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We explain an application of lattice theory to the study of geometry of
Enriques/K3 surfaces.

We present a new method in the (computer-aided) calculation of
automorphism groups and nef cones.

1 Goal

2 Naive method

3 Improvement

4 New results

“Vinberg” and “Conway” play important roles in this talk, as in Professor
Mukai’s talk on Monday.

This talk is intended to serve as an advertisement for computer-aided
research of Enriques/K3 surfaces and, hopefully, of higher dimensional
symplectic varieties.
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Goal

For simplicity, we work over C.

For a non-singular projective surface Z , we denote by SZ the lattice of
numerical equivalence classes of divisors on Z .

Let L10 be an even unimodular lattice of rank 10 with signature (1, 9),
which is unique up to isomorphism (∼= U ⊕ E8).

Suppose that Y is an Enriques surface. Then we have

SY ∼= L10.

Let PY ⊂ SY ⊗ R be the positive cone containing an ample class of Y .
The nef cone of Y is defined by

NY := { x ∈ PY | 〈x ,C 〉 ≥ 0 for all curves C on Y }.

(More precisely, we should call it the nef-and-big cone of Y .)
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We have a natural homomorphism Aut(Y )→ O(SY ,NY ), where

O(SY ,NY ) := { g ∈ O(SY ) | Ng
Y = NY }.

We want to

calculate a finite set of generators of Aut(Y ) explicitly, and

study the shape of NY /Aut(Y ).

We formulate the second problem more precisely.

———————

A lattice L is hyperbolic if its signature is (1, rank L). Let L be an even
hyperbolic lattice with a positive cone P, that is, P is one of the two
connected components ofthe space of v ∈ L⊗ R with 〈v , v〉 > 0. For a
vector v ∈ L⊗Q with 〈v , v〉 < 0, we put

(v)⊥ := { x ∈ P | 〈v , x〉 = 0 }.
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A vector r ∈ L is called a (−2)-vector if 〈r , r〉 = −2. A (−2)-vector r ∈ L
defines the reflection into the mirror (r)⊥:

sr : x 7→ x + 〈x , r〉r .

The Weyl group W (L) is defined by

W (L) := 〈 sr | r is a (−2)-vector 〉 C O(L,P).

A standard fundamental domain of W (L) is the closure in P of a
connected component of

P \
⋃

(r)⊥,

where r runs through the set of all (−2)-vectors.

Then W (L) acts on the set of standard fundamental domains
simple-transitively, and we have

W (L) = 〈 sr | the hyperplane (r)⊥ bounds N 〉,
O(L,P) = W (L) o O(L,N).
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Recall that L10 := an even unimodular hyperbolic lattice of rank 10.

Theorem (Vinberg)

A standard fumdamental domain of W (L10) is bounded by 10 hyperplanes
(r1)⊥, . . . , (r10)⊥ defined by (−2)-vectors r1, . . . , r10 that form the dual
graph below. Since this graph has no non-trivial symmetries, we have
O(L10,P) = W (L10). b

b b b b b b b b b
We call a standard fumdamental domain of W (L10)
a Vinberg chamber. The positive cone P of L10 is tessellated by Vinberg
chambers, in such a way that each Vinberg chamber has 10 adjacent
Vinberg chambers.
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Let Y be an Enriques surface, so that

SY ∼= L10.

The nef cone NY is a union of Vinberg chambers, and the action of
Aut(Y ) preserves the tessellation of NY by Vinberg chambers.
Hence Aut(Y ) acts on the set of Vinberg chambers in NY .

Our goal is to calculate a complete set of representatives of this
action.

If this task is done, then we can calculate the sets

R(Y ) := the set of smooth rational curves on Y , and

E(Y ) := the set of elliptic fibrations Y → P1

modulo the action of Aut(Y ).
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Naive method

We give a general elementary algorithm.

Let (V ,E ) be a simple non-oriented connected graph, where

V is the set of vertices and,

E is the set of edges, which is a set of non-ordered pairs of distinct
elements of V (no orientation, no multiple edges, and every edge has
two distinct end-points).

The set V may be infinite, but we assume the following local effectiveness
property:
For any v ∈ V , the set

adj(v) := { v ′ ∈ V | {v , v ′} ∈ E }

is finite, and can be calculated effectively.
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Suppose that a group G (possibly infinite) acts on the graph (V ,E ) from
the right. We assume the following local effectiveness properties on G :

1 For any v , v ′ ∈ V , we can determine effectively whether

TG (v , v ′) := { g ∈ G | vg = v ′ }

is empty or not, and when TG (v , v ′) 6= ∅, we can calculate an
element g ∈ TG (v , v ′).

2 For any v ∈ V , the stabilizer subgroup TG (v , v) of v in G is finitely
generated, and a finite set of generators of TG (v , v) can be calculated
effectively.

Our goal is to calculate

a finite generating set of the group G , and

a complete set of representatives of the orbits V /G .
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Let ∼ denote the G -equivalence relation: v ∼ v ′ ⇐⇒ TG (v , v ′) 6= ∅.
Let V0 ⊂ V be a non-empty finite subset with the following properties:

(A) If v , v ′ ∈ V0 and v 6= v ′, then v 6∼ v ′.

(B) We put

Ṽ0 := { v ∈ V | v is adjacent to a vertex v ′ ∈ V0 }.

Then, for each v ∈ Ṽ0, there is a vertex v ′ ∈ V0 such that v ∼ v ′.
Note that v ′ is unique for each v ∈ Ṽ0 by Property (A).

For each v ∈ Ṽ0 − V0, we choose an element h(v) ∈ TG (v , v ′), where
v ′ ∈ V0 satisfies v ∼ v ′, and put H := { h(v) | v ∈ Ṽ0 − V0 } ⊂ G .

Proposition

Let v0 be an element of V0. The natural mapping

V0 ↪→ V →→ V /∼ = V /G

is a bijection, and the group G is generated by TG (v0, v0) ∪H.
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Proof. Let 〈H〉 ⊂ G be the subgroup generated by H. First we show

(∗) ∀v ∈ V ∃h ∈ 〈H〉 such that vh ∈ V0.

Let a vertex v ∈ V be fixed. A sequence

v(0), v(1), . . . , v(l)

of vertices is a path from V0 to the orbit v 〈H〉 if

v(i−1) and v(i) are adjacent for i = 1, . . . , l ,

the starting vertex v(0) is in V0, and

the ending vertex v(l) belongs to the orbit v 〈H〉 of v by 〈H〉.
Since (V ,E ) is connected, there is at least one path from V0 to v 〈H〉.
Suppose that we have a path from V0 to v 〈H〉 of length l > 0. Since v(1)

is adjacent to v(0) ∈ V0, we have v(1) ∈ Ṽ0 and obtain h1 := h(v(1)) ∈ H
that maps v(1) to a vertex in V0.
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Then
vh1

(1), . . . , v
h1

(l)

is a path from V0 to v 〈H〉 of length l − 1. Thus we obtain a path from V0

to v 〈H〉 of length 0, which implies the claim (∗).

The injectivity of V0 → V /G follows from Property (A) of V0. The
surjectivity follows from the claim above.

Suppose that g ∈ G . By the claim, there is an element h ∈ 〈H〉 such that

vgh0 ∈ V0. By Property (A), we have v0 = vgh0 and hence gh ∈ TG (v0, v0).
Therefore G is generated by the union of H and TG (v0, v0).
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We can calculate V0 and H by the following procedure. This procedure
terminates if and only if |V /G | <∞.

Initialize V0 := [v0], H := {}, and i := 0.
while i < |V0| do

Let vi be the (i + 1)st entry of the list V0.
Let adj(vi ) be the set of vertices adjacent to vi .
for each vertex v ′ in adj(vi ) do

Set flag := true.
for each v ′′ in V0 do

if TG (v ′, v ′′) 6= ∅ then
Add an element h of TG (v ′, v ′′) to H.
Replace flag by false.
Break from the innermost for–loop.

if flag = true then
Append v ′ to the list V0 as the last entry.

Replace i by i + 1.
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Let Y be an Enriques surface. We apply the algorithm above to

V = the set of Vinberg chambers in NY ,

E = the usual adjacency relation of chambers,

G = the image of Aut(Y )→ O(SY ,NY ).

We check the local effectiveness properties.

Let X → Y be the universal covering of Y . Then X is a K3 surface, and
we have a primitive embedding

SY (2) ↪→ SX ,

where SY (2) is the lattice obtained from SY by multiplying 〈 , 〉 by 2.
Let PX ⊂ SX ⊗ R be the positive cone containing an ample class and
NX ⊂ PX the nef cone of X . We regard PY as a subspace of PX . Then
we have

NY = NX ∩ PY .
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Let a ∈ SY be an ample class of Y . Then a is an ample class of X by
SY (2) ↪→ SX . By Riemann-Roch, we have the following:

Proposition

The nef-cone NX is equal to the standard fundamental domain of W (SX )
containing a.

Hence a vector v ∈ SX ∩ PX belongs to NX if and only if the set of
separating (−2)-vectors

SepX (a, v) := { r ∈ SX | 〈r , r〉 = −2, 〈r , a〉 · 〈r , v〉 < 0 }

is empty. We have an algorithm to calculate this set.

Since NY = NX ∩ PY , a Vinberg chamber D ′ ⊂ PY is contained in NY if
and only if SepX (a, v ′) = ∅ for an interior point v ′ of D ′. Hence we can
determine whether D ′ ∈ V or not.

Thus the local effectiveness for (V ,E ) holds.
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For simplicity, we assume that rankSX < 20 and that the period ω of X is
general enough so that

{ g ∈ O(TX ) | ωg ∈ Cω } = {±1},

where TX is the transcendental lattice of X . (That is, X is very general in
the moduli of lattice polarized K3 surfaces.)
For Vinberg chambers D,D ′ in NY , then there is a unique isometry
g ∈ O(SY ,PY ) such that Dg = D ′. By Torelli theorem for K3 surfaces,
we have the following:

Proposition

An isometry g ∈ O(SY ,PY ) belongs to G = Im(Aut(Y )→ O(SY ,PY ))
if and only if Sep(a, ag ) = ∅ and g lifts to an isometry g̃ of SX that acts
as ±1 on the discriminant group of SX .

Hence the local effectiveness for G holds. Thus we can apply the
general algorithm, and calculate a complete set of representatives
for V /G and a finite set of generators of G .
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This naive method does not work

Let Y be a generic Enriques surface. Since Y has no smooth rational
curves, we have NY = PY , and hence V is the set of all Vinberg chambers.

Theorem (Barth-Peters (1983))

The fundamental domain of the action of Aut(Y ) on the cone NY = PY
is a union of

|O(L10 ⊗ F2)| = 221 · 35 · 52 · 7 · 17 · 31 = 46998591897600

copies of Vinberg chambers.

Therefore we have |V /G | = 46998591897600, and hence we have to go
through the while–loop about 47× 1012 times.

Definition

We define the Barth-Peters number by

1BP := 46998591897600.
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Improvement

To overcome this difficulty, we employ Borcherds’ method; we study a
lattice by embedding it in L26.

Let L26 be an even unimodular hyperbolic lattice of rank 26, which is
unique up to isomorphism. The standard fumdamental domain of W (L26)
was determined by Conway.

The lattice L26 is written as an orthogonal direct sum

U ⊕ (an even unimodular negative-definite lattice of rank 24).

A vector w ∈ L26 is called a Weyl vector if w is written as (1, 0, 0) in a
decomposition

L26 = U ⊕ Λ,

where Λ is the Leech lattice. We fix a positive cone P ⊂ L26 ⊗ R, and a
Weyl vector w contained in the boundary ∂ P of P.
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A (−2)-vector r ∈ L26 is a Leech root with respect to w if 〈w, r〉 = 1.
Under the decomposition L26 = U ⊕ Λ with w = (1, 0, 0), Leech roots are
written as

rλ :=

(
−λ

2

2
− 1, 1, λ

)
, where λ ∈ Λ.

Theorem (Conway)

There is a bijection
w ←→ Nw

between the set of Weyl vectors w and the set of standard fundamental
domains Nw of W (L26) in such a way that Nw is bounded by (rλ)⊥, where
rλ are the Leech roots with respect to w.

Definition

We call a standard fundamental domain of L26 a Conway chamber.
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Borcherds method for L10(2)

Let L10(2) denote the lattice obtained from L10 by multiplying the bilinear
form 〈 , 〉 by 2. We have O(L10(2)) = O(L10).

Theorem (S. and Brandhorst)

Up to the action of O(L10) and O(L26), there exist exactly 17 primitive
embeddings of L10(2) into L26.

12A, 12B, 20A, . . . , 20F, 40A, . . . , 40E, 96A, . . . , 96C, infty.

Recall that the positive cone PL26 of L26 is tessellated by Conway
chambers. Hence an embedding ι : L10(2) ↪→ L26 such that ι(PL10) ⊂ PL26

induces a tessellation of PL10 by induced chambers

ι−1(C) = PL10 ∩ C,

where C are Conway chambers such that ι−1(C) contains a non-empty
open subset of PL10 .
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Theorem (S. and Brandhorst)

Except for the embedding of type infty, the following hold.

The induced chambers on PL10 are isomorphic to each other under
the action of O(L10,PL10).

Each induced chamber D is bounded by a finite number of walls
D ∩ (r)⊥, and each wall D ∩ (r)⊥ is defined by a (−2)-vector r of L10.
(The name of the embedding indicates the number of walls.)

Moreover, for each wall D ∩ (r)⊥, the reflection sr maps D to the
induced chamber adjacent to D across the wall D ∩ (r)⊥.

By the second assertion, each induced chamber is tessellated by Vinberg
chambers. The volume of an induced chamber is defined to be the number
of Vinberg chambers contained in the induced chamber.

For the proof, we use the mass formula for positive definite lattices in a
genus.
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17 embeddings

No. name volume (by BP) |aut| isom NK

1 12A 1/174182400 22 I
2 12B 1/3870720 23 · 3 II
3 20A 1/725760 23 · 3 V
4 20B 1/322560 26 III
5 20C 1/60480 23 · 3 · 5 20D VII
6 20D 1/60480 23 · 3 · 5 20C VII
7 20E 1/51840 23 · 3 · 5 VI
8 20F 1/23040 26 · 5 IV
9 40A 1/5760 27 · 3

10 40B 1/2520 27 · 32 40C
11 40C 1/2520 27 · 32 40B
12 40D 1/1440 25 · 32 · 5 40E
13 40E 1/1440 25 · 32 · 5 40D
14 96A 1/288 213 · 3
15 96B 1/72 212 · 33 96C
16 96C 1/72 212 · 33 96B
17 infty ∞
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Rough idea

We construct a primitive embedding

SX ↪→ L26

in such a way that the volume of the induced chamber of

SY (2) ↪→ SX ↪→ L26

is large (for example, of type 96B or 96C). Instead of using Vinberg
chambers of SY , we use the induced chambers of SY (2) ↪→ L26.
Then we can reduce the number of |V /G |, and complete the execution of
the algorithm in a practical time.
(We also have to take care of automorphisms of induced chambers.)

For example, for Barth-Peters generic Enriques surfaces, by using the
embedding 96C, we can complete the algorithm by going through the
while–loop only about 72 ( + contribution from the boundary) times.
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Main results

We need the notion of (τ, τ̄)-generic Enriques surfaces to state the main
results, where τ and τ̄ are ADE-types of the same rank. Since we have no
time, we only give examples.

Examples

The generic Enriques surface of Barth-Peters is (0, 0)-generic.

A general nodal Enriques surface is (A1,A1)-generic. More generally,
if Y is an Enriques surface that is very general in the moduli of
Enriques surfaces containing n disjoint smooth rational curves, then
Y is (nA1, nA1)-generic.

If Y is very general in the moduli of Enriques surfaces containing two
smooth rational curves whose dual graph is c c, then Y is
(A2,A2)-generic. We say that such an Enriques surface Y is general
cuspidal.
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Volume formula

We calculate the volume vol(NY /Aut(Y )) to be the number of orbits
|V /G |. Recall that 1BP := 46998591897600.

Theorem (S. and Brandhorst)

Let Y be a (τ, τ̄)-generic Enriques surface. Then we have

vol(NY /Aut(Y )) = |V /G | =
c(τ,τ̄)

|W (Rτ )|
· 1BP,

where W (Rτ ) is the Weyl group of type τ , and c(τ,τ̄) ∈ {1, 2} is the
number of numerically trivial automorphisms of Y , that is, the size of the
kernel of ρ : Aut(Y )→ O(SY ,PY ).

Example

If Y is generic, then |V /G | = 1BP. This is the definition of 1BP.
If Y is general nodal, then |V /G | = 1BP/2.
If Y is general n-nodal, then |V /G | = 1BP/2nn! for n ≤ 8.
If Y is general cuspidal, then |V /G | = 1BP/6.
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There are two good things about this formula.

We have a proof that does not use computer.

We can make an explicit list of representatives of V /G , and hence we
can confirm the formula by computer.

We can calculate the sets

R(Y ) := the set of smooth rational curves on Y , and

E(Y ) := the set of elliptic fibrations Y → P1

modulo the action of Aut(Y ).

Example

If Y is general nodal, then |R(Y )/Aut(Y )| = 1. This had been
proved by Cossec-Dolgachev.

If Y is general n-nodal with n ≤ 6, then |R(Y )/Aut(Y )| = n.

If Y is general cuspidal, then |R(Y )/Aut(Y )| = 1.

. . .
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Theorem (Barth-Peters)

Let Y be a generic Enriques surface. Then |E(Y )/Aut(Y )| = 527.

We generalize this theorem as follows:

Theorem (S. and Brandhorst)

Let Y be a general nodal Enriques surface. Then

|E(Y )/Aut(Y )| = 136 + 255.

In the representatives of elements of E(Y )/Aut(Y ),
136 elliptic fibrations have no reducible fibers, and
255 elliptic fibrations have one non-multiple reducible fiber of type A1.

. . . . . . . . .

I. Shimada (Hiroshima University) Enriques surfaces 2022 Mar 16 27 / 28



Our preprints are available from:

Borcherds’ method for Enriques surfaces
Simon Brandhorst, Ichiro Shimada
arXiv:1903.01087

Automorphism groups of certain Enriques surfaces
Simon Brandhorst, Ichiro Shimada
arXiv:2012.10622

Thank you very much for listening!

I. Shimada (Hiroshima University) Enriques surfaces 2022 Mar 16 28 / 28


	Goal

