On the supersingular $K 3$ surface in characteristic 5 with Artin invariant 1

Ichiro Shimada

Hiroshima University
May 28, 2014, Hakodate

Introduction

A $K 3$ surface is called supersingular if its Picard number is 22 .
Let Y be a supersingular $K 3$ surface in characteristic $p>0$.
Let S_{Y} be its Néron-Severi lattice, and put $S_{Y}^{V}:=\operatorname{Hom}\left(S_{Y}, \mathbb{Z}\right)$.
The intersection form on S_{Y} yields $S_{Y} \hookrightarrow S_{Y}^{V}$.
Artin proved that

$$
S_{Y}^{\vee} / S_{Y} \cong(\mathbb{Z} / p \mathbb{Z})^{2 \sigma}
$$

where σ is an integer such that $1 \leq \sigma \leq 10$, which is called the Artin invariant of Y.

Ogus and Rudakov-Shafarevich proved that a supersingular K3 surface with Artin invariant 1 in characteristic p is unique up to isomorphisms.

We consider the supersingular $K 3$ surface X in characteristic 5 with Artin invariant 1.

We work in characteristic 5.
Let B_{F} be the Fermat sextic curve (or the Hermitian curve) in \mathbb{P}^{2} :

$$
x^{6}+y^{6}+z^{6}=0 \quad(x \bar{x}+y \bar{y}+z \bar{z}=0) .
$$

Let $\pi_{F}: X \rightarrow \mathbb{P}^{2}$ be the double cover of \mathbb{P}^{2} branched along B_{F} :

$$
X: w^{2}=x^{6}+y^{6}+z^{6} .
$$

Then X is a supersingular $K 3$ surface in characteristic 5 with Artin invariant 1

Proof.

Let P be an \mathbb{F}_{25}-rational point of B_{F}, and ℓ_{P} the tangent line to B_{F} at P. Then ℓ_{P} intersects B_{F} at P with multiplicity 6 , and hence $\pi_{F}^{-1}\left(\ell_{P}\right)$ splits into two smooth rational curves.
Since $\left|B_{F}\left(\mathbb{F}_{25}\right)\right|=126$,
we obtain 252 smooth rational curves on X. Calculating the intersection numbers of these 252 smooth rational curves, we see that their classes span a lattice of rank 22 (hence X is supersingular) with discriminant -25 (hence $\sigma=1$).

In fact, the lattice S_{X} is generated by appropriately chosen 22
curves among these 252 curves.

Corollary

Every class of S_{X} is represented by a divisor defined over \mathbb{F}_{25}.

Corollary

Every projective model of X can be defined over \mathbb{F}_{25}.
Remark
Schütt proved the above results for supersingular K3 surfaces of Artin invariant 1 in any characteristics.

$$
\left[\begin{array}{cccccccccccccccccccccc}
-2 & 3 & 1 \\
3 & -2 & 0 \\
1 & 0 & -2 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 & 0 & 0 & 1 & 1 & 1 & 0 & 0 \\
1 & 0 & 1 & -2 & 1 & 1 & 0 & 0 & 0 & 0 & 1 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 1 & 1 \\
1 & 0 & 1 & 1 & -2 & 1 & 1 & 1 & 1 & 1 & 0 & 1 & 0 & 0 & 0 & 1 & 1 & 0 & 0 & 1 & 0 & 0 \\
1 & 0 & 1 & 1 & 1 & -2 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 1 & 1 & 0 & 0 & 0 & 1 \\
1 & 0 & 0 & 0 & 1 & 0 & -2 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 & 0 \\
1 & 0 & 0 & 0 & 1 & 0 & 0 & -2 & 1 & 0 & 0 & 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 1 & 1 \\
1 & 0 & 0 & 0 & 1 & 0 & 0 & 1 & -2 & 0 & 1 & 0 & 1 & 0 & 0 & 0 & 1 & 1 & 1 & 1 & 0 & 1 \\
1 & 0 & 0 & 0 & 1 & 0 & 1 & 0 & 0 & -2 & 1 & 0 & 1 & 1 & 1 & 0 & 1 & 1 & 0 & 0 & 0 & 1 \\
1 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 1 & 1 & -2 & 1 & 0 & 0 & 1 & 1 & 0 & 1 & 1 & 0 & 0 & 0 \\
1 & 0 & 1 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 1 & -2 & 0 & 0 & 1 & 1 & 0 & 1 & 1 & 0 & 1 & 1 \\
1 & 0 & 1 & 1 & 0 & 0 & 0 & 1 & 1 & 1 & 0 & 0 & -2 & 1 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 \\
1 & 0 & 1 & 0 & 0 & 0 & 0 & 1 & 0 & 1 & 0 & 0 & 1 & -2 & 0 & 1 & 0 & 1 & 1 & 0 & 0 & 0 \\
1 & 0 & 1 & 0 & 0 & 1 & 0 & 1 & 0 & 1 & 1 & 1 & 0 & 0 & -2 & 0 & 1 & 0 & 0 & 1 & 0 & 0 \\
1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 0 & 1 & 0 & -2 & 1 & 0 & 0 & 1 & 0 & 0 \\
1 & 0 & 0 & 0 & 1 & 1 & 0 & 0 & 1 & 1 & 0 & 0 & 1 & 0 & 1 & 1 & -2 & 0 & 1 & 0 & 1 & 0 \\
1 & 0 & 1 & 0 & 0 & 1 & 1 & 0 & 1 & 1 & 1 & 1 & 0 & 1 & 0 & 0 & 0 & -2 & 0 & 1 & 1 & 0 \\
1 & 0 & 1 & 1 & 0 & 0 & 1 & 0 & 1 & 0 & 1 & 1 & 0 & 1 & 0 & 0 & 1 & 0 & -2 & 0 & 0 & 0 \\
1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 1 & 1 & 0 & 1 & 0 & -2 & 1 & 1 \\
1 & 0 & 0 & 1 & 0 & 0 & 1 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 1 & 1 & 0 & 1 & -2 & 0 \\
1 & 0 & 0 & 1 & 0 & 1 & 0 & 1 & 1 & 1 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & -2
\end{array}\right]
$$

Problem: Find distinct projective models of X (especially of degree 2) as many as possible.

We put

$$
\mathcal{P}_{2}:=\left\{h \in S_{X} \mid h \text { is a polarization of degree } 2\right\},
$$

that is, $h \in S_{X}$ belongs to \mathcal{P}_{2} if and only if the line bundle $\mathcal{L} \rightarrow X$ corresponding to h gives a double covering $\Phi_{|\mathcal{L}|}: X \rightarrow \mathbb{P}^{2}$. Let B_{h} be the branch curve of $\Phi_{|\mathcal{L}|}: X \rightarrow \mathbb{P}^{2}$.
For $h, h^{\prime} \in \mathcal{P}_{2}$, we say $h \sim h^{\prime}$ if there exists $g \in \operatorname{Aut}(X)$ such that $g^{*}(h)=h^{\prime}$, or equivalently, there exists $\phi \in \mathrm{PGL}_{3}(k)$ such that $\phi\left(B_{h^{\prime}}\right)=B_{h}$.

Problem: Describe \mathcal{P}_{2} / \sim.

The lattice S_{X} is characterized as the unique even hyperbolic lattice of rank 22 with $S_{X}^{\vee} / S_{X} \cong(\mathbb{Z} / 5 \mathbb{Z})^{2}$.
Therefore we can obtain a list of combinatorial data of these B_{h} by lattice theoretic method, which was initiated by Yang.

We try to find defining equations of these B_{h}, and understand their relations.

- Naive method.

Projective models of the supersingular K3 surface with Artin invariant 1 in characteristic 5. J. Algebra 403 (2014), 273-299.
■ Specialization from $\sigma=3$ (joint work with Pho Duc Tai). Unirationality of certain supersingular K3 surfaces in characteristic 5. Manuscripta Math. 121 (2006), no. 4, 425-435.

- Ballico-Hefez curve (joint work with Hoang Thanh Hoai). On Ballico-Hefez curves and associated supersingular surfaces, to appear in Kodai Math. J.
- Borcherds' method (joint work with T. Katsura and S. Kondo).

On the supersingular K3 surface in characteristic 5 with Artin invariant, preprint, arXiv:1312.0687

Naive method

Classification by relative degrees with respect to h_{F}.
We have the polarization $h_{F} \in \mathcal{P}_{2}$ that gives the Fermat double sextic plane model $\pi_{F}: X \rightarrow \mathbb{P}^{2}$:

$$
h_{F}=[1,1,0, \ldots, 0] .
$$

We have

$$
\operatorname{Aut}\left(X, h_{F}\right)=\operatorname{PGU}_{3}\left(\mathbb{F}_{25}\right) \cdot 2
$$

which is of order 756000 .
For $a \in \mathbb{Z}_{>0}$, we put

$$
\mathcal{P}_{2}(a):=\left\{h \in \mathcal{P}_{2} \mid\left\langle h_{F}, h\right\rangle=a\right\} .
$$

For any $a \in \mathbb{Z}_{>0}$, the set

$$
\mathcal{V}_{2}(a):=\left\{h \in S_{X} \mid h^{2}=2, \quad\left\langle h_{F}, h\right\rangle=a\right\}
$$

is finite.
Then $h \in \mathcal{V}_{2}(a)$ belongs to $\mathcal{P}_{2}(a)$ if h is nef and not of the form

$$
2 \cdot f+z, \text { with } f^{2}=0, z^{2}=-2,\langle f, z\rangle=1
$$

The vector $h \in \mathcal{V}_{2}$ is nef if and only if there are no vectors $r \in S_{X}$ such that

$$
r^{2}=-2, \quad\left\langle h_{F}, r\right\rangle>0, \quad\langle h, r\rangle<0
$$

Thus we can calculate $\mathcal{P}_{2}(a)$ for a given $a \in \mathbb{Z}_{>0}$.

We have calculated $\mathcal{P}_{2}(a)$ for $a \leq 5$.
Their union consists of $146,945,851$ vectors.
From the defining ideals of the 22 lines on X_{F} we have chosen as a basis of S_{X}, we can calculate the defining equations of B_{h} for each h, and hence we can determine whether $h \sim h^{\prime}$ or not.

Under \sim, they are decomposed into 65 equivalence classes.
$0:$ Sing $=0: N=13051: \quad h=[1,1,0]:$
$x^{6}+y^{6}+1$
1: $\operatorname{Sing}=6 A_{1}: N=5607000: h=[0,0,0,0,0,0,0,0,1,1,0,0,0,0,1,0,0,0,0,0,0,1]:$
$x^{6}+3 x^{5} y+x^{4} y^{2}+2 x^{3} y^{3}+y^{6}+3 x^{4}+3 x^{2} y^{2}+x y^{3}+3 x y+2 y^{2}+4$

2: \quad Sing $=7 A_{1}: N=6678000: \mathrm{h}=[0,0,0,0,0,0,0,0,0,1,1,1,0,0,0,0,1,0,0,0,0,0]:$
$x^{6}+2 x^{4} y^{2}+x^{2} y^{4}+x^{2} y^{3}+2 y^{5}+x^{4}+2 y^{4}+2 x^{2} y+2 y^{3}+3 y^{2}+3 y+2$

3: $\operatorname{Sing}=3 A_{1}+2 A_{2}: N=2268000: h=[0,0,0,0,0,0,0,0,1,1,1,0,1,0,1,0,0,0,0,0,0,0]:$
$x^{6}+3 x^{3} y^{3}+y^{6}+3 x^{3} y+2 y^{2}+2$

4: \quad Sing $=8 A_{1}: N=2457000: h=[0,0,0,0,1,0,0,0,1,0,0,0,0,1,1,0,0,0,0,0,0,0]:$
$x^{6}+3 x^{4} y^{2}+x^{2} y^{4}+4 x^{2} y^{3}+4 y^{5}+x^{4}+2 x^{2} y^{2}+3 y^{4}+2 x^{2} y+4 x^{2}+y^{2}+4 y$
5: \quad Sing $=8 A_{1}: N=2268000: h=[0,0,0,0,0,1,0,0,1,0,0,0,1,0,0,1,0,0,1,0,0,0]:$ $x^{4} y^{2}+x^{2} y^{4}+2 x^{4}+4 x^{2} y^{2}+y^{4}+x^{2}+4 y^{2}+4$

6: \quad Sing $=6 A_{1}+A_{2}: N=1512000: \mathrm{h}=[0,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0,1,1,0,1,0,0]:$ $x^{6}+4 x^{4} y^{2}+2 x^{2} y^{4}+2 x^{2} y+y^{3}+4$

7: $\operatorname{Sing}=6 A_{1}+A_{2}: \mathrm{N}=4914000: \mathrm{h}=[0,0,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,1,0,1,0,1]:$
$\sqrt{2} x^{3} y^{3}+(1+3 \sqrt{2}) x^{2} y^{4}+x^{4}+(2+2 \sqrt{2}) x^{3} y+(1+4 \sqrt{2}) x^{2} y^{2}+x y^{3}+(2+2 \sqrt{2}) y^{4}+$ $\sqrt{2} x^{2}+(1+3 \sqrt{2}) x y$

$$
\text { 11: } \operatorname{Sing}=9 A_{1}: N=84000: \quad h=[0,0,0,0,0,0,0,0,1,1,0,0,0,1,1,0,1,1,-1,0,0,0]:
$$

$$
x^{6}+4 x^{3} y^{3}+4 y^{6}+x^{4}+4 x y^{3}+3 x^{2}+4
$$

24: \quad Sing $=5 A_{1}+2 A_{2}: N=378000: h=[0,0,0,0,0,0,0,0,0,1,0,1,0,0,0,0,1,1,0,1,0,0]:$ $x^{3} y^{3}+x^{4}+x^{2} y^{2}+y^{4}+x y$

32: Sing $=10 A_{1}: N=226800: h=[0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,1,0,0,0,1]:$ $x^{6}+2 x^{4} y+y^{5}+4 x^{2} y^{2}+y^{3}+4 x^{2}+4 y$

33: $\operatorname{Sing}=10 A_{1}: \mathrm{N}=756000: \mathrm{h}=[0,0,0,0,1,0,0,0,0,1,1,0,0,0,0,0,1,0,0,1,0,0]:$
$x^{6}+x^{4} y^{2}+3 x^{3} y^{3}+3 x^{2} y^{4}+2 y^{6}+x^{2} y^{2}+4 x y+4$

Remark. Up to $\left\langle h, h_{F}\right\rangle \leq 5$, only A_{1} and A_{2} appear as singularities of B_{h}.

Specialization from $\sigma=3$

For a polynomial $f \in k[x]$ of degree ≤ 6, let $B_{f} \subset \mathbb{P}^{2}$ be the projective plane curve of degree 6 whose affine part is

$$
y^{5}-f(x)=0
$$

(If $\operatorname{deg} f<6$, we add the line at infinity.)
Remark If f is general of degree 6 , then $\operatorname{Sing}\left(B_{f}\right)$ is $5 A_{4}$.

Theorem

If B_{f} has only $A D E$-singularities, then the minimal resolution $W_{f} \rightarrow Y_{f}$ of the double cover $Y_{f} \rightarrow \mathbb{P}^{2}$ branched along B_{f} is supersingular with Artin invariant ≤ 3.

Conversely, for any supersingular $K 3$ surface W with Artin invariant ≤ 3, there is a polynomial f such that $W \cong W_{f}$.

Let $\omega \in \mathbb{F}_{25}$ be a root of $\omega^{2}+\omega+1=0$.

Theorem

The Artin invariant of W_{f} is 1 if and only if $B_{f} \subset \mathbb{P}^{2}$ is projectively isomorphic to one of the following. We put $f(x)=x^{2}(x-1)^{2} g(x)$.

No.	g	$\operatorname{Sing}\left(B_{f}\right)$
1	$x(x-1)$	$2 E_{8}+A_{4}$
2	x	$A_{9}+E_{8}+A_{4}$
3	$x(x-2)$	$E_{8}+3 A_{4}$
4	1	$A_{9}+3 A_{4}$
5	$x+2 \omega+3$	$A_{9}+3 A_{4}$
6	$x^{2}-x+2$	$5 A_{4}$
7	$(x+1)(x+3)$	$5 A_{4}$
8	$x^{2}-\omega x+\omega$	$5 A_{4}$
$\overline{8}$	$x^{2}-\bar{\omega} x+\bar{\omega}$	$5 A_{4}$

These 9 models are not projectively isomorphic.

Ballico-Hefez curve (joint work with Hoang Thanh Hoai)

Let $k=\bar{k}$ be of characteristic p, and q a power of p.
A Ballico-Hefez curve B is a projective plane curve defined by

$$
x^{\frac{1}{q+1}}+y^{\frac{1}{q+1}}+z^{\frac{1}{q+1}}=0
$$

More precisely, B is the image of $x+y+z=0$ by the morphism

$$
[x: y: z] \mapsto\left[x^{q+1}: y^{q+1}: z^{q+1}\right] .
$$

Then B has the following properties:

- of degree $q+1$ with $\left(q^{2}-q\right) / 2$ ordinary nodes as its only singularities,
- the dual curve B^{\vee} is of degree 2,

■ the natural morphism $C(B) \rightarrow B^{\vee}$ has inseparable degree q, where $C(B) \subset \mathbb{P}^{2} \times \mathbb{P}^{2 \vee}$ is the conormal variety of B.
Ballico and Hefez proved the following.

Theorem

Let $D \subset \mathbb{P}^{2}$ be an irreducible singular curve of degree $q+1$ such that D^{\vee} is of degree >1 and the natural morphism $C(D) \rightarrow D^{\vee}$ has inseparable degree q. Then D is projectively isomorphic to the Ballico-Hefez curve.

Proposition

When p is odd, B is defined by

$$
2\left(x^{q} y+x y^{q}\right)-z^{q+1}-\left(z^{2}-4 y x\right)^{\frac{q+1}{2}}=0 .
$$

Proposition

Let d be a divisor of $q+1$. Then the cyclic cover S of \mathbb{P}^{2} of degree d branched along B is unirational and hence is supersingular.

Proposition

Suppose that $p=q=5$ and $d=2$. Then S is the supersingular $K 3$ surface X in characteristic 5 with Artin invariant 1 with $10 A_{1}$.

Borcherds' method (joint work with Katsura and Kondo)

The lattice S_{X} can be embedded primitively into an even unimodular hyperbolic lattice L of rank 26, which is unique up to isomorphisms.
The chamber decomposition of the positive cone of L into standard fundamental domains of the Weyl group $W(L)$ was determined by Conway.
The tessellation by Conway chambers induces a chamber decomposition of the positive cone of S_{X}, and the nef cone of X is a union of induced chambers.

In an attempt to determine $\operatorname{Aut}(X)$, we have investigated several induced chambers in the nef cone of X, and obtained the following polarizations with big automorphism groups.

Theorem

(1) There exist 300 polarizations h_{1} with the following properties. $h_{1}^{2}=60,\left\langle h_{F}, h_{1}\right\rangle=15$. $\operatorname{Aut}\left(X, h_{1}\right) \cong \mathfrak{A}_{8}$.
The minimal degree of curves on $\left(X, h_{1}\right)$ is 5 , $\left(X, h_{1}\right)$ contains exactly 168 smooth rational curves of degree 5 , on which $\operatorname{Aut}\left(X, h_{1}\right)$ acts transitively.

Under suitable definition of adjacency relation, these 300 polarizations form 6 Hoffman-Singleton graphs.
(2) There exist 15700 polarizations h_{2} with the following properties.
$h_{2}^{2}=80,\left\langle h_{F}, h_{2}\right\rangle=40$.
$\operatorname{Aut}\left(X, h_{2}\right) \cong(\mathbb{Z} / 2 \mathbb{Z})^{4} \rtimes\left(\mathbb{Z} / 3 \mathbb{Z} \times \mathfrak{S}_{4}\right)$ (order 1152).
The minimal degree of curves on $\left(X, h_{2}\right)$ is 5 , and $\left(X, h_{2}\right)$ contains exactly 96 smooth rational curves of degree 5 , which decompose into two orbits under the action of $\operatorname{Aut}\left(X, h_{2}\right)$.
These 96 curves form six (166)-configurations.

