A smooth quartic surface containing 56 lines

Ichiro Shimada

Hiroshima University

2016 May Istanbul

This is a joint work with Tetsuji Shioda (Rikkyo University, Tokyo).
The preprint is available from: arXiv:1604.06265

1 Introduction

2 Algorithms
$3 X_{48}$ and X_{56}

4 Other applications

Main Result

The complex Fermat quartic surface

$$
X_{48}: x_{1}^{4}+x_{2}^{4}+x_{3}^{4}+x_{4}^{4}=0
$$

in \mathbf{P}^{3} contains exactly 48 lines. We show that X_{48} has another smooth quartic surface $X_{56} \subset \mathbb{P}^{3}$ as a projective model. This new quartic surface X_{56} contains 56 lines, and hence X_{48} and X_{56} are not projectively isomorphic.

Theorem

We put $\zeta:=\exp (2 \pi \sqrt{-1} / 8)$, and

$$
A:=-1-2 \zeta-2 \zeta^{3}, \quad B:=3+A
$$

Then the surface X_{56} in \mathbb{P}^{3} defined by

$$
\begin{aligned}
& y_{1}^{3} y_{2}+y_{1} y_{2}^{3}+y_{3}^{3} y_{4}+y_{3} y_{4}^{3} \\
& \quad+\left(y_{1} y_{4}+y_{2} y_{3}\right)\left(A\left(y_{1} y_{3}+y_{2} y_{4}\right)+B\left(y_{1} y_{2}-y_{3} y_{4}\right)\right)=0
\end{aligned}
$$

is smooth, and contains exactly 56 lines. Moreover, as an abstract variety, X_{56} is isomorphic to the Fermat quartic X_{48}.

The rational map $\mathbf{P}^{3} \cdots \rightarrow \mathbb{P}^{3}$ given by

$$
\left[x_{1}: x_{2}: x_{3}: x_{4}\right] \mapsto\left[y_{1}: y_{2}: y_{3}: y_{4}\right]=\left[f_{1}: f_{2}: f_{3}: f_{4}\right]
$$

induces an isomorphism $\Phi: X_{48} \xrightarrow{\sim} X_{56}$, where

$$
\begin{aligned}
f_{1}= & \left(1+\zeta-\zeta^{3}\right) x_{1}^{3}+\left(\zeta+\zeta^{2}+\zeta^{3}\right) x_{1}^{2} x_{3}+(1+\zeta) x_{1}^{2} x_{4}+\left(-\zeta-\zeta^{2}-\zeta^{3}\right) x_{1} x_{2}^{2}+ \\
& (-1-\zeta) x_{1} x_{2} x_{3}+\left(\zeta+\zeta^{2}\right) x_{1} x_{2} x_{4}-x_{1} x_{3}^{2}+\left(\zeta+\zeta^{2}\right) x_{1} x_{3} x_{4}-\zeta^{3} x_{1} x_{4}^{2}+ \\
& \left(1-\zeta^{2}-\zeta^{3}\right) x_{2}^{2} x_{3}+\left(-\zeta-\zeta^{2}\right) x_{2} x_{3}^{2}+\left(\zeta^{2}+\zeta^{3}\right) x_{2} x_{3} x_{4}+\zeta^{2} x_{3}^{3}+x_{3} x_{4}^{2} \\
f_{2}= & x_{1}^{3}-\zeta^{2} x_{1}^{2} x_{3}+\left(-1+\zeta^{3}\right) x_{1}^{2} x_{4}-\zeta^{2} x_{1} x_{2}^{2}+\left(1-\zeta^{3}\right) x_{1} x_{2} x_{3}+(-1-\zeta) x_{1} x_{2} x_{4}+ \\
& \left(1+\zeta-\zeta^{3}\right) x_{1} x_{3}^{2}+\left(-\zeta^{2}-\zeta^{3}\right) x_{1} x_{3} x_{4}+\left(-1-\zeta-\zeta^{2}\right) x_{1} x_{4}^{2}+\zeta x_{2}^{2} x_{3}+ \\
& \left(\zeta^{2}+\zeta^{3}\right) x_{2} x_{3}^{2}+\left(1-\zeta^{3}\right) x_{2} x_{3} x_{4}+\left(\zeta+\zeta^{2}+\zeta^{3}\right) x_{3}^{3}+\left(1+\zeta-\zeta^{3}\right) x_{3} x_{4}^{2} \\
f_{3}= & \left(1+\zeta+\zeta^{2}\right) x_{1}^{2} x_{2}+\left(\zeta+\zeta^{2}+\zeta^{3}\right) x_{1}^{2} x_{4}+(-1-\zeta) x_{1} x_{2} x_{3}+\left(\zeta+\zeta^{2}\right) x_{1} x_{2} x_{4}+ \\
& \left(-\zeta-\zeta^{2}\right) x_{1} x_{3} x_{4}+\left(\zeta^{2}+\zeta^{3}\right) x_{1} x_{4}^{2}+\left(1-\zeta^{2}-\zeta^{3}\right) x_{2}^{3}+\left(-\zeta-\zeta^{2}\right) x_{2}^{2} x_{3}+ \\
& \left(1+\zeta+\zeta^{2}\right) x_{2}^{2} x_{4}+\zeta^{2} x_{2} x_{3}^{2}+\left(-\zeta^{2}-\zeta^{3}\right) x_{2} x_{3} x_{4}+\zeta^{3} x_{2} x_{4}^{2}+\zeta^{3} x_{3}^{2} x_{4}+\zeta x_{4}^{3} \\
f_{4}=\quad & \zeta x_{1}^{2} x_{2}+x_{1}^{2} x_{4}+\left(-1+\zeta^{3}\right) x_{1} x_{2} x_{3}+(1+\zeta) x_{1} x_{2} x_{4}+\left(-\zeta^{2}-\zeta^{3}\right) x_{1} x_{3} x_{4}+ \\
& \left(-1+\zeta^{3}\right) x_{1} x_{4}^{2}+\zeta^{3} x_{2}^{3}+(-1-\zeta) x_{2}^{2} x_{3}+\zeta x_{2}^{2} x_{4}+\left(-1-\zeta+\zeta^{3}\right) x_{2} x_{3}^{2}+ \\
& \left(1-\zeta^{3}\right) x_{2} x_{3} x_{4}+\left(-1+\zeta^{2}+\zeta^{3}\right) x_{2} x_{4}^{2}+\left(1-\zeta^{2}-\zeta^{3}\right) x_{3}^{2} x_{4}+\left(-1-\zeta-\zeta^{2}\right) x_{4}^{3}
\end{aligned}
$$

Our method is very computational. In this talk, by using this pair of quartics surfaces as an example, we demonstrate how far we can go in the study of $K 3$ surfaces with computer-aided calculation in the lattice theory.

We present a few computer-programs that are quite useful in the study of K3 surfaces.

Motivation

The following theorem is due to B. Segre (1943), Rams-Schütt (2015), Degtyarev, Itenberg and Sertöz (arXiv:1601.04238).

Theorem

The number of lines lying on a complex smooth quartic surface is either in $\{64,60,56,54\}$ or ≤ 52.

- The maximum number 64 is attained by the Schur quartic.
- The defining equations of smooth quartics containing 60 lines have been obtained by Schütt.
- There are at least three smooth quartics containing 56 lines. But their defining equations have not been known.

For a complex $K 3$ surface X, we denote the Néron-Severi lattice of X by

$$
S_{X}:=H^{2}(X, \mathbb{Z}) \cap H^{1,1}(X)
$$

that is, S_{X} is the lattice of cohomology classes of divisors on X with the intersection pairing. This is a lattice of signature $\left(1, \rho_{X}-1\right)$. Its rank ρ_{X} is called the Picard number of X.
We then denote by

$$
T_{X}:=\left(S_{X} \hookrightarrow H^{2}(X, \mathbb{Z})\right)^{\perp}
$$

the transcendental lattice of X. This is a lattice of signature $\left(2,20-\rho_{X}\right)$.

Degtyarev, Itenberg and Sertöz calculated the transcendental lattices of smooth quartics containing 56 lines. All of them have $\rho_{X}=20$, and one of them has

$$
\left[\begin{array}{ll}
8 & 0 \\
0 & 8
\end{array}\right]
$$

as the transcendental lattice, which is isomorphic to that of the Fermat quartic X_{48}. Hence these two $K 3$ surfaces must be isomorphic by the following:

Theorem (Shioda and Inose)

Let X and X^{\prime} be $K 3$ surfaces with $\rho_{X}=20$. If T_{X} and $T_{X^{\prime}}$ are $S L_{2}(\mathbb{Z})$-equivalent, then X and X^{\prime} are isomorphic.

Our goal is to find a defining equation of X_{56} and to exhibit an isomorphism $X_{48} \leadsto X_{56}$. (Since $X_{48} \cong X_{56}$ has an infinite automorphism group, there exist infinitely many isomorphisms.)

Algorithms in the lattice theory

Definition

A lattice is a free \mathbb{Z}-module L of finite rank with a non-degenerate symmetric bilinear form

$$
\langle,\rangle: L \times L \rightarrow \mathbb{Z}
$$

Let L be a lattice of rank n. If we choose a basis v_{1}, \ldots, v_{n} of the free \mathbb{Z}-module L, then the bilinear form $\langle\rangle:, L \times L \rightarrow \mathbb{Z}$ is expressed by the Gram matrix

$$
G_{L}:=\left(\left\langle v_{i}, v_{j}\right\rangle\right)_{1 \leq i, j \leq n} .
$$

We will use a Gram matrix to express a lattice in the computer.

By a quadratic triple of n-variables, we mean a triple $[Q, \ell, c]$, where

■ Q is an $n \times n$ symmetric matrix with entries in \mathbb{Q},

- ℓ is a column vector of length n with entries in \mathbb{Q}, and
- c is a rational number.

An element of \mathbb{R}^{n} is written as a row vector

$$
\boldsymbol{x}=\left[x_{1}, \ldots, x_{n}\right] \in \mathbb{R}^{n}
$$

The inhomogeneous quadratic function $q_{Q T}: \mathbb{Q}^{n} \rightarrow \mathbb{Q}$ associated with a quadratic triple $Q T=[Q, \ell, c]$ is defined by

$$
q_{Q T}(\boldsymbol{x}):=\boldsymbol{x} Q^{t} \boldsymbol{x}+2 \boldsymbol{x} \ell+c
$$

We say that $Q T=[Q, \ell, c]$ is negative if the symmetric matrix Q is negative-definite.

Algorithm

Let $Q T=[Q, \ell, c]$ be a negative quadratic triple of n-variables.
Then we can compute the finite set

$$
E(Q T):=\left\{\boldsymbol{x} \in \mathbb{Z}^{n} \mid q_{Q T}(\boldsymbol{x}) \geq 0\right\}
$$

of integer points in the n-dimensional ellipsoid

$$
\mathcal{E}_{n}:=\left\{\boldsymbol{x} \in \mathbb{R}^{n} \mid q_{Q T}(\boldsymbol{x}) \geq 0\right\} \subset \mathbb{R}^{n} .
$$

Method: The image of the projection of \mathcal{E}_{n} to a hyperplane $x_{n}=0$ is an ($n-1$)-dimensional ellipsoid.

Remark

This algorithm can be made much faster if we use the lattice reduction basis (LLL-basis) due to Lenstra-Lenstra-Lovász.

Applications of the basic algorithm

Definition

A lattice L of rank n is hyperbolic if the signature of the real quadratic space $L \otimes \mathbb{R}$ is $(1, n-1)$.

By Hodge index theorem, the Néron-Severi lattice of a smooth algebraic surface is hyperbolic.

Suppose that L is a hyperbolic lattice. Then the space

$$
\{x \in L \otimes \mathbb{R} \mid\langle x, x\rangle>0\}
$$

has two connected components. A positive cone of L is one of the two connected components.

Let L be a hyperbolic lattice, and let \mathcal{P} be a positive cone of L.

Algorithm

Let h be a vector in $\mathcal{P} \cap L$. Then, for given integers a and b, we can compute the finite set

$$
\{x \in L \mid\langle h, x\rangle=a, \quad\langle x, x\rangle=b\} .
$$

Algorithm

Let h, h^{\prime} be vectors of $\mathcal{P} \cap L$. Then, for a negative integer d, we can compute the finite set of all vectors x of L that satisfy

- $\langle h, x\rangle>0,\left\langle h^{\prime}, x\right\rangle<0$ and
- $\langle x, x\rangle=d$,
(that is, we can calculate the set of vectors $x \in L$ of square norm $d<0$ that separate h and h^{\prime}).

Definition

A lattice L is even if $\langle x, x\rangle \in 2 \mathbb{Z}$ for any $x \in L$.

Definition

Let L be a lattice. The orthogonal group $\mathrm{O}(L)$ of L is the group of $g: L \simeq L$ that satisfies $\langle x, y\rangle=\left\langle x^{g}, y^{g}\right\rangle$ for any $x, y \in L$.
Let L be an even hyperbolic lattice. We fix a positive cone \mathcal{P}.

- Let $\mathrm{O}^{+}(L)$ denote the stabilizer subgroup of \mathcal{P} in $\mathrm{O}(L)$.
- A vector $r \in L$ with $\langle r, r\rangle=-2$ defines a reflection

$$
s_{r}: x \mapsto x+\langle x, r\rangle r .
$$

We have $s_{r} \in \mathrm{O}^{+}(L)$. Let $W(L)$ denote the subgroup of $\mathrm{O}^{+}(L)$ generated by all the reflections s_{r}.

Let L be an even hyperbolic lattice with a positive cone \mathcal{P}.
For a vector $r \in L$ with $\langle r, r\rangle=-2$, we put

$$
(r)^{\perp}:=\{x \in \mathcal{P} \mid\langle x, r\rangle=0\}
$$

Then s_{r} is the reflection into this real hyperplane.
A standard fundamental domain of the action of $W(L)$ on \mathcal{P} is the closure in \mathcal{P} of a connected component of

$$
\mathcal{P} \backslash \bigcup_{r}(r)^{\perp}
$$

All standard fundamental domains are congruent to each other. The cone \mathcal{P} is tessellated by standard fundamental domains.

Let v and v^{\prime} be two points in

$$
L \cap\left(\mathcal{P} \backslash \bigcup_{r}(r)^{\perp}\right)
$$

Then, by calculating the set of (-2)-vectors separating v and v^{\prime}, we can determine whether v and v^{\prime} are in the same fundamental domain of $W(L)$ or not.

Application to the $K 3$ surface X_{48}

Let X be an algebraic $K 3$ surface, so that we have a very ample class $h \in S_{X}$. We choose the connected component \mathcal{P}_{X} of $\left\{x \in S_{X} \mid\langle x, x\rangle>0\right\}$ that contains h.

Definition

The nef cone $N(X)$ of X is the cone

$$
\left\{x \in \mathcal{P}_{X} \mid\langle x,[C]\rangle \geq 0 \text { for any curve } C \text { on } X\right\}
$$

where $[C] \in S_{X}$ is the class of a curve $C \subset X$.

Proposition

The nef cone $N(X)$ of X is a standard fundamental domain of the action of $W\left(S_{X}\right)$ on \mathcal{P}_{X}.

Recall that $\zeta:=\exp (2 \pi \sqrt{-1} / 8)$. The 48 lines on X_{48} are given by

$$
x_{1}+\zeta^{\mu} x_{i}=0, \quad x_{j}+\zeta^{\nu} x_{k}=0
$$

where μ and ν are positive odd integers ≤ 7, and i, j, k are integers such that $j<k$ and $\{1, i, j, k\}=\{1,2,3,4\}$. We can calculate the intersection numbers of these lines.

We know that $S_{48}:=S_{X_{48}}$ is of rank 20 and with discriminant 64. If we choose 20 lines from the 48 lines appropriately, they form a intersection matrix of discriminant 64, and hence they form a basis of S_{48}.

We fix such a list of 20 lines as a basis once and for all, so that every vector of S_{48} is expressed as a vector of length 20 with integer entries from now on.

$$
\left[\begin{array}{cccccccccccccccccccc}
-2 & 1 & 1 & 1 & 1 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 1 \\
1 & -2 & 1 & 1 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 1 & 0 \\
1 & 1 & -2 & 1 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\
1 & 1 & 1 & -2 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & -2 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 & 1 & -2 & 1 & 0 & 1 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 & 1 & 1 & -2 & 0 & 0 & 1 & 0 & 1 & 0 & 0 & 0 & 1 & 1 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 1 & 0 & 0 & -2 & 1 & 1 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 1 & 0 & 1 & -2 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 0 \\
& & & & & & . & & & & & & & & & & & & & \\
& & & & & & 0 & & & & & & & & & & & & & 0 \\
0 & 0 & 1 & 0 & 0 & 1 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 1 & 0 & 0 & 1 & -2 & 1 & 0 \\
0 & 1 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 1 & 0 & 1 & 1 & -2 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & -2
\end{array}\right]
$$

The Gram matrix of the Néron-Severi lattice S_{48} of X_{48}

Let $h_{48} \in S_{48}$ be the class of a hyperplane section of the embedding $X_{48} \hookrightarrow \mathbb{P}^{3}$.

Proposition

A class $h \in S_{48}$ with $\langle h, h\rangle=4$ is the class of a hyperplane section of some embedding $X_{48} \hookrightarrow \mathbb{P}^{3}$ if and only if the following hold:
(a) $\left\langle h, h_{48}\right\rangle>0$,
(b) there exist no (-2)-vectors separating h and h_{48},
(c) $\left\{e \in S_{48} \mid\langle e, e\rangle=0,\langle e, h\rangle=1\right\}$ is empty
(d) $\left\{e \in S_{48} \mid\langle e, e\rangle=0,\langle e, h\rangle=2\right\}$ is empty, and
(e) $\left\{r \in S_{48} \mid\langle r, r\rangle=-2,\langle r, h\rangle=0\right\}$ is empty.

Conditions (a) and (b) mean that h is nef.
Condition (c) means that the complete linear system of the line bundle corresponding to h is fixed-point free, and hence induces a morphism $\Phi_{h}: X_{48} \rightarrow \mathbb{P}^{3}$. Condition (d) means that Φ_{h} is not hyperelliptic, and (e) means that the image X_{h} of Φ_{h} is smooth.

Proposition

If $h \in S_{48}$ satisfies these conditions, then the set of classes of lines contained in the image X_{h} of Φ_{h} is equal to

$$
\mathcal{F}_{h}:=\left\{r \in S_{X} \mid\langle r, r\rangle=-2,\langle r, h\rangle=1\right\}
$$

For each $d=1,2,3, \ldots$, we make the following calculations:

- Compute the finite set

$$
\mathcal{H}_{d}:=\left\{h \in S_{48} \mid\langle h, h\rangle=4,\left\langle h, h_{48}\right\rangle=d\right\} .
$$

■ For each $h \in \mathcal{H}_{d}$, we determine whether h satisfies the conditions (a)-(e).
■ If h satisfies (a)-(e), then we calculate the set \mathcal{F}_{h} of classes of lines contained in X_{h}.
■ If $\left|\mathcal{F}_{h}\right|=56$, it means that we have found a polarization that induces an isomorphism to a smooth quartic surface containing 56 lines.

The group G_{48} of the projective automorphisms of $X_{48} \subset \mathbf{P}^{3}$ is of order $1536=24 \times 4^{3}$, and it acts on each \mathcal{H}_{d}. We have

$$
\mathcal{H}_{1}=\mathcal{H}_{2}=\mathcal{H}_{3}=\emptyset, \quad \mathcal{H}_{4}=\left\{h_{48}\right\}, \quad\left|\mathcal{H}_{5}\right|=48, \quad\left|\mathcal{H}_{6}\right|=48264
$$

The action of G_{48} on \mathcal{H}_{5} is transitive, and no vectors in \mathcal{H}_{5} are nef. The action of G_{48} decomposes \mathcal{H}_{6} into 60 orbits. Among the vectors in \mathcal{H}_{6},

- 792 vectors in 5 orbits are not nef,
- 792 vectors in other 5 orbits are nef, fixed-component free, but define hyperelliptic morphism,
■ 46296 vectors in 48 orbits are nef, fixed-component free, define non-hyperelliptic morphism, but the images are singular (one node, two nodes, one cusp, ...) , and
- the remaining 384 vectors in 2 orbits are very ample, and the images contain exactly 56 lines.

Theorem

If $h \in S_{X}$ is a very ample polarization of degree 4 with relative degree $\left\langle h, h_{48}\right\rangle=6$, then h is an X_{56}-polarization.

Theorem

There exist exactly $384 X_{56}$-polarizations of relative degree 6. Under the action of G_{48}, they are decomposed into two orbits.

Remark

These two orbits of X_{56}-polarizations are conjugate under the action of $\operatorname{Gal}(\mathbb{Q}(\zeta) / \mathbb{Q})$.

Remark

Recently, Oguiso (arXiv: 1602.04588) showed that, if a K3 surface X has two very ample classes h_{1}, h_{2} with $\left\langle h_{1}, h_{1}\right\rangle=\left\langle h_{2}, h_{2}\right\rangle=4$ and $\left\langle h_{1}, h_{2}\right\rangle=6$, then the associated two smooth quartic surfaces X_{1} and X_{2} are not projectively isomorphic.

A defining equation of X_{56}

Let h_{56} be one of the $384 X_{56}$-polarizations of relative degree 6 , and let \mathcal{L}_{56} be a line bundle whose class is h_{56}. Then we can find six lines $\ell_{1}, \ldots, \ell_{6}$ on X_{48} such that

$$
h_{56}=3 h_{48}-\left[\ell_{1}\right]-\cdots-\left[\ell_{6}\right] .
$$

Hence the space of the global sections of \mathcal{L}_{56} is identified with the space of homogeneous cubic polynomials in x_{1}, \ldots, x_{4} that vanish along the lines $\ell_{1}, \ldots, \ell_{6}$.
Let f_{1}, \ldots, f_{4} be a basis of this space. Calculating the linear dependence of the polynomials

$$
f_{1}^{n_{1}} f_{2}^{n_{2}} f_{3}^{n_{3}} f_{4}^{n_{4}} \quad\left(n_{1}+\cdots+n_{4}=4\right)
$$

in the degree 12 part of the homogeneous ring

$$
\mathbb{C}\left[x_{1}, \ldots, x_{4}\right] /\left(x_{1}^{4}+x_{2}^{4}+x_{3}^{4}+x_{4}^{4}\right),
$$

we obtain a defining equation of X_{56}.

Of course, the equation depends on the choice of the basis f_{1}, \ldots, f_{4}. The equation

$$
\begin{aligned}
& y_{1}^{3} y_{2}+y_{1} y_{2}^{3}+y_{3}^{3} y_{4}+y_{3} y_{4}^{3} \\
& \quad+\left(y_{1} y_{4}+y_{2} y_{3}\right)\left(A\left(y_{1} y_{3}+y_{2} y_{4}\right)+B\left(y_{1} y_{2}-y_{3} y_{4}\right)\right)=0
\end{aligned}
$$

is the shortest one among the eqs I found.

Reductions at primes

- The reduction of the model of $X_{56} \subset \mathbb{P}^{3}$ over $\mathbb{Z}[\zeta]$ at primes P remains smooth except when P lies over 2 or 3 , and each of these smooth reductions contains exactly 56 lines.
- There are two primes of $\mathbb{Z}[\zeta]$ over 3 . The reduction at one of them is singular, whereas the reduction at the other gives us a smooth surface projectively isomorphic to $X_{112}:=X_{48} \otimes \mathbb{F}_{9}$, which contains 112 lines. (See Degtyarev, Lines in supersingular quartics, arXiv:1604.05836).

We present some other applications of our algorithms.

The full automorphism groups

The standard fundamental domain of the even unimodular hyperbolic lattice L_{26} of rank 26 is completely described by Conway.

We embed S_{X} in L_{26}. Then the tessellation in L_{26} by the Conway domains induces a tessellation of the nef cone of X by cones with finite number of faces. (Borcherds-Kondo method).

Using this method, we calculate sets of generators of the full automorphism groups of several $K 3$ surfaces (including X_{112}) and some Enriques surfaces.

Remark

Currently, a set of generators of the full automorphism group of $X_{48} \cong X_{56}$ is not yet known.

An experiment on automorphisms of supersingular $K 3$ surfaces

A $K 3$ surface is supersingular if $\rho_{X}=22$. Supersingular $K 3$ surface exist only in positive characteristics.

An automorphism of a supersingular K3 surface is of irreducible Salem type if its action on S_{X} has an irreducible characteristic polynomial that is not cyclotomic. Such an automorphism is important because it never lifts to characteristic 0 .

We can find many automorphisms of a given $K 3$ surface X by our algorithms, just by searching for the degree 2 polarization $X \rightarrow \mathbb{P}^{2}$.
An experiment suggests that every supersingular $K 3$ surface in odd characteristic has an automorphism of irreducible Salem type.

This conjecture is confirmed for odd characteristics $p \leq 7919$.

