Mordell-Weil groups of a certain K3 surface

Ichiro Shimada

Hiroshima University

Recent Development in Algebraic Geometry National University of Singapore 2022 August 30

Contents

In the 1st part, we present some algorithms about Mordell-Weil groups of elliptic $K 3$ surfaces.

In the 2nd part, we apply these algorithms to a virtual K3 surface of Picard number 26, and give a new method of constructing the Leech lattice.

An algorithm on a lattice

A lattice is a free \mathbb{Z}-module L of finite rank with a non-degenerate symmetric bilinear form

$$
\rangle: L \times L \rightarrow \mathbb{Z}
$$

A lattice L is even if $\langle v, v\rangle \in 2 \mathbb{Z}$ for all $v \in L$. Let L be an even lattice.

- $r \in L$ is a root $\Longleftrightarrow\langle r, r\rangle$ is either 2 or -2 .
- $r \in L$ is a (-2)-vector $\Longleftrightarrow\langle r, r\rangle=-2$.

A lattice L of rank $n>1$ is said to be hyperbolic if the signature of $L \otimes \mathbb{R}$ is $(1, n-1)$. Let L be an even hyperbolic lattice. A positive cone of L is one of the two connected components of the space

$$
\{x \in L \otimes \mathbb{R} \mid\langle x, x\rangle>0\}
$$

Let \mathcal{P} be a positive cone of L. For $v \in L \otimes \mathbb{R}$ with $\langle v, v\rangle<0$, we put

$$
(v)^{\perp}:=\{x \in \mathcal{P} \mid\langle x, v\rangle=0\}
$$

which is a real hyperplane of \mathcal{P}.

A (-2)-vector $r \in L$ defines a reflection into the mirror $(r)^{\perp}$:

$$
s_{r}: x \mapsto x+\langle x, r\rangle r
$$

Definition

- The Weyl group of L is the subgroup $W(L)=\left\langle s_{r}\right\rangle$ of $\mathrm{O}(L)$, where r runs through the set of all (-2)-vectors.
- A standard fundamental domain of $W(L)$ is the closure of a connected component of

$$
\mathcal{P} \backslash \bigcup(r)^{\perp} \quad(r \text { runs through the set of }(-2) \text {-vectors })
$$

When L is the Néron-Severi lattice S_{X} of a $K 3$ surface X (that is, the group of numerical equivalence classes of divisors of X with the intersection pairing), the nef-and-big cone $N_{X} \subset \mathcal{P}_{X}$ of X is a standard fundamental domain of $W\left(S_{X}\right)$. Here $\mathcal{P}_{X} \subset S_{X} \otimes \mathbb{R}$ is the positive cone of S_{X} containing an ample class.

Let $N \subset \mathcal{P}$ be a standard fundamental domain of $W(L)$.

Definition

We say that a (-2)-vector $r \in L$ defines a wall of N if

- $(r)^{\perp}$ is disjoint from the interior of N,
- $N \cap(r)^{\perp}$ contains a non-empty open subset of $(r)^{\perp}$, and
- $\langle r, x\rangle>0$ for an interior point x of N.

It is an important task to enumerate (-2)-vectors defining walls of N. When $L=S_{X}$ and $N=N_{X}$, this is equivalent to calculate

$$
\operatorname{Rats}(X):=\left\{[C] \in S_{X} \mid C \text { is a smooth rational curve on } X\right\}
$$

We can carry out this task by Vinberg's algorithm. We have an alternative approach to this problem.

An alternative to Vinberg's algorithm

Let $v_{1}, v_{2} \in L \otimes \mathbb{Q}$ be vectors in \mathcal{P}. We can calculate the finite set

$$
\operatorname{Sep}\left(v_{1}, v_{2}\right):=\left\{r \in L \mid\left\langle r, v_{1}\right\rangle>0,\left\langle r, v_{2}\right\rangle<0,\langle r, r\rangle=-2\right\}
$$

of (-2)-vectors separating v_{1} and v_{2}. We have an algorithm to calculate this set. (Details are omitted.)
An application to a $K 3$ surface
Let $\boldsymbol{a} \in S_{X}$ be an ample class. Let $r \in S_{X}$ be a (-2)-vector such that $\langle\boldsymbol{a}, r\rangle>0$. Then there is an effective divisor D of X such that $r=[D]$. We have $r \in \operatorname{Rats}(X)$ if and only if D is irreducible. We put

$$
b:=\boldsymbol{a}+(\langle\boldsymbol{a}, r\rangle / 2) r,
$$

which is the point of $(r)^{\perp}$ such that the line segment $\overline{a b}$ is perpendicular to $(r)^{\perp}$. Then

$$
r \in \operatorname{Rats}(X) \Longleftrightarrow\left(\operatorname{Roots}\left([b]^{\perp}\right)=\{r,-r\} \text { and } \operatorname{Sep}(b, \boldsymbol{a})=\emptyset\right)
$$

where $\operatorname{Roots}\left([b]^{\perp}\right)$ is the set of (-2)-vectors orthogonal to b.

Mordell-Weil group

We work over an algebraically closed field k with $\operatorname{char}(k) \neq 2,3$.
Let X be a $K 3$ surface, and let

$$
\phi: X \rightarrow \mathbb{P}^{1}
$$

be an elliptic fibration. Let

$$
\eta=\operatorname{Spec} k\left(\mathbb{P}^{1}\right) \rightarrow \mathbb{P}^{1}
$$

be the generic point of the base curve \mathbb{P}^{1}. Then the generic fiber

$$
E_{\eta}:=\phi^{-1}(\eta)
$$

is a genus 1 curve defined over $k\left(\mathbb{P}^{1}\right)$, and the sections of ϕ are identified with the $k\left(\mathbb{P}^{1}\right)$-rational points of E_{η}. We assume that ϕ has a distinguished section

$$
\zeta: \mathbb{P}^{1} \rightarrow X
$$

that is, ϕ is a Jacobian fibration.

The curve E_{η} is an elliptic curve with the origin being the $k\left(\mathbb{P}^{1}\right)$-rational point corresponding to ζ, and the set

$$
\mathrm{MW}_{\phi}:=\operatorname{MW}(X, \phi, \zeta)
$$

of sections of ϕ has a structure of the abelian group with $\zeta=0$. This group MW_{ϕ} is called the Mordell-Weil group.

The group MW_{ϕ} acts on E_{η} via the translation on E_{η} :

$$
x \mapsto x+E \sigma \quad\left(x \in E_{\eta}, \quad \sigma \in \mathrm{MW}_{\phi}\right)
$$

where $+_{E}$ denotes the addition in the elliptic curve E_{η}. Since X is minimal, this automorphism of E_{η} gives an automorphism of X :

$$
\mathrm{MW}_{\phi} \hookrightarrow \operatorname{Aut}(X)
$$

Since $\operatorname{Aut}(X)$ acts on the lattice S_{X}, we obtain a homomorphism

$$
\mathrm{MW}_{\phi} \rightarrow \operatorname{Aut}(X) \rightarrow \mathrm{O}\left(S_{X}\right)
$$

Let $f \in S_{X}$ be the class of a fiber of ϕ, and $z=[\zeta] \in S_{X}$ the class of the image of ζ. We show that we can calculate the homomorphism

$$
\operatorname{MW}_{\phi} \rightarrow \operatorname{Aut}(X) \rightarrow \mathrm{O}\left(S_{X}\right)
$$

from the classes f, z and an ample class $\boldsymbol{a} \in S_{X}$ by using only lattice-theoretic computation. We explain this algorithm.

The classes f and z generate a unimodular hyperbolic plane U_{ϕ} in S_{X} :

$$
U_{\phi}=\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right], \quad f=(1,0), \quad z=(-1,1)
$$

Since U_{ϕ} is unimodular, we have an orthogonal direct-sum decomposition

$$
S_{X}=U_{\phi} \oplus W_{\phi}
$$

Since W_{ϕ} is negative-definite, we can calculate

$$
\operatorname{Roots}\left(W_{\phi}\right)=\left\{r \in W_{\phi} \mid\langle r, r\rangle=-2\right\} .
$$

Hence we can compute

$$
\Theta_{\phi}:=\operatorname{Roots}\left(W_{\phi}\right) \cap \operatorname{Rats}(X)
$$

by the ample class \boldsymbol{a}. Then Θ_{ϕ} is equal to the set of classes of smooth rational curves that are contracted to points by ϕ and are disjoint from ζ.

Let Σ_{ϕ} be the sublattice of W_{ϕ} generated by $\operatorname{Roots}\left(W_{\phi}\right)$, and τ_{ϕ} the ADE-type of Roots (W_{ϕ}).
The vectors in Θ_{ϕ} form a basis of Σ_{ϕ}, and their dual graph is the Dynkin diagram of type τ_{ϕ}.

Let

$$
\Theta_{\phi}=\Theta_{1} \sqcup \cdots \sqcup \Theta_{n}
$$

be the decomposition according to the decomposition of the Dynkin diagram into connected components. Then $\left\{\Theta_{1}, \ldots, \Theta_{n}\right\}$ is naturally in one-to-one correspondence with the set

$$
\left\{p \in \mathbb{P}^{1} \mid \phi^{-1}(p) \text { is reducible }\right\}=\left\{p_{1}, \ldots, p_{n}\right\}
$$

We investigate reducible fibers $\phi^{*}\left(p_{\nu}\right)$. We put

$$
\rho(\nu):=\operatorname{Card}\left(\Theta_{\nu}\right), \quad \tau_{\nu}:=\text { the ADE-type of } \Theta_{\nu}
$$

and let $\Sigma_{\nu} \subset \Sigma_{\phi}$ be the sublattice generated by Θ_{ν}. We have $\tau_{\phi}=\tau_{1}+\cdots+\tau_{n}$, and

$$
\Sigma_{\phi}=\Sigma_{1} \oplus \cdots \oplus \Sigma_{n}
$$

The fiber $\phi^{-1}\left(p_{\nu}\right)$ consists of $\rho(\nu)+1$ smooth rational curves

$$
C_{\nu, 0}, C_{\nu, 1}, \ldots, C_{\nu, \rho(\nu)}
$$

such that $\Theta_{\nu}=\left\{\left[C_{\nu, 1}\right], \ldots,\left[C_{\nu, \rho(\nu)}\right]\right\}$ and that $C_{\nu, 0}$ intersects the zero section ζ. The dual graph of

$$
\widetilde{\Theta}_{\nu}:=\left\{\left[C_{\nu, 0}\right]\right\} \cup \Theta_{\nu}
$$

is the affine Dynkin diagram of type τ_{ν}.

A fiber of type A_{ℓ}

A fiber of type D_{ℓ}

A fiber of type E_{6}

$C_{\nu, 2} \quad C_{\nu, 3} \quad C_{\nu, 4} \quad C_{\nu, 5} \quad C_{\nu, 6} \quad C_{\nu, 7} \quad C_{\nu, 8} \quad C_{\nu, 0}$
$C_{\nu, 0}$ is indicated by \odot, and
$C_{\nu, j}$ for $j \in J_{\nu}-\{0\}$ is indicated by \bigcirc.

The divisor $\phi^{*}\left(p_{\nu}\right)$ is written as

$$
\phi^{*}\left(p_{\nu}\right)=\sum_{j=0}^{\rho(\nu)} m_{\nu, j} C_{\nu, j} \quad\left(m_{\nu, j} \in \mathbb{Z}_{>0}\right)
$$

where the coefficients $m_{\nu, j}$ are well known. We put

$$
J_{\nu}:=\left\{j \mid m_{\nu, j}=1\right\}
$$

We have $0 \in J_{\nu}$. Let $\phi^{*}\left(p_{\nu}\right)^{\sharp}$ denote the smooth part of the divisor $\phi^{*}\left(p_{\nu}\right)$:

$$
\phi^{*}\left(p_{\nu}\right)^{\sharp}=\bigcup_{j \in J_{\nu}} C_{\nu, j}^{\circ},
$$

where $C_{\nu, j}^{\circ}$ is $C_{\nu, j}$ minus the intersection points with other components of $\phi^{-1}\left(p_{\nu}\right)$. Taking the limit of the group structures of general fibers of ϕ, we can equip $\phi^{*}\left(p_{\nu}\right)^{\sharp}$ with a structure of the abelian Lie group. Then J_{ν} has a natural structure of the abelian group, as the set of connected components of $\phi^{*}\left(p_{\nu}\right)^{\sharp}$. The index $0 \in J_{\nu}$ is the zero.

τ_{ν}	J_{ν}	Group structure
A_{ℓ}	$\{0,1, \ldots, \ell\}$	cyclic group $\mathbb{Z} /(\ell+1) \mathbb{Z}$ generated by $1 \in J_{\nu}$
$D_{\ell}(\ell:$ even $)$	$\{0,1,2, \ell\}$	$\mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / 2 \mathbb{Z}$
$D_{\ell}(\ell:$ odd $)$	$\{0,1,2, \ell\}$	cyclic group $\mathbb{Z} / 4 \mathbb{Z}$ generated by $1 \in J_{\nu}$ with $\ell \in J_{\nu}$ being of order 2
E_{6}	$\{0,2,6\}$	$\mathbb{Z} / 3 \mathbb{Z}$
E_{7}	$\{0,7\}$	$\mathbb{Z} / 2 \mathbb{Z}$
E_{8}	$\{0\}$	trivial

Table: Group structure of J_{ν}

The following observation is the key for our method. Let Σ_{ν}^{\vee} be the dual lattice of Σ_{ν}, and let $\gamma_{\nu, 1}, \ldots, \gamma_{\nu, \rho(\nu)}$ be the basis of Σ_{ν}^{\vee} dual to the basis $\left[C_{\nu, 1}\right], \ldots,\left[C_{\nu, \rho(\nu)}\right]$ of Σ_{ν}. We also put

$$
\gamma_{\nu, 0}:=0 \in \Sigma_{\nu}^{\vee}
$$

Lemma

The map $j \mapsto \gamma_{\nu, j} \bmod \Sigma_{\nu}$ gives an isomorphism

$$
J_{\nu} \cong \Sigma_{\nu}^{\vee} / \Sigma_{\nu}
$$

of abelian groups.
Hence, for any $x \in \Sigma_{\nu}^{\vee}$, there exists a unique $j \in J_{\nu}$ such that x and $\gamma_{\nu, j}$ are equivalent modulo Σ_{ν}.

Definition

The sublattice $U_{\phi} \oplus \Sigma_{\phi}$ of S_{X} is called the trivial sublattice.

Theorem

Let []: $\mathrm{MW}_{\phi} \rightarrow \operatorname{Rats}(X)$ denote the mapping that associates to each section $\sigma \in \mathrm{MW}_{\phi}$ the class $[\sigma] \in \operatorname{Rats}(X)$ of the image of σ. Then the composite

$$
\operatorname{MW}_{\phi} \xrightarrow{[1} \operatorname{Rats}(X) \hookrightarrow S_{X} \rightarrow S_{X} /\left(U_{\phi} \oplus \Sigma_{\phi}\right)
$$

is an isomorphism of abelian groups.
This holds, not only for $K 3$ surfaces, but also for elliptic surfaces in general.

For a vector $v \in S_{X}$, let $s(v) \in \mathrm{MW}_{\phi}$ be the section corresponding to $v \bmod \left(U_{\phi} \oplus \Sigma_{\phi}\right)$ via $\mathrm{MW}_{\phi} \cong S_{X} /\left(U_{\phi} \oplus \Sigma_{\phi}\right)$. We will calculate

$$
[s(v)] \in \operatorname{Rats}(X)
$$

(1) $\langle[s(v)],[s(v)]\rangle=-2$ and $\langle[s(v)], f\rangle=1$. Hence, by the orthogonal direct-sum decomposition $S_{X}=U_{\phi} \oplus W_{\phi}$, we have $[s(v)]=t f+z+w$, where $w \in W_{\phi}$ and $t=-\langle w, w\rangle / 2$.
(2) $[s(v)] \equiv v \bmod U_{\phi} \oplus \Sigma_{\phi}$. In particular, for each $\nu=1, \ldots, n$, we have

$$
\left.([s(v)]-v)\right|_{\nu} \in \Sigma_{\nu}
$$

(3) For each $\nu=1, \ldots, n$, there exists a unique index $j(v) \in J_{\nu}$ such that $\left.[s(v)]\right|_{\nu}=\gamma_{\nu, j(v)}$. This $j(v)$ is calculated by $\left.v\right|_{\nu} \bmod \Sigma_{\nu}=\bar{\gamma}_{\nu, j(v)}$.
These data are enough to compute $[s(v)]$.

Next, we explain how to calculate the isometry $g:=g(s(v)) \in \mathrm{O}\left(S_{X}\right)$ induced by $s(v) \in \mathrm{MW}_{\phi}$. Let $m=\operatorname{dim}\left(\mathrm{MW}_{\phi} \otimes \mathbb{Q}\right)$ be the Mordell-Weil rank of ϕ. We choose vectors $u_{1}, \ldots, u_{m} \in S_{X}$ such that their images by

$$
S_{X} \rightarrow\left(S_{X} /\left(U_{\phi} \oplus \Sigma_{\phi}\right)\right) \otimes \mathbb{Q}
$$

form a basis of $\mathrm{MW}_{\phi} \otimes \mathbb{Q}$. Then $S_{X} \otimes \mathbb{Q}$ is spanned by
$f, z=[s(0)],\left[s\left(u_{1}\right)\right], \ldots,\left[s\left(u_{m}\right)\right]$, and the vectors in $\Theta_{\nu}(\nu=1, \ldots, n)$.
Therefore it is enough to calculate the images of these vectors by $g:=g(s(v))$. It is obvious that

$$
\begin{aligned}
f^{g} & =f \\
z^{g} & =[s(v)] \\
{\left[s\left(u_{\mu}\right)\right]^{g} } & =\left[s\left(u_{\mu}+v\right)\right] \text { for } \mu=1, \ldots, m .
\end{aligned}
$$

Hence it remains only to calculate the image by g of the classes in Θ_{ν}. This is computed from the action of J_{ν} on $\phi^{*}\left(p_{\nu}\right)$.

An Example

Let \bar{X} be the double cover of \mathbb{P}^{2} defined by

$$
w^{2}=f(x, y, z)^{2}+g(x, y, z)^{3}
$$

where f and g are general homogeneous polynomials on \mathbb{P}^{2} of degree 3 and 2 , respectively, and X the minimal resolution of \bar{X}.
The singularities \bar{X} consist of $6 A_{2}$, and the rank of S_{X} is 13 . Looking for Jacobian fibrations of X and calculating thier Mordell-Weil groups, we obtain the following:

Theorem

The automorphism group $\operatorname{Aut}(X)$ of X is generated by 463 involutions associated with double coverings $X \rightarrow \mathbb{P}^{2}$ and 360 elements of infinite order in Mordell-Weil groups of Jacobian fibrations of X.

Here, by a double covering, we mean a generically finite morphism of degree 2.

Construction of the Leech lattice

Definition

An even unimodular negative-definite lattice of rank 24 is called a Niemeier lattice.
(Caution) We employ the sign convention opposite of the usual one.

Theorem (Niemeier)

Up to isomorphism, there exist exactly 24 Niemeier lattices.
One of them contains no roots. This lattice is called the Leech lattice and denoted by Λ.
Each of the other 23 lattices N contains a sublattice $N_{\text {roots }}$ of finite index generated by roots.

In this talk, we mean by an N-lattice a Niemeier lattice that is not isomorphic to Λ.
We present methods to construct the Leech lattice from N-lattices using an idea coming from the theory of elliptic K3 surfaces.

no.	τ_{N}	$N / N_{\text {roots }}$	h	no.	τ_{N}	$N / N_{\text {roots }}$	h
1	$24 A_{1}$	$(\mathbb{Z} / 2 \mathbb{Z})^{12}$	2	13	$3 A_{8}$	$\mathbb{Z} / 3 \mathbb{Z} \times \mathbb{Z} / 9 \mathbb{Z}$	9
2	$A_{11}+D_{7}+E_{6}$	$\mathbb{Z} / 12 \mathbb{Z}$	12	14	$2 A_{9}+D_{6}$	$\mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / 10 \mathbb{Z}$	10
3	$2 A_{12}$	$\mathbb{Z} / 13 \mathbb{Z}$	13	15	$D_{10}+2 E_{7}$	$(\mathbb{Z} / 2 \mathbb{Z})^{2}$	18
4	$A_{15}+D_{9}$	$\mathbb{Z} / 8 \mathbb{Z}$	16	16	$2 D_{12}$	$(\mathbb{Z} / 2 \mathbb{Z})^{2}$	22
5	$A_{17}+E_{7}$	$\mathbb{Z} / 6 \mathbb{Z}$	18	17	$D_{16}+E_{8}$	$\mathbb{Z} / 2 \mathbb{Z}$	30
6	$12 A_{2}$	$(\mathbb{Z} / 3 \mathbb{Z})^{6}$	3	18	D_{24}	$\mathbb{Z} / 2 \mathbb{Z}$	46
7	A_{24}	$\mathbb{Z} / 5 \mathbb{Z}$	25	19	$6 D_{4}$	$(\mathbb{Z} / 2 \mathbb{Z})^{6}$	6
8	$8 A_{3}$	$(\mathbb{Z} / 4 \mathbb{Z})^{4}$	4	20	$4 D_{6}$	$(\mathbb{Z} / 2 \mathbb{Z})^{4}$	10
9	$6 A_{4}$	$(\mathbb{Z} / 5 \mathbb{Z})^{3}$	5	21	$3 D_{8}$	$(\mathbb{Z} / 2 \mathbb{Z})^{3}$	14
10	$4 A_{5}+D_{4}$	$\mathbb{Z} / 2 \mathbb{Z} \times(\mathbb{Z} / 6 \mathbb{Z})^{2}$	6	22	$4 E_{6}$	$(\mathbb{Z} / 3 \mathbb{Z})^{2}$	12
11	$4 A_{6}$	$(\mathbb{Z} / 7 \mathbb{Z})^{2}$	7	23	$3 E_{8}$	0	30
12	$2 A_{7}+2 D_{5}$	$\mathbb{Z} / 4 \mathbb{Z} \times \mathbb{Z} / 8 \mathbb{Z}$	8	24	none	\mathbb{Z}^{24}	

τ_{N} is the $A D E$-type of the roots in N, and h is the Coxeter numebr of N.

Table: Niemeier lattices

Let L_{26} denote an even unimodular hyperbolic lattice of rank 26, which is unique up to isomorphism. For any N -lattice N, we have

$$
L_{26} \cong U \oplus \Lambda \cong U \oplus N
$$

where U is the hyperbolic plane $\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)$. If we write an isomorphism $U \oplus \Lambda \cong U \oplus N$ explicitly, we obtain a construction of Λ from N.

We choose a positive cone \mathcal{P}_{26} of L_{26}.

Definition

A vector $\mathbf{w} \in L_{26}$ is called a Weyl vector if

- \mathbf{w} is a non-zero primitive vector contained in $\overline{\mathcal{P}}_{26}$,
- $\langle\mathbf{w}, \mathbf{w}\rangle=0$ (hence $\mathbb{Z} \mathbf{w} \subset(\mathbb{Z} \mathbf{w})^{\perp}$) and,
- $(\mathbb{Z} \mathbf{w})^{\perp} / \mathbb{Z} \mathbf{w}$ is isomorphic Λ.

Hence a Weyl vector is written as $\mathbf{w}=(1,0,0)$ via some $L_{26} \cong U \oplus \Lambda$.

Definition

Let \mathbf{w} be a Weyl vector. A (-2 -vector $r \in L_{26}$ is said to be a Leech root with respect to \mathbf{w} if $\langle\mathbf{w}, r\rangle=1$. We then put
$\mathbf{C}(\mathbf{w}):=\left\{x \in \mathcal{P}_{26} \mid\langle x, r\rangle \geq 0\right.$ for all Leech roots r with respect to $\left.\mathbf{w}\right\}$.

Theorem (Conway)

(1) The mapping $\mathbf{w} \mapsto \mathbf{C}(\mathbf{w})$ gives a bijection from the set of Weyl vectors to the set of standard fundamental domains of $W\left(L_{26}\right)$.
(2) Let \mathbf{w} be a Weyl vector. The mapping $r \mapsto \mathbf{C}(\mathbf{w}) \cap(r)^{\perp}$ gives a bijection from the set of Leech roots with respect to \mathbf{w} to the set of walls of the chamber $\mathbf{C}(\mathbf{w})$.

Definition

We call a standard fundamental domain of $W\left(L_{26}\right)$ a Conway chamber.

Warning

There are no such $K 3$ surfaces.

We use this virtual $K 3$ surface \mathbb{X} heuristically.
Via $S_{\mathbb{X}} \cong L_{26}$, the nef-and-big cone $N_{\mathbb{X}}$ of \mathbb{X} is a Conway chamber, and hence there exists a Weyl vector \mathbf{w}_{0} such that

$$
N_{\mathbb{X}}=\mathbf{C}\left(\mathbf{w}_{0}\right) .
$$

This $\mathbf{w}_{0} \in S_{\mathbb{X}}$ is the class of a fiber of an elliptic fibration

$$
\Phi: \mathbb{X} \rightarrow \mathbb{P}^{1}
$$

By Conway's theorem, we see that

- every fiber of Φ is irreducible (because $\Lambda_{\text {roots }}=0$),
- $\operatorname{MW}(\Phi) \cong \Lambda \cong \mathbb{Z}^{24}$, and
- every smooth rational curve on \mathbb{X} is a section of Φ (because $\operatorname{Rats}(\mathbb{X})$ is the set of Leech roots).

If we find a Leech root $r \in \operatorname{Rats}(\mathbb{X})$, then the orthogonal complement $U\left(\mathbf{w}_{0}, r\right)^{\perp}$ of the sublattice $U\left(\mathbf{w}_{0}, r\right) \subset S_{\mathbb{X}}$ generated by \mathbf{w}_{0} and r is isomorphisc to Λ.

Let N be an N-lattice. We start from

$$
S_{\mathbb{X}}=U_{N} \oplus N \cong L_{26}
$$

where the hyperbolic lattice U_{N} is generated by the class $f_{N}=(1,0)$ of a fiber of a Jacobian fibration

$$
\Phi_{N}: \mathbb{X} \rightarrow \mathbb{P}^{1}
$$

and the class $z_{N}=(-1,1) \in \operatorname{Rats}(\mathbb{X})$ of the zero section of Φ_{N}. Then we see that

- the ADE-type of reducible fibers of Φ_{N} is the $A D E$-type τ_{N} of $N_{\text {roots }}$,
- $\operatorname{MW}\left(\Phi_{N}\right) \cong N / N_{\text {roots }}$, which is a finite abelian group.

We calculate the set $\Theta=\operatorname{Roots}(N) \cap \operatorname{Rats}(\mathbb{X})$ of classes $[C]$ of smooth rational curves C in fibers of Φ_{N} that are disjoint from z_{N}.

From the classes $r=[C] \in \Theta$ and $r=z_{N}$, we determine the Weyl vector \mathbf{w} such that $N_{\mathbb{X}}=\mathbf{C}(\mathbf{w})$ by solving the linear equations

$$
\langle\mathbf{w}, r\rangle=1
$$

Let $\rho \in N$ be the vector such that

$$
\langle r, \rho\rangle=1 \quad \text { for all } \quad r \in \Theta
$$

We have the Coxeter number h such that $\langle\rho, \rho\rangle=-2 h(h+1)$. Then we have

$$
\mathbf{w}=(h+1, h, \rho) \in U_{N} \oplus N .
$$

From this \mathbf{w} and various classes $z \in \operatorname{Rats}(\mathbb{X})$, we obtain

$$
\Lambda \cong U(\mathbf{w}, z)^{\perp} \subset S_{\mathbb{X}}
$$

By the projection, we obtain a linear homomorphism $\Lambda \rightarrow N$, from which we get a recipe to construct the Leech lattice Λ from the N-lattice N.

Example

We consider the case $N=3 E_{8}$. Let $\lambda: N \rightarrow \mathbb{Z}$ be defined by

$$
\lambda(v):=\langle\rho, v\rangle .
$$

We put

$$
N_{0}:=\{v \in N \mid \lambda(v) \equiv 0 \bmod 61\} .
$$

Then the \mathbb{Z}-module N_{0} together with the quadratic fotm

$$
v \mapsto\langle v, v\rangle+\frac{2}{61^{2}} \lambda(v)^{2}
$$

is isomorphisc to Λ.

Thank you very much for listening!

