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The purpose of this talk is to demonstrate, on concrete examples,
how far we can go in the study of K3 surfaces
with the lattice theory and a help of a computer.
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Definition

A lattice is a free Z-module L of finite rank with a non-degenerate
symmetric bilinear form

⟨ , ⟩ : L× L → Z.

Let L be a lattice of rank n. If we choose a basis v1, . . . , vn of the
free Z-module L, then the bilinear form ⟨ , ⟩ : L× L → Z is
expressed by the Gram matrix

GL := (⟨vi , vj⟩)1≤i ,j≤n.

We will use a Gram matrix to express a lattice in the computer.
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By a quadratic triple of n-variables, we mean a triple [Q, ℓ, c],
where

Q is an n × n symmetric matrix with entries in Q,

ℓ is a column vector of length n with entries in Q, and

c is a rational number.

An element of Rn is written as a row vector

x = [x1, . . . , xn] ∈ Rn.

The inhomogeneous quadratic function qQT : Qn → Q associated
with a quadratic triple QT = [Q, ℓ, c] is defined by

qQT (x) := x Q tx + 2 x ℓ+ c.

We say that QT = [Q, ℓ, c] is negative if the symmetric matrix Q
is negative-definite.
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Algorithm

Let QT = [Q, ℓ, c] be a negative quadratic triple of n-variables.
Then we can compute the finite set

E (QT ) := { x ∈ Zn | qQT (x) ≥ 0 }

of integer points in the compact subspace {x ∈ Rn | qQT (x) ≥ 0}
of Rn.

Remark

This algorithm can be made much faster if you use the technique
of the lattice reduction basis (LLL-basis) due to
Lenstra-Lenstra-Lovász. See the standard textbook of the
computational number theory; for example,

Cohen. A course in computational algebraic number theory.
GTM 138. Springer (2000).
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Definition

A lattice L of rank n is hyperbolic if the signature of the real
quadratic space L⊗ R is (1, n − 1) (that is, the Gram matrix GL

has exactly one positive eigenvalue).

Suppose that L is a hyperbolic lattice. Then the space

{ x ∈ L⊗ R | ⟨x , x⟩ > 0 }

has two connected components. A positive cone of L is one of the
two connected components.
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Let L be a hyperbolic lattice, and let P be a positive cone of L.

Algorithm

Let h be a vector in P ∩ L. Then, for given integers a and b, we
can compute the finite set

{ x ∈ L | ⟨h, x⟩ = a, ⟨x , x⟩ = b }.

Algorithm

Let h, h′ be vectors of P ∩ L. Then, for a negative integer d, we
can compute the finite set of all vectors x of L that satisfy

⟨h, x⟩ > 0, ⟨h′, x⟩ < 0 and

⟨x , x⟩ = d

(that is, the set of vectors x ∈ L of square norm d < 0 that
separate h and h′).
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Definition

A lattice L is even if ⟨x , x⟩ ∈ 2Z for any x ∈ L.

Definition

Let L be a lattice. The orthogonal group O(L) of L is the group of
g : L →∼ L that satisfies ⟨x , y⟩ = ⟨xg , yg ⟩ for any x , y ∈ L.

Let L be an even hyperbolic lattice, and let P be a positive cone.

Let O+(L) denote the stabilizer subgroup of P in O(L).

A vector r ∈ L with ⟨r , r⟩ = −2 defines a reflection

sr : x 7→ x + ⟨x , r⟩r .

We have sr ∈ O+(L). Let W (L) denote the subgroup of
O+(L) generated by all the reflections sr .
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Let L be an even hyperbolic lattice with a positive cone P.
For a vector r ∈ L with ⟨r , r⟩ = −2, we put

(r)⊥ := { x ∈ P | ⟨x , r⟩ = 0 }.

Then sr is the reflection into this real hyperplane.
A standard fundamental domain of the action of W (L) on P is the
closure in P of a connected component of

P \
∪
r

(r)⊥.

All standard fundamental domains are congruent to each other.
The cone P is tessellated by standard fundamental domains.
Let D be a standard fundamental domain. We put

Aut(D) := { g ∈ O+(L) | Dg = D }.

Then O+(L) is the semi-direct product of W (L) and Aut(D).
9 / 31



Introduction Algorithms K3 surfaces Applications

Example

Let L26 be an even unimodular hyperbolic lattice of rank 26,
which is unique up to isomorphism. Let D be a standard
fundamental domain of the action of W (L26).

Theorem (Conway)

The walls of D correspond bijectively to the vectors of the Leech
lattice, and Aut(D) is isomorphic to the group of affine isometries
of the Leech lattice.

Remark

The even hyperbolic lattices with finite Aut(D) have been
classified by Nikulin and Vinberg. Such lattices have rank ≤ 19.
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Let h, h′ be vectors of P ∩ L. Let D be a standard fundamental
domain containing h.

Using the algorithm that calculates the set of vectors of square
norm d = −2 separating h and h′, we can determine whether h′ is
contained in D or not.

More precisely, we can calculate a sequence r1, . . . , rN of vectors of
square norm −2 such that the product

s1 · · · sN

of reflections si with respect to ri maps h′ to D.
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K3 means “Kummer, Kähler and Kodaira”, named by André Weil
(1958) after K2 at Karakorum (8611 m).
K3 surfaces are the 2-dimensional analogue of the elliptic curves.
K3 surfaces are 2-dimensional Calabi-Yau manifolds.

Definition

A smooth projective surface X defined over an algebraically closed
field is called a K3 surface if

H1(X ,OX ) = 0, and

the line bundle KX of regular 2 forms is trivial.

Example

A smooth surface in the projective space P3 is a K3 surface if and
only if it is of degree 4. In particular, the Fermat quartic surface

x41 + x42 + x43 + x44 = 0

over a field of characteristic ̸= 2 is a K3 surface.
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Let X be a K3 surface. Then we have the intersection pairing on
the group of divisors (or line bundles) on X .

Lemma

Let L and L′ be line bundles on X . Then L and L′ are isomorphic
if and only if

degL|C = degL′|C

for any curve C on X (that is, the numerical equivalence class is
equal to the isomorphism class for line bundles on a K3 surface).

Definition

The Néron-Severi lattice SX of X is the lattice of numerical
equivalence classes of line bundles on X . Its rank ρX is called the
Picard number of X
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Proposition

The Néron-Severi lattice SX of a K3 surface X is an even
hyperbolic lattice of rank ≤ 20 or 22. The case ρX = 22 occurs
only when the base field is of positive characteristic.

Definition

A complex K3 surface is singular if its Picard number is 20.

A K3 surface is supersingular if its Picard number is 22.

Example

Let X be the Fermat quartic surface x41 + x42 + x43 + x44 = 0 defined
over a field of characteristic p ̸= 2. Then

ρX :=

{
20 if p = 0 or p ≡ 1 mod 4,

22 if p ≡ 3 mod 4.
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−2 1 1 1 1 0 0 1 0 0 1 0 0 0 1 0 0 0 0 1

1 −2 1 1 0 1 0 0 1 0 0 1 0 0 0 1 0 0 1 0

1 1 −2 1 0 0 1 0 0 1 0 0 1 0 0 0 0 1 0 0

1 1 1 −2 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0

1 0 0 0 −2 1 1 1 0 0 0 0 0 1 0 0 0 0 1 0

0 1 0 0 1 −2 1 0 1 0 1 0 0 0 1 0 0 1 0 0

0 0 1 0 1 1 −2 0 0 1 0 1 0 0 0 1 1 0 0 0

1 0 0 0 1 0 0 −2 1 1 0 0 1 0 0 0 0 1 0 0

0 1 0 0 0 1 0 1 −2 1 0 0 0 1 0 0 1 0 0 0

.

.

.

0 0 1 0 0 1 0 1 0 0 0 1 0 1 0 0 1 −2 1 0

0 1 0 0 1 0 0 0 0 0 0 0 1 0 1 0 1 1 −2 0

1 0 0 0 0 0 0 0 0 1 0 1 0 1 0 0 1 0 0 −2



SX of the complex Fermat quartic (discriminant −64)
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−2 1 1 1 1 0 0 1 0 0 1 0 0 0 0 0 0 0 1 1 0 1

1 −2 1 1 0 1 0 0 1 0 0 0 1 1 0 0 0 1 0 0 1 0

1 1 −2 1 0 0 1 0 0 1 0 0 0 0 1 0 1 0 0 0 0 0

1 1 1 −2 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0

1 0 0 0 −2 1 1 1 0 0 0 1 0 0 0 1 1 0 0 0 0 0

0 1 0 0 1 −2 1 0 1 0 0 0 0 0 1 0 0 0 1 0 0 0

0 0 1 0 1 1 −2 0 0 1 0 0 1 1 0 0 0 0 0 0 1 0

1 0 0 0 1 0 0 −2 1 1 0 0 1 0 1 0 0 0 0 0 1 0

0 1 0 0 0 1 0 1 −2 1 0 1 0 0 0 0 1 0 0 0 0 0

0 0 1 0 0 0 1 1 1 −2 1 0 0 0 0 1 0 1 0 1 0 1

.

.

.

0 1 0 0 0 0 1 1 0 0 0 0 0 0 0 1 1 0 0 1 −2 1

1 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 1 0 1 −2



SX of the Fermat quartic in characteristic 3 (discriminant −9)
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In general, it is difficult to calculate a Gram matrix of the
Néron-Severi lattice of a K3 surface.

In the two example above, we had known the rank and the
discriminant of SX beforehand. Using this information, we search
for curves on X whose classes generate SX . It turns out that the
classes of lines on X ⊂ P3 generate SX .

Remark

Over C, the Fermat quartic contains 48 lines.
Over the field of characteristic 3, it contains 112 lines.

The basis are the classes of lines.
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Let X be a K3 surface. Since X is a projective surface, we have a
very ample class h ∈ SX (that is, h is the class of a hyperplane
section of an embedding X ↪→ PN). We choose the connected
component PX of {x ∈ SX | ⟨x , x⟩ > 0} that contains h.

Definition

The nef cone N(X ) of X is the cone

{ x ∈ PX | ⟨x , [C ]⟩ ≥ 0 for any curve C on X },

where [C ] ∈ SX is the class of a curve C ⊂ X .

Proposition

The nef cone N(X ) of X is a standard fundamental domain of the
action of W (SX ) on PX .
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Lemma

A curve C on a K3 surface is a smooth rational curve if and only if
its self-intersection number is −2.

Proposition

A hyperplane (r)⊥ of PX with ⟨r , r⟩ = −2 is a boundary wall of
N(X ) if and only if r or −r is the class of a smooth rational curve.

Let Aut(X ) denote the automorphism group of X . Since the
action of Aut(X ) on SX preserves the nef cone, we have a natural
homomorphism

Aut(X ) → Aut(N(X )).
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The following is a corollary of the Torelli theorem
(Piatetski-Shapiro and Shafarevich for complex K3 surfaces, Ogus
for supersingular K3 surfaces).

Theorem

Suppose that X is defined over C, or X is supersingular. Then the
kernel of the natural homomorphism Aut(X ) → Aut(N(X )) is
finite, and its image is of finite index.

Recall that, by Nikulin-Vinberg classification, an even hyperbolic
lattices with finite Aut(D) must be of rank ≤ 19.

Corollary

If X is singular or supersingular, then Aut(X ) is infinite.
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A smooth quartic surface containing 56 lines

The following theorem is due to B. Segre (1943), Rams-Schütt
(2015), Degtyarev, Itenberg and Sertöz (preprint).

Theorem

The number of lines lying on a complex smooth quartic surface is
either in {64, 60, 56, 54} or ≤ 52.

The maximum number 64 is attained by the Schur quartic.

The defining equations of smooth quartics containing 60 lines
have been obtained by Schütt.

There are possibly three smooth quartics containing 56 lines.
Their defining equations are not known.
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Note that the complex Fermat quartic surface

x41 + x42 + x43 + x44 = 0

contains only 48 lines.

By the theory of Shioda-Inose on the classification of singular K3
surfaces (complex K3 surfaces with Picard number 20), we know
that one of the smooth quartics containing 56 lines, which we
denote by X56, is isomorphic (as a complex surface) to the Fermat
quartic, which we denote by X48.

We know the Néron-Severi lattice S48 of X48
∼= X56.
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Theorem

We put

ζ := exp(2π
√
−1/8), A := −1− 2ζ − 2ζ3, B := 3 + A,

and

Ψ := y31 y2 + y1y
3
2 + y33 y4 + y3y

3
4

+ (y1y4 + y2y3)(A(y1y3 + y2y4) + B(y1y2 − y3y4)).

Then the surface X56 defined by Ψ = 0 is smooth, contains exactly
56 lines, and is isomorphic to the Fermat quartic surface X48.

The isomorphism X48 →∼ X56 is explicitly given by

(x1 : x2 : x3 : x4) 7→ (y1 : y2 : y3 : y4) = (f1 : f2 : f3 : f4)

where
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f1 =
(
1 + ζ − ζ

3
)
x1

3 +
(
ζ + ζ

2 + ζ
3
)
x1

2x3 + (1 + ζ) x1
2x4 +

(
−ζ − ζ

2 − ζ
3
)
x1x2

2 +

(−1 − ζ) x1x2x3 +
(
ζ + ζ

2
)
x1x2x4 − x1x3

2 +
(
ζ + ζ

2
)
x1x3x4 − ζ

3x1x4
2 +(

1 − ζ
2 − ζ

3
)
x2

2x3 +
(
−ζ − ζ

2
)
x2x3

2 +
(
ζ
2 + ζ

3
)
x2x3x4 + ζ

2x3
3 + x3x4

2

f2 = x1
3 − ζ

2x1
2x3 +

(
−1 + ζ

3
)
x1

2x4 − ζ
2x1x2

2 +
(
1 − ζ

3
)
x1x2x3 + (−1 − ζ) x1x2x4 +(

1 + ζ − ζ
3
)
x1x3

2 +
(
−ζ

2 − ζ
3
)
x1x3x4 +

(
−1 − ζ − ζ

2
)
x1x4

2 + ζ x2
2x3 +(

ζ
2 + ζ

3
)
x2x3

2 +
(
1 − ζ

3
)
x2x3x4 +

(
ζ + ζ

2 + ζ
3
)
x3

3 +
(
1 + ζ − ζ

3
)
x3x4

2

f3 =
(
1 + ζ + ζ

2
)
x1

2x2 +
(
ζ + ζ

2 + ζ
3
)
x1

2x4 + (−1 − ζ) x1x2x3 +
(
ζ + ζ

2
)
x1x2x4 +(

−ζ − ζ
2
)
x1x3x4 +

(
ζ
2 + ζ

3
)
x1x4

2 +
(
1 − ζ

2 − ζ
3
)
x2

3 +
(
−ζ − ζ

2
)
x2

2x3 +(
1 + ζ + ζ

2
)
x2

2x4 + ζ
2x2x3

2 +
(
−ζ

2 − ζ
3
)
x2x3x4 + ζ

3x2x4
2 + ζ

3x3
2x4 + ζ x4

3

f4 = −ζ x1
2x2 + x1

2x4 +
(
−1 + ζ

3
)
x1x2x3 + (1 + ζ) x1x2x4 +

(
−ζ

2 − ζ
3
)
x1x3x4 +(

−1 + ζ
3
)
x1x4

2 + ζ
3x2

3 + (−1 − ζ) x2
2x3 + ζ x2

2x4 +
(
−1 − ζ + ζ

3
)
x2x3

2 +(
1 − ζ

3
)
x2x3x4 +

(
−1 + ζ

2 + ζ
3
)
x2x4

2 +
(
1 − ζ

2 − ζ
3
)
x3

2x4 +
(
−1 − ζ − ζ

2
)
x4

3
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Let h48 ∈ S48 be the class of a hyperplane section of the
embedding X48 ↪→ P3.

Proposition

A nef class h ∈ S48 with ⟨h, h⟩ = 4 is the class of a hyperplane
section of some embedding X48 ↪→ P3 if and only if the following
hold:

(a) { e ∈ S48 | ⟨e, e⟩ = 0, ⟨e, h⟩ = 1 } is empty,

(b) { e ∈ S48 | ⟨e, e⟩ = 0, ⟨e, h⟩ = 2 } is empty, and

(c) { r ∈ S48 | ⟨r , r⟩ = −2, ⟨r , h⟩ = 0 } is empty.

If h ∈ S48 satisfies them, then the set of classes of lines contained
in the image Xh of the morphism X48 → P3 induced by h is equal
to

Fh := { r ∈ SX | ⟨r , r⟩ = −2, ⟨r , h⟩ = 1 }.
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The calculation
For each d = 1, 2, 3, . . . , we make the following calculations:

Compute the finite set

Hd := { h ∈ S48 | ⟨h, h⟩ = 4, ⟨h, h48⟩ = d }.

For each h ∈ Hd , we determine whether h is nef or not, by
calculating the (−2)-vectors separating h and h48.

If h is nef, then we check the conditions (a), (b), (c).

If h satisfies (a), (b), (c), then we calculate the set Fh of
classes of lines contained in Xh.

If |Fh| = 56, then we calculate the global sections f1, . . . , f4 of
the corresponding line bundle. (Since S48 is generated by the
classes of the 48 lines on X48, h is a linear combination of
some of these lines.)

Calculate the linear relation Ψ of the quartic monomials of
f1, . . . , f4.
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The automorphism group of the Fermat quartic in
characteristic 3

Let L be an even hyperbolic lattice, and
let D be a standard fundamental domain of the action of W (L).

Let L26 be the even unimodular hyperbolic lattice of rank 26, and
let D be a standard fundamental domain of the action of W (L26).
Recall that the structure of D has been already determined by
Conway.

Suppose that L can be embedded primitively into L26. Then there
exists an algorithm (Borcherds method) that calculates generators
of Aut(D) from the structure of D.
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Let X denote the Fermat quartic surface in characteristic 3;

X : x41 + x42 + x43 + x44 = x1x̄1 + x2x̄2 + x3x̄3 + x4x̄4 = 0,

where x̄ = x3 is the hermitian conjugate of F9/F3. Then the
projective automorphism group

Aut(X ⊂ P3) := { γ ∈ PGL4 | γ(X ) = X }

is isomorphic to the finite group PGU4(F9) of order 13, 063, 680.

Theorem (Kondo and S.)

The full automorphism group Aut(X ) of X is generated by
Aut(X ⊂ P3) and two involutions.
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Idea of the proof

The Néron-Severi lattice SX of X can be embedded into L26

primitively. The tessellation by the chambers Dγ (γ ∈ O+(L26))
induces a tessellation of the positive cone of SX , and the nef cone
is a union of some of them. Investigation of this tessellation gives
Aut(X ).

Remark

The Borcherds method can be applied to the complex Fermat
quartic. But the computation seems to be very huge and
intractable. Hence the calculation of the full automorphism group
of the complex Fermat quartic is still open.
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Other applications

We obtain automorphisms of irreducible Salem type on
supersingular K3 surfaces in characteristic ≤ 7919. We
conjecture that every supersingular K3 surface has an
automorphism of irreducible Salem type.

We can determine whether an even lattice of a given signature
and a given discriminant form exists or not by a finite steps of
computation (the genus theory of lattices). Combining this
theory with the Torelli theorem for K3 surfaces, we can make
the list of combinatorial data of complex elliptic K3 surfaces.
Here, a combinatorial data is the pair of the ADE -type of
singular fibers and the torsion part of the Mordell-Weil group.
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