left(L_{26}\right)$ denote the subgroup of $\mathrm{O}\left(L_{26}\right)$ generated by these reflections s_{r}. Then $W\left(L_{26}\right)$ acts on $\mathcal{P}\left(L_{26}\right)$. We put

$$
\begin{aligned}
& \mathcal{R}_{0}:=\left\{r \in L_{26} \mid r^{2}=-2,\left\langle r, w_{0}\right\rangle=1\right\} \\
& \mathcal{D}_{0}:=\left\{x \in \mathcal{P}\left(L_{26}\right) \mid\langle x, r\rangle \geq 0 \text { for any } r \in \mathcal{R}_{0}\right\}
\end{aligned}
$$

The map

$$
\lambda \mapsto r_{\lambda}:=\left(-1-\lambda^{2} / 2,1, \lambda\right)
$$

gives a bijection from Λ to \mathcal{R}_{0}.
Conway proved the following:

Theorem

The domain \mathcal{D}_{0} is a standard fundamental domain of the action of $W\left(L_{26}\right)$ on $\mathcal{P}\left(L_{26}\right)$.

There exists a primitive embedding $S_{Y} \hookrightarrow L_{26}$ unique up to $\mathrm{O}\left(L_{26}\right)$. The orthogonal complement R of S_{Y} in L_{26} has a Gram matrix

$$
\left[\begin{array}{cccc}
-2 & -1 & 0 & 1 \\
-1 & -2 & -1 & 0 \\
0 & -1 & -4 & -2 \\
1 & 0 & -2 & -4
\end{array}\right]
$$

We denote by

$$
\operatorname{pr}_{S}: L_{26} \rightarrow S_{Y}^{\vee}, \quad \operatorname{pr}_{R}: L_{26} \rightarrow R^{\vee},
$$

the orthogonal projections to S_{Y}^{\vee} and R^{\vee}, respectively.

Theorem (Katsura, Kondo, S.-)

There exists a primitive embedding $S_{Y} \hookrightarrow L_{26}$ such that $\operatorname{pr}_{S}\left(w_{0}\right)=h_{0}$.

In the following, we use this primitive embedding.
The set

$$
\mathcal{V}:=\left\{r_{\lambda} \in \mathcal{R}_{0} \mid\left\langle\operatorname{pr}_{S}\left(r_{\lambda}\right), h_{0}\right\rangle=1, \operatorname{pr}_{S}\left(r_{\lambda}\right)^{2}=-8 / 5\right\}
$$

consists of 300 elements.
For each $r_{\lambda} \in \mathcal{V}$, there exists a unique $r_{\lambda}^{\prime} \in \mathcal{V}$ such that $\left\langle r_{\lambda}, r_{\lambda}^{\prime}\right\rangle=3$, and for any vector $r_{\mu} \in \mathcal{V}$ other than $r_{\lambda}, r_{\lambda}^{\prime}$, we have that $\left\langle r_{\lambda}, r_{\mu}\right\rangle$ is 0 or 1 .

Definition

Let F be the graph whose set of vertices is \mathcal{V} and whose set of edges is the set of pairs $\left\{r_{\lambda}, r_{\mu}\right\}$ such that $\left\langle r_{\lambda}, r_{\mu}\right\rangle=1$.

The subset $\operatorname{pr}_{R}(\mathcal{V})$ of R^{\vee} consists of six elements $\rho_{1}, \ldots, \rho_{6}$. We put

$$
\mathcal{V}_{i}:=\operatorname{pr}_{R}^{-1}\left(\rho_{i}\right) \cap \mathcal{V}
$$

Each \mathcal{V}_{i} has 50 vertices.

Theorem

For each $i, F \mid \mathcal{V}_{i}$ is the Hoffman-Singleton graph. If $\left\langle\rho_{i}, \rho_{i^{\prime}}\right\rangle=-1 / 5$, then $F \mid\left(\mathcal{V}_{i} \cup \mathcal{V}_{i^{\prime}}\right)$ is the Higman-Sims graph.

Thank you!

