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Abstract

This paper is concerned with criteria for selecting of variables
in regression model. We propose a prediction error criterion Cpe

which is unbiased as an estimator for the mean squared error
in prediction Rpe, when the true model is contained in the full
model. The property is shown without normality. Such unbiased-
ness property is studied for other criteria such as cross-validation
criterion, Cp criterion, etc. We will also examine modifications of
multiple correlation coefficient from the point of estimating Rpe.
Our results are extended to multivariate case.
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1. Introduction

In univariate regression model, we want to predict or describe a response
variable y by a subset of several explanatory variables x1, . . . , xk. Sup-
pose that there are n observations on y and x = (x1, . . . , xk)

′ denoted by
yα,xα = (xα1, . . . , xαk)

′; α = 1, . . . , n. In this paper we consider the problem
of selecting a model from a collection of candidate models specified by lin-
ear regression of y on subvectors of x. We assume that the true model for
yα, α = 1, . . . , n is as follows:

M0 : yα = ηα0 + εα0, α = 1, . . . , n, (1.1)

where the error terms ε10, . . . , εn0 are mutually independent, and each of
them has the same mean 0 and the same variance σ2

0. The linear regression
model including all the explanatory variables is written as

MF : yα = β0 + β1xα1 + . . . + βkxαk + εα, α = 1, . . . , n, (1.2)

where the coefficients β0, . . . , βj are unknown parameters, the error terms
ε1, . . . , εn are matually independent and have the same mean 0 and the same
unknown variance σ2. The model is called the full model.

In this paper we are interested in criteria for selecting of models, more
concretely for selecting of variables. As a subset of all explanatory variables,
without loss of generality we may consider the subset of the first j explanatory
variables x1, . . . , xj. Consider a candidate model

MJ : yα = β0 + β1xα1 + . . . + βjxαj + εα, α = 1, . . . , n, (1.3)

where the coefficient βo, . . . , βj are unkown, and the error terms are the same
ones as in (1.2).

As a criterion for goodness of a fitted candidate model we consider the
prediction errors, more precisely the mean squares errors in prediction. The
measure is given by

Rpe =
n∑

α=1

E0[(zα − ŷαJ)2], (1.4)

where ŷαJ is the usual unbiased estimator of ηα0 under MJ , and z = (z1, . . . , zn)′

has the same distribution as y in (1.1) and is independent of y. We call Rpe

a risk function for MJ . Here E0 denotes the expectation with respect to the
true model M0. It is easy to see that

Rpe =
n∑

α=1

E0[(ηα0 − ŷαJ)2] + nσ2
0. (1.5)
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Therefore, the target criterion is essentially the same as the first term of the
right-hand side in (1.5). A typical estimation method for (1.4) is to use a
cross-validiation method (see, e.g., Sone (1974)). The method predicts yα

by the usual unbiased estimator ŷ(−α)J based on the data set obtained by
removing the α-th observation (yα,x′

α), and estimates Rpe by

Ccv =
n∑

α=1

{yα − ŷ(−α)J}2. (1.6)

The selection method is to choose the model for which Ccv is minimized. If
the errors are normally distributed, we can use a well known AIC (Akakike
(1973)) which are not discussed here.

In this paper we propose a new criterion

Cpe = s2
J +

2(j + 1)

n − k − 1
s2

F , (1.7)

where s2
J and s2

F are is the sums of squares of residuals in the candidate
model MJ and the full model MF , respectively.

In Section 2 we study unbiasedness properties of Ccv and Cpe as an estima-
tor for their target measure Rpe. It is shown that Ccv is only asymptotically
unbiased while Cpe is exactly unbiased when the true model is contained in
the full model. In Section 3 we shall make clear a relationship of Cpe with Cp

(Mallows (1973)) and its modification Cmp (Fujikoshi and Satoh (1997)). The
latter criteria are cosely related to Cpe, since the target mesure for Cp and
Cmp is Rpe/σ

2
0. In Section 4 we also propose an adjusted multiple correlation

coefficient and its monotone transformation given by

R̄2 = 1 − n + j + 1

n − j − 1
(1 − R2),

C̄dc = (1 − R̄2)s2
y =

n + j + 1

n − j − 1
s2

J ,

where R is the multiple correlation coefficient between y and (x1, . . . , xj),
and s2

y/(n − 1) is the usual sample variance of y. We show that C̄dc is an
unbiased estimator of Rpe when the true model is contained in the model MJ .
In Section 5 we give a multivariate extension of Cpe. A numerical example is
given in Section 6.
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2 Unbiasedness of Ccv and Cpe

A naive estimator for Rpe is obtained by substituting yα to zα in (1.4),
therefore by yielding

n∑
α=1

(yα − ŷαJ)2 = s2
J .

Writing the model MJ as in matrix form, we have

y = (y1, . . . , yn)′ = XJβJ + (ε1, . . . , εn)′,

where βJ = (β0, β1, . . . , βj)
′, and XJ is the matrix constructed from the first

j + 1 columns of X = (x̃1, . . . , x̃n)′ with x̃α = (1 x′
α)′. The best linear

predictor under the model MJ is expressed as

ŷJ = (ŷ1J , . . . , ŷnJ)′

= XJ(X ′
JXJ)−1X ′

Jy = PJy,

where PJ = XJ(X ′
JXJ)−1X ′

J is a projection matrix of the space R[XJ ]
spanned by the column vectors of XJ

Lemma 2.1 The risk Rpe for the model MJ in (1.4) is written as

Rpe = E0(s
2
J) + Bpe, (2.1)

where
Bpe = 2(j + 1)σ2

0. (2.2)

Further,
E0(s

2
J) = (n − j − 1)σ2

0 + δ2
J , (2.3)

where δ2
J = η′

0(In − PJ)η0, and if the true model is contained in the model
MJ ,

Rpe = (n + j + 1)σ2
0. (2.4)

Proof
Note that

Bpe = E0[(z − ŷJ)′(z − ŷJ) − (y − ŷJ)′(y − ŷJ)].
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We have

E0 [(z − ŷJ)′(z − ŷJ)]

= E0

[
{z − η0 − PJ(y − η0) + (I − PJ)η0}

′

×{z − η0 − PJ(y − η0) + (I − PJ)η0}]
= nσ2

0 + (j + 1)σ2
0 + δ2

J ,

E0 [(y − ŷJ)′(y − ŷJ)]

= E0

[
{y − η0 − PJ(y − η0) + (I − PJ)η0)}

′

×{y − η0 − PJ(y − η0) + (I − PJ)η0}]
= nσ2

0 − (j + 1)σ2
0 + δ2

J .

Note that s2
J = (y − ŷ)′(y − ŷ). Therefore, from the above results our

conclusions are obtained.

Theorem 2.1 Suppose that the true model M0 is contained in the full model
MF . Then, the criterion Cpe defined by (1.7) is an exact unbiased estimator
for Rpe.

Proof
From Lemma 2.1 we have

Rpe = E0(s
2
J) + 2(j + 1)σ2

0.

Note that s2
F = y′(In − PF )y, where PF = X(X ′X)−1X ′. Since the true

model M0 is contained in the full model MF , PF η0 = η0, and we have

E(s2
F ) = E[(y − η0)

′(In − PF )(y − η0)]

= E[tr(In − PF )(y − η0)(y − η0)
′]

= tr(In − PF )σ2
0 = (n − k − 1)σ2

0. (2.5)

The theorem follows from (2.1), (2.3) and (2.5).

It is well known (see, e.g. Allen (1971, 1974), Hocking (1972), Haga et
al. (1973)) that Ccv can be written as

Ccv =
n∑

α=1

(yα − ŷ(−α)J)2 =
n∑

α=1

(
yα − ŷαJ

1 − cα

)2

,
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where cα is the (α, α)th element of PJ . Therefore, we have

Ccv =
n∑

α=1

(yα − ŷαJ)2

{
1 +

cα

1 − cα

}2

=
n∑

α=1

(yα − ŷαJ)2 + (y − ŷJ)′Da(y − ŷJ)

= s2
J + B̂cv, (2.6)

where

Da = diag(a1, . . . , an),

aα = 2
cα

1 − cα

+

(
cα

1 − cα

)2

, α = 1, . . . , n,

B̂cv = (y − ŷJ)′Da(y − ŷJ).

Theorem 2.2 The biase Bcv when we estimate Rpe by the cross-validation
criterion Ccv can be expressed as

Bcv = E0(Ccv) − Rpe

=

(
n∑

α=1

c2
α

1 − cα

)
σ2

0 + δ̃2
J , (2.7)

where δ̃2
J = {(In − PJ)η0}′Da{(In − PJ)η0}. In particular, when the true

model is contained in the model MJ , we have

Bcv =

(
n∑

α=1

c2
α

1 − cα

)
σ2

0. (2.8)

Proof
We can write B̂cv as follows.

B̂cv = {(In − PJ)y}′Da{(In − PJ)y}
= tr{(In − PJ)y}′Da{(In − PJ)y}
= trDa{(In − PJ)y}{(In − PJ)y}′

= trDa{(In − PJ){(y − η0) + η0}
×{(y − η0) + η0}′(In − PJ)}.
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Therefore we have

E(B̂cv) = trDa{(In − PJ){σ2
0In + η0η

′
0}(In − PJ)

=
n∑

α=1

{
2

cα

1 − cα

+

(
cα

1 − cα

)2
}

(1 − cα)σ2
0 + δ̃2

J

=

{
2(j + 1) +

n∑
α=1

c2
α

1 − cα

}
σ2

0 + δ̃2
J .

The required result is obtained from the above result, Lemma 2.1 and (2.6).

It is natural to assume that ci = O(n−1), since 0 ≤ ci and
∑n

i=1 ci = k.
Then

n∑
j=1

c2
j

1 − cj

≤ 1

1 − c̄

n∑
i=1

c2
i = O(n−1).

This implies that Bcv = O(n−1) and hence Ccv is asymptotically unbiased
when the true model is contained in the candidate model. On the other hand,
Cpe is exactly unbiased under a weaker condition, i.e. when the true model
is contained in the full model.

3 Relation of Cpe with Cp and Cmp

We can write Cp criterion (Mallows (1973, 1995)) as

Cp =
s2

J

σ̂2
+ 2(j + 1)

= (n − k − 1)
s2

J

s2
F

+ 2(j + 1), (3.1)

where σ̂2 is the usual unbiased estimator of σ2 under the full model, and is
given by σ̂2 = s2

F /(n − k − 1). The criterion was proposed as an estimator
for the standardized mean square errors in prediction given by

R̃pe =
n∑

α=1

E0[
1

σ2
0

(zα − ŷαJ)2] =
n∑

α=1

E0[
1

σ2
0

(ηα0 − ŷα)2] + n. (3.2)

Mallows (1973) originally proposed

s2
J

σ̂2
+ 2(j + 1) − n
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as an estimator for the first term in the last expression of (3.2). In this paper
we call (3.1) Cp criterion. Fujikoshi and Satoh (1997) proposed a modified
Cp criterion defined by

Cmp = (n − k − 3)
s2

J

s2
F

+ 2(j + 2). (3.3)

They show that Cmp is an exact unbiased estimator for R̃pe when the true
model is contained in the full model and the errors are normally distributed.
As we have seen, Cpe has the same property for its target measure Rpe.
However, it may be noted that the normality assumption is not required
for Cpe criterion. Among these three criteria, there are the following close
relationships given by

Cpe =
s2

F

n − k − 1
Cp, (3.4)

Cmp = Cp + 2

(
1 − s2

J

s2
F

)
. (3.5)

This means that these three criteria choose the same model while they have
different properties such that they are unbiased estimators for the target
measures Rpe and R̃pe, respectively.

4 Modifications of multiple correlation coef-

ficient

Let R be the multiple correlation coefficient between y and (x1, . . . , xj)
which may be defined by

R2 = 1 − s2
J/s2

y.

As an alternative criterion for selecion variables, we sometime encounter the
multiple correlation coefficient R̃ adjusted for the degree of freedom given by

R̃2 = 1 − s2
J/(n − j − 1)

s2
y/(n − 1)

= 1 − n − 1

n − j − 1
(1 − R2) (4.1)

The criterion chooses the model which R̃2 is maximized. We consider a
transformed criterion defined by

C̃dc = (1 − R̄2)s2
y =

n − 1

n − j − 1
s2

J , (4.2)
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which may be regarded as an estimator of Rpe. However, as we shall see lator,
C̃dc is not unbiased even when the true model is contained in the model MJ .
In this paper we propose an adjusted multiple correlation coefficient given
by

R̄2 = 1 − n + j + 1

n − j − 1
(1 − R2) (4.3)

whose determination coefficient is defined by (1.8). The unbiasedness prop-
erty is given in the following theorem.

Theorem 4.1 Consider an adjusted multiple correlation coefficient R̃a de-
fined by

R̃2
a = 1 − a(1 − R2)

and the corresponding determination coefficient defined by

C̃dc;a = s2
y(1 − R̃2

a)

= as2
J

as in (4.2), where a is a constant depending the sample size n. Then we have

E(C̃dc;a) = Rpe + Bdc;a,

where
Bdc;a = {(a − 1)(n − j − 1) − 2(j + 1)}σ2

0 + (a − 1)δ2
J

with δ2
J = η′

0(In−PJ)η0. Further, if the true model is contained in the model
MJ , δ2

J = 0, and C̃dc;a is an unbiased estimator if and only if

a =
n + j + 1

n − j − 1
.

Proof
We decompose C̃dc;a as

C̃dc;a = s2
J + (a − 1)s2

J .

Applying (2.1) and (2.3) in Lemma 2.1 to each term of the decomposition,

E0(C̃dc;a) = Rpe − 2(j + 1)σ2
0 + (a − 1){(n − j − 1)σ2

0 + δ2
J}

which implies the first result and hence the remeinder result.

9



In general, we have

E0(C̄dc) = Rpe +
2(j + 1)

n − j − 1
δ2
J , (4.4)

and the order of the bias is O(n−1). Haga et al. (1973) proposed an alterna-
tive adjusted multiple correlation coefficient R̂ defined by

R̂2 = 1 − (n + j + 1)s2
J/(n − j − 1)

(n + 1)s2
y/(n − 1)

= 1 − (n − 1)(n + j + 1)

(n + 1)(n − j − 1)
(1 − R2).

The corresponding determination coefficient is

Ĉdc =
(n − 1)(n + j + 1)

(n + 1)(n − j − 1)
s2

J .

From (2.4) we can see (see Haga et al.(1973)) that if the true model is cotained
in the model MJ , then

E[(n + j + 1)s2
J/(n − j − 1)] = Rpe = Rpe(J).

In particular, if J is the empty set φ,

E[(n + 1)s2
y/(n − 1)] = Rpe(φ).

Theorem 3.1 implies that Ĉdc is not unbiased as an estimator of Rpe even
when the true model is contained in the model MJ . In fact

E0(Ĉdc) = Rpe −
n + 2

n + 1
σ2

0 +
2jn

(n + 1)(n − j − 1)
δ2
J

= Rpe −
n + 2

n + 1
σ2

0, ifM0 is contained in MJ .

5 Multivariate version of Cpe

In this section we consider a multivariate linear regression model of p
response variables y1, . . . , yp and k explanatory variables x1, . . . , xk. Suppose
that we have an sample of y = (y1, . . . , yp)

′ and x = (x1, . . . , xk)
′ of size n

given by

yα = (yα1, . . . , yαp)
′, xα = (xα1, . . . , xαk)

′; α = 1, . . . , n.
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A multivariate linear model is given by

MF : Y = (y1, . . . , yn)′

= (x̃1, . . . , x̃n)′(β0, β1, . . . , β)′ + (ε1, . . . , εn)′

= XB + E , (5.1)

where the error terms ε1, . . . , εn are mutually independent, and each of them
has the same mean vector 0 and the same unknown covariance matrix Σ.
The linear regression model based on the subset of the first j explanatory
variables can be expressed as

MJ ; Y = XJBJ + E , (5.2)

where BJ = (β0, β1, . . . , βj)
′. The true model for Y is assumed to be

M0; Y = (η10, . . . , ηn0)
′ + (ε10, . . . , εn0)

′

= Y0 + E0, (5.3)

where the error terms ε10, . . . , εn0 are mutually independent, and each of
them has the same mean vector 0 and the same covariance matrix Σ0.

Let ŷαJ be the best linear unbiased estimator of ηα0 under a candidate
model MJ . The criterion (1.4) for goodness of a fitted candidate model is
extended as

Rpe =
n∑

α=1

E0[(zα − ŷαJ)′(zα − ŷαJ)]

= E0[tr(Z − ŶJ)′(Z − ŶJ)], (5.4)

where ŶJ = (ŷ1J , . . . , ŷnJ)′ , and Z = (z1, . . . , zn)′ is independent of the
observation matrix is distributed as in (5.3), and E0 denotes the expectation
with respect to the true model (5.3). Then we can express Rpe as

Rpe =
n∑

α=1

E0[(ηα0 − ŷαJ)′(ηα0 − ŷαJ)] + ntrΣ0

= E[tr(Y0 − Ŷ )′(Y0 − Ŷ )] + ntrΣ0. (5.5)

In a cross-validiation for the multivariate prediction error (5.5), yα is pre-
dicted by the predictor ŷ(−α)J based on the data set obtained by removing
the αth observation (yα, xα), and Rpe is estemated by

Ccv =
n∑

α=1

(yα − ŷ(−α)J)′(yα − ŷ(−α)J). (5.6)
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By the same way as in the univariate case, we have

Ccv =
n∑

α=1

(yα − ŷ(−α)J)′(yα − ŷ(−α)J)

=
n∑

α=1

(
1

1 − cα

)2

(yα − ŷαJ)′(yα − ŷαJ).

Now, our main interest is an extension of Cpe to multivariate case. Let SJ

and SF be the matrices of sums of squares and products under the candidate
model MJ and the full model MF , respectively. These matrices are given by

SJ = (Y − ŶJ)′(Y − ŶJ) = Y ′(In − PJ)Y,

SF = (Y − ŶF )′(Y − ŶF ) = Y ′(In − PF )Y,

where

ŶJ = XJ(X ′
JXJ)−1Y = PJY, ŶF = XF (X ′

F XF )−1Y = PF Y.

As an estinator of (5.5), we consider

Cpse = trSJ +
2(j + 1)

n − k − 1
trSF . (5.7)

Then the following result is demonstrated.

Theorem 5.1 Suppose that the true model M0 is contained in the full model
MF . the Cpe in (5.7) is an unbiased estimator of the multivariate prediction
error Rpe in (5.5).

Proof
By an argument similar to one as in Lemma 2.1, we can show that

E0[(Z − ŶJ)′(Z − ŶJ)] = (n + j + 1)Σ0 + ∆J ,

E0[(Y − ŶJ)′(Y − ŶJ)] = (n − j − 1)Σ0 + ∆J ,

where ∆J = Y ′
0(In−PJ)Y0. Further, since the true model is contained in the

full model,
E(SF ) = (n − k − 1)Σ0,

which implies the required result.
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The Cp and Cmp criteria in univariate case have been extended（Fujikoshi
and Satoh (1997)）as

Cp = (n − k − 1)trSJS−1
F + 2p(j + 1),

Cmp = (n − k − p − 2)trSJS−1
F + 2p(j + 1) + p(p + 1),

respectively. The results in Section 2 may be extended similarly, but its
details are omitted here.

6 Numerical example

Consider Hald’s example on examining the heat generated during the
hardening of Portland cement. The following variables were measured (see,
e.g., Flury and Riedwy (1988)).

x1 = amount of tricalcium aluminate,

x2 = amount of tricalcium silicate,

x3 = amount of tetracalcuim alumino ferrite

x4 = amount of dicalcium silicate,

y = heat evolved in calories.

The observations with the sample size n = 13 are given in Table 6.1.

Table 6.1. Data of the cement hardning example

α xα1 xα2 xα3 xα4 y
1 7 26 6 60 78.5
2 1 29 15 52 74.3
3 11 56 8 29 104.3
4 11 31 8 47 87.6
5 7 52 6 33 95.9
6 11 55 9 22 109.2
7 3 71 17 6 102.7
8 1 31 22 44 72.5
9 2 54 18 22 93.1

10 21 47 4 26 115.9
11 1 40 23 34 83.8
12 11 66 9 12 113.3
13 10 68 8 12 109.4
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Now we consider all the candidate models except the constant model,
and denote the models obtained by using {x1}, {x1, x2}, . . . , by M1,M1,2, . . .,
respectively. The number of such models is

4C1 + 4C2 + 4C3 + 4C4 − 1 = (1 + 1)4 − 1 = 24 − 1 = 15.

For each of all the candidate models, we computed the values of the following
basic quantities and criteria in Table 6.2:

R2; squares of multiple correlation coefficients,

σ̂2; the usual unbiased estimator of σ2,

Cp; Mallows Cp criterion,

Cmp; modified Cp criterion,

Ccv; cross validation criterion,

Cpe; prediction error criterion,

Cdc; determination coefficients,

Ĉdc; modified determination coefficient,

C̄dc; adjusted determination coefficient.

Table 6.2. The values of R2, σ̂2, Cp, Cmp, Ccv, Cpe, Cdc, Ĉdc and C̄dc

models R2 σ̂2 Cp Cmp Ccv Cpe Ccd Ĉdc C̄dc

M1 0.5339 115.1 215.5 164.7 1699.6 1289.6 0.5084 0.5447 0.6355
M2 0.6663 82.4 155.5 119.6 1202.1 930.3 0.3641 0.3901 0.4551
M3 0.2859 176.31 328.2 249.1 2616.4 1963.3 0.7791 0.8347 0.9738
M4 0.6745 80.4 151.7 116.8 1194.2 907.8 0.3551 0.3804 0.4438
M12 0.9787 5.8 15.7 15.3 93.9 93.8 0.0256 0.0292 0.0341
M13 0.5482 122.7 211.1 61.8 2218.1 1263.0 0.5422 0.6197 0.7229
M14 0.9725 7.5 18.5 17.4 121.2 110.7 0.0330 0.0378 0.0441
M23 0.8470 41.5 75.4 60.1 701.7 451.3 0.1836 0.2098 0.2448
M24 0.6801 86.9 151.2 116.9 1461.8 904.8 0.3839 0.4388 0.5119
M34 0.9353 17.6 35.4 30.0 294.0 211.6 0.0777 0.0888 0.1035
M123 0.9823 5.3 16.0 16.0 90.0 96.0 0.0236 0.0287 0.0335
M124 0.9823 5.3 16.0 16.0 85.4 95.8 0.0236 0.0286 0.0334
M134 0.9813 5.6 16.5 16.4 94.5 98.7 0.0250 0.0303 0.0354
M234 0.9728 8.2 20.3 19.3 146.9 121.7 0.0362 0.0440 0.0513
M1234 0.9824 6.0 18.0 18.0 110.3 107.7 0.0264 0.0340 0.0397
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All the three criteria Cp, Cmp and Cpe choose the model M12 as an opti-

mum model. However, the other four criteria Ccv, Cdc, Ĉdc and C̄dc choose
a larger model M124 which contains M12 as an optimum model. Each of the
three criteria Cdc, Ĉdc and C̄dc are almost the same for models M123 and M124.
As being noted in Section 3 the three criteria Cp, Cmp and Cpe always choose

the same model as an optimum model. In general, the criteria Ccv, Cdc, Ĉdc

and C̄dc shall have a tendancy of choosing a large model in the comparison
with the criteria Cp, Cmp and Cpe.
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