Computation of automorphism groups of *K*3 and Enriques surfaces

Ichiro Shimada

Hiroshima University

2019 September 04, Sendai

Terminologies about lattices

- A *lattice* is a free Z-module L of finite rank with a non-degenerate symmetric bilinear form ⟨, ⟩: L × L → Z.
- The automorphism group of L is denoted by O(L). The action is from the right: v → v^g for g ∈ O(L).
- A lattice L is unimodular if det(Gram matrix) = ± 1 .
- A lattice L is even (or of type II) if $\langle x, x \rangle \in 2\mathbb{Z}$ for all $x \in L$.
- A lattice *L* of rank *n* is *hyperbolic* if the signature of $L \otimes \mathbb{R}$ is (1, n-1).

We will mainly deal with even hyperbolic lattices.

• A *positive cone* of a hyperbolic lattice *L* is one of the two connected components of

$$\{x \in L \otimes \mathbb{R} \mid \langle x, x \rangle > 0\}.$$

• A vector $r \in L$ is called a (-2)-vector if $\langle r, r \rangle = -2$.

Terminologies about even hyperbolic lattices

Let L be an even hyperbolic lattice with a positive cone \mathcal{P} . We put

$$O(L, \mathcal{P}) := \{ g \in O(L) \mid \mathcal{P}^g = \mathcal{P} \}.$$

We have $O(L) = O(L, \mathcal{P}) \times \{\pm 1\}$. For a vector $v \in L \otimes \mathbb{Q}$ with $\langle v, v \rangle < 0$, we put

$$(\mathbf{v})^{\perp} := \{ x \in \mathcal{P} \mid \langle \mathbf{v}, x \rangle = 0 \}.$$

A (-2)-vector $r \in L$ defines the reflection into the mirror $(r)^{\perp}$:

$$s_r: x \mapsto x + \langle x, r \rangle r.$$

Let W(L) denote the subgroup of $O(L, \mathcal{P})$ generated by all reflections s_r with respect to (-2)-vectors r. Note that W(L) is a normal subgroup in $O(L, \mathcal{P})$.

Standard fundamental domain

A standard fundamental domain of the action of W(L) on \mathcal{P} is the closure of a connected component of

$$\mathcal{P}\setminus \bigcup (r)^{\perp},$$

where r runs through the set of all (-2)-vectors.

Then W(L) acts on the set of standard fundamental domains simple-transitively. Let N be a standard fundamental domain. We put

$$\mathcal{O}(L,N) := \{ g \in \mathcal{O}(L) \mid N^g = N \}.$$

Then we have

1

$$\begin{array}{lll} W(L) &=& \langle \ s_r \ | \ {\rm the \ hyperplane \ }(r)^{\perp} \ {\rm bounds \ } N \ \rangle, \\ {\rm O}(L,\mathcal{P}) &=& W(L) \rtimes {\rm O}(L,N). \end{array}$$

Even unimodular hyperbolic lattice

Theorem

For $n \in \mathbb{Z}_{>0}$ with $n \equiv 2 \mod 8$, there exists an even unimodular hyperbolic lattice L_n of rank n. (A more standard notation is $II_{1,n-1}$.) For each n, the lattice L_n is unique up to isomorphism.

We denote by U (instead of L_2) the hyperbolic plane $\begin{vmatrix} 0 & 1 \\ 1 & 0 \end{vmatrix}$.

Example by Vinberg. A standard fundamental domain of the action of $W(L_{10})$ is bounded by 10 hyperplanes $(r_1)^{\perp}, \ldots, (r_{10})^{\perp}$ defined by (-2)-vectors r_1, \ldots, r_{10} that form the dual graph below. Since this graph has no non-trivial symmetries, we have $O(L_{10}, \mathcal{P}) = W(L_{10})$.

For simplicity, we work over \mathbb{C} .

For a non-singular projective surface Z, we denote by S_Z the lattice of numerical equivalence classes of divisors on Z. The rank of S_Z is the *Picard number* of Z. Then S_Z is hyperbolic by Hodge index theorem.

- If Z is a K3 surface, then S_Z is even.
- If Z is an Enriques surface, then S_Z is isomorphic to L_{10} .

Let \mathcal{P}_Z be the positive cone containing an ample class of Z. We put

 $N_Z := \{ x \in \mathcal{P}_Z \mid \langle x, C \rangle \ge 0 \text{ for all curves } C \text{ on } Z \}.$

Plenty of information about geometry of a K3 surface or an Enriques surface is provided by the lattice S_Z .

Suppose that X is a complex K3 surface.

Theorem

The nef cone N_X is a standard fundamental domain of the action of $W(S_X)$ on \mathcal{P}_X . The walls of N_X are the hyperplanes defined by the classes of smooth rational curves on X.

Theorem

The natural homomorphism $Aut(X) \rightarrow O(S_X, N_X)$ is an isomorphism up to finite kernel and finite cokernel.

The kernel and the cokernel can be calculated by looking at the action on the discriminant group of S_X and the period $H^{2,0}(X)$.

7 / 26

Algorithms for K3 surfaces

Suppose that we have an ample class $a \in S_X$. Then *a* is an interior point of the nef cone N_X .

 We can determine whether a given vector v ∈ P_X ∩ S_X is nef or not by calculating the finite set

$$\{ r \in S_X \mid \langle r, r \rangle = -2, \langle r, a \rangle > 0, \langle r, v \rangle < 0 \}.$$

• Let $r \in S_X$ be a (-2)-vector such that

$$d:=\langle r,a
angle>0,$$

so that r is the class of an effective divisor D. Then D is irreducible if and only if $\langle r, C' \rangle \ge 0$ for any smooth rational curve C' with $\langle C', a \rangle < d$. Hence we can determine whether r is the class of a smooth rational curve or not by induction on d.

We can enumerate

- all classes f of fibers of elltptic fibrations with $\langle f, a \rangle \leq d$,
- all polarizations $h_2 \in S_X$ of degree $\langle h_2, h_2 \rangle = 2$ with $\langle h_2, a \rangle \leq d$, and the matrix representations on S_X of involutions associated with the double covers $X \to \mathbb{P}^2$,

•

A "K3 surface" X_{26} with Picard number 26

Let X_{26} be a "K3 surface" such that $S_{X_{26}}$ is isomorphic to the even unimodular hyperbolic lattice L_{26} of rank 26. We can state theorems on the lattice L_{26} as theorems on the geometry of this *non-existing* K3 surface X_{26} .

A negative-definite even unimodular lattice of rank 24 is called a *Niemeier lattice*. Niemeier showed that there exist exactly 24 isomorphism classes of Niemeier lattices, one of which is the famous *Leech lattice* Λ .

The lattice L_{26} is written as

 $U \oplus$ (a Niemeier lattice).

A vector $\mathbf{w} \in L_{26}$ is called a *Weyl vector* if \mathbf{w} is written as $(1, 0, \mathbf{0})$ in a decomposition

$$L_{26} = U \oplus \Lambda.$$

A (-2)-vector $r \in L_{26}$ is a *Leech root* with respect to **w** if $\langle \mathbf{w}, r \rangle = 1$. Under the expression $L_{26} = U \oplus \Lambda$ such that $\mathbf{w} = (1, 0, \mathbf{0})$, Leech roots are written as

$$\left(-rac{\lambda^2}{2}-1,1,\lambda
ight), \quad ext{where } \lambda \in \Lambda.$$

Theorem (Conway (1983))

The nef cone $N_{X_{26}}$ of X_{26} is bounded by hyperplanes defined by Leech roots with respect to a Weyl vector.

Corollary

The group $O(S_{X_{26}}, N_{X_{26}})$ is the group Co_{∞} of affine isometries of Λ ($O(\Lambda) + \text{translations}$).

Elliptic fibrations

For a K3 surface X, we put $\partial \overline{\mathcal{P}}_X := \overline{\mathcal{P}}_X \setminus \mathcal{P}_X$.

Theorem

The elliptic fibrations of a K3 surface X are in one-to-one correspondence with the rays in $\partial \overline{\mathcal{P}}_X \cap \overline{N}_X$.

The classification of Niemerer lattices can also be regarded as the classification of elliptic fibrations on $\mathbb{X}_{26}.$

Theorem

Up to the action of Co_{∞} , there exist exactly 24 rays in $\partial \overline{\mathcal{P}}_{\mathbb{X}_{26}} \cap \overline{N}_{\mathbb{X}_{26}}$. Each of them gives the orthogonal decomposition $L_{26} = U \oplus N$, where N is a Niemeier lattice.

12/26

We call standard fundamental domains of the action of $W(L_{26})$ on $\mathcal{P}(L_{26})$ *Conway chambers.* The positive cone $\mathcal{P}(L_{26})$ is tessellated by Conway chambers \mathcal{C} .

Let X be a K3 surface. Suppose that we have a primitive embedding $S_X \hookrightarrow L_{26}$, and hence \mathcal{P}_X is a subspace of $\mathcal{P}(L_{26})$.

An *induced chamber* is a closed subset D of \mathcal{P}_X that has an interior point and is obtained as the intersection $\mathcal{P}_X \cap \mathcal{C}$ of \mathcal{P}_X and a Conway chamber \mathcal{C} . The tessellation of $\mathcal{P}(L_{26})$ by Conway chambers \mathcal{C} induces a tessellation of \mathcal{P}_X by these induced chambers $D = \mathcal{P}_X \cap \mathcal{C}$.

We assume the following mild assumption:

The orthogonal complement of S_X in L_{26} contains a (-2)-vector. Then any induced chamber of \mathcal{P}_X has only finite number of walls. Since N_X is bounded by walls $(r)^{\perp}$ of (-2)-vectors r, and a (-2)-vector r of S_X is a (-2)-vector of L_{26} , the nef cone N_X is tessellated by induced chambers.

Definition

We say that the induced tessellation of \mathcal{P}_X is *simple* if the induced chambers are congruent to each other by the action of $O(S_X, \mathcal{P}_X)$.

When the induced tessellation is simple, we can calculate the shape of N_X and hence Aut(X).

This method, which was contrived by Borcherds (1987), is regarded as a calculation of Aut(X) by a generalization of "the K3 surface" X_{26} to X, that is, we regard the embedding

$$S_X \hookrightarrow L_{26} = S_{\mathbb{X}_{26}}$$

as the embedding induced by a "specialization" of X to \mathbb{X}_{26} . Aut(X) for many K3 surfaces X have been calculated by this method.

I. Shimada (Hiroshima University)

Example by Kondo (1999)

Let

$$X := \operatorname{Km}(\operatorname{Jac}(C))$$

be the Kummer surface of the Jacobian variety Jac(C) of a general genus 2 curve

$$C: y^2 = (x - \lambda_1) \cdots (x - \lambda_6).$$

Then S_X is of rank 17, and we have a primitive embedding $S_X \hookrightarrow L_{26}$ such that \mathcal{P}_X is *simply* tessellated by induced chambers. An induced chamber $D \subset N_X$ has 32 + 60 + 32 + 192 walls. The 32 walls are defined by the classes of smooth rational curves: the 32 lines on the (2, 2, 2)-complete intersection model $X_{2,2,2}$ of X.

$$\begin{aligned} x_1^2 + & x_2^2 + & x_3^2 + & x_4^2 + & x_5^2 + & x_6^2 &= 0, \\ \lambda_1 x_1^2 + \lambda_2 x_2^2 + \lambda_3 x_3^2 + \lambda_4 x_4^2 + \lambda_5 x_5^2 + \lambda_6 x_6^2 &= 0, \\ \lambda_1^2 x_1^2 + \lambda_2^2 x_2^2 + \lambda_3^2 x_3^2 + \lambda_4^2 x_4^2 + \lambda_5^2 x_5^2 + \lambda_6^2 x_6^2 &= 0. \end{aligned}$$

15/26

The group

$$\operatorname{Aut}(X,D):=\{\,g\in\operatorname{Aut}(X)\mid D^g=D\,\}$$

is the projective automorphism group $\operatorname{Aut}(X_{2,2,2})$ of $X_{2,2,2} \subset \mathbb{P}^5$, which is isomorphisc to $(\mathbb{Z}/2\mathbb{Z})^5$. For each of the other 60 + 32 + 192 walls w, there exists an involution $g_w \in \operatorname{Aut}(X)$ that maps D to the induced chamber adjacent to D across the wall w.

Theorem

The automorphism group $\operatorname{Aut}(X)$ is generated by $\operatorname{Aut}(X_{2,2,2}) \cong (\mathbb{Z}/2\mathbb{Z})^5$ and 60 + 32 + 192 involutions g_w .

60 involutions: Hutchinson-Göpel involutions (Enriques involutions). 32 involutions: projections from a node on a quartic surface model. 192 involutions: Hutchinson-Weber involutions (Enriques involutions).

Example by Dolgachev-S. arXiv:1908.05390

Borcherds' method is suitable for the analysis of the change of Aut(X) under generalization/specialization of K3 surfaces.

The surface X = Km(Jac(C)) has a quartic surface model with 16 ordinary nodes (Kummer quartic). We generalize X to a K3 surface X' that has a quartic surface model with 15 ordinary nodes. This X' is related to the line congruence of type (2,3) in $\text{Grass}(\mathbb{P}^1, \mathbb{P}^3)$.

From Kondo's embedding $S_X \hookrightarrow L_{26}$, we obtain $S_{X'} \hookrightarrow L_{26}$, which induces a simple tessellation of $\mathcal{P}_{X'}$.

Theorem

The automorphism group of X' is generated by 6+45+6+15+120+72automorphisms, each of which is described explicitly and geometrically. **Remark.** We also obtained a set of defining relations of Aut(X') with respect to these generators.

Remark. For every complex K3 surface X, we can embed S_X into L_{26} primitively. Usually, however, the induced tessellation on \mathcal{P}_X is not simple. For example, we observed that, when X is the Fermat quartic surface $X_{\rm FQ}$, there exist more than 10⁵ types of induced chambers, and hence the calculation of ${\rm Aut}(X_{\rm FQ})$ by Borcherds' method is very difficult.

The last remark is **NOT** the case for the calculation of Aut of Enriques surfaces, as will be seen below.

Enriques involution

An involution ε of a K3 surface X is called an *Enriques involution* if ε is fixed-point free, or equivalently, $Y := X/\langle \varepsilon \rangle$ is an Enriques surface. Let $\pi: X \to Y$ be the universal covering of Y. Then we obtain a

Let $\pi: X \to Y$ be the universal covering of Y. Then we obtain primitive embedding

$$\pi^*\colon S_Y(2)\cong L_{10}(2)\hookrightarrow S_X,$$

where $S_Y(2)$ is the lattice with the same \mathbb{Z} -module as S_Y and with the intersection form being that of S_Y multiplied by 2.

Theorem

An involution ε of a K3 surface X is an Enriques involution if and only if the fixed sublattice { $v \in S_X | v^{\varepsilon} = v$ } of S_X is isomorphic to $L_{10}(2)$, and its orthogonal complement contains no (-2)-vectors. We have classified all Enriques involutions on the "K3 surface" X_{26} . This is a joint work with S. Brandhorst (arXiv:1903.01087).

Theorem

Up to the action of $O(L_{10})$ and $O(L_{26})$, there exist exactly 17 primitive embeddings of $L_{10}(2)$ into L_{26} .

 $12A, 12B, 20A, \dots, 20F, 40A, \dots, 40E, 96A, \dots, 96C, infty.$

Among them, only one (the one named as infty) satisfies the condition that the orthogonal complement contains no (-2)-vectors.

No.	name	volume	aut	isom	NK
1	12A	269824	2 ²		Ι
2	12B	12142080	$2^{3} \cdot 3$		II
3	20A	64757760	$2^{3} \cdot 3$		V
4	20B	145704960	2 ⁶		III
5	20C	777093120	$2^3 \cdot 3 \cdot 5$	20D	VII
6	20D	777093120	$2^3 \cdot 3 \cdot 5$	20C	VII
7	20E	906608640	$2^3 \cdot 3 \cdot 5$		VI
8	20F	2039869440	2 ⁶ · 5		IV
9	40A	8159477760	$2^7 \cdot 3$		
10	40B	18650234880	$2^7 \cdot 3^2$	40C	
11	40C	18650234880	$2^7 \cdot 3^2$	40B	
12	40D	32637911040	$2^5 \cdot 3^2 \cdot 5$	40E	
13	40E	32637911040	$2^5 \cdot 3^2 \cdot 5$	40D	
14	96A	163189555200	$2^{13} \cdot 3$		
15	96B	652758220800	$2^{12} \cdot 3^3$	96C	
16	96C	652758220800	$2^{12} \cdot 3^3$	96B	
17	infty	∞			

Borcherds method for Enriques surface

Recall that $\mathcal{P}(L_{26})$ is tessellated by Conway chambers. A primitive embedding $L_{10}(2) \hookrightarrow L_{26}$ induces a tessellation of $\mathcal{P}(L_{10})$.

The following theorem is very useful in the calculation of Aut(Y).

Theorem

Except for the embedding of type infty, the following hold.

- The induced tessellation on $\mathcal{P}(L_{10})$ is simple.
- Each induced chamber D is bounded by a wall D ∩ (r)[⊥] perpendicular to a (-2)-vector r. (The name of the embedding indicates the number of walls.)
- The reflection s_r maps D to the induced chamber adjacent to D across the wall D ∩ (r)[⊥].

Remark. Nikulin (1984) and Kondo (1986) classified Enriques surfaces Y with finite automorphism group. If Aut(Y) is finite, then Y contains only finite number of smooth rational curves. By the configuration of these smooth rational curves, Enriques surfaces Y with finite automorphism group are devided into 7 classes I, II, ..., VII.

These 7 configurations appear as the configurations of (-2)-vectors bounding the induced chambers of $\mathcal{P}(L_{10})$.

Remark. Recall that the standard fundamental domain Δ of the action of $W(L_{10})$ on $\mathcal{P}(L_{10})$ is bounded by 10 walls with the dual graph below.

Each induced chamber is a union of copies of Δ .

The induced chambers are much bigger than Δ , and hence we need only small number of copies of chambers to describe N_Y .

For example, let Y be a generic Enriques surface. We have $N_Y = \mathcal{P}_Y$. By Barth-Peters (1983), the fundamental domain \mathcal{F} of the action of $\operatorname{Aut}(Y)$ on $N_Y = \mathcal{P}_Y$ is a union of

$$|O(L_{10} \otimes \mathbb{F}_2)| = 2^{21} \cdot 3^5 \cdot 5^2 \cdot 7 \cdot 17 \cdot 31 = 46998591897600$$

copies of Δ . If we use the embedding 96C, we can express \mathcal{F} as a union of

 $\frac{46998591897600}{652758220800}=72$

copies of induced chambers.

24 / 26

Ohashi (2009) classified the conjugacy classes of Enriques involutions in Aut(Km(Jac(C))). There exist exactly 6 + 10 + 15 conjugacy classes of Enriques involutions, where 6 are Hutchinson-Weber $\implies 20E$, 15 are Hutchinson-Göpel $\implies 40A$, 10 are in Aut($X_{2,2,2}$) $\implies 40C$. Let $\sigma \in Aut(X_{2,2,2})$ be an Enriques involution, and let Y be the

corresponding Enriques surface. We have a canonical isomorphism

$$\operatorname{Aut}(Y) \cong \operatorname{Cen}(\sigma)/\langle \sigma \rangle.$$

The centralizer $Cen(\sigma)$ of σ is generated by $Aut(X_{2,2,2})$ and 24 Hutchinson-Göpel involutions.

Summary

We can calculate many geometric data of K3 surfaces and Enriques surfaces by means of the "K3 surface" X_{26} of Picard number 26.

Thank you for the attention!