Vanishing cycles of a double plane branching along a real line arrangement

Ichiro Shimada

Hiroshima University

Topology of Singularities and Related Topics
Quy Nhon
2023 September 11

What is a vanishing cycle?

The classical notion of a vanishing cycle of a complex algebraic variety was conceived by S . Lefschetz in his book

L'anysis situs et la géométrie algébrique (1924).
We recall this notion in the simple case of complex surfaces in \mathbb{P}^{3}.
Let $\left\{X_{t}\right\}_{t \in \Delta}$ be a family of surfaces of degree d in \mathbb{P}^{3} such that X_{t} is smooth for $t \neq 0$ and that X_{0} has an ordinary node $P \in X_{0}$ as its only singularities. Then there exists a neighborhood U of P in \mathbb{P}^{3} with local analytic coordinates (x, y, z) such that

$$
U \cong\left\{\left.(x, y, z) \in \mathbb{C}^{3}| | x\right|^{2}+|y|^{2}+|z|^{2} \leq r^{2}\right\}
$$

for some $r \in \mathbb{R}_{>0}$ and that, for any $t \in \Delta, X_{t}$ is defined in U by

$$
x^{2}+y^{2}+z^{2}=t
$$

Let $\varepsilon \in \Delta$ be a positive real number $\ll r$. Then

$$
U \cap X_{\varepsilon}=\left\{\left.(x, y, z) \in \mathbb{C}^{3}|\quad| x\right|^{2}+|y|^{2}+|z|^{2} \leq r^{2}, x^{2}+y^{2}+z^{2}=\varepsilon\right\}
$$

is diffeomorphic to a closed tubular neighborhood \mathcal{T} of the zero section of the tangent bundle $T_{S^{2}} \rightarrow S^{2}$ of a 2 -sphere S^{2} :

$$
U \cap X_{\varepsilon} \cong \mathcal{T} \hookrightarrow T_{S^{2}} \rightarrow S^{2}
$$

We give an orientation to S^{2}. Then the zero section of $T_{S^{2}} \rightarrow S^{2}$ gives a topological 2-cycle $\Sigma \subset U \cap X_{\varepsilon}$, which is given by

$$
\Sigma=\left\{(x, y, z) \in \mathbb{C}^{3} \mid x, y, z \text { are real, and } x^{2}+y^{2}+z^{2}=\varepsilon\right\}
$$

This 2-cycle Σ or its class $[\Sigma] \in H_{2}\left(X_{\varepsilon}, \mathbb{Z}\right)$ is called the vanishing cycle on X_{ε} associated with the ordinary node $P \in X_{0}$.

Properties of vanishing cycles on the surface X_{ε}.

- The self-intersection number $\langle[\Sigma],[\Sigma]\rangle$ of $[\Sigma]$ is -2 .
- The kernel of the specialization homomorphism $H_{2}\left(X_{\varepsilon}, \mathbb{Z}\right) \rightarrow H_{2}\left(X_{0}, \mathbb{Z}\right)$ is a free \mathbb{Z}-module of rank 1 generated by $[\Sigma]$.
- If $H \subset X_{\varepsilon}$ is a general hyperplane section, then $\langle[H],[\Sigma]\rangle=0$.
- The orthogonal complement $[H]^{\perp}$ of the class $[H]$ in $H_{2}\left(X_{\varepsilon}, \mathbb{Z}\right)$ is generated by vanishing cycles on X_{ε} for ordinary nodes that appear on members of the total family $\mathcal{X} \rightarrow \mathcal{B}$ of surfaces of degree d in \mathbb{P}^{3}.
- The monodromy representation on the space $[H]^{\perp} \otimes \mathbb{C}$ of vanishing cycles of the family $\mathcal{X} \rightarrow \mathcal{B}$ is irreducible.

Introduction

The main theme of this talk is to construct topological cycles $\Delta\left(C, \gamma_{C}\right)$ in a double plane $X \rightarrow \mathbb{A}^{2}(\mathbb{C})$ branching along a real line arrangement. The construction uses the real structure of the arrangement. The cycles $\Delta\left(C, \gamma_{C}\right)$ resemble vanishing cycles for ordinary nodes.

This method is similar to the construction of topological cycles on Fermat varieties due to F. Pham in his paper

Formules de Picard-Lefschetz généralisées et ramification des intégrales
published in 1965. The construction of Pham has many interesting applications; for example, the study of integral Hodge conjecture for Fermat varieties. We hope that our construction (and its higher dimensional analogue) also has some applications.

A double plane branching along a nodal arrangement of real lines

Let $\mathbb{A}^{2}(\mathbb{R})$ be a real affine plane. A nodal real line arrangement is an arrangement of real lines on $\mathbb{A}^{2}(\mathbb{R})$ such that no three are concurrent.

We consider a nodal arrangement of n real lines

$$
\mathcal{A}:=\left\{\ell_{1}(\mathbb{R}), \ldots, \ell_{n}(\mathbb{R})\right\}
$$

and its complexification

$$
\mathcal{A} \otimes \mathbb{C}:=\left\{\ell_{1}(\mathbb{C}), \ldots, \ell_{n}(\mathbb{C})\right\}
$$

which is an arrangement of complex affine lines in the complex affine plane $\mathbb{A}^{2}(\mathbb{C})$. We put

$$
B(\mathbb{R}):=\bigcup_{i=1}^{n} \ell_{i}(\mathbb{R}), \quad B(\mathbb{C}):=\bigcup_{i=1}^{n} \ell_{i}(\mathbb{C})
$$

Then $B(\mathbb{C})$ is a complex nodal affine plane curve of degree n.

We will investigate the topology of a smooth surface X defined by the following commutative diagram:

X	$\xrightarrow{\rho}$	W
$\phi \downarrow$		$\downarrow \pi$
Y	\longrightarrow	$\mathbb{A}^{2}(\mathbb{C})$,

where

- $\pi: W \rightarrow \mathbb{A}^{2}(\mathbb{C})$ is the double covering whose branch locus is equal to the union $B(\mathbb{C})$ of lines in $\mathcal{A} \otimes \mathbb{C}$,
- $\rho: X \rightarrow W$ is the minimal resolution,
- $\beta: Y \rightarrow \mathbb{A}^{2}(\mathbb{C})$ is the blowing up at the singular points of $B(\mathbb{C})$, and
- $\phi: X \rightarrow Y$ is the double covering whose branch locus is the strict transform of $B(\mathbb{C})$ by β.

For $P \in \operatorname{Sing} B(\mathbb{C})$, let E_{P} denote the exceptional (-1)-curve of β over P, and D_{P} the pull-back $\phi^{-1}\left(E_{P}\right)$ of E_{P} by ϕ. Then D_{P} is the exceptional (-2)-curve over the singular point of W over P.

Construction of topological 2-cycles in X

A chamber is the closure in $\mathbb{A}^{2}(\mathbb{R})$ of a connected component of $\mathbb{A}^{2}(\mathbb{R}) \backslash B(\mathbb{R})$. Let $\boldsymbol{C} \boldsymbol{h}$ be the set of chambers, and let $\boldsymbol{C} \boldsymbol{h}_{\mathrm{b}}$ be the set of bounded chambers. For $C \in \boldsymbol{C h}_{\mathrm{b}}$, we put

$$
\begin{array}{ll}
\operatorname{Vert}(C):=C \cap \operatorname{Sing} B(\mathbb{C}), & C^{\bullet}:=C \backslash \operatorname{Vert}(C), \\
\beta^{\natural} C:=\text { the closure in } Y \text { of } \beta^{-1}\left(C^{\bullet}\right), & \Delta^{\bullet}(C):=\phi^{-1}\left(\beta^{\natural} C\right) .
\end{array}
$$

Suppose that $P \in \operatorname{Vert}(C)$ is the intersection point of $\ell_{i}(\mathbb{C})$ and $\ell_{j}(\mathbb{C})$. Let $\tilde{\ell}_{i}(\mathbb{C})$ and $\tilde{\ell}_{j}(\mathbb{C})$ be the strict transforms of $\ell_{i}(\mathbb{C})$ and $\ell_{j}(\mathbb{C})$ by β, and let $Q_{P, i}$ (resp. $Q_{P, j}$) be the intersection point of the exceptional (-1)-curve E_{P} and $\tilde{\ell}_{i}(\mathbb{C})$ (resp. $\tilde{\ell}_{j}(\mathbb{C})$). Then

$$
J_{C, P}:=\beta^{\natural} C \cap E_{P}
$$

is a simple path on the 2-sphere E_{P} connecting the intersection points $Q_{P, i}$ and $Q_{P, j}$.

The points $Q_{P, i}$ and $Q_{P, j}$ are the branch points of the double cover $\phi \mid D_{P}: D_{P} \rightarrow E_{P}$. Therefore

$$
S_{C, P}:=\Delta^{\bullet}(C) \cap D_{P}=\phi^{-1}\left(J_{C, P}\right)
$$

is a circle on the 2-sphere D_{P}.
Note that $S_{C, P}$ divides D_{P} into two closed hemispheres. If we choose an appropriate affine parameter ζ on D_{P}, then

$$
S_{C, P}=\{\zeta \mid \zeta \in \mathbb{R} \cup\{\infty\}\}
$$

The complex structures on the hemispheres induce on the boundary $S_{C, P}$ opposite orientations.

The space $\Delta^{\bullet}(C)$ is homeomorphic to a 2-sphere minus a union of disjoint open discs, each of which corresponds to a point of $\operatorname{Vert}(C)$.

We have

$$
\partial \Delta^{\bullet}(C)=\bigsqcup_{P \in \operatorname{Vert}(C)} S_{C, P}
$$

Let γ_{C} be an orientation of $\Delta^{\bullet}(C)$. Then γ_{C} induces an orientation $\gamma_{C, P}$ on each $S_{C, P}$. Let $H_{C, P}$ be the hemisphere of D_{P} such that the orientation on $\partial H_{C, P}=S_{C, P}$ induced by the complex structure on $H_{C, P}$ is opposite to the orientation $\gamma_{C, P}$ induced by γ_{C}. Then

$$
\Delta\left(C, \gamma_{C}\right):=\Delta^{\bullet}(C) \cup \underset{P \in \operatorname{Vert}(C)}{\bigsqcup_{C, P}} H
$$

with the orientation γ_{C} on $\Delta^{\bullet}(C)$ and the orientations coming from the complex structure on each $H_{C, P}$, where $P \in \operatorname{Vert}(C)$, is a topological 2-cycle.

We call the cycle $\Delta\left(C, \gamma_{C}\right)$, or its homology class

$$
\left[\Delta\left(C, \gamma_{C}\right)\right] \in H_{2}(X, \mathbb{Z})
$$

the vanishing cycle associated with the chamber C. By definition, we have

$$
\left[\Delta\left(C, \gamma_{C}\right)\right]+\left[\Delta\left(C,-\gamma_{C}\right)\right]=\sum_{P \in \operatorname{Vert}(C)}\left[D_{P}\right]
$$

where $\left[D_{P}\right] \in H_{2}(X, \mathbb{Z})$ is the class of the exceptional (-2)-curve D_{P}.
Our first main result is as follows:

Theorem

We choose an orientation γ_{C} for each bounded chamber C. Then $\left[\Delta\left(C, \gamma_{C}\right)\right]$, where C runs through $\boldsymbol{C h}_{\mathrm{b}}$, and $\left[D_{P}\right]$, where P runs through Sing $B(\mathbb{C})$, form a basis of $H_{2}(X, \mathbb{Z})$.

We investigate $H_{2}(X, \mathbb{Z})$ by calculating the intersection numbers of $\left[\Delta\left(C, \gamma_{C}\right)\right]$ and $\left[D_{P}\right]$.

Intersection numbers

Theorem

Let C and C^{\prime} be bounded chambers.

- $\left\langle\left[\Delta\left(C, \gamma_{C}\right)\right],\left[\Delta\left(C, \gamma_{C}\right)\right]\right\rangle=-2$.
- If C and C^{\prime} are disjoint, then

$$
\left\langle\left[\Delta\left(C, \gamma_{c}\right)\right],\left[\Delta\left(C^{\prime}, \gamma_{C^{\prime}}\right)\right]\right\rangle=0
$$

$$
\left\langle\left[\Delta\left(C, \gamma_{C}\right)\right],\left[D_{P}\right]\right\rangle= \begin{cases}-1 & \text { if } P \in \operatorname{Vert}(C) \\ 0 & \text { if } P \notin \operatorname{Vert}(C)\end{cases}
$$

Note that this theorem does not depend on the choice of γ_{C}. To calculate $\left\langle\left[\Delta\left(C, \gamma_{C}\right)\right],\left[\Delta\left(C^{\prime}, \gamma_{C}^{\prime}\right)\right]\right\rangle$ for C, C^{\prime} with $C \cap C^{\prime} \neq \emptyset$, we define a standard orientation σ_{C} for each C.

We fix an orientation $\sigma_{\mathbb{A}}$ of the real affine plane $\mathbb{A}^{2}(\mathbb{R})$.
We also fix, for $i=1, \ldots, n$, an affine linear function $\lambda_{i}: \mathbb{A}^{2}(\mathbb{R}) \rightarrow \mathbb{R}$ such that $\ell_{i}(\mathbb{R})=\lambda_{i}^{-1}(0)$, and put

$$
f:=\prod_{i=1}^{n} \lambda_{i}
$$

Then $\pi: W \rightarrow \mathbb{A}^{2}(\mathbb{C})$ is given by the first projection from

$$
W=\left\{(w, P) \in \mathbb{C} \times \mathbb{A}^{2}(\mathbb{C}) \mid w^{2}=f(P)\right\}
$$

Let C be a bounded chamber, and C° the interior of C in $\mathbb{A}^{2}(\mathbb{R})$. Then $\pi^{-1}\left(C^{\circ}\right)$ has two connected components Π_{a} and Π_{b}. Note that we have

$$
\pi^{-1}\left(C^{\circ}\right)=\Pi_{a} \sqcup \Pi_{b} \subset \Delta^{\bullet}(C)=\phi^{-1}\left(\beta^{\natural} C\right)
$$

Let γ_{C} be an orientation of $\Delta^{\bullet}(C)$, and let Π_{a} and Π_{b} be oriented by γ_{C}. Then $\pi: W \rightarrow \mathbb{A}^{2}(\mathbb{C})$ restricted to one of Π_{a} and Π_{b} is an orientation-preserving isomorphism to C° (oriented by the orientation $\sigma_{\mathbb{A}}$ of $\mathbb{A}^{2}(\mathbb{R})$), whereas π restricted to the other is orientation-reversing. \equiv

The connected component on which π is orientation-preserving is called the good sheet with respect to $\sigma_{\mathbb{A}}$ and γ_{C}.

Note that we have either

$$
f\left(C^{\circ}\right) \subset \mathbb{R}_{>0} \quad \text { or } \quad f\left(C^{\circ}\right) \subset \mathbb{R}_{<0}
$$

In the former case, the two connected components Π_{a} and Π_{b} are distinguished by the sign of $w= \pm \sqrt{f} \in \mathbb{R}$ in the equation $w^{2}=f$ of W, and in the latter case, the two are distinguished by the sign of $w / \sqrt{-1}= \pm \sqrt{-f} \in \mathbb{R}$.

Definition

A standard orientation σ_{C} of a bounded chamber $C \in \boldsymbol{C h}_{\mathrm{b}}$ (with respect to $\sigma_{\mathbb{A}}$ and f) is the orientation of $\Delta^{\bullet}(C)$ such that

- when $f\left(C^{\circ}\right) \subset \mathbb{R}_{>0}$, the connected component with $w>0$ is the good sheet, and
- when $f\left(C^{\circ}\right) \subset \mathbb{R}_{<0}$, the connected component with $w / \sqrt{-1}>0$ is the good sheet.

Our third result is as follows:

Theorem

Let C and C^{\prime} be bounded chambers.

- If $C \cap C^{\prime}$ consists of a single point, then

$$
\left\langle\left[\Delta\left(C, \sigma_{C}\right)\right],\left[\Delta\left(C^{\prime}, \sigma_{C^{\prime}}\right)\right]\right\rangle=0
$$

- If $C \cap C^{\prime}$ is a line segment on $\mathbb{A}^{2}(\mathbb{R})$, then

$$
\left\langle\left[\Delta\left(C, \sigma_{C}\right)\right],\left[\Delta\left(C^{\prime}, \sigma_{C^{\prime}}\right)\right]\right\rangle=-1
$$

These formulas of intersection numbers give us the complete description of the intersection form \langle,$\rangle on H_{2}(X, \mathbb{Z})$.

Projective completion

We explain a method to check these formulas by calculating examples.
We consider a real projective plane $\mathbb{P}^{2}(\mathbb{R})$ containing the real affine plane $\mathbb{A}^{2}(\mathbb{R})$ as an affine part. We put

$$
\ell_{\infty}(\mathbb{R}):=\mathbb{P}^{2}(\mathbb{R}) \backslash \mathbb{A}^{2}(\mathbb{R})
$$

We take the closure of each $\ell_{i}(\mathbb{R}) \in \mathcal{A}$ in $\mathbb{P}^{2}(\mathbb{R})$ and define the arrangement $\widetilde{\mathcal{A}}$ of real projective lines by

$$
\tilde{\mathcal{A}}:= \begin{cases}\mathcal{A} \cup\left\{\ell_{\infty}(\mathbb{R})\right\} & \text { if } n \text { is odd } \\ \mathcal{A} & \text { if } n \text { is even }\end{cases}
$$

Let $\widetilde{B}(\mathbb{C})$ be the union of the complex projective lines in the complexification $\widetilde{\mathcal{A}} \otimes \mathbb{C}$ of $\widetilde{\mathcal{A}}$.

Since $\operatorname{deg} \widetilde{B}(\mathbb{C})=|\widetilde{\mathcal{A}}|$ is even, we have a double covering

$$
\tilde{\pi}: \widetilde{W} \rightarrow \mathbb{P}^{2}(\mathbb{C})
$$

whose branch locus is equal to $\widetilde{B}(\mathbb{C})$. Let

$$
\tilde{\rho}: \widetilde{X} \rightarrow \widetilde{W}
$$

be the minimal resolution. We put

$$
\Lambda_{\infty}:=\tilde{\rho}^{-1}\left(\tilde{\pi}^{-1}\left(\ell_{\infty}(\mathbb{C})\right)\right) \subset \widetilde{X}
$$

Then we have

$$
X=\widetilde{X} \backslash \Lambda_{\infty}
$$

The inclusion $\iota: X \hookrightarrow \widetilde{X}$ induces a natural homomorphism

$$
\iota_{*}: H_{2}(X, \mathbb{Z}) \rightarrow H_{2}(\widetilde{X}, \mathbb{Z})
$$

which preserves the intersection form.

For simplicity, we assume that $H_{2}(\tilde{X}, \mathbb{Z})$ is torsion free. Since \tilde{X} is compact, the intersection form on $H_{2}(X, \mathbb{Z})$ is non-degenerate. Let

$$
H_{\infty} \subset H_{2}(\widetilde{X}, \mathbb{Z})
$$

be the submodule generated by the classes of irreducible components of $\Lambda_{\infty}:=\tilde{\rho}^{-1}\left(\tilde{\pi}^{-1}\left(\ell_{\infty}(\mathbb{C})\right)\right.$). Then the image of

$$
\iota_{*}: H_{2}(X, \mathbb{Z}) \rightarrow H_{2}(\widetilde{X}, \mathbb{Z})
$$

is equal to the orthogonal complement H_{∞}^{\perp} of H_{∞} in $H_{2}(\widetilde{X}, \mathbb{Z})$. The kernel of ι_{*} is then equal to

$$
\operatorname{Ker}\langle,\rangle:=\left\{x \in H_{2}(X, \mathbb{Z}) \mid\langle x, y\rangle=0 \text { for any } y \in H_{2}(X, \mathbb{Z})\right\} .
$$

Therefore we can calculate the sublattice $H_{\infty}^{\perp} \subset H_{2}(\widetilde{X}, \mathbb{Z})$ from \langle,$\rangle on$ $H_{2}(X, \mathbb{Z})$.
Comparing the lattice H_{∞}^{\perp} with the lattice $H_{2}(X, \mathbb{Z}) / \operatorname{Ker}\langle$, \rangle, we can check the validity of our formulas of intersection numbers on $H_{2}(X, \mathbb{Z})$.

Examples

We consider the case where $|\mathcal{A}|=n=6$. We assume that, for any $\ell_{i}(\mathbb{R})$, at most two other lines in \mathcal{A} is parallel to $\ell_{i}(\mathbb{R})$. Then $\widetilde{B}(\mathbb{C})$ has only a_{1} or d_{4} singular points, and hence \widetilde{X} is a $K 3$ surface. In particular, $H_{2}(\widetilde{X}, \mathbb{Z})$ is an even unimodular lattice of rank 22 with signature $(3,19)$.

Suppose that no pair of lines of \mathcal{A} is parallel. We have

$$
\left|\boldsymbol{C h}_{\mathrm{b}}\right|=10, \quad|\operatorname{Sing} B(\mathbb{C})|=15
$$

and hence $H_{2}(X, \mathbb{Z})$ is of rank 25 . On the other hand, Λ_{∞} is irreducible and H_{∞} is of rank 1 with signature $(1,0)$ and with discriminant group $\mathbb{Z} / 2 \mathbb{Z}$. Hence H_{∞}^{\perp} is of rank 21 with signature $(2,19)$ and with discriminant group $\mathbb{Z} / 2 \mathbb{Z}$.
For randomly generated such arrangements, we checked that $H_{2}(X, \mathbb{Z}) / \operatorname{Ker}\langle$,$\rangle is of rank 21$ with signature $(2,19)$ and discriminant group $\mathbb{Z} / 2 \mathbb{Z}$. Remark that there are several combinatorial structures of nodal arrangements of 6 real lines with no parallel pairs.

Suppose that \mathcal{A} consists of three pairs of parallel lines. We have

$$
\left|\boldsymbol{C h}_{\mathrm{b}}\right|=7, \quad|\operatorname{Sing} B(\mathbb{C})|=12
$$

and hence $H_{2}(X, \mathbb{Z})$ is of rank 19. On the other hand, H_{∞} is of rank 5 with signature $(1,4)$ and discriminant group $(\mathbb{Z} / 2 \mathbb{Z})^{2} \times(\mathbb{Z} / 4 \mathbb{Z})$. (Remark that the strict transform of $\ell_{\infty}(\mathbb{C})$ in X splits into two irreducible components.) Hence H_{∞}^{\perp} is of rank 17 with signature $(2,15)$ and with discriminant group $(\mathbb{Z} / 2 \mathbb{Z})^{2} \times(\mathbb{Z} / 4 \mathbb{Z})$.

For randomly generated such arrangements, we checked that $H_{2}(X, \mathbb{Z}) / \operatorname{Ker}\langle$,$\rangle is of rank 17$ with signature $(2,15)$ and discriminant group $(\mathbb{Z} / 2 \mathbb{Z})^{2} \times(\mathbb{Z} / 4 \mathbb{Z})$.

Thank you very much for listening!

