Prediction Error Criterion for Selecting of Variables in Regression Model

YASUNORI FUJIKOSHI^{*}, TAMIO, KAN^{**} and Shin Takahashi^{**}

*Department of Mathematics, Graduate School of Science and Engineering, Chuo University, Bunkyo-ku, Tokyo, Japan and **Esumi Co., Ltd., Tokyo, Japan

Abstract

This paper is concerned with criteria for selecting of variables in regression model. We propose a prediction error criterion C_{pe} which is unbiased as an estimator for the mean squared error in prediction R_{pe} , when the true model is contained in the full model. The property is shown without normality. Such unbiasedness property is studied for other criteria such as cross-validation criterion, C_p criterion, etc. We will also examine modifications of multiple correlation coefficient from the point of estimating R_{pe} . Our results are extended to multivariate case.

AMS 2000 Subject Classification: primary 62H10; secondary 62E20 Key Words and Phrases: Prediction error criterion, Regression models, Selection of variables, Unbiasedness.

Abbreviated title: Prediction Error Criterion in Regression Model

1. Introduction

In univariate regression model, we want to predict or describe a response variable y by a subset of several explanatory variables x_1, \ldots, x_k . Suppose that there are n observations on y and $\boldsymbol{x} = (x_1, \ldots, x_k)'$ denoted by $y_{\alpha}, \boldsymbol{x}_{\alpha} = (x_{\alpha 1}, \ldots, x_{\alpha k})'; \alpha = 1, \ldots, n$. In this paper we consider the problem of selecting a model from a collection of candidate models specified by linear regression of y on subvectors of \boldsymbol{x} . We assume that the true model for $y_{\alpha}, \alpha = 1, \ldots, n$ is as follows:

$$M_0: \ y_\alpha = \eta_{\alpha 0} + \varepsilon_{\alpha 0}, \ \alpha = 1, \dots, n, \tag{1.1}$$

where the error terms $\varepsilon_{10}, \ldots, \varepsilon_{n0}$ are mutually independent, and each of them has the same mean 0 and the same variance σ_0^2 . The linear regression model including all the explanatory variables is written as

$$M_F: y_{\alpha} = \beta_0 + \beta_1 x_{\alpha 1} + \ldots + \beta_k x_{\alpha k} + \varepsilon_{\alpha}, \ \alpha = 1, \ldots, n,$$
(1.2)

where the coefficients β_0, \ldots, β_j are unknown parameters, the error terms $\varepsilon_1, \ldots, \varepsilon_n$ are matually independent and have the same mean 0 and the same unknown variance σ^2 . The model is called the full model.

In this paper we are interested in criteria for selecting of models, more concretely for selecting of variables. As a subset of all explanatory variables, without loss of generality we may consider the subset of the first j explanatory variables x_1, \ldots, x_j . Consider a candidate model

$$M_J: \ y_{\alpha} = \beta_0 + \beta_1 x_{\alpha 1} + \ldots + \beta_j x_{\alpha j} + \varepsilon_{\alpha}, \ \alpha = 1, \ldots, n,$$
(1.3)

where the coefficient β_o, \ldots, β_j are unkown, and the error terms are the same ones as in (1.2).

As a criterion for goodness of a fitted candidate model we consider the prediction errors, more precisely the mean squares errors in prediction. The measure is given by

$$R_{pe} = \sum_{\alpha=1}^{n} \mathcal{E}_0[(z_{\alpha} - \hat{y}_{\alpha J})^2], \qquad (1.4)$$

where $\hat{y}_{\alpha J}$ is the usual unbiased estimator of $\eta_{\alpha 0}$ under M_J , and $\boldsymbol{z} = (z_1, \ldots, z_n)'$ has the same distribution as \boldsymbol{y} in (1.1) and is independent of \boldsymbol{y} . We call R_{pe} a risk function for M_J . Here E_0 denotes the expectation with respect to the true model M_0 . It is easy to see that

$$R_{pe} = \sum_{\alpha=1}^{n} \mathcal{E}_0[(\eta_{\alpha 0} - \hat{y}_{\alpha J})^2] + n\sigma_0^2.$$
(1.5)

Therefore, the target criterion is essentially the same as the first term of the right-hand side in (1.5). A typical estimation method for (1.4) is to use a cross-validation method (see, e.g., Sone (1974)). The method predicts y_{α} by the usual unbiased estimator $\hat{y}_{(-\alpha)J}$ based on the data set obtained by removing the α -th observation $(y_{\alpha}, \mathbf{x}'_{\alpha})$, and estimates R_{pe} by

$$C_{cv} = \sum_{\alpha=1}^{n} \{y_{\alpha} - \hat{y}_{(-\alpha)J}\}^2.$$
 (1.6)

The selection method is to choose the model for which C_{cv} is minimized. If the errors are normally distributed, we can use a well known AIC (Akakike (1973)) which are not discussed here.

In this paper we propose a new criterion

$$C_{pe} = s_J^2 + \frac{2(j+1)}{n-k-1}s_F^2, \qquad (1.7)$$

where s_J^2 and s_F^2 are is the sums of squares of residuals in the candidate model M_J and the full model M_F , respectively.

In Section 2 we study unbiasedness properties of C_{cv} and C_{pe} as an estimator for their target measure R_{pe} . It is shown that C_{cv} is only asymptotically unbiased while C_{pe} is exactly unbiased when the true model is contained in the full model. In Section 3 we shall make clear a relationship of C_{pe} with C_p (Mallows (1973)) and its modification C_{mp} (Fujikoshi and Satoh (1997)). The latter criteria are cosely related to C_{pe} , since the target mesure for C_p and C_{mp} is R_{pe}/σ_0^2 . In Section 4 we also propose an adjusted multiple correlation coefficient and its monotone transformation given by

$$\bar{R}^2 = 1 - \frac{n+j+1}{n-j-1}(1-R^2),$$
$$\bar{C}_{dc} = (1-\bar{R}^2)s_y^2 = \frac{n+j+1}{n-j-1}s_j^2,$$

where R is the multiple correlation coefficient between y and (x_1, \ldots, x_j) , and $s_y^2/(n-1)$ is the usual sample variance of y. We show that \overline{C}_{dc} is an unbiased estimator of R_{pe} when the true model is contained in the model M_J . In Section 5 we give a multivariate extension of C_{pe} . A numerical example is given in Section 6.

2 Unbiasedness of C_{cv} and C_{pe}

A naive estimator for R_{pe} is obtained by substituting y_{α} to z_{α} in (1.4), therefore by yielding

$$\sum_{\alpha=1}^{n} (y_{\alpha} - \hat{y}_{\alpha J})^2 = s_J^2.$$

Writing the model M_J as in matrix form, we have

$$\boldsymbol{y} = (y_1, \ldots, y_n)' = X_J \boldsymbol{\beta}_J + (\varepsilon_1, \ldots, \varepsilon_n)',$$

where $\boldsymbol{\beta}_J = (\beta_0, \beta_1, \dots, \beta_j)'$, and X_J is the matrix constructed from the first j + 1 columns of $X = (\tilde{\boldsymbol{x}}_1, \dots, \tilde{\boldsymbol{x}}_n)'$ with $\tilde{\boldsymbol{x}}_{\alpha} = (1 \ \boldsymbol{x}'_{\alpha})'$. The best linear predictor under the model M_J is expressed as

$$\hat{\boldsymbol{y}}_J = (\hat{y}_{1J}, \dots, \hat{y}_{nJ})' = X_J (X'_J X_J)^{-1} X'_J \boldsymbol{y} = P_J \boldsymbol{y},$$

where $P_J = X_J (X'_J X_J)^{-1} X'_J$ is a projection matrix of the space $\mathcal{R}[X_J]$ spanned by the column vectors of X_J

Lemma 2.1 The risk R_{pe} for the model M_J in (1.4) is written as

$$R_{pe} = \mathcal{E}_0(s_J^2) + B_{pe}, \qquad (2.1)$$

where

$$B_{pe} = 2(j+1)\sigma_0^2. (2.2)$$

Further,

$$E_0(s_J^2) = (n - j - 1)\sigma_0^2 + \delta_J^2, \qquad (2.3)$$

where $\delta_J^2 = \eta'_0(I_n - P_J)\eta_0$, and if the true model is contained in the model M_J ,

$$R_{pe} = (n+j+1)\sigma_0^2.$$
 (2.4)

Proof

Note that

$$B_{pe} = \mathrm{E}_0[(\boldsymbol{z} - \hat{\boldsymbol{y}}_J)'(\boldsymbol{z} - \hat{\boldsymbol{y}}_J) - (\boldsymbol{y} - \hat{\boldsymbol{y}}_J)'(\boldsymbol{y} - \hat{\boldsymbol{y}}_J)].$$

We have

$$\begin{split} & \mathcal{E}_{0} \left[(\boldsymbol{z} - \hat{\boldsymbol{y}}_{J})'(\boldsymbol{z} - \hat{\boldsymbol{y}}_{J}) \right] \\ &= \mathcal{E}_{0} \left[\{ \boldsymbol{z} - \boldsymbol{\eta}_{0} - P_{J}(\boldsymbol{y} - \boldsymbol{\eta}_{0}) + (I - P_{J})\boldsymbol{\eta}_{0} \}' \\ &\times \{ \boldsymbol{z} - \boldsymbol{\eta}_{0} - P_{J}(\boldsymbol{y} - \boldsymbol{\eta}_{0}) + (I - P_{J})\boldsymbol{\eta}_{0} \} \right] \\ &= n\sigma_{0}^{2} + (j + 1)\sigma_{0}^{2} + \delta_{J}^{2}, \\ & \mathcal{E}_{0} \left[(\boldsymbol{y} - \hat{\boldsymbol{y}}_{J})'(\boldsymbol{y} - \hat{\boldsymbol{y}}_{J}) \right] \\ &= \mathcal{E}_{0} \left[\{ \boldsymbol{y} - \boldsymbol{\eta}_{0} - P_{J}(\boldsymbol{y} - \boldsymbol{\eta}_{0}) + (I - P_{J})\boldsymbol{\eta}_{0} \} \right]' \\ &\times \{ \boldsymbol{y} - \boldsymbol{\eta}_{0} - P_{J}(\boldsymbol{y} - \boldsymbol{\eta}_{0}) + (I - P_{J})\boldsymbol{\eta}_{0} \} \right] \\ &= n\sigma_{0}^{2} - (j + 1)\sigma_{0}^{2} + \delta_{J}^{2}. \end{split}$$

Note that $s_J^2 = (\boldsymbol{y} - \hat{\boldsymbol{y}})'(\boldsymbol{y} - \hat{\boldsymbol{y}})$. Therefore, from the above results our conclusions are obtained.

Theorem 2.1 Suppose that the true model M_0 is contained in the full model M_F . Then, the criterion C_{pe} defined by (1.7) is an exact unbiased estimator for R_{pe} .

Proof

From Lemma 2.1 we have

$$R_{pe} = \mathcal{E}_0(s_J^2) + 2(j+1)\sigma_0^2.$$

Note that $s_F^2 = \mathbf{y}'(I_n - P_F)\mathbf{y}$, where $P_F = X(X'X)^{-1}X'$. Since the true model M_0 is contained in the full model M_F , $P_F \boldsymbol{\eta}_0 = \boldsymbol{\eta}_0$, and we have

$$E(s_F^2) = E[(\boldsymbol{y} - \boldsymbol{\eta}_0)'(I_n - P_F)(\boldsymbol{y} - \boldsymbol{\eta}_0)] = E[tr(I_n - P_F)(\boldsymbol{y} - \boldsymbol{\eta}_0)(\boldsymbol{y} - \boldsymbol{\eta}_0)'] = tr(I_n - P_F)\sigma_0^2 = (n - k - 1)\sigma_0^2.$$
(2.5)

The theorem follows from (2.1), (2.3) and (2.5).

It is well known (see, e.g. Allen (1971, 1974), Hocking (1972), Haga et al. (1973)) that C_{cv} can be written as

$$C_{cv} = \sum_{\alpha=1}^{n} (y_{\alpha} - \hat{y}_{(-\alpha)J})^2 = \sum_{\alpha=1}^{n} \left(\frac{y_{\alpha} - \hat{y}_{\alpha J}}{1 - c_{\alpha}}\right)^2,$$

where c_{α} is the (α, α) th element of P_J . Therefore, we have

$$C_{cv} = \sum_{\alpha=1}^{n} (y_{\alpha} - \hat{y}_{\alpha J})^{2} \left\{ 1 + \frac{c_{\alpha}}{1 - c_{\alpha}} \right\}^{2}$$

$$= \sum_{\alpha=1}^{n} (y_{\alpha} - \hat{y}_{\alpha J})^{2} + (\mathbf{y} - \hat{\mathbf{y}}_{J})' D_{a} (\mathbf{y} - \hat{\mathbf{y}}_{J})$$

$$= s_{J}^{2} + \hat{B}_{cv}, \qquad (2.6)$$

where

$$D_a = \operatorname{diag}(a_1, \dots, a_n),$$

$$a_\alpha = 2\frac{c_\alpha}{1 - c_\alpha} + \left(\frac{c_\alpha}{1 - c_\alpha}\right)^2, \quad \alpha = 1, \dots, n,$$

$$\hat{B}_{cv} = (\boldsymbol{y} - \hat{\boldsymbol{y}}_J)' D_a(\boldsymbol{y} - \hat{\boldsymbol{y}}_J).$$

Theorem 2.2 The biase B_{cv} when we estimate R_{pe} by the cross-validation criterion C_{cv} can be expressed as

$$B_{cv} = E_0(C_{cv}) - R_{pe}$$
$$= \left(\sum_{\alpha=1}^n \frac{c_\alpha^2}{1 - c_\alpha}\right) \sigma_0^2 + \tilde{\delta}_J^2, \qquad (2.7)$$

where $\tilde{\delta}_J^2 = \{(I_n - P_J)\boldsymbol{\eta}_0\}' D_a\{(I_n - P_J)\boldsymbol{\eta}_0\}$. In particular, when the true model is contained in the model M_J , we have

$$B_{cv} = \left(\sum_{\alpha=1}^{n} \frac{c_{\alpha}^2}{1 - c_{\alpha}}\right) \sigma_0^2.$$
(2.8)

Proof

We can write \hat{B}_{cv} as follows.

$$\hat{B}_{cv} = \{ (I_n - P_J) \boldsymbol{y} \}' D_a \{ (I_n - P_J) \boldsymbol{y} \} = \operatorname{tr} \{ (I_n - P_J) \boldsymbol{y} \}' D_a \{ (I_n - P_J) \boldsymbol{y} \} = \operatorname{tr} D_a \{ (I_n - P_J) \boldsymbol{y} \} \{ (I_n - P_J) \boldsymbol{y} \}' = \operatorname{tr} D_a \{ (I_n - P_J) \{ (\boldsymbol{y} - \boldsymbol{\eta}_0) + \boldsymbol{\eta}_0 \} \times \{ (\boldsymbol{y} - \boldsymbol{\eta}_0) + \boldsymbol{\eta}_0 \}' (I_n - P_J) \}.$$

Therefore we have

$$\begin{aligned} \mathbf{E}(\hat{B}_{cv}) &= \operatorname{tr} D_a \{ (I_n - P_J) \{ \sigma_0^2 I_n + \boldsymbol{\eta}_0 \boldsymbol{\eta}_0' \} (I_n - P_J) \\ &= \sum_{\alpha=1}^n \left\{ 2 \frac{c_\alpha}{1 - c_\alpha} + \left(\frac{c_\alpha}{1 - c_\alpha} \right)^2 \right\} (1 - c_\alpha) \sigma_0^2 + \tilde{\delta}_J^2 \\ &= \left\{ 2(j+1) + \sum_{\alpha=1}^n \frac{c_\alpha^2}{1 - c_\alpha} \right\} \sigma_0^2 + \tilde{\delta}_J^2. \end{aligned}$$

The required result is obtained from the above result, Lemma 2.1 and (2.6).

It is natural to assume that $c_i = O(n^{-1})$, since $0 \le c_i$ and $\sum_{i=1}^n c_i = k$. Then $\sum_{i=1}^n c_i^2 = \sum_{i=1}^n c_i = k$

$$\sum_{j=1}^{n} \frac{c_j^2}{1 - c_j} \le \frac{1}{1 - \bar{c}} \sum_{i=1}^{n} c_i^2 = O(n^{-1}).$$

This implies that $B_{cv} = O(n^{-1})$ and hence C_{cv} is asymptotically unbiased when the true model is contained in the candidate model. On the other hand, C_{pe} is exactly unbiased under a weaker condition, i.e. when the true model is contained in the full model.

3 Relation of C_{pe} with C_p and C_{mp}

We can write C_p criterion (Mallows (1973, 1995)) as

$$C_p = \frac{s_J^2}{\hat{\sigma}^2} + 2(j+1)$$

= $(n-k-1)\frac{s_J^2}{s_F^2} + 2(j+1),$ (3.1)

where $\hat{\sigma}^2$ is the usual unbiased estimator of σ^2 under the full model, and is given by $\hat{\sigma}^2 = s_F^2/(n-k-1)$. The criterion was proposed as an estimator for the standardized mean square errors in prediction given by

$$\tilde{R}_{pe} = \sum_{\alpha=1}^{n} \mathcal{E}_0[\frac{1}{\sigma_0^2}(z_\alpha - \hat{y}_{\alpha J})^2] = \sum_{\alpha=1}^{n} \mathcal{E}_0[\frac{1}{\sigma_0^2}(\eta_{\alpha 0} - \hat{y}_\alpha)^2] + n.$$
(3.2)

Mallows (1973) originally proposed

$$\frac{s_J^2}{\hat{\sigma}^2} + 2(j+1) - n$$

as an estimator for the first term in the last expression of (3.2). In this paper we call (3.1) C_p criterion. Fujikoshi and Satoh (1997) proposed a modified C_p criterion defined by

$$C_{mp} = (n - k - 3)\frac{s_J^2}{s_F^2} + 2(j + 2).$$
(3.3)

They show that C_{mp} is an exact unbiased estimator for R_{pe} when the true model is contained in the full model and the errors are normally distributed. As we have seen, C_{pe} has the same property for its target measure R_{pe} . However, it may be noted that the normality assumption is not required for C_{pe} criterion. Among these three criteria, there are the following close relationships given by

$$C_{pe} = \frac{s_F^2}{n - k - 1} C_p, \tag{3.4}$$

$$C_{mp} = C_p + 2\left(1 - \frac{s_J^2}{s_F^2}\right).$$
 (3.5)

This means that these three criteria choose the same model while they have different properties such that they are unbiased estimators for the target measures R_{pe} and \tilde{R}_{pe} , respectively.

4 Modifications of multiple correlation coefficient

Let R be the multiple correlation coefficient between y and (x_1, \ldots, x_j) which may be defined by

$$R^2 = 1 - s_J^2 / s_y^2.$$

As an alternative criterion for selection variables, we sometime encounter the multiple correlation coefficient \tilde{R} adjusted for the degree of freedom given by

$$\tilde{R}^{2} = 1 - \frac{s_{J}^{2}/(n-j-1)}{s_{y}^{2}/(n-1)}$$

$$= 1 - \frac{n-1}{n-j-1}(1-R^{2})$$
(4.1)

The criterion chooses the model which \tilde{R}^2 is maximized. We consider a transformed criterion defined by

$$\tilde{C}_{dc} = (1 - \bar{R}^2)s_y^2 = \frac{n-1}{n-j-1}s_J^2, \qquad (4.2)$$

which may be regarded as an estimator of R_{pe} . However, as we shall see lator, \tilde{C}_{dc} is not unbiased even when the true model is contained in the model M_J . In this paper we propose an adjusted multiple correlation coefficient given by

$$\bar{R}^2 = 1 - \frac{n+j+1}{n-j-1}(1-R^2)$$
 (4.3)

whose determination coefficient is defined by (1.8). The unbiasedness property is given in the following theorem.

Theorem 4.1 Consider an adjusted multiple correlation coefficient \tilde{R}_a defined by

$$\tilde{R}_{a}^{2} = 1 - a(1 - R^{2})$$

and the corresponding determination coefficient defined by

$$\tilde{C}_{dc;a} = s_y^2 (1 - \tilde{R}_a^2)$$
$$= a s_J^2$$

as in (4.2), where a is a constant depending the sample size n. Then we have

$$\mathcal{E}(C_{dc;a}) = R_{pe} + B_{dc;a}$$

where

$$B_{dc;a} = \{(a-1)(n-j-1) - 2(j+1)\}\sigma_0^2 + (a-1)\delta_J^2$$

with $\delta_J^2 = \boldsymbol{\eta}_0'(I_n - P_J)\boldsymbol{\eta}_0$. Further, if the true model is contained in the model M_J , $\delta_J^2 = 0$, and $\tilde{C}_{dc;a}$ is an unbiased estimator if and only if

$$a = \frac{n+j+1}{n-j-1}$$

Proof

We decompose $\tilde{C}_{dc;a}$ as

$$\tilde{C}_{dc;a} = s_J^2 + (a-1)s_J^2.$$

Applying (2.1) and (2.3) in Lemma 2.1 to each term of the decomposition,

$$E_0(\tilde{C}_{dc;a}) = R_{pe} - 2(j+1)\sigma_0^2 + (a-1)\{(n-j-1)\sigma_0^2 + \delta_J^2\}$$

which implies the first result and hence the remeinder result.

In general, we have

$$\mathcal{E}_0(\bar{C}_{dc}) = R_{pe} + \frac{2(j+1)}{n-j-1}\delta_J^2, \qquad (4.4)$$

and the order of the bias is $O(n^{-1})$. Haga et al. (1973) proposed an alternative adjusted multiple correlation coefficient \hat{R} defined by

$$\hat{R}^2 = 1 - \frac{(n+j+1)s_J^2/(n-j-1)}{(n+1)s_y^2/(n-1)}$$
$$= 1 - \frac{(n-1)(n+j+1)}{(n+1)(n-j-1)}(1-R^2).$$

The corresponding determination coefficient is

$$\hat{C}_{dc} = \frac{(n-1)(n+j+1)}{(n+1)(n-j-1)}s_J^2.$$

From (2.4) we can see (see Haga et al.(1973)) that if the true model is cotained in the model M_J , then

$$E[(n+j+1)s_J^2/(n-j-1)] = R_{pe} = R_{pe}(J).$$

In particular, if J is the empty set ϕ ,

$$E[(n+1)s_y^2/(n-1)] = R_{pe}(\phi).$$

Theorem 3.1 implies that \hat{C}_{dc} is not unbiased as an estimator of R_{pe} even when the true model is contained in the model M_J . In fact

$$E_0(\hat{C}_{dc}) = R_{pe} - \frac{n+2}{n+1}\sigma_0^2 + \frac{2jn}{(n+1)(n-j-1)}\delta_J^2 \\ = R_{pe} - \frac{n+2}{n+1}\sigma_0^2, \text{ if } M_0 \text{ is contained in } M_J.$$

5 Multivariate version of C_{pe}

In this section we consider a multivariate linear regression model of p response variables y_1, \ldots, y_p and k explanatory variables x_1, \ldots, x_k . Suppose that we have an sample of $\mathbf{y} = (y_1, \ldots, y_p)'$ and $\mathbf{x} = (x_1, \ldots, x_k)'$ of size n given by

$$\boldsymbol{y}_{\alpha} = (y_{\alpha 1}, \dots, y_{\alpha p})', \quad \boldsymbol{x}_{\alpha} = (x_{\alpha 1}, \dots, x_{\alpha k})'; \ \alpha = 1, \dots, n.$$

A multivariate linear model is given by

$$M_F: Y = (\boldsymbol{y}_1, \dots, \boldsymbol{y}_n)'$$

= $(\tilde{\boldsymbol{x}}_1, \dots, \tilde{\boldsymbol{x}}_n)'(\boldsymbol{\beta}_0, \boldsymbol{\beta}_1, \dots, \boldsymbol{\beta})' + (\boldsymbol{\varepsilon}_1, \dots, \boldsymbol{\varepsilon}_n)'$
= $X\boldsymbol{\mathcal{B}} + \boldsymbol{\mathcal{E}},$ (5.1)

where the error terms $\varepsilon_1, \ldots, \varepsilon_n$ are mutually independent, and each of them has the same mean vector **0** and the same unknown covariance matrix Σ . The linear regression model based on the subset of the first j explanatory variables can be expressed as

$$M_J; \ Y = X_J \mathcal{B}_J + \mathcal{E}, \tag{5.2}$$

where $\mathcal{B}_J = (\beta_0, \beta_1, \dots, \beta_j)'$. The true model for Y is assumed to be

$$M_0; Y = (\boldsymbol{\eta}_{10}, \dots, \boldsymbol{\eta}_{n0})' + (\boldsymbol{\varepsilon}_{10}, \dots, \boldsymbol{\varepsilon}_{n0})'$$

= $\mathcal{Y}_0 + \mathcal{E}_0,$ (5.3)

where the error terms $\boldsymbol{\varepsilon}_{10}, \ldots, \boldsymbol{\varepsilon}_{n0}$ are mutually independent, and each of them has the same mean vector **0** and the same covariance matrix Σ_0 .

Let $\hat{\boldsymbol{y}}_{\alpha J}$ be the best linear unbiased estimator of $\boldsymbol{\eta}_{\alpha 0}$ under a candidate model M_J . The criterion (1.4) for goodness of a fitted candidate model is extended as

$$R_{pe} = \sum_{\alpha=1}^{n} \mathrm{E}_{0}[(\boldsymbol{z}_{\alpha} - \hat{\boldsymbol{y}}_{\alpha J})'(\boldsymbol{z}_{\alpha} - \hat{\boldsymbol{y}}_{\alpha J})]$$

$$= \mathrm{E}_{0}[\mathrm{tr}(Z - \hat{Y}_{J})'(Z - \hat{Y}_{J})], \qquad (5.4)$$

where $\hat{Y}_J = (\hat{\boldsymbol{y}}_{1J}, \dots, \hat{\boldsymbol{y}}_{nJ})'$, and $Z = (\boldsymbol{z}_1, \dots, \boldsymbol{z}_n)'$ is independent of the observation matrix is distributed as in (5.3), and E_0 denotes the expectation with respect to the true model (5.3). Then we can express R_{pe} as

$$R_{pe} = \sum_{\alpha=1}^{n} \mathrm{E}_{0}[(\boldsymbol{\eta}_{\alpha 0} - \hat{\boldsymbol{y}}_{\alpha J})'(\boldsymbol{\eta}_{\alpha 0} - \hat{\boldsymbol{y}}_{\alpha J})] + n\mathrm{tr}\Sigma_{0}$$
$$= \mathrm{E}[\mathrm{tr}(\boldsymbol{\mathcal{Y}}_{0} - \hat{\boldsymbol{Y}})'(\boldsymbol{\mathcal{Y}}_{0} - \hat{\boldsymbol{Y}})] + n\mathrm{tr}\Sigma_{0}.$$
(5.5)

In a cross-validiation for the multivariate prediction error (5.5), \boldsymbol{y}_{α} is predicted by the predictor $\hat{\boldsymbol{y}}_{(-\alpha)J}$ based on the data set obtained by removing the α th observation ($\boldsymbol{y}_{\alpha}, \boldsymbol{x}_{\alpha}$), and R_{pe} is estemated by

$$C_{cv} = \sum_{\alpha=1}^{n} (\boldsymbol{y}_{\alpha} - \hat{\boldsymbol{y}}_{(-\alpha)J})' (\boldsymbol{y}_{\alpha} - \hat{\boldsymbol{y}}_{(-\alpha)J}).$$
(5.6)

By the same way as in the univariate case, we have

$$C_{cv} = \sum_{\alpha=1}^{n} (\boldsymbol{y}_{\alpha} - \hat{\boldsymbol{y}}_{(-\alpha)J})' (\boldsymbol{y}_{\alpha} - \hat{\boldsymbol{y}}_{(-\alpha)J})$$
$$= \sum_{\alpha=1}^{n} \left(\frac{1}{1 - c_{\alpha}}\right)^{2} (\boldsymbol{y}_{\alpha} - \hat{\boldsymbol{y}}_{\alpha J})' (\boldsymbol{y}_{\alpha} - \hat{\boldsymbol{y}}_{\alpha J}).$$

Now, our main interest is an extension of C_{pe} to multivariate case. Let S_J and S_F be the matrices of sums of squares and products under the candidate model M_J and the full model M_F , respectively. These matrices are given by

$$S_J = (Y - \hat{Y}_J)'(Y - \hat{Y}_J) = Y'(I_n - P_J)Y,$$

$$S_F = (Y - \hat{Y}_F)'(Y - \hat{Y}_F) = Y'(I_n - P_F)Y,$$

where

$$\hat{Y}_J = X_J (X'_J X_J)^{-1} Y = P_J Y, \quad \hat{Y}_F = X_F (X'_F X_F)^{-1} Y = P_F Y.$$

As an estimator of (5.5), we consider

$$C_{pse} = \text{tr}S_J + \frac{2(j+1)}{n-k-1}\text{tr}S_F.$$
 (5.7)

Then the following result is demonstrated.

Theorem 5.1 Suppose that the true model M_0 is contained in the full model M_F . the C_{pe} in (5.7) is an unbiased estimator of the multivariate prediction error R_{pe} in (5.5).

Proof

By an argument similar to one as in Lemma 2.1, we can show that

$$E_0[(Z - \hat{Y}_J)'(Z - \hat{Y}_J)] = (n + j + 1)\Sigma_0 + \Delta_J, E_0[(Y - \hat{Y}_J)'(Y - \hat{Y}_J)] = (n - j - 1)\Sigma_0 + \Delta_J,$$

where $\Delta_J = \mathcal{Y}'_0(I_n - P_J)\mathcal{Y}_0$. Further, since the true model is contained in the full model,

$$\mathcal{E}(S_F) = (n-k-1)\Sigma_0,$$

which implies the required result.

The C_p and C_{mp} criteria in univariate case have been extended (Fujikoshi and Satoh (1997)) as

$$C_p = (n - k - 1) \operatorname{tr} S_J S_F^{-1} + 2p(j+1),$$

$$C_{mp} = (n - k - p - 2) \operatorname{tr} S_J S_F^{-1} + 2p(j+1) + p(p+1),$$

respectively. The results in Section 2 may be extended similarly, but its details are omitted here.

6 Numerical example

Consider Hald's example on examining the heat generated during the hardening of Portland cement. The following variables were measured (see, e.g., Flury and Riedwy (1988)).

 $x_1 =$ amount of tricalcium aluminate, $x_2 =$ amount of tricalcium silicate, $x_3 =$ amount of tetracalcuim alumino ferrite $x_4 =$ amount of dicalcium silicate, y = heat evolved in calories.

The observations with the sample size n = 13 are given in Table 6.1.

α	$x_{\alpha 1}$	$x_{\alpha 2}$	$x_{\alpha 3}$	$x_{\alpha 4}$	y
1	7	26	6	60	78.5
2	1	29	15	52	74.3
3	11	56	8	29	104.3
4	11	31	8	47	87.6
5	7	52	6	33	95.9
6	11	55	9	22	109.2
7	3	71	17	6	102.7
8	1	31	22	44	72.5
9	2	54	18	22	93.1
10	21	47	4	26	115.9
11	1	40	23	34	83.8
12	11	66	9	12	113.3
13	10	68	8	12	109.4

Table 6.1. Data of the cement hardning example

Now we consider all the candidate models except the constant model, and denote the models obtained by using $\{x_1\}, \{x_1, x_2\}, \ldots$, by $M_1, M_{1,2}, \ldots$, respectively. The number of such models is

$$_{4}C_{1} + _{4}C_{2} + _{4}C_{3} + _{4}C_{4} - 1 = (1+1)^{4} - 1 = 2^{4} - 1 = 15.$$

For each of all the candidate models, we computed the values of the following basic quantities and criteria in Table 6.2:

 R^2 ; squares of multiple correlation coefficients,

 $\hat{\sigma}^2$; the usual unbiased estimator of σ^2 ,

 C_p ; Mallows C_p criterion,

 C_{mp} ; modified C_p criterion,

 C_{cv} ; cross validation criterion,

 C_{pe} ; prediction error criterion,

 C_{dc} ; determination coefficients,

 \hat{C}_{dc} ; modified determination coefficient,

 \bar{C}_{dc} ; adjusted determination coefficient.

Table 6.2. The values of R^2 , $\hat{\sigma}^2$, C_p , C_{mp} , C_{cv} , C_{pe} , C_{dc} , \hat{C}_{dc} and \bar{C}_{dc} els R^2 $\hat{\sigma}^2$ C_p C_{mp} C_{cv} C_{pe} C_{cd} \hat{C}_{dc} models

models	R^2	$\hat{\sigma}^2$	C_p	C_{mp}	C_{cv}	C_{pe}	C_{cd}	\hat{C}_{dc}	\bar{C}_{dc}
M_1	0.5339	115.1	215.5	164.7	1699.6	1289.6	0.5084	0.5447	0.6355
M_2	0.6663	82.4	155.5	119.6	1202.1	930.3	0.3641	0.3901	0.4551
M_3	0.2859	176.31	328.2	249.1	2616.4	1963.3	0.7791	0.8347	0.9738
M_4	0.6745	80.4	151.7	116.8	1194.2	907.8	0.3551	0.3804	0.4438
M_{12}	0.9787	5.8	15.7	15.3	93.9	93.8	0.0256	0.0292	0.0341
M_{13}	0.5482	122.7	211.1	61.8	2218.1	1263.0	0.5422	0.6197	0.7229
M_{14}	0.9725	7.5	18.5	17.4	121.2	110.7	0.0330	0.0378	0.0441
M_{23}	0.8470	41.5	75.4	60.1	701.7	451.3	0.1836	0.2098	0.2448
M_{24}	0.6801	86.9	151.2	116.9	1461.8	904.8	0.3839	0.4388	0.5119
M_{34}	0.9353	17.6	35.4	30.0	294.0	211.6	0.0777	0.0888	0.1035
M_{123}	0.9823	5.3	16.0	16.0	90.0	96.0	0.0236	0.0287	0.0335
M_{124}	0.9823	5.3	16.0	16.0	85.4	95.8	0.0236	0.0286	0.0334
M_{134}	0.9813	5.6	16.5	16.4	94.5	98.7	0.0250	0.0303	0.0354
M_{234}	0.9728	8.2	20.3	19.3	146.9	121.7	0.0362	0.0440	0.0513
M_{1234}	0.9824	6.0	18.0	18.0	110.3	107.7	0.0264	0.0340	0.0397

All the three criteria C_p , C_{mp} and C_{pe} choose the model M_{12} as an optimum model. However, the other four criteria C_{cv} , C_{dc} , \hat{C}_{dc} and \bar{C}_{dc} choose a larger model M_{124} which contains M_{12} as an optimum model. Each of the three criteria C_{dc} , \hat{C}_{dc} and \bar{C}_{dc} are almost the same for models M_{123} and M_{124} . As being noted in Section 3 the three criteria C_p , C_{mp} and C_{pe} always choose the same model as an optimum model. In general, the criteria C_{cv} , C_{dc} , \hat{C}_{dc} and \bar{C}_{dc} shall have a tendancy of choosing a large model in the comparison with the criteria C_p , C_{mp} and C_{pe} .

References

- AKAIKE, H. (1973). Information theory and an extension of the maximum likelihood principle. In 2nd International Symposium on Information Theory, (B. N. Petrov and F.Csáki,eds.), 267-81, Budapest: Akadémia Kiado.
- [2] ALLEN, D. M. (1971). Mean square error of prediction as a criterion for selecting variables. *Technometrics*, 13, 469-475.
- [3] ALLEN, D. M. (1974). The relationship between variable selection and data augumentation, and a method for prediction. *Technometrics*, 16,
- [4] FLURY, B. and RIEDWY, H. (1988). *Multivariate Statistics A Practical Approach -*. Chapman and Hall.
- [5] FUJIKOSHI, Y. and SATOH, K. (1997). Modified AIC and C_p in multivariate linear regression. *Biometrika*, 84, 707-716.
- [6] HAGA, Y., TAKEUCHI, K. and OKUNO, C. (1973). New criteria for selecting of variables in regression model. *Quality (Hinshitsu, J. of the Jap. Soc. for Quality Control)*, 6, 73-78 (in Japanese).
- [7] HOCKING, R. R. (1972). Criteria for selecting of a subset regression; which one should be used. *Technometrics*, 14, 967-970.
- [8] MALLOWS, C. L. (1973). Some comments on C_p . Technometrics, 15, 661-675.
- [9] MALLOWS, C. L. (1995). More comments on C_p . Technometrics, **37**, 362-372.
- [10] STONE, M. (1974). Cross-validatory choice and assessment of statistical predictions (with Discussion). J. R. Statist. Soc., B, 36, 111-147.