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We present a method to calculate the automorphism group of a K3
surface or an Enriques surface.

This method is based on the classical results of Vinberg (1973)
and Conway (1983) on the standard fundamental domain of the
action of the Weyl group for even unimodular hyperbolic lattices.

The first application of this method to K3 surfaces was given by
Borcherds (1987, 1998) and Kondo (1998). Hence we call it
Borcherds-Kondo method.

The new features in this talk are

a generalization of Borcherds-Kondo method to the cases of
non-simple Borcherds type,

a practical algorithm to carry out Borcherds-Kondo method
on a computer, and

an application to Enriques surfaces.
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A lattice is a free Z-module L of finite rank with a non-degenerate
symmetric bilinear form

⟨ , ⟩ : L× L → Z.

When a basis b1, . . . , bn of L is given, the intersection form ⟨ , ⟩ is
expressed by the Gram matrix (⟨bi , bj⟩)i ,j=1,...,n.

Let L be a lattice. We put

L∨ := Hom(L,Z), LQ := L⊗Q, LR := L⊗ R.

Then we have natural inclusions L ↪→ L∨ ↪→ LQ ↪→ LR. The
discriminant group of L is defined to be L∨/L.

A lattice L is unimodular if L∨ = L.

A lattice L of rank n is

hyperbolic if the signature of LR is (1, n − 1),
negative-definite if the signature of LR is (0, n).

A lattice L is even if ⟨x , x⟩ ∈ 2Z for all x ∈ L.

A sublattice L′ ⊂ L of L is primitive if L/L′ is torsion-free.
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K3 surface
Let X be an algebraic K3 surface. Then the lattice SX of
numerical equivalence classes [D] of divisors D on X is an even
hyperbolic lattice.
Over C, the lattice SX is a primitive sublattice of the even
unimodular lattice H2(X ,Z) of rank 22 and signature (3, 19),
which is unique up to isomorphism.

Enriques surface
Let Y be a complex Enriques surface. Then the lattice SY of
numerical equivalence classes [D] of divisors D on Y is an even
unimodular hyperbolic lattice L10 of rank 10, which is unique up to
isomorphism. In fact, the lattice SY is isomorphic to
H2(Y ,Z)/(torsion) with the cup product.
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The Weyl group of a hyperbolic lattice
Let L be an even hyperbolic lattice. Then {x ∈ LR | ⟨x , x⟩ > 0} has
two connected components. We choose one of them, denote it by
P, and call it a positive cone. Let O+(L) denote the stabilizer
subgroup of P in the group O(L) of isometries of L. We have

O(L) = O+(L)× {±1}.

For a non-zero vector v ∈ LR, we put

(v)⊥ := { x ∈ P | ⟨x , v⟩ = 0 }.

Then (v)⊥ ̸= ∅ if and only if ⟨v , v⟩ < 0. Consider a closed subset

C = { x ∈ P | ⟨x , vi ⟩ ≥ 0 for all vi }

of P defined by a set of vectors vi of LR. Suppose that C ⊂ P has
an interior point. A hyperplane (v)⊥ of P is said to define a wall
(v)⊥ ∩ C of the cone C if (v)⊥ is disjoint from the interior of C and
(v)⊥ ∩ C contains a non-empty open subset of (v)⊥.
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A vector r ∈ L is a root if ⟨r , r⟩ = −2. Let r be a root. Then r
defines a reflection

sr : x 7→ x + ⟨x , r⟩r
into the mirror (r)⊥. We have sr ∈ O+(L). Let W (L) denote the
subgroup of O+(L) generated by all the reflections sr . We call
W (L) the Weyl group of L. A standard fundamental domain of the
action of W (L) on P is the closure in P of a connected
component of

P \
∪

(r)⊥.

Then W (L) acts on the set of standard fundamental domains
simple-transitively. Let ∆ be a standard fundamental domain. We
put

Aut(∆) := { g ∈ O+(L) | ∆g = ∆ }.
Then we have a splitting exact sequence

1 → W (L) → O+(L) → Aut(∆) → 1.

By looking at the walls of ∆, we can find a presentation of W (L).
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Even unimodular hyperbolic lattices
First remark that an even unimodular hyperbolic lattice Ln of rank
n exists if and only if n ≡ 2 mod 8, and that Ln is unique up to
isomorphism for each n. The lattice U := L2 has the Gram matrix[

0 1
1 0

]
.

Vinberg’s result. Let e1, . . . , e10 be roots that form the following
Dynkin diagram T2,3,7. (The roots ei and ej are connected if
⟨ei , ej⟩ = 1, and not connected if ⟨ei , ej⟩ = 0.)c e1

e2 e3 e4 e5 e6 e7 e8 e9 e10

c c c c c c c c c
Then the lattice L10 generated by e1, . . . , e10 is an even
unimodular hyperbolic lattice of rank 10.
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Let P10 be the positive cone of L10 containing the vector

w := [115, 76, 153, 231, 195, 160, 126, 93, 61, 30],

which is characterized by ⟨w , ei ⟩ = 1 (i = 1, . . . , 10).

Theorem (Vinberg). The set

∆ := { x ∈ P10 | ⟨x , ei ⟩ ≥ 0 }

is a standard fundamental domain of the action of W (L10) on P10,
and each (ei )

⊥ ∩∆ is a wall of the chamber ∆ for i = 1, . . . , 10.

Since Aut(∆) = {1}, we have O+(L10) = W (L10). Moreover, we
see that W (L10) is generated by the 10 reflections sei , and that the
defining relations for these generators can be obtained from the
Dynkin diagram T2,3,7; that is, s

2
ei
= 1 for i = 1, . . . , 10, and

(sei sej )
2 = 1 if ei and ej are not connected,

(sei sej )
3 = 1 if ei and ej are connected.
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We skip L18, which was also studied by Vinberg.

Conway’s result
Let Λ be the negative-definite Leech lattice; that is, Λ is the even
unimodular negative-definite lattice of rank 24 with no roots,
which is unique up to isomorphism. Then

L26 := U ⊕ Λ

is an even unimodular hyperbolic lattice of rank 26. A vector of
L26 is written as (a, b, λ), where (a, b) ∈ U and λ ∈ Λ. We put

w := (1, 0, 0),

and let P26 the positive cone such that w ∈ P26. For each λ ∈ Λ,
we have a root

rλ := (−(λ2 + 2)/2, 1, λ) ∈ L26.

It is easy to see that

{ r ∈ L26 | ⟨r , r⟩ = −2, ⟨r ,w⟩ = 1 } = { rλ | λ ∈ Λ }.
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Theorem (Conway). The set

∆ := { x ∈ P26 | ⟨x , rλ⟩ ≥ 0 for all λ ∈ Λ }

is a standard fundamental domain of the action of W (L26) on P26,
and each root rλ defines a wall of ∆.

It is easy to see that Aut(∆) isomorphic to the group ·∞ of affine
isometries of Λ. Hence we have

O+(L26) = W (L26)⋊ ·∞,

and that the Weyl group W (L26) is generated by the reflections srλ .

Definition. We call a standard fundamental domain of W (L10) a
Vinberg chamber, and a standard fundamental domain of W (L26)
a Conway chamber.

10 / 40



Introduction Lattices Aut(K3) Aut(Enriques)

Discriminant form

We need the theory of discriminant forms due to Nikulin (1979).
Suppose that L is even. Since L∨ ⊂ LQ, the dual lattice L∨ has a
natural Q-valued non-degenerate symmetric bilinear form.
The discriminant form

qL : L∨/L → Q/2Z

is defined by qL(x mod L) := ⟨x , x⟩ mod 2Z for x ∈ L∨. We have a
natural homomorphism

O(L) → O(qL)

to the automorphism group O(qL) of the finite quadratic form qL.
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An overlattice M is a Z-module such that L ⊂ M ⊂ L∨, and that
the Q-valued form on L∨ takes values in Z on M.

By definition, the correspondence

M 7→ M/L

is a bijection from the set of even overlattices of L to the set of
isotropic subgroups of qL.

Hence we obtain the following:

Proposition. Let S and T be even lattices. If H is an even
unimodular overlattice of the orthogonal direct sum S ⊕ T such
that S ⊂ H and T ⊂ H are primitive, then

H/(S ⊕ T ) ⊂ S∨/S ⊕ T∨/T

is the graph of an isomorphism (S∨/S , qS) ∼= (T∨/T ,−qT ).
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Aut(K3)

For simplicity, we work over C. (By using Torelli theorem due to
Ogus (1983), we can develop a similar method for supersingular
K3 surfaces in positive characteristics.)

Let X be an algebraic K3 surface. Let PX be the positive cone of
SX containing an ample class. We denote the nef-and-big cone of
X by

N(X ) := { x ∈ PX | ⟨x , [C ]⟩ ≥ 0 for all curves C on X }.

Proposition.
The cone N(X ) is a standard fundamental domain of the action of
W (SX ) on PX . The correspondence C 7→ N(X ) ∩ ([C ])⊥ gives a
bijection from the set of smooth rational curves C on X to the set
of walls of the cone N(X ).
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We have a natural homomorphism

Aut(X ) → Aut(N(X )).

We investigate the image and the kernel of this homomorphism.

Let TX denote the orthogonal complement of SX in H2(X ,Z), and
let ωX be a generator of H2,0(X ) ⊂ TX ⊗ C. We put

Oω(TX ) := { g ∈ O(TX ) | ωg
X ∈ CωX }.

Since HX := H2(X ,Z) is unimodular and both of SX ⊂ HX and
TX ⊂ HX are primitive, we obtain an isomorphism

σX : qSX
∼−→ −qTX

.

We denote by
σX∗ : O(qSX )

∼−→ O(qTX
)

the isomorphism induced by σX .
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Then an isometry g ∈ O(SX ) extends to an isometry of H2(X ,Z)
preserving the Hodge structure if and only if

[period condition] σX∗(ηS(g)) ∈ ηT (O
ω(TX )),

where ηS : O(SX ) → O(qSX ) and ηT : O(TX ) → O(qTX
) are the

natural homomorphisms.

Example. Suppose that rankTX ≥ 3, and that ωX ∈ TX is very
general. Then we have Oω(TX ) = {±1}. Hence the period
condition is equal to

ηS(g) = ±1.

We put

ΓX := { g ∈ O+(SX ) | σX∗(ηS(g)) ∈ ηT (O
ω(TX )) }.

Note that ΓX is of finite index in O+(SX ).
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By Torelli theorem for complex K3 surfaces due to
Piatetski-Shapiro and Shafarevich (1971), we have the following:

Theorem. (1) The image of the natural homomorphism
Aut(X ) → Aut(N(X )) is Aut(N(X )) ∩ ΓX .
(2) The kernel of Aut(X ) → Aut(N(X )) is isomorphic to

{ g ∈ Oω(TX ) | ηT (g) = 1 }.

Hence, if we know Aut(N(X )) ∩ ΓX , then we can calculate
Aut(X ).

Note that Aut(N(X )) = O+(SX )/W (SX ) and ΓX are defined from
SX by purely lattice-theoretic terms.
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Borcherds-Kondo method

Let S be an even hyperbolic lattice with a positive cone PS , and
let N be a standard fundamental domain of the action of W (S) on
PS . Let Γ ⊂ O+(S) be a subgroup of finite index.

Borcherds-Kondo method calculates the group

Aut(N) ∩ Γ

by embedding S into L10, L18, or L26 primitively. We explain the
case L26.

Recall that ∆ is the Conway chamber defined above by
w = (1, 0, 0). Then the positive cone P26 is tessellated by Conway
chambers:

P26 =
∪

γ∈W (L26)

∆γ .
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For a Conway chamber ∆γ , we call wγ the Weyl vector of ∆γ .
Then ∆γ is bounded by the mirrors associated with roots in

{ r ∈ L26 | ⟨r , r⟩ = −2, ⟨r ,wγ⟩ = 1 } = { rγλ | λ ∈ Λ }.

Suppose that we have a primitive embedding

S ↪→ L26

that maps PS to P26. Then PS = P26 ∩ (S ⊗ R), and hence

PS =
∪

γ∈W (L26)

Dγ , where Dγ := PS ∩∆γ .

We say that Dγ = PS ∩∆γ is an induced chamber if Dγ contains a
non-empty open subset of PS . Let I denote the set of induced
chambers. Then we have

PS =
∪
D∈I

D.
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Since a root of S is a root of L26, there exists a subset IN of I
such that

N =
∪

D∈IN

D.

We say that two induced chambers D and D ′ is Γ-equivalent if
D ′ = Dγ for some γ ∈ Γ. Since Γ ⊂ O+(S) is of finite index,

Proposition. The number of Γ-equivalence classes of induced
chambers is finite.

We make the following:

Assumption. The orthogonal complement of S in L26 cannot be
embedded into the Leech lattice Λ.

Proposition. Let D = PS ∩∆γ be an induced chamber. Then D
has only a finite number of walls, and these walls can be calculated
effectively from the Weyl vector wγ of the Conway chamber ∆γ .
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Algorithm
We choose an induced chamber D0 ⊂ N, and set

D := [D0], G := {}.
When the algorithm terminates, D = [D0, . . . ,Dm] is a complete
set of representatives of Γ-equivalence classes of induced chambers
in N, and G = {g1, . . . , gl} is a set of generators of Aut(N) ∩ Γ.

Starting from i = 0, we do the following while i + 1 ≤ |D|.
1 We calculate the finite set of walls of Di , and the finite group

Aut(Di ) ∩ Γ. We append Aut(Di ) ∩ Γ to G.
2 For each wall (v)⊥ ∩ Di of Di that is not a wall of N, we

calculate a Weyl vector w ′ of a Conway chamber ∆′ such that
D ′ := PS ∩∆′ is an induced chamber adjacent to Di across
the wall (v)⊥ ∩ Di . If D

′ = Dγ
j for some Dj ∈ D and γ ∈ Γ,

then we add γ to G. If there are no such pairs of Dj and γ, we
append D ′ to D.

3 Increment i by +1.
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This method has been applied to various K3 surfaces.

Kondo (1998): a generic Jacobian Kummer surface /C.
Kondo-Keum (2001): Kummer surfaces of product type /C.
Dolgachev-Keum (2002): a quartic Hessians surface /C.
Dolgachev-Kondo (2003): a supersingular K3 surface in
characteristic 2 with Artin invariant 1.

Kondo-S. (2012): the Fermat quartic in characteristic 3.

Ujikawa (2013): the singular K3 surface whose transcendental
lattice is of discriminant 7.

S. (2015): several singular K3 surfaces whose transcendental
lattices are of relatively small discriminants.

Remark. Vinberg (1983) had determined the automorphism group
of the singular K3 surface whose transcendental lattice is of
discriminant 3 and 4 by different method.
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Example: Quartic Hessian surface
We review the work of Dolgachev-Keum (2002) on a quartic
Hessian surface over C.
Let F = F (x1, . . . , x4) be a general cubic homogeneous
polynomial, and let X be the quartic surface in P3 defined by

det

(
∂2F

∂xi∂xj

)
= 0.

Then X has ten ordinary nodes pα as its only singularities, and
contains exactly ten lines ℓβ.

The minimal resolution X of X is a K3 surface with rank SX = 16.
Let Eα be the exceptional curve over pα, and Lβ the strict
transform of ℓβ. Then SX is generated by the classes [Eα] and
[Lβ]. We have Oω(TX ) = {±1}, and the natural homomorphism

Aut(X ) → Aut(N(X )) ⊂ O+(SX )

is injective.
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A Gram matrix of SX with respect to a certain basis:

−2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 −2 0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 −2 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 −2 0 0 0 0 0 0 0 0 1 0 0 1
0 0 0 0 −2 0 0 0 0 0 0 1 0 0 0 1
0 0 0 0 0 −2 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 −2 0 0 0 0 0 1 0 1 0
0 0 0 0 0 0 0 −2 0 0 0 1 0 1 0 0
0 0 0 0 0 0 0 0 −2 0 1 0 0 1 1 0
0 0 0 0 0 0 0 0 0 −2 1 1 1 0 0 0
0 0 0 0 0 1 0 0 1 1 −2 0 0 0 0 0
0 0 0 0 1 0 0 1 0 1 0 −2 0 0 0 0
0 0 0 1 0 0 1 0 0 1 0 0 −2 0 0 0
0 0 1 0 0 0 0 1 1 0 0 0 0 −2 0 0
0 1 0 0 0 0 1 0 1 0 0 0 0 0 −2 0
1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 −2
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A Gram matrix of L26:



0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 −8 −4 −4 −4 −4 −4 −4 −2 −4 −4 −4 −2 −4 −2 −2 −2 −4 −2 −2 −2 0 0 0 3
0 0 −4 −4 −2 −2 −2 −2 −2 −2 −2 −2 −2 −2 −2 −2 −1 −1 −2 −1 −1 −2 −1 0 0 1
0 0 −4 −2 −4 −2 −2 −2 −2 −2 −2 −2 −2 −2 −2 −1 −2 −1 −2 −2 −1 −1 −1 0 0 1
0 0 −4 −2 −2 −4 −2 −2 −2 −2 −2 −2 −2 −2 −2 −1 −1 −2 −2 −1 −2 −1 −1 0 0 1
0 0 −4 −2 −2 −2 −4 −2 −2 −2 −2 −2 −2 −1 −2 −2 −2 −2 −2 −2 −2 −2 −1 0 0 1
0 0 −4 −2 −2 −2 −2 −4 −2 −2 −2 −2 −2 −1 −2 −2 −1 −1 −2 −1 −2 −1 0 0 0 1
0 0 −4 −2 −2 −2 −2 −2 −4 −2 −2 −2 −2 −1 −2 −1 −2 −1 −2 −1 −1 −2 0 0 0 1
0 0 −2 −2 −2 −2 −2 −2 −2 −4 −1 −1 −1 −2 −1 −2 −2 −2 −1 −2 −2 −2 −2 0 0 −1
0 0 −4 −2 −2 −2 −2 −2 −2 −1 −4 −2 −2 −2 −2 −2 −2 −2 −2 −2 −2 −2 −1 −1 −1 1
0 0 −4 −2 −2 −2 −2 −2 −2 −1 −2 −4 −2 −2 −2 −2 −1 −1 −2 −2 −1 −1 0 −1 0 1
0 0 −4 −2 −2 −2 −2 −2 −2 −1 −2 −2 −4 −2 −2 −1 −2 −1 −2 −1 −2 −1 0 0 −1 1
0 0 −2 −2 −2 −2 −1 −1 −1 −2 −2 −2 −2 −4 −1 −2 −2 −2 −1 −2 −2 −2 −2 −1 −1 −1
0 0 −4 −2 −2 −2 −2 −2 −2 −1 −2 −2 −2 −1 −4 −2 −2 −2 −2 −1 −1 −1 −1 −1 −1 1
0 0 −2 −2 −1 −1 −2 −2 −1 −2 −2 −2 −1 −2 −2 −4 −2 −2 −1 −2 −2 −2 −2 −2 −1 −1
0 0 −2 −1 −2 −1 −2 −1 −2 −2 −2 −1 −2 −2 −2 −2 −4 −2 −1 −2 −2 −2 −2 −1 −2 −1
0 0 −2 −1 −1 −2 −2 −1 −1 −2 −2 −1 −1 −2 −2 −2 −2 −4 −1 −2 −2 −2 −2 −1 −1 −1
0 0 −4 −2 −2 −2 −2 −2 −2 −1 −2 −2 −2 −1 −2 −1 −1 −1 −4 −2 −2 −2 −1 −1 −1 1
0 0 −2 −1 −2 −1 −2 −1 −1 −2 −2 −2 −1 −2 −1 −2 −2 −2 −2 −4 −2 −2 −2 −2 −1 −1
0 0 −2 −1 −1 −2 −2 −2 −1 −2 −2 −1 −2 −2 −1 −2 −2 −2 −2 −2 −4 −2 −2 −1 −2 −1
0 0 −2 −2 −1 −1 −2 −1 −2 −2 −2 −1 −1 −2 −1 −2 −2 −2 −2 −2 −2 −4 −2 −1 −1 −1
0 0 0 −1 −1 −1 −1 0 0 −2 −1 0 0 −2 −1 −2 −2 −2 −1 −2 −2 −2 −4 −2 −2 −2
0 0 0 0 0 0 0 0 0 0 −1 −1 0 −1 −1 −2 −1 −1 −1 −2 −1 −1 −2 −4 −2 −2
0 0 0 0 0 0 0 0 0 0 −1 0 −1 −1 −1 −1 −2 −1 −1 −1 −2 −1 −2 −2 −4 −2
0 0 3 1 1 1 1 1 1 −1 1 1 1 −1 1 −1 −1 −1 1 −1 −1 −1 −2 −2 −2 −4
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We embed SX into L26 primitively by v 7→ vM, where M is as
follows:

1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
1 1 −6 2 2 2 2 2 2 −2 1 0 1 −1 0 0 −1 1 0 1 −1 0 −1 0 1 0
1 1 6 −2 −2 −2 −1 −2 0 1 0 −1 −1 1 0 1 0 −1 0 0 1 −1 1 −1 −1 2
1 1 0 0 0 0 0 0 −2 2 1 1 0 −1 0 −1 1 0 0 −1 0 1 −1 1 0 0
1 1 0 0 0 0 1 0 0 0 0 −1 0 1 0 0 0 0 0 0 0 0 −1 1 0 0
1 1 −1 0 0 0 1 0 0 1 1 1 0 0 0 −1 0 0 0 −1 0 0 0 1 0 0
1 1 5 −2 −2 −2 0 0 0 0 0 −1 −1 2 0 0 0 −1 0 0 0 −1 2 −1 −1 2
1 1 −3 0 2 2 1 0 0 0 1 0 1 −1 0 1 −1 0 0 0 −1 1 −1 0 1 0
1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
1 1 −3 2 2 0 1 0 0 0 1 1 0 −1 0 −1 0 1 0 −1 1 0 −1 1 0 0
1 1 0 −1 0 0 1 0 0 1 0 −1 0 1 0 1 −1 0 1 0 −1 0 −1 0 1 0
1 1 3 −1 −2 −1 0 0 0 0 0 0 −1 1 0 0 1 −1 1 0 0 −1 1 −1 −1 2
1 1 0 0 0 1 0 0 1 −1 −1 −1 0 0 0 1 0 0 0 1 0 0 0 0 0 0
1 1 −1 1 0 0 1 1 0 0 0 0 0 0 0 −1 0 0 0 0 0 0 0 1 0 0
1 1 0 0 1 0 0 −1 −1 1 0 1 0 −1 0 0 0 0 0 −1 1 1 −1 1 0 0
1 1 −1 0 1 0 1 0 1 0 0 0 0 0 0 0 −1 0 0 0 0 0 0 0 1 0


The orthogonal complement of SX ↪→ L26 has a root, and hence
we can apply our algorithm. The output is as follows.
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Theorem (Dolgachev-Keum). There exists only one
ΓX -equivalence class of induced chambers. Let DX ⊂ N(X ) be the
induced chamber.

The group Aut(DX ) is of order 240, and the group
Aut(DX ) ∩ ΓX is of order 2. The non-trivial element of
Aut(DX ) ∩ ΓX is an Enriques involution ε : X → X .

The number of walls of DX is 20 + 10 + 24 + 30 = 84, among
which 20 walls are walls of N(X ) and they are defined by the
roots [Eα] and [Lβ], whereas the other 10 + 24 + 30 walls are
not walls of N(X ).

Therefore Aut(X ) is generated by ε and 10 + 24 + 30 isometries,
each of which is an involution that maps DX to an induced
chamber in N(X ) adjacent to DX across one of the 10 + 24 + 30
walls.

The geometric realization of generators are also obtained.
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The Enriques involution ε : X → X is classically known. Recall
that X is a minimal resolution of the quartic surface defined by the
Hessian of a general cubic polynomial F (x1, . . . , x4). Since F is
general, there exist complex numbers λ1, . . . , λ5 such that the
cubic surface F = 0 is written in the Sylvester form

λ1z
3
1 + · · ·+ λ5z

3
5 = z1 + · · ·+ z5 = 0

in P4. Then X is isomorphic

1

λ1z1
+ · · ·+ 1

λ5z5
= z1 + · · ·+ z5 = 0.

The involution given by

zi 7→
1

λizi
(i = 1, . . . , 5)

induces the Enriques involution ε : X → X .
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The Enriques involution ε is given by the following matrix.



0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
−2 1 1 −2 −2 1 0 0 3 0 2 −1 −1 2 2 −3
−1 1 0 −1 −2 0 1 0 2 0 1 −1 0 1 2 −2
−1 0 1 −2 −1 0 0 1 2 0 1 0 −1 2 1 −2
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 −1 −1 1 1 0 0 0 −1 1 0 1 1 −1 −1 1
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0



The matrix representations for the other 10 + 24 + 30 involutions
are also available.
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Remark
In all the cases where Borcherds-Kondo method was carried out
manually, the number of ΓX -equivalence classes of induced
chambers is 1. We call such a case of simple Borcherds type.

Examples of non-simple Borcherds type (S. (2015)).
Let X be the complex K3 surface with rank SX = 20 and

TX =

[
2 1
1 6

]
.

Then the number of ΓX -equivalence classes of induced chambers is
1098. We have obtained a set G of generators of Aut(X ) with
cardinality 767.

When X is the complex Fermat quartic surface, we have
rankSX = 20 and

TX =

[
8 0
0 8

]
.

Then the number of ΓX -equivalence classes is > 100000.
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Aut(Enriques)
We work over C.
For a lattice L, let L(2) denote the lattice obtained from L by
multiplying the intersection form ⟨ , ⟩ by 2.

An Enriques surface is a smooth projective surface Y with
π1(Y ) ∼= Z/2Z whose universal cover X is a K3 surface.
Let Y be an Enriques surface. Then H2(Y ,Z) ∼= Z10 ⊕ Z/2Z, and
since h2,0(Y ) = 0, we have

SY = H2(Y ,Z)/(torsion) ∼= L10.

Let π : X → Y be the universal covering, and let ε ∈ Aut(X ) be
the deck-transformation. For a group G and an element g ∈ G , we
denote by ZG (g) the centralizer of g in G . We have a natural
isomorphism

Aut(Y ) ∼= ZAut(X )(ε)/⟨ε⟩.
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We put

S+
X := {v ∈ SX | v ε = v}, S−

X := {v ∈ SX | v ε = −v}.

The pull-back π∗ : SY → SX induces an isomorphism of lattices

π∗ : SY (2)
∼−→ S+

X .

Let PY be the positive cone of SY containing an ample class. We
put

N(Y ) := { y ∈ PY | ⟨y , [C ]⟩ ≥ 0 for all curves C on Y }.

By the isomorphism π∗ : SY (2)
∼−→ S+

X , we regard SY as a
Z-submodule of SX . In particular, we have

PY = (SY ⊗R) ∩PX , N(Y ) = (SY ⊗R) ∩N(X ) = PY ∩N(X ).
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Suppose that Aut(X ) is determined by a primitive embedding
SX ↪→ L26. Then, composing this embedding with
π∗ : SY (2) ↪→ SX , we have a primitive embedding

SY (2) ↪→ L26,

and hence we obtain
N(Y ) =

∪
D ′,

where D ′ are induced chambers; that is, D ′ is a closed subset of
PY with non-empty interior and of the form
(SY ⊗ R) ∩ (a Conway chamber), or equivalently,
(SY ⊗ R) ∩ (an induced chamber in PX ).
By this decomposition, we can calculate Aut(Y ).

Difficulty.
The cone N(Y ) is not a standard fundamental domain of W (SY ).
Hence we need an extra work to determine whether a wall of an
induced chamber is a wall of N(Y ) or not.
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A generic Enriques surface

Suppose that Y is a generic Enriques surface. In this case, we
have SY (2) = SX . Since there exist no smooth rational curves on
Y , we have N(Y ) = PY = PX = N(X ).

Barth and Peters (1983) and Nikulin (1984) proved the following:

Theorem. Suppose that Y is generic. Then

Aut(Y ) → O+(SY )

is injective, and its image is equal to the kernel of the mod 2
reduction homomorphism

O+(SY ) → O(SY ⊗ F2).

Corollary. Since O+(SY ) → O(SY ⊗ F2) ∼= GO+
10(F2) is

surjective, we have

[O+(SY ) : Aut(Y )] = |GO+
10(F2)| = 46998591897600.
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Enriques surface associated with the quartic Hessian

Let X be the minimal resolution of the quartic surface

X : Hessian(F ) = 0,

where F (x1, . . . , x4) is a general cubic homogeneous polynomial.
Recall that X has an Enriques involution ε : X → X . We consider
the Enriques surface

Y := X/⟨ε⟩.

Recall that Aut(X ) is generated by ε and 10 + 24 + 30 involutions.
The 10 involutions ια among them come from the projections

X → P2

with the center being the 10 nodes pα of X . It was observed by
Dolgachev-Keum that these involutions commute with ε. In
particular, each ια ∈ ZAut(X )(ε) defines an involution jα ∈ Aut(Y ).
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Theorem 1. The natural homomorphism
Aut(Y ) → Aut(N(Y )) ⊂ O+(SY ) is injective.

Theorem 2. Aut(Y ) is generated by jα. The following relations
form a set of defining relations of Aut(Y ) with respect to these
generators jα;

j2α = id for each node pα,

(jαjα′ jα′′)2 = id for each triple (pα, pα′ , pα′′) of distinct three
nodes on a line ⊂ X , and

(jαjα′)2 = id for each pair (pα, pα′) of distinct nodes such
that the line pαpα′ ⊂ P3 is not contained in X .

Remark. Mukai and Ohashi have also proved that the 10
involutions jα generate Aut(Y ).
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Theorem 2 (continued).
There exists a fundamental domain DY of the action of Aut(Y )
on N(Y ) with the following properties.

DY is bounded by 10 + 10 hyperplanes (ūα)
⊥ and (v̄α)

⊥,
where ūα and v̄α are roots of SY .

For each α, we have ūα = [π(Eα)] = [π(Lᾱ)]. Hence (ūα)
⊥ is

a wall of N(Y ).

For each α, the root v̄α is not the class of a smooth rational
curve on Y , and jα ∈ Aut(Y ) maps DY to the chamber
adjacent to DY across the wall DY ∩ (v̄α)

⊥ of DY .

DY is a union of

214 · 3 · 5 · 7 · 17 · 31 = 906608640

Vinberg chambers.
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The situation is follows.

O+(SY )= O+(L10)
index 906608640 ∪

GQH ⊃ Aut(Y )
index 51840 ∪

Aut(Ygeneric)= Ker(O+(L10) → O(L10 ⊗ F2))

By specialization from a generic Enriques surface Ygeneric to Y , the
period condition is relaxed and Aut(Ygeneric) becomes a larger
group GQH with 10 + 10 generators. But the presence of smooth
rational curves π(Eα) prevents 10 generators (reflections with
respect to ūα = [π(Eα)]) from entering into Aut(Y ).

Remark. We have

G/Aut(Ygeneric) ∼= W (E6) ∼= GO−
6 (2).
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By looking at the fundamental domain DY , we can classify various
geometric objects (elliptic fibrations, . . . ) on Y modulo Aut(Y ).

Idea of the proof.
We describe the walls and faces of DY explicitly.

The relations among the generators jα correspond to the
8-dimensional faces of DY .

The elliptic fibrations correspond to the 1-dimensional faces
contained in ∂PY \ PY .

. . .

The main tool is Linear Programming.
Let V be a finite dimensional vector space over Q, and put

V ∨ := Hom(V ,Q).

For a non-zero f ∈ V ∨, we put

(f )⊥ := { x ∈ V ⊗ R | f (x) = 0 }.
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Let f1, . . . , fm be non-zero elements of V ∨ such that
(f1)

⊥, . . . , (fm)
⊥ are distinct.

We consider the chamber

C := { x ∈ V ⊗ R | fi (x) ≥ 0 for all i }.

Then (fi )
⊥ is a wall of C if and only if the solution of the following

problem of linear programing is unbounded to −∞:

minimize fi (x)

subject to the constraints fj(x) ≥ 0 for all j ̸= i .

We cut the Dolgachev-Keum chamber DX ⊂ SX ⊗ R by

SY ⊗ R := { x ∈ SX ⊗ R | xε = x },

and investigate the walls and faces of DY := DX ∩ (SY ⊗ R) by
applying the linear-programming method iteratively. (A wall of a
wall of DY is an 8-dimensional face of DY , a wall of an
8-dimensional face of DY is a 7-dimensional face of DY , . . . .)
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An application: generators of Aut(Ygeneric)
We have the following equalities:

Aut(Ygeneric) = Ker(ρ : O+(L10)→→GO+
10(2))

= Ker(ρ|GQH : GQH →→GO−
6 (2)).

Since we know finite sets of generators for O+(L10) and for GQH ,
we can obtain a finite set of generators of Aut(Ygeneric) by the
Reidemeister-Schreier method. Since

|GO+
10(2)| = 46998591897600

is very large, however, making use of the first equality is not
practical. On the other hand, since

|GO−
6 (2)| = 51840

is much smaller, we have managed to obtain a finite set of
generators of Aut(Ygeneric) in a reasonable computation time by
means of the second equality.
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