Vanishing cycles of a double plane branching along a real line arrangement

Ichiro Shimada

Hiroshima University

Topology of Singularities and Related Topics Quy Nhon 2023 September 11

I. Shimada (Hiroshima University)

Real line arrangement

The classical notion of a *vanishing cycle* of a complex algebraic variety was conceived by S. Lefschetz in his book

L'anysis situs et la géométrie algébrique (1924).

We recall this notion in the simple case of complex surfaces in \mathbb{P}^3 .

Let $\{X_t\}_{t\in\Delta}$ be a family of surfaces of degree d in \mathbb{P}^3 such that X_t is smooth for $t \neq 0$ and that X_0 has an ordinary node $P \in X_0$ as its only singularities. Then there exists a neighborhood U of P in \mathbb{P}^3 with local analytic coordinates (x, y, z) such that

$$U \cong \{ (x, y, z) \in \mathbb{C}^3 \mid |x|^2 + |y|^2 + |z|^2 \le r^2 \}$$

for some $r \in \mathbb{R}_{>0}$ and that, for any $t \in \Delta$, X_t is defined in U by

$$x^2 + y^2 + z^2 = t.$$

Let $\varepsilon \in \Delta$ be a positive real number $\ll r$. Then

$$U \cap X_{\varepsilon} = \{ (x, y, z) \in \mathbb{C}^3 \mid |x|^2 + |y|^2 + |z|^2 \le r^2, \ x^2 + y^2 + z^2 = \varepsilon \}$$

is diffeomorphic to a closed tubular neighborhood \mathcal{T} of the zero section of the tangent bundle $T_{S^2} \rightarrow S^2$ of a 2-sphere S^2 :

$$U \cap X_{\varepsilon} \cong \mathcal{T} \hookrightarrow \mathcal{T}_{S^2} \to S^2.$$

We give an orientation to S^2 . Then the zero section of $T_{S^2} \to S^2$ gives a topological 2-cycle $\Sigma \subset U \cap X_{\varepsilon}$, which is given by

$$\Sigma = \{ (x, y, z) \in \mathbb{C}^3 \mid x, y, z ext{ are real, and } x^2 + y^2 + z^2 = \varepsilon \}.$$

This 2-cycle Σ or its class $[\Sigma] \in H_2(X_{\varepsilon}, \mathbb{Z})$ is called the *vanishing cycle* on X_{ε} associated with the ordinary node $P \in X_0$.

Properties of vanishing cycles on the surface X_{ε} .

- The self-intersection number $\langle [\Sigma], [\Sigma] \rangle$ of $[\Sigma]$ is -2.
- The kernel of the specialization homomorphism
 H₂(X_ε, ℤ) → H₂(X₀, ℤ) is a free ℤ-module of rank 1 generated by [Σ].
- If $H \subset X_{\varepsilon}$ is a general hyperplane section, then $\langle [H], [\Sigma] \rangle = 0$.
- The orthogonal complement [H][⊥] of the class [H] in H₂(X_ε, ℤ) is generated by vanishing cycles on X_ε for ordinary nodes that appear on members of the total family X → B of surfaces of degree d in ℙ³.
- The monodromy representation on the space [H][⊥] ⊗ C of vanishing cycles of the family X → B is irreducible.

The main theme of this talk is to construct topological cycles $\Delta(C, \gamma_C)$ in a double plane $X \to \mathbb{A}^2(\mathbb{C})$ branching along a real line arrangement. The construction uses the real structure of the arrangement. The cycles $\Delta(C, \gamma_C)$ resemble vanishing cycles for ordinary nodes.

This method is similar to the construction of topological cycles on Fermat varieties due to F. Pham in his paper

Formules de Picard-Lefschetz généralisées et ramification des intégrales

published in 1965. The construction of Pham has many interesting applications; for example, the study of integral Hodge conjecture for Fermat varieties. We hope that our construction (and its higher dimensional analogue) also has some applications.

A double plane branching along a nodal arrangement of real lines

Let $\mathbb{A}^2(\mathbb{R})$ be a real affine plane. A *nodal real line arrangement* is an arrangement of real lines on $\mathbb{A}^2(\mathbb{R})$ such that no three are concurrent.

We consider a nodal arrangement of n real lines

$$\mathcal{A} := \{\ell_1(\mathbb{R}), \ldots, \ell_n(\mathbb{R})\},\$$

and its complexification

$$\mathcal{A} \otimes \mathbb{C} := \{\ell_1(\mathbb{C}), \ldots, \ell_n(\mathbb{C})\},\$$

which is an arrangement of complex affine lines in the complex affine plane $\mathbb{A}^2(\mathbb{C})$. We put

$$B(\mathbb{R}) := \bigcup_{i=1}^n \ell_i(\mathbb{R}), \quad B(\mathbb{C}) := \bigcup_{i=1}^n \ell_i(\mathbb{C}).$$

Then $B(\mathbb{C})$ is a complex nodal affine plane curve of degree p.

We will investigate the topology of a smooth surface X defined by the following commutative diagram:

$$egin{array}{ccc} X & \stackrel{
ho}{\longrightarrow} & W \ \phi \downarrow & & \downarrow \pi \ Y & \stackrel{
ho}{\longrightarrow} & \mathbb{A}^2(\mathbb{C}), \end{array}$$

where

- π: W → A²(C) is the double covering whose branch locus is equal to the union B(C) of lines in A ⊗ C,
- $\rho \colon X \to W$ is the minimal resolution,
- $\beta \colon Y \to \mathbb{A}^2(\mathbb{C})$ is the blowing up at the singular points of $B(\mathbb{C})$, and
- φ: X → Y is the double covering whose branch locus is the strict transform of B(ℂ) by β.

For $P \in \text{Sing } B(\mathbb{C})$, let E_P denote the exceptional (-1)-curve of β over P, and D_P the pull-back $\phi^{-1}(E_P)$ of E_P by ϕ . Then D_P is the exceptional (-2)-curve over the singular point of W over P.

Construction of topological 2-cycles in X

A *chamber* is the closure in $\mathbb{A}^2(\mathbb{R})$ of a connected component of $\mathbb{A}^2(\mathbb{R}) \setminus B(\mathbb{R})$. Let *Ch* be the set of chambers, and let *Ch* be the set of bounded chambers. For $C \in$ *Ch* be, we put

$$\begin{split} \operatorname{Vert}(\mathcal{C}) &:= \mathcal{C} \cap \operatorname{Sing} \mathcal{B}(\mathbb{C}), & \mathcal{C}^{\bullet} &:= \mathcal{C} \setminus \operatorname{Vert}(\mathcal{C}), \\ \beta^{\natural}\mathcal{C} &:= \text{the closure in } Y \text{ of } \beta^{-1}(\mathcal{C}^{\bullet}), & \Delta^{\bullet}(\mathcal{C}) &:= \phi^{-1}(\beta^{\natural}\mathcal{C}). \end{split}$$

Suppose that $P \in \text{Vert}(C)$ is the intersection point of $\ell_i(\mathbb{C})$ and $\ell_j(\mathbb{C})$. Let $\tilde{\ell}_i(\mathbb{C})$ and $\tilde{\ell}_j(\mathbb{C})$ be the strict transforms of $\ell_i(\mathbb{C})$ and $\ell_j(\mathbb{C})$ by β , and let $Q_{P,i}$ (resp. $Q_{P,j}$) be the intersection point of the exceptional (-1)-curve E_P and $\tilde{\ell}_i(\mathbb{C})$ (resp. $\tilde{\ell}_j(\mathbb{C})$). Then

$$J_{C,P} := \beta^{\natural} C \cap E_P$$

is a simple path on the 2-sphere E_P connecting the intersection points $Q_{P,j}$ and $Q_{P,j}$.

8/21

The points $Q_{P,i}$ and $Q_{P,j}$ are the branch points of the double cover $\phi|D_P: D_P \to E_P$. Therefore

$$S_{C,P} := \Delta^{\bullet}(C) \cap D_P = \phi^{-1}(J_{C,P})$$

is a circle on the 2-sphere D_P .

Note that $S_{C,P}$ divides D_P into two closed hemispheres. If we choose an appropriate affine parameter ζ on D_P , then

$$S_{C,P} = \{ \zeta \mid \zeta \in \mathbb{R} \cup \{\infty\} \}.$$

The complex structures on the hemispheres induce on the boundary $S_{C,P}$ opposite orientations.

The space $\Delta^{\bullet}(C)$ is homeomorphic to a 2-sphere minus a union of disjoint open discs, each of which corresponds to a point of Vert(C).

3

We have

$$\partial \Delta^{\bullet}(C) = \bigsqcup_{P \in \operatorname{Vert}(C)} S_{C,P}.$$

Let γ_C be an orientation of $\Delta^{\bullet}(C)$. Then γ_C induces an orientation $\gamma_{C,P}$ on each $S_{C,P}$. Let $H_{C,P}$ be the hemisphere of D_P such that the orientation on $\partial H_{C,P} = S_{C,P}$ induced by the complex structure on $H_{C,P}$ is opposite to the orientation $\gamma_{C,P}$ induced by γ_C . Then

$$\Delta(C,\gamma_C) := \Delta^{\bullet}(C) \quad \cup \quad \bigsqcup_{P \in \operatorname{Vert}(C)} H_{C,P}$$

with the orientation γ_C on $\Delta^{\bullet}(C)$ and the orientations coming from the complex structure on each $H_{C,P}$, where $P \in Vert(C)$, is a topological 2-cycle.

We call the cycle $\Delta(C, \gamma_C)$, or its homology class

 $[\Delta(C,\gamma_C)] \in H_2(X,\mathbb{Z}),$

the vanishing cycle associated with the chamber C. By definition, we have

$$[\Delta(C,\gamma_C)] + [\Delta(C,-\gamma_C)] = \sum_{P \in \operatorname{Vert}(C)} [D_P],$$

where $[D_P] \in H_2(X, \mathbb{Z})$ is the class of the exceptional (-2)-curve D_P .

Our first main result is as follows:

Theorem

We choose an orientation γ_C for each bounded chamber C. Then $[\Delta(C, \gamma_C)]$, where C runs through **Ch**_b, and $[D_P]$, where P runs through Sing $B(\mathbb{C})$, form a basis of $H_2(X, \mathbb{Z})$.

We investigate $H_2(X, \mathbb{Z})$ by calculating the intersection numbers of $[\Delta(C, \gamma_C)]$ and $[D_P]$.

3

11/21

Intersection numbers

Theorem

Let C and C' be bounded chambers.

•
$$\langle [\Delta(C, \gamma_C)], [\Delta(C, \gamma_C)] \rangle = -2$$
.

• If C and C' are disjoint, then

$$\langle [\Delta(C, \gamma_C)], [\Delta(C', \gamma_{C'})] \rangle = 0.$$

$$\langle [\Delta(C, \gamma_C)], [D_P] \rangle = \begin{cases} -1 & \text{if } P \in \operatorname{Vert}(C), \\ 0 & \text{if } P \notin \operatorname{Vert}(C). \end{cases}$$

Note that this theorem does not depend on the choice of γ_{C} .

To calculate $\langle [\Delta(C, \gamma_C)], [\Delta(C', \gamma'_C)] \rangle$ for C, C' with $C \cap C' \neq \emptyset$, we define a *standard orientation* σ_C for each C.

We fix an orientation $\sigma_{\mathbb{A}}$ of the real affine plane $\mathbb{A}^2(\mathbb{R})$. We also fix, for i = 1, ..., n, an affine linear function $\lambda_i \colon \mathbb{A}^2(\mathbb{R}) \to \mathbb{R}$ such that $\ell_i(\mathbb{R}) = \lambda_i^{-1}(0)$, and put

$$f:=\prod_{i=1}^n\lambda_i.$$

Then $\pi\colon W\to \mathbb{A}^2(\mathbb{C})$ is given by the first projection from

$$W = \{ (w, P) \in \mathbb{C} \times \mathbb{A}^2(\mathbb{C}) \mid w^2 = f(P) \}.$$

Let C be a bounded chamber, and C° the interior of C in $\mathbb{A}^{2}(\mathbb{R})$. Then $\pi^{-1}(C^{\circ})$ has two connected components Π_{a} and Π_{b} . Note that we have

$$\pi^{-1}(\mathcal{C}^{\circ}) = \Pi_{\boldsymbol{a}} \sqcup \Pi_{\boldsymbol{b}} \quad \subset \quad \Delta^{\bullet}(\mathcal{C}) = \phi^{-1}(\beta^{\natural}\mathcal{C})$$

Let γ_C be an orientation of $\Delta^{\bullet}(C)$, and let Π_a and Π_b be oriented by γ_C . Then $\pi \colon W \to \mathbb{A}^2(\mathbb{C})$ restricted to one of Π_a and Π_b is an orientation-preserving isomorphism to C° (oriented by the orientation $\sigma_{\mathbb{A}}$ of $\mathbb{A}^2(\mathbb{R})$), whereas π restricted to the other is orientation-reversing.

I. Shimada (Hiroshima University)

Real line arrangement

The connected component on which π is orientation-preserving is called the *good sheet* with respect to $\sigma_{\mathbb{A}}$ and γ_{C} .

Note that we have either

$$f(C^{\circ}) \subset \mathbb{R}_{>0} \ \ ext{or} \ \ f(C^{\circ}) \subset \mathbb{R}_{<0}.$$

In the former case, the two connected components Π_a and Π_b are distinguished by the sign of $w = \pm \sqrt{f} \in \mathbb{R}$ in the equation $w^2 = f$ of W, and in the latter case, the two are distinguished by the sign of $w/\sqrt{-1} = \pm \sqrt{-f} \in \mathbb{R}$.

Definition

A standard orientation σ_C of a bounded chamber $C \in \mathbf{Ch}_{\mathrm{b}}$ (with respect to $\sigma_{\mathbb{A}}$ and f) is the orientation of $\Delta^{\bullet}(C)$ such that

- when $f(C^{\circ}) \subset \mathbb{R}_{>0}$, the connected component with w > 0 is the good sheet, and
- when $f(C^{\circ}) \subset \mathbb{R}_{<0}$, the connected component with $w/\sqrt{-1} > 0$ is the good sheet.

Our third result is as follows:

Theorem

Let C and C' be bounded chambers.

• If $C \cap C'$ consists of a single point, then

$$\langle [\Delta(C, \sigma_C)], [\Delta(C', \sigma_{C'})] \rangle = 0.$$

• If $C \cap C'$ is a line segment on $\mathbb{A}^2(\mathbb{R})$, then

$$\langle [\Delta(C, \sigma_C)], [\Delta(C', \sigma_{C'})] \rangle = -1.$$

These formulas of intersection numbers give us the complete description of the intersection form \langle , \rangle on $H_2(X,\mathbb{Z})$.

We explain a method to check these formulas by calculating examples.

We consider a real projective plane $\mathbb{P}^2(\mathbb{R})$ containing the real affine plane $\mathbb{A}^2(\mathbb{R})$ as an affine part. We put

$$\ell_\infty(\mathbb{R}) := \mathbb{P}^2(\mathbb{R}) \setminus \mathbb{A}^2(\mathbb{R}).$$

We take the closure of each $\ell_i(\mathbb{R}) \in \mathcal{A}$ in $\mathbb{P}^2(\mathbb{R})$ and define the arrangement $\widetilde{\mathcal{A}}$ of real projective lines by

$$\widetilde{\mathcal{A}} := \begin{cases} \mathcal{A} \cup \{\ell_{\infty}(\mathbb{R})\} & \text{if } n \text{ is odd,} \\ \mathcal{A} & \text{if } n \text{ is even.} \end{cases}$$

Let $\widetilde{B}(\mathbb{C})$ be the union of the complex projective lines in the complexification $\widetilde{\mathcal{A}} \otimes \mathbb{C}$ of $\widetilde{\mathcal{A}}$.

Since deg $\widetilde{B}(\mathbb{C}) = |\widetilde{\mathcal{A}}|$ is even, we have a double covering

$$\widetilde{\pi}\colon \widetilde{W} o \mathbb{P}^2(\mathbb{C})$$

whose branch locus is equal to $\widetilde{B}(\mathbb{C})$. Let

$$\widetilde{\rho} \colon \widetilde{X} \to \widetilde{W}$$

be the minimal resolution. We put

$$\Lambda_\infty := \widetilde{
ho}^{-1}(\widetilde{\pi}^{-1}(\ell_\infty(\mathbb{C}))) \ \subset \ \widetilde{X}.$$

Then we have

$$X = \widetilde{X} \setminus \Lambda_{\infty}.$$

The inclusion $\iota: X \hookrightarrow \widetilde{X}$ induces a natural homomorphism

$$\iota_* \colon H_2(X,\mathbb{Z}) \to H_2(\widetilde{X},\mathbb{Z}),$$

which preserves the intersection form.

For simplicity, we assume that $H_2(\widetilde{X}, \mathbb{Z})$ is torsion free. Since \widetilde{X} is compact, the intersection form on $H_2(\widetilde{X}, \mathbb{Z})$ is non-degenerate. Let

$$H_{\infty} \subset H_2(\widetilde{X},\mathbb{Z})$$

be the submodule generated by the classes of irreducible components of $\Lambda_{\infty} := \tilde{\rho}^{-1}(\tilde{\pi}^{-1}(\ell_{\infty}(\mathbb{C})))$. Then the image of

$$\iota_* \colon H_2(X,\mathbb{Z}) \to H_2(\widetilde{X},\mathbb{Z})$$

is equal to the orthogonal complement H_{∞}^{\perp} of H_{∞} in $H_2(\widetilde{X},\mathbb{Z})$. The kernel of ι_* is then equal to

 $\operatorname{Ker}\langle \ , \ \rangle := \{ \, x \in H_2(X, \mathbb{Z}) \mid \langle x, y \rangle = 0 \ \text{ for any } \ y \in H_2(X, \mathbb{Z}) \, \}.$

Therefore we can calculate the sublattice $H_{\infty}^{\perp} \subset H_2(\widetilde{X}, \mathbb{Z})$ from \langle , \rangle on $H_2(X, \mathbb{Z})$.

Comparing the lattice H_{∞}^{\perp} with the lattice $H_2(X,\mathbb{Z})/\operatorname{Ker}\langle , \rangle$, we can check the validity of our formulas of intersection numbers on $H_2(X,\mathbb{Z})$.

Examples

We consider the case where $|\mathcal{A}| = n = 6$. We assume that, for any $\ell_i(\mathbb{R})$, at most two other lines in \mathcal{A} is parallel to $\ell_i(\mathbb{R})$. Then $\widetilde{B}(\mathbb{C})$ has only a_1 or d_4 singular points, and hence \widetilde{X} is a K3 surface. In particular, $H_2(\widetilde{X}, \mathbb{Z})$ is an even unimodular lattice of rank 22 with signature (3, 19).

Suppose that no pair of lines of ${\mathcal A}$ is parallel. We have

 $|\boldsymbol{C}\boldsymbol{h}_{\mathrm{b}}| = 10, \quad |\operatorname{Sing} B(\mathbb{C})| = 15,$

and hence $H_2(X, \mathbb{Z})$ is of rank 25. On the other hand, Λ_{∞} is irreducible and H_{∞} is of rank 1 with signature (1,0) and with discriminant group $\mathbb{Z}/2\mathbb{Z}$. Hence H_{∞}^{\perp} is of rank 21 with signature (2,19) and with discriminant group $\mathbb{Z}/2\mathbb{Z}$.

For randomly generated such arrangements, we checked that $H_2(X,\mathbb{Z})/\operatorname{Ker}\langle \ , \ \rangle$ is of rank 21 with signature (2, 19) and discriminant group $\mathbb{Z}/2\mathbb{Z}$. Remark that there are several combinatorial structures of nodal arrangements of 6 real lines with no parallel pairs.

19/21

Suppose that \mathcal{A} consists of three pairs of parallel lines. We have

$$|\boldsymbol{C}\boldsymbol{h}_{\mathrm{b}}| = 7, \quad |\operatorname{Sing} B(\mathbb{C})| = 12,$$

and hence $H_2(X,\mathbb{Z})$ is of rank 19. On the other hand, H_∞ is of rank 5 with signature (1,4) and discriminant group $(\mathbb{Z}/2\mathbb{Z})^2 \times (\mathbb{Z}/4\mathbb{Z})$. (Remark that the strict transform of $\ell_\infty(\mathbb{C})$ in \widetilde{X} splits into two irreducible components.) Hence H_∞^{\perp} is of rank 17 with signature (2,15) and with discriminant group $(\mathbb{Z}/2\mathbb{Z})^2 \times (\mathbb{Z}/4\mathbb{Z})$.

For randomly generated such arrangements, we checked that $H_2(X,\mathbb{Z})/\operatorname{Ker}\langle \ , \ \rangle$ is of rank 17 with signature (2,15) and discriminant group $(\mathbb{Z}/2\mathbb{Z})^2 \times (\mathbb{Z}/4\mathbb{Z})$.

Thank you very much for listening!

æ