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Abstract

This paper deals with correcting a bias of Akaike’s information criterion (AIC) for

selecting variables in multivariate normal linear regression models when the true distri-

bution of observation is an unknown nonnormal distribution. It is well known that the

bias of AIC is O(1), and there are several information criteria which improve the bias to

O(n−1), where n is the sample size. By slightly adjusting the first-order bias-corrected

AIC, we propose a new information criterion. Although the adjustment merely uses con-

stant coefficients, the bias of the new criterion is reduced to O(n−2). Through numerical

experiments, we verify that our criterion is superior to others.

AMS 2000 subject classifications. Primary 62H12; Secondary 62F07.

Key words: Akaike’s information criterion, Bias correction, Jackknife method, Kullback-

Leibler information, Model misspecification, Normal assumption, Overspecified model,

Selection of variables, Predicted residual sum of squares, Robustness.

1Corresponding author, E-mail address: yanagi@sk.tsukuba.ac.jp. (Last Modified: February 2, 2006)

1



1. Introduction

A multivariate linear regression model has been used universally to study the effects of

K explanatory variables x1, . . . , xK on a p× 1 response variable vector y = (y1, . . . , yp)
′.

Since we would like to specify the factors affecting y in the regression analysis, searching

for the optimal subset of {x1, . . . , xK} is essential. In the first phase of the analysis, it is

common to assume that observations are distributed according to the normal distribution.

This is because we are not able to see the distribution of observations in most cases. On

the other hand, the number of all subsets, i.e., the number of candidate models considered,

grows explosively by increasing K. If repetition of the estimating parameters is required

simultaneously, more computational complexity becomes necessary. Since the estimators

in the normal linear model can be obtained without the repetition, the normal assumption

is appropriate for searching the optimal model thoroughly because the computational

complexity is decreased dramatically. However, if the gap between the normal distribution

and the true distribution results undesirably affects the selecting of variables, we should

consider a way to reduce it. Therefore, in this paper, we deal with the model selection

in multivariate normal linear models under the condition that the true distribution of y

may not be the normal distribution.

Choosing the best model by minimizing the information criterion is well known and

widely used. Most of the information criteria estimate the risk based on the predictive

Kullback-Leibler (K-L) information (Kullback & Leibler, 1951), which measures the dis-

crepancy between the true model and the candidate model. The simplest estimator for

the risk is the “−2× the sample log-likelihood”; however, this has a constant bias. Since

it is necessary to reduce this kind of bias, an usual information criterion is defined by

adding a bias-correction term to the simplest estimator. The most universal information

criterion is Akaike’s information criterion (AIC, Akaike, 1973). Since the bias-correction

term of AIC is evaluated under the assumption that the candidate model is not misspec-

ified, the bias of AIC becomes O(1) when the normal assumption is not satisfied. Several

information criteria correcting the AIC’s bias to O(n−1), where n is the sample size, were

also proposed under the assumption that the candidate model may be misspecified, e.g.,

Takeuchi’s information criterion (TIC, Takeuchi, 1976), extended information criterion

(EIC, Ishiguro et al., 1997) and the cross-validation (CV) criterion (Stone, 1974, 1977).

Recently, Yanagihara (2006b) proposed a bias-corrected AIC which consists of a jackknife

2



estimate of the bias. He evaluated the bias from the predicted residual sum of the squares

(PRESS) and made a bias-correction term that was an exact unbiased term by multiply-

ing the constant coefficient when the candidate model includes the true model. In this

paper, we call this bias-corrected AIC the jackknifed AIC (AICJ). Although AICJ is the

first-order bias-corrected AIC, as is TIC and EIC, the bias of AICJ tends to be smaller

than the others. Especially, we can see that the bias of AICJ becomes very small numeri-

cally. However, the n−1 term in the bias, which consists of the multivariate kurtosis, still

remains in AICJ. Therefore, the bias may become large when the sample size is small

or the kurtosis is large. Currently, there is no information criterion with second-order

accuracy under nonnormality that has a numerically small bias.

In this paper, our purpose is to propose a new information criterion that has a bias

which is not only small numerically but also theoretically. We correct the bias of AICJ to

O(n−2) without adding any correction term, while maintaining the desirable character of

being numerically very small. First, in order to correct the bias theoretically, we slightly

adjust the PRESS by constant coefficients. Next, as in the AICJ, the adjusted PRESS is

multiplied by another constant coefficient which makes the exact unbiased estimator for

the risk when the candidate model includes the true one.

This paper is organized in the following way. In Section 2, we describe the models,

the risk based on the predictive K-L information, and AICJ. In Section 3, we propose

a new information criterion which is the second-order accuracy of the risk. In Section

4, we verify that our criterion is better than AIC and AICJ by conducting numerical

experiments. In Section 5, we conclude our discussion. Technical details are provided in

the Appendix.

2. Preliminaries

2.1. Models and Risk

Let Y = (y1, . . . ,yn)′ be an n × p observation matrix. We consider the following

candidate model with k explanatory variables which are the subset of {x1, . . . , xK}.

M : Y ∼ Nn×p(XΘ,Σ ⊗ In), (2.1)

where X = (x1, . . . ,xn)′ is an n × k matrix of nonstochastic explanatory variables

with the full rank k. Then, the joint probability density function of Y is shown by
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∏n
i=1 f(yi|xi,Θ,Σ), where

f(yi|xi,Θ,Σ) =
(

1

2π

)p/2

|Σ|−1/2 exp
{
−1

2
(yi − Θ′xi)

′Σ−1(yi −Θ′xi)
}
. (2.2)

Although the normal distribution is assumed, we are not able to see whether the assump-

tion is actually correct. Therefore, it is more appropriate to set the situation in which

the true distribution of Y may be not distributed according to the normal distribution.

That is, the true model is denoted by

M ∗ : Y = η∗ + EΣ∗1/2, (2.3)

where η∗ and Σ∗ are n × p and p × p unknown parameter matrices, respectively, and

p × 1 row vectors ε1, . . . , εn of error matrix E are independent, and copies of a random

variable vector ε which is distributed following an unknown distribution with the mean

0 and covariance matrix Ip. In particular, we will assume the candidate model M is the

overspecified model, satisfying P�η∗ = η∗, where P� is the projection matrix of X, i.e.,

P� = X(X ′X)−1X ′. In our general nonnormal setting, the terminology of “overspecified

model” is not necessary to imply the candidate model includes the true model. In a normal

setting, as in Fujikoshi and Satoh (1997), the terminology corresponds to the inclusion of

the true model. Also, we assume that four assumptions for X in M and E in M ∗ (see

Appendix A.1) hold to guarantee valid expansions on the biases of information criteria.

Let the maximum likelihood estimators (MLEs) of Θ and Σ under the normal as-

sumption be denoted by Θ̂ and Σ̂, respectively, which are defined by

Θ̂ = (X ′X)
−1

X ′Y , Σ̂ =
1

n
Y ′ (In − P�)Y .

Then, the −2 × sample log-likelihood function is given by

−2�(Θ̂, Σ̂|Y ,X) = −2
n∑

i=1

log f(yi|xi, Θ̂, Σ̂)

= np log 2π + n log |Σ̂| + np. (2.4)

Let U = (u1, . . . ,un)′ be an n× p future observation matrix, which is independent of Y ,

and let p× 1 row vectors u1, . . . ,un of U be independently distributed according to the

same distributions of y1, . . . ,yn, respectively. Then, the risk based on the predictive K-L

information measuring the discrepancy between M ∗ and M under the normal assumption
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is defined by

RKL = E∗
�

E∗
�

[
−2�(Θ̂, Σ̂|U ,X)

]
= np log 2π + nE∗

�

[
log |Σ̂|

]
+ RFP, (2.5)

where RFP is an expectation of the future predicted residual sum of the squares, denoted

as

RFP = E∗
�

E∗
�

[
n∑

i=1

(
ui − Θ̂

′
xi

)′
Σ̂

−1 (
ui − Θ̂

′
xi

)]
. (2.6)

Here, E∗ means the expectation under the true model M ∗.

It is easy to obtain the simplest estimator of RKL by −2�(Θ̂, Σ̂|Y ,X). However, when

we estimate RKL by −2�(Θ̂, Σ̂|Y ,X), the constant bias appears as follows:

B = RKL − E∗
�

[
−2�(Θ̂, Σ̂|Y ,X)

]
= RFP − np.

In order to reduce this kind of bias, many authors have obtained an estimator of B, called

B̂, under several conditions. The AIC-type information criterion is defined by adding B̂

to −2�(Θ̂, Σ̂|Y ,X), and thus, the AIC-type criterion is specified by the individual B̂.

2.2. Akaike’s Information Criterion

Akaike (1973) approximated B as B̂AIC = 2pk + p(p + 1). By using B̂AIC, AIC is

defined by

AIC = −2�(Θ̂, Σ̂|Y ,X) + B̂AIC

= np(log 2π + 1) + n log |Σ̂| + 2pk + p(p+ 1). (2.7)

However, Fujikoshi et al. (2005) reported that the bias of AIC is expressed as

BAIC = RKL − E∗
�

[AIC] = κ
(1)
4 + O(n−1),

where κ
(1)
4 is the multivariate kurtosis (see, e.g., Mardia, 1970; Isogai, 1983), which is

defined by

κ
(1)
4 = E∗

�

[
(ε′ε)2

]
− p(p+ 2).

Since Akaike evaluated B̂AIC under the assumption that the candidate model is not mis-

specified, κ
(1)
4 appears in the top term of BAIC. Notice that κ

(1)
4 measures the variation

from the normal distribution. Thus, the breakdown of normality makes the constant bias
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of AIC. From the expansion of BAIC, we can see that the bias of AIC is the first-order

accuracy of RKL if κ
(1)
4 is 0. Therefore, AIC is the first-order accuracy of RKL when the

candidate model M includes the true model M ∗. However, that is not the necessary and

sufficient condition because the distribution with κ
(1)
4 = 0 exists, except for the normal

distribution (see Kale & Sebastian, 1996). On the other hand, if κ
(1)
4 is not 0, AIC is

the constant-order accuracy of RKL. In other words, the more severe the breakdown of

normality, the more the bias grows.

2.3. Jackknifed AIC

Let Y (−i) and X(−i) be (n − 1) × p and (n − 1) × k matrices obtained from Y and

X by deleting yi and xi, respectively. Further, let the MLEs of Θ and Σ evaluated from

Y (−i) and X(−i) be denoted as Θ̂[−i] and Σ̂[−i], respectively, which are defined by

Θ̂[−i] =
{
X ′

(−i)X(−i)

}−1
X ′

(−i)Y (−i), Σ̂[−i] =
1

n
Y ′

(−i)

{
In−1 − P�(−i)

}
Y (−i).

Then, PRESS is expressed as

PRESS =
n∑

i=1

(yi − Θ̂
′
[−i]xi)

′Σ̂
−1

[−i](yi − Θ̂
′
[−i]xi).

Let the coefficient a(j) be defined by

a(j) =
n+ j − 1

n+ j
, (2.8)

and let r̃2
i denote a squared norm of the ith estimated residual defined by

r̃2
i =

1

1 − (P�)ii

(yi − Θ̂
′
xi)

′Σ̂
−1

(yi − Θ̂
′
xi), (2.9)

where (P�)ij is the (i, j)th element of the matrix P� , i.e., (P�)ij = x′
i(X

′X)xj. Fur-

thermore, we define a function Q(x;λ) as

Q(x;λ) = x
(
1 − x

n

)−λ

. (2.10)

From the formulas in Fujikoshi et al. (2003), PRESS can be expressed without Θ̂[−i] and

Σ̂[−i] as follows:

PRESS = a(0)
n∑

i=1

{(1 − (P�)ii)}−1Q(r̃2
i ; 1). (2.11)
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Yanagihara (2006b) evaluated RFP by using the jackknife method, i.e., using PRESS, and

approximated B by B̂AICJ
= {c/a(0)}PRESS − np, where the coefficient c is defined by

c =
(n+ k)(n− k − p− 2)

(n− k − p− 1)
∑n

i=1{1 − (P�)ii}−1
. (2.12)

The coefficient c/a(0) adjusts PRESS to an unbiased estimator of RFP when the candidate

model M includes the true model M ∗, i.e., when the true distribution is the normal

distribution. Then, AICJ is defined by

AICJ = −2�(Θ̂, Σ̂|Y ,X) + B̂AICJ

= np log 2π + n log |Σ̂| + c
n∑

i=1

{1 − (P�)ii}−1Q(r̃2
i ; 1). (2.13)

From Yanagihara (2006b), the bias of AICJ becomes as follows:

BAICJ
= RKL − E∗

�
[AICJ] =

⎧⎪⎨
⎪⎩

0 (ε1, . . . , εn ∼ i.i.d. Np(0, Ip))

−1

n
κ

(1)
4 + O(n−2) (otherwise)

.

AICJ is the first-order accuracy of RKL in a general nonnormal case. Therefore, we can see

that AICJ corrects the AIC’s bias by replacing B̂AIC with a renewal term, as in TIC and

EIC. However, compared with the first terms in asymptotic expansions of biases, it seems

that the bias of AICJ tends to be smaller than the ones of TIC and EIC (see Yanagihara,

2006b). Moreover, from the numerical study in Yanagihara (2006b), we can see that the

bias of AICJ becomes the smallest among the biases of AIC, TIC and EIC. Generally, if

the dimension p or the number of variables k becomes large, the bias of the information

criterion will also become large. This increase may be shrunk by the coefficient c, which

is one of the reasons why AICJ works well.

3. New Criterion

3.1. Bias-Corrected AICJ

In this section, we propose a bias-corrected AICJ (Corrected AICJ or CAICJ). From

the previous section, the bias of AICJ becomes numerically very small; however, AICJ

is the first-order accuracy of RKL. The n−1 term in the asymptotically expanded bias

consists of the multivariate kurtosis of the true model. Therefore, if the kurtosis becomes

large, the bias of AICJ also has the danger of becoming large. Our goal is to improve the
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bias of AICJ to O(n−2) while maintaining the desirable behavior that the bias becomes

numerically very small. Since the high quality of AICJ depends on the coefficient c in

(2.12), we must correct PRESS in (2.11) to the second-order accuracy of RFP in (2.6), so

that the corrected PRESS may be adjusted to be unbiased by multiplying some constant

coefficient when ε1, . . . , εn are i.i.d. Np(0, Ip). Needless to say, it makes no sense to correct

the bias of AICJ by AICJ − κ̂
(1)
4 /n, where κ̂

(1)
4 is an estimator of κ

(1)
4 as

κ̂
(1)
4 =

1

n

n∑
i=1

{
(yi − Θ̂

′
xi)

′Σ̂
−1

(yi − Θ̂
′
xi)
}2

− p(p+ 2),

(see, e.g., Mardia, 1970; Isogai, 1983). The reason is the following: The bias of κ̂
(1)
4

becomes large unless the sample size n is huge (see Yanagihara, 2006a). Besides this,

when κ̂
(1)
4 has a small bias, i.e., the sample size n is large, the bias-correction term −κ̂(1)

4 /n

becomes very small. Consequently, the correction method of using κ̂
(1)
4 /n will become

meaningless. Therefore, it is important to correct the bias without estimating κ
(1)
4 for a

small sample. From these two significant points for bias correction, we adjust PRESS by

the constant coefficients b1, . . . , bn and d as follows:

PRESS+ =
n∑

i=1

biQ(r̃2
i ; 1 − d/n), (3.1)

where r̃2
i is given by (2.9) and the function Q(x;λ) is given by (2.10). From Yanagihara

(2006a), we can see that the expectation of Q(r̃2
i ; 1−d/n) can be calculated exactly when

ε1, . . . , εn are i.i.d. Np(0, Ip). Moreover, it is known that

n∑
i=1

Q(r̃2
i ; 1 − d/n) =

n∑
i=1

Q(r̃2
i ; 1) − d

n

{
κ̂

(1)
4 + p(p+ 2)

}
+ Op(n

−2).

Then, we can make κ̂
(1)
4 appear without estimating κ

(1)
4 directly. We only need to deter-

mine the coefficients b1, . . . , bn and d so that the n−1 term disappears from the asymptotic

expansion of the bias of the corrected criterion. Notice that

Q(r̃2
i , 0) =

1

1 − (P�)ii

(yi − Θ̂
′
xi)

′Σ̂
−1

(yi − Θ̂
′
xi),

Q(r̃2
i , 1) =

1

a(0)
{1 − (P�)ii}(yi − Θ̂

′
[−i]xi)

′Σ̂
−1

[−i](yi − Θ̂
′
[−i]xi).

Therefore, Q(r̃2
i , 1−d/n) means the ith squared predictive residual in which the influence

of yi remains for a while. Actually, we decide bi = a(1){1+a(1)(P�)ii} and d = 1, where
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the coefficient a(j) is defined by (2.8). Finally, by using equation (3.1), we approximate

B by

B̂CAICJ
= c+

n∑
i=1

{1 + a(1)(P�)ii}Q(r̃2
i ; a(0)) − np,

where the coefficient c+ is defined by

c+ =
(n+ k){n− k − p− 2a(0)}Γ

(
n−k

2
+ 1

n

)
Γ
(

n−k−p
2

)
{n+ a(1)k}(n− k − p− 1)Γ

(
n−k

2

)
Γ
(

n−k−p
2

+ 1
n

) , (3.2)

and Γ(x) is the gamma function. Thus, if the dimension of observation p is even, i.e.,

p = 2m, the coefficient c+ can be obtained without calculating the gamma function, as

follows:

c+ =
(n+ k){n− k − p− 2a(0)}
{n+ a(1)k}(n− k − p− 1)

m∏
j=1

{
1 +

2

n(n− k − 2j)

}
,

(We omit writing a proof of the above equation, because that it is easy to derive from the

property of the gamma function). We can see that c+/a(1) makes PRESS+ an unbiased

estimator of RFP when the candidate modelM includes the true modelM ∗. Consequently,

CAICJ is defined as follows.

Definition. The second-order bias-corrected AIC is defined by

CAICJ = −2�(Θ̂, Σ̂|Y ,X) + B̂CAICJ

= np log 2π + n log |Σ̂| + c+
n∑

i=1

{1 + a(1)(P�)ii}Q(r̃2
i ; a(0)). (3.3)

The order of the bias of CAICJ is given by the following theorem.

Theorem. Suppose that the assumptions A1 ∼ A4 in Appendix A.1 hold. Then, the bias

of CAICJ becomes

BCAICJ
= RKL − E∗

�
[CAICJ] =

{
0 (ε1, . . . , εn ∼ i.i.d. Np(0, Ip))

O(n−2) (otherwise)
.

We describe the outline of the proof of the above theorem in the next subsection.

3.2. Proof of Theorem

First, we show BCAICJ
= 0 when ε1, . . . , εn are i.i.d. Np(0, Ip). Let T be a random

variable distributed according to Hotelling’s T 2 distribution with N = n − k − 1 and p
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degrees of freedoms, whose probability density is

g(t;N, p) =
Γ
(

N+1
2

)
NΓ

(
p
2

)
Γ
(

N−p+1
2

) ( t

N

)p/2−1 (
1 +

t

N

)−(N+1)/2

,

(see, e.g., Siotani et al., 1985, p. 196). From Yanagihara (2006a), when ε1, . . . , εn are

i.i.d. Np(0, Ip), then r̃2
i is rewritten by T as

r̃2
i =

n

N
T
(
1 +

T

N

)−1

. (3.4)

Substituting (3.4) into (2.10) yields

Q(r̃2
i ; a(0)) =

n

N
T
(
1 +

T

N

)−1/n

.

Therefore, we obtain the following expectation:

E∗
�

[Q(r̃2
i ; a(0))] =

∫ ∞

0

nΓ
(

N+1
2

)
NΓ

(
p
2

)
Γ
(

N−p+1
2

) ( t

N

)(p+2)/2−1 (
1 +

t

N

)−(N+2/n+1)/2

dt.

Let N0 = N + 2/n and p0 = p+ 2. Then the following equations hold:

Γ
(
p0

2

)
=
p

2
Γ
(
p

2

)
, Γ

(
N0 − p+ 1

2

)
=
N0 − p− 1

2
Γ
(
N0 − p0 + 1

2

)
.

By using the above equations and replacing t/N with t/N0, we derive

E∗
�

[Q(r̃2
i ; a(0))] =

npΓ(N+1
2

)Γ(N0−p+1
2

)

(N0 − p− 1)Γ(N0+1
2

)Γ(N−p+1
2

)

∫ ∞

0
g(t;N0, p0)dt

=
n(n+ k)p

c+{n+ a(1)k}(n− k − p− 1)
. (3.5)

Notice that

E∗
�

[CAICJ] = np log 2π + nE∗
�

[log |Σ̂|] + c+
n∑

i=1

{1 + a(1)(P�)ii}E∗
�

[Q(r̃2
i ; a(0))]. (3.6)

Substituting (3.5) into (3.6) yields

E∗
�

[CAICJ] = np log 2π + nE∗
�

[log |Σ̂|] +
n(n+ k)p

n− k − p− 1
. (3.7)

From the result in Fujikoshi and Satoh (1997), RKL can be precisely written as

RKL = np log 2π + nE∗
�

[log |Σ̂|] +
n(n+ k)p

n− k − p− 1
. (3.8)
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We can see that equation (3.8) corresponds to (3.7). Therefore, the bias of CAICJ is

exactly 0 when ε1, . . . , εn are i.i.d. Np(0, Ip).

Next, we show BCAICJ
= O(n−2) in a general nonnormal case. By using the commu-

tative formula, as in Yanagihara et al. (2006), we can decompose E∗
�

[PRESS] into

E∗
�

[PRESS] = a(0) {RFP + E∗
�

E∗
�

[R1] + 2E∗
�

E∗
�

[R2] + E∗
�

[R3]} , (3.9)

where R1, R2 and R3 are defined by

R1 =
1

n

n∑
i=1

1

1 − (P�)ii

{
(ui − Θ̂

′
xi)

′Σ̂
−1

(yi − Θ̂
′
xi)
}2
(

1 − r̃2
i

n

)−1

,

R2 =
n∑

i=1

(P�)ii

1 − (P�)ii

(ui − Θ̂
′
xi)

′Σ̂
−1

(yi − Θ̂
′
xi)

(
1 − r̃2

i

n

)−1

, (3.10)

R3 =
n∑

i=1

{(P�)ii}2

1 − (P�)ii

Q(r̃2
i ; 1),

(The derivation of this decomposition is described in Appendix A.2,) Let’s define PRESS†

as

PRESS† =
1

a(0)
PRESS − R3 =

n∑
i=1

{1 + (P�)ii}Q(r̃2
i ; 1).

Then E∗
�

[PRESS†] can be decomposed into

E∗
�

[PRESS†] = RFP + E∗
�

E∗
�

[R1] + 2E∗
�

E∗
�

[R2]. (3.11)

From Appendix A.3, we can see that

E∗
�

E∗
�

[R1] = p+
1

n

{
2κ

(1)
4 + p(2p+ 3k + 3)

}
+ O(n−2), E∗

�
E∗
�

[R2] = O(n−2). (3.12)

Substituting (3.12) into (3.11) yields

E∗
�

[PRESS†] = RFP + p+
1

n

{
2κ

(1)
4 + p(2p+ 3k + 3)

}
+ O(n−2).

From Yanagihara (2006b), RFP is expanded as

RFP = np + κ
(1)
4 + p(p+ 2k + 1) + O(n−1).

Therefore, we can see that

a(1)E∗
�

[PRESS†] = RFP +
1

n

{
κ

(1)
4 + p(p+ k + 2)

}
+ O(n−2).

11



Notice that PRESS+ = a(1)
∑n

i=1{1 + a(1)(P�)ii}Q(r̃2
i ; a(0)). E∗

�
[PRESS+] can be ex-

panded as

E∗
�

[PRESS+] = a(1)E∗
�

[PRESS†] − 1

n
E∗
�

[
n∑

i=1

{
(P�)iir̃

2
i +

1

n
r̃4
i

}]
+ O(n−2). (3.13)

It is easy to obtain the following expansions:

E∗
�

[
n∑

i=1

(P�)iir̃
2
i

]
= pk + O(n−1), E∗

�

[
1

n

n∑
i=1

r̃4
i

]
= κ

(1)
4 + p(p+ 2) + O(n−1). (3.14)

Substituting (3.14) into (3.13) yields

E∗
�

[PRESS+] = RFP + O(n−2). (3.15)

Notice that CAICJ = np log 2π + n log |Σ̂| + {c+/a(1)}PRESS+. From Appendix A.4,

we can see that c+/a(1) = 1 + O(n−3). This expansion and equation (3.15) make

{c+/a(1)}E∗
�

[PRESS+] = RFP + O(n−2). Therefore, we obtain

E∗
�

[CAICJ] = np log 2π + nE∗
�

[
log |Σ̂|

]
+ RFP + O(n−2) = RKL + O(n−2). (3.16)

Taking (3.16) from RKL yields BCAICJ
= O(n−2) in a general nonnormal case.

4. Numerical Examination

In this section, we examine the numerical studies for average biases, frequencies of

the model selected by the criteria, and square root mean square errors (RMSE). The

information criteria used were AIC, AICJ and CAICJ. For numerical results of TIC and

EIC, see Yanagihara (2006b).

We prepared the models with n = 30 as the candidate model M in (2.1). First, we

constructed the n × 7 explanatory variable matrix X0. The first column of this matrix

was 1n and next columns were generated by U(−1, 1), where 1n is an n × 1 vector, and

all of the vector’s elements are 1. The true model was determined as

η∗ = X0μ
∗1′

p, Σ∗ = Ip,

where μ∗ = (0, 1, 2, 3, 0, 0, 0)′ . Since the number of explanatory variables is 7, the number

of all the candidate models is 27 − 1 = 127. In order to save space, we classified the

candidates according to the following score:

12



1. If the candidate model is not the overspecified model, i.e., P�η∗ �= η∗, the score

is calculated by

score =
the number of true explanatory variables contained in the candidate model

the number of true explanatory variables (= 3)
.

2. If the candidate model is the overspecified model, i.e., P�η∗ = η∗, the score is

calculated by

score =
the number of explanatory variables in the candidate model (= k)

the number of true explanatory variables (= 3)
.

Table 1 shows the groups classified by the above scores and the number of candidate

models included in each group. From this table, we can see that the group 4 has only one

model, and that is the true model. Moreover, the models included in groups 4–8 are the

overspecified models.

Insert Table 1 around here

Next, we set the distribution of the true model M ∗ in (2.3). Since our model is a

multivariate nonnormal model, we prepare the data model proposed by Yuan and Bentler

(1997) for generating multivariate nonnormal data.

Data Model: Let w1, . . . , wg (g ≥ p) be independent random variables with E[wj] = 0,

E[w2
j ] = 1 and the 4th cumulant ψ, and w = (w1, . . . , wg)

′. Further, let r be a random

variable which is independent of w, E[r2] = 1 and the 4th moment β. Then, we generate

an error vector by

ε = rH ′w, (4.1)

where H is a g×p matrix defined by H = (h1, . . . ,hg)
′ with the full rank p and H ′H = Ip.

The multivariate kurtosis of this model becomes

κ
(1)
4 = βψ

g∑
j=1

(h′
jhj)

2 + (β − 1)p(p+ 2).

Let χf be a random variable from the chi-square distribution with f degrees of freedom,

and let H0 be a (p+ 1) × p matrix defined by

H0 =

(
Ip

1′
p

)
(Ip + 1p1

′
p)

−1/2.

13



Then, the error vector ε = rH ′
0w is written as

ε = r
(
Ip − ρ1p1

′
p

)
⎛
⎜⎜⎝
w1 + wp+1

...

wp + wp+1

⎞
⎟⎟⎠ ,

where

ρ =
1

p

(
1 − 1√

p+ 1

)
.

The above equations also lead to
∑g

j=1(h
′
jhj)

2 = p2/(p+ 1). By using the data model in

(4.1), we generate error vectors with the following six models:

• Model 1 (Normal Distribution): wj ∼ N(0, 1), r = 1 and H = Ip (κ
(1)
4 = 0).

• Model 2 (Laplace Distribution): wj is generated from a Laplace distribution with

mean 0 and standard deviation 1, r =
√

6/χ2
8 and H = H0 (κ

(1)
4 = 4.5 × p2(p +

1)−1 + p(p+ 2)/2).

• Model 3 (Uniform Distribution): wj is generated from the uniform (-5,5) distribution

divided by the standard deviation 5/
√

3, r = 1 and H = H0 (κ
(1)
4 = −1.2× p2(p+

1)−1).

• Model 4 (Skew-Laplace Distribution): wj is generated from a skew Laplace distri-

bution with location parameter 0, dispersion parameter 1 and skew parameter 1

standardized by mean 3/4 and standard deviation
√

23/4, r =
√

6/χ2
8 and H = H0

(κ
(1)
4 = 2583/529 × p2(p + 1)−1 + p(p+ 2)/2 ≈ 4.88 × p2(p + 1)−1 + p(p+ 2)/2).

• Model 5 (Chi-Square Distribution): wj is generated from a chi-squared distribution

with 4 degrees of freedom standardized by mean 4 and standard deviation 2
√

2,

r =
√

6/χ2
8 and H = H0 (κ

(1)
4 = 4.5 × p2(p+ 1)−1 + p(p+ 2)/2).

• Model 6 (Log-Normal Distribution): wj is generated from a lognormal distribution

such that logwj ∼ N(0, 1/4) standardized by mean e1/8 and standard deviation

e1/8
√
e1/4 − 1, r =

√
6/χ2

8 and H = H0 (κ
(1)
4 = 1.5× p2(p+1)−1(e+ 2e3/4 + 3e1/2 −

6) + p(p+ 2)/2 ≈ 8.85 × p2(p + 1)−1 + p(p+ 2)/2).

The skew-Laplace distribution was proposed by Balakrishnan and Ambagaspitiya (1994)

(for the probability density function, see, e.g., Yanagihara & Yuan, 2005). It is easy to

see that data models 1, 2 and 3 are symmetric distributions, and data models 4, 5 and 6

14



are skewed distributions. Moreover, the size of the kurtosis κ
(1)
4 in each model satisfies as

follows: model 3 < model 1 < model 2 = model 5 < model 4 < model 6.

Figures 1 and 2 show RKL and E∗
�

[AIC], E∗
�

[AICJ] and E∗
�

[CAICJ] in the cases of

p = 2 and 6, respectively. These values were obtained for 10,000 times iterations. The

transverse axis of the figures expresses the score. We drew the averages of RKL, E∗
�

[AIC],

E∗
�

[AICJ] and E∗
�

[CAICJ] of the candidate models with the same score. From these

figures, we can see that the bias of CAICJ is very small in the overspecified models;

similarly, the bias of AICJ is very small in these models. On the other hand, the bias of

AIC grows when the dimension p, the score and the kurtosis κ
(1)
4 increase.

Insert Figures 1 and 2 around here

Table 2 shows the probabilities for selecting the model with the smallest risk. From this

table, we can see that the selection-probability of AICJ is improved in every distribution

in comparison with AIC. All selection-probabilities of CAICJ are higher than those of

AICJ. Moreover, although the selection-probabilities of AIC are almost the same in every

distribution, the probabilities of AICJ and CAICJ in the uniform and normal distributions,

i.e., the distribution with a small κ
(1)
4 , are remarkably high compared with those in the

other distributions. In AICJ and CAICJ, the probabilities in a skewed distribution tend

to be higher than those in a non-skewed distribution.

Insert Table 2 around here

Figures 3 and 4 shows the RMSEs of AIC, AICJ and CAICJ. From these figures, we

can see that the RMSEs of CAICJ get smaller than those of AICJ in most cases. The

difference becomes clear whenever either the score, p or κ
(1)
4 increases. This is mainly

because CAICJ is smaller than AICJ when the size of these criteria is large. Notice that

Q(r̃2
i ; a(0)) < Q(r̃2

i ; 1) (i = 1, . . . , n) holds, where Q(r̃2
i ; a(0)) and Q(r̃2

i ; 1) are random

parts of B̂CAICJ
and B̂AICJ

, respectively. This inequality causes CAICJ < AICJ for a large

value. Figure 5 shows scatter plots of CAICJ and AICJ in the normal and log-normal

distributions when p = 6. From this figure, we can confirm that CAICJ gets smaller than

AICJ, and the difference becomes clear whenever CAICJ increases. On the other hand,

the RMSE of AIC tends to be smaller than those of AICJ and CAICJ in the case of p = 2,

because AIC is dispersed more narrowly than AICJ and CAICJ. The relation of RMSE
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is reversed in the case p = 6, because then AIC has a huge bias. For a common property

among all criteria, the more κ
(1)
4 increases, the larger the RMSE becomes. Moreover,

the RMSE in a skewed distribution is likely to have a larger bias than in a non-skewed

distribution.

Insert Figures 3, 4 and 5 around here

5. Conclusion

We proposed the second-order bias-corrected AIC, called CAICJ, which is a bias-

corrected version of AICJ. Our correction merely uses the predicted residual sum of the

squares (PRESS) adjusted by the constant coefficients. Also, the adjusted PRESS is

obtained by estimating unknown parameters only once. Although it is not necessary to

estimate the kurtosis, the bias of our criterion is improved to O(n−2) under nonnormality.

CAICJ reduces AICJ’s bias theoretically while maintaining the desirable behavior of AICJ,

in which the bias becomes numerically very small. Simultaneously, CAICJ improves the

RMSE and the probability for selecting the model with the smallest risk. With regard

to the nonnormal distribution, the well known Cp criterion (Mallows, 1973, 1995) should

be discussed. Since there is no assumption of a concrete distribution in the definition of

Cp, using Cp may be more suitable for selecting variables in nonnormal data. However,

Fujikoshi and Satoh (1997) and Fujikoshi et al. (2003, 2005) reported that the selection-

probability of a bias-corrected Cp is lower than that of a bias-corrected AIC. In summary,

we encourage the use of our CAICJ for thoroughly searching the best combination of

explanatory variables when the true distribution is not known.

In this paper, we dealt with the bias correction in overspecified models. However,

there may be a bias that is not negligible when the candidate model is not an overspecified

model, i.e., when the candidate model is an underspecified model. Actually, the order of

the biases, O(1), of AIC, AICJ and CAICJ is the same in the underspecified model. Sawa

(1978), Noda et al. (1996, 2003), Fujikoshi and Satoh (1997) and Reschenhofer (1999)

proposed new AICs correcting the bias not only in the overspecified model but also in the

underspecified model when the true distribution is the normal distribution. It is necessary

to consider such a bias-corrected AIC also under nonnormality.
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Appendix

A.1. On Assumptions

In order to guarantee the validity of asymptotic expansions of the bias of information

criteria, we give in this paper the following assumptions which are the same as in Wakaki

et al. (2002):

Assumption. Let ‖ · ‖ denote the Euclidean norm. Then, the following assumptions A1,

A2, A3 and A4 are:

A1. For some integer s ≥ 3, E∗
�
[‖ε‖2s] <∞,

A2. For some integer s ≥ 3, lim sup
n→∞

1

n

n∑
i=1

‖xi‖s <∞,

A3. lim inf
n→∞

λn

n
> 0, where λn is the smallest eigenvalue of X ′X,

A4. For some constant 0 < δ ≤ 1/2, max
i=1,...,n

‖xi‖ = O(n1/2−δ).

A.2. Decomposition of E∗
�

[PRESS]

Since the distribution of ui is the same as that of yi and since Y and U are independent

of each other, the following commutative equation, as in Yanagihara et al. (2006), holds:

E∗
�

[PRESS] =
n∑

i=1

E∗
�

E∗
�

[
(ui − Θ̂

′
[−i]xi)

′Σ̂
−1

[−i](ui − Θ̂
′
[−i]xi)

]
. (A.1)

From Fujikoshi et al. (2003), we can see that

ui − Θ̂
′
[−i]xi = ui − Θ̂

′
xi +

(P�)ii

1 − (P�)ii

(yi − Θ̂
′
xi), (A.2)

Σ̂
−1

[−i] = a(0)

⎡
⎣Σ̂−1

+
1

n{1 − (P�)ii}
(

1 − r̃2
i

n

)−1

Σ̂
−1/2

ε̂iε̂
′
iΣ̂

−1/2

⎤
⎦ , (A.3)

where the coefficient a(j) is given by (2.8) and ε̂i = Σ̂
−1/2

(yi − Θ̂
′
xi). Substituting

equations (A.2) and (A.3) into (A.1) yields the equation (3.9).

A.3. Asymptotic Expansions of E∗
�

E∗
�

[R1] and E∗
�

E∗
�

[R2]
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Let Z and V be random variable matrices having asymptotic normality, where

Z = (X ′X)−1/2X ′E, V =
1√
n

n∑
i=1

(εiε
′
i − Ip),

and let qi be a k × 1 constant vector defined by

qi =
√
n(X ′X)−1/2xi.

Notice that P�η∗ = η∗. Therefore, the following conditional expectations are obtained:

E∗
�

[
(ui − Θ̂

′
xi)
∣∣∣Y ] = − 1√

n
Σ∗1/2Z ′qi,

E∗
�

[
(ui − Θ̂

′
xi)(ui − Θ̂

′
xi)

′
∣∣∣Y ] = Σ∗1/2

(
Ip +

1

n
Z ′qiq

′
iZ
)

Σ∗1/2.

From the above equations, the conditional expectations of R1 and R2 for Y are derived

as

E∗
�

[R1|Y ] = W10 +
1√
n
W11 +

1

n
W12 + Op(n

−3/2),

E∗
�

[R2|Y ] =
1√
n
W21 +

1

n
W22 + Op(n

−3/2),

where

W10 =
1

n

n∑
i=1

ε′
iεi,

W11 = −2

n

n∑
i=1

(q′
iZεi + ε′

iV εi) ,

W12 =
1

n

n∑
i=1

{
q′

iqiε
′
iεi + q′

iZZ ′qi + (εiεi)
2 + 2ε′

iZ
′Zεi

+(q′
iZεi)

2 + 4q′
iZV εi + 3ε′

iV
2εi

}
,

W21 = −1

n

n∑
i=1

q′
iqiq

′
iZεi,

W22 = −1

n

n∑
i=1

(q′
iqiq

′
iZZ ′qi − q′

iqiq
′
iZV εi) .

Therefore, the asymptotic expansions of E∗
�

E∗
�

[R1] and E∗
�

E∗
�

[R2] are rewritten as

E∗
�

E∗
�

[R1] = E∗
�

[W10] +
1√
n

E∗
�

[W11] +
1

n
E∗
�

[W12] + O(n−2), (A.4)

E∗
�

E∗
�

[R2] =
1√
n

E∗
�

[W21] +
1

n
E∗
�

[W22] + O(n−2). (A.5)

18



Notice that

E∗
�

[
1

n

n∑
i=1

ε′
iεi

]
= p,

E∗
�

[
1

n

n∑
i=1

q′
iqiε

′
iεi

]
=
p

n

n∑
i=1

q′
iqi = pk,

E∗
�

[
1

n

n∑
i=1

q′
iZεi

]
=

p

n
√
n

n∑
i=1

q′
iqi =

1√
n
pk,

E∗
�

[
1

n

n∑
i=1

q′
iqiq

′
iZεi

]
=

p

n
√
n

n∑
i=1

(q′
iqi)

2 =
1√
n
pq,

E∗
�

[
1

n

n∑
i=1

q′
iZZ ′qi

]
=

p

n2

n∑
ij

(q′
iqj)

2 = pk,

E∗
�

[
1

n

n∑
i=1

q′
iqiq

′
iZZ ′qi

]
=

p

n2

n∑
ij

q′
iqi(q

′
iqj)

2 = pq,

E∗
�

[
1

n

n∑
i=1

(ε′
iεi)

2

]
= κ

(1)
4 + p(p+ 2),

E∗
�

[
1

n

n∑
i=1

ε′
iV εi

]
=

1√
n

{
κ

(1)
4 + p(p+ 1)

}
,

E∗
�

[
1

n

n∑
i=1

ε′
iZ

′Zεi

]
=
p

n

n∑
i=1

q′
iqi +

1

n2
{κ(1)

4 + p(p+ 1)}
n∑

i=1

q′
iqi = pk + O(n−1),

E∗
�

[
1

n

n∑
i=1

(q′
iZ

′εi)
2

]
=

p

n2

n∑
ij

(q′
iqj)

2 +
1

n2
{κ(1)

4 + p(p+ 1)}
n∑

i=1

(q′
iqi)

2 = pk + O(n−1),

E∗
�

[
1

n

n∑
i=1

q′
iZ

′V εi

]
=

1

n2
{κ(1)

4 + p(p+ 1)}
n∑

i=1

q′
iqi = O(n−2),

E∗
�

[
1

n

n∑
i=1

q′
iqiq

′
iZ

′V εi

]
=

1

n2
{κ(1)

4 + p(p+ 1)}
n∑

i=1

(q′
iqi)

2 = O(n−2),

E∗
�

[
1

n

n∑
i=1

ε′
iV

2εi

]
= κ

(1)
4 + p(p+ 1) + O(n−1),

where the coefficient q is defined by

q = n
n∑

i=1

{(P�)ii}2.

From the above expectations, we obtain the following expectations:

E∗
�

[W10] = p,

E∗
�

[W11] = − 2√
n

{
κ

(1)
4 + p(p+ k + 1)

}
,

E∗
�

[W12] = 4κ
(1)
4 + p(4p+ 5k + 5) + O(n−1), (A.6)
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E∗
�

[W21] = − 1√
n
pq,

E∗
�

[W22] = pq + O(n−1).

By substituting expectations (A.6) into (A.4) and (A.5) we obtain the asymptotic expan-

sions in (3.12).

A.4. Asymptotic Expansion of c+/a(1)

Dividing the previous part of the right-hand side of (3.2) by a(1), which does not

include the gamma function, is easily expanded as

(n+ k){n− k − p− 2a(0)}
a(1){n + a(1)k}(n− k − p− 1)

= 1 − p

n2
+ O(n−3).

In order to expand the remaining part, which includes the gamma function, we apply the

following Stirling formula (see, e.g., Barndorff-Nielsen & Cox, 1989, pp. 62–65) to this

part:

Γ(x) =
√

2πe−xxx−1/2
{
1 +

1

12x
+

1

288x2
+ O(x−3)

}
.

Then, it can be rewritten by the product of G1 and G2 as

Γ
(

n−k
2

+ 1
n

)
Γ
(

n−k−p
2

)
Γ
(

n−k
2

)
Γ
(

n−k−p
2

+ 1
n

) = G1G2,

where

G1 =

(
n−k

2
+ 1

n

){n(n−k−1)+2}/(2n) (n−k−p
2

)(n−k−p−1)/2

(
n−k

2

)(n−k−1)/2 (n−k−p
2

+ 1
n

){n(n−k−p−1)+2}/(2n)
,

G2 =

{
1 + n

6(n2−kn+2)
+ n2

72(n2−kn+2)2
+ O(n−3)

}{
1 + 1

6(n−k−p)
+ 1

72(n−k−p)2
+ O(n−3)

}
{
1 + 1

6(n−k)
+ 1

72(n−k)2
+ O(n−3)

}{
1 + n

6(n2−kn−pn+2)
+ n2

72(n2−kn−pn+2)2
+ O(n−3)

} .
For G1, the first part in the numerator is asymptotically expanded as

(
n− k

2
+

1

n

){n(n−k−1)+2}/(2n)

= 1 +
1

n
− 1

2n2
+ O(n−3).

In a similar way, G1 is asymptotically expanded as

G1 = 1 +
p

n2
+ O(n−3).

Then, G2 is asymptotically expanded as

G2 = 1 + O(n−3).
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Hence, c+/a(1) is asymptotically expanded as

c+

a(1)
= G1G2

{
1 − p

n2
+ O(n−3)

}
= 1 + O(n−3).
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Table 1. The number of candidate models included in the group

Group 1 2 3 4∗ 5∗ 6∗ 7∗ 8∗

Score 0 1/3 2/3 1 4/3 5/3 2 7/3

No. of Candidates 15 48 48 1 4 6 4 1
∗ denotes the group which consists of only overspecified models.

Table 2. Probabilities for selecting the model with the smallest risk (%)

p = 2 p = 6

Distribution AIC AICJ CAICJ AIC AICJ CAICJ

Normal 41.13 61.55 63.02 46.47 87.89 88.83

Laplace 40.53 49.47 50.78 47.64 63.86 65.22

Uniform 40.96 64.94 66.16 46.55 93.74 94.30

Skew-Laplace 40.46 51.28 52.83 45.76 66.87 68.12

Chi-Square 40.01 51.85 53.13 45.89 69.37 70.54

Log-Normal 40.05 49.81 51.30 46.62 66.08 67.53

Average 40.52 54.82 56.20 46.49 74.64 75.76

24



0.0 0.5 1.0 1.5 2.0

18
0

20
0

22
0

24
0

26
0

Normal

Score

A
ve

ra
ge

Risk

AIC
AICJ

CAICJ

0.0 0.5 1.0 1.5 2.0

18
0

20
0

22
0

24
0

26
0

Laplace

Score

A
ve

ra
ge

Risk

AIC

AICJ

CAICJ

0.0 0.5 1.0 1.5 2.0

18
0

20
0

22
0

24
0

26
0

Uniform

Score

A
ve

ra
ge

Risk

AIC
AICJ

CAICJ

0.0 0.5 1.0 1.5 2.0

18
0

20
0

22
0

24
0

26
0

Skew−Laplace

Score

A
ve

ra
ge

Risk

AIC

AICJ

CAICJ

0.0 0.5 1.0 1.5 2.0

18
0

20
0

22
0

24
0

26
0

Chi−Square

Score

A
ve

ra
ge

Risk

AIC

AICJ

CAICJ

0.0 0.5 1.0 1.5 2.0

18
0

20
0

22
0

24
0

26
0

Log−Normal

Score

A
ve

ra
ge

Risk

AIC

AICJ

CAICJ

Figure 1. RKL and E∗
�

[AIC], E∗
�

[AICJ] and E∗
�

[CAICJ] (p = 2)
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Figure 3. RMSE of AIC, AICJ and CAICJ (p = 2)
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Figure 4. RMSE of AIC, AICJ and CAICJ (p = 6)
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Figure 5. Scatter plots of AICJ and CAICJ (p = 6)
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