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Abstract

This paper discusses the conditions for robustness to the nonnormality of

three test statistics for a general multivariate linear hypothesis, which were

proposed under the normal assumption in a generalized multivariate analysis

of variance (GMANOVA) model. Although generally the second terms in the

asymptotic expansions of the mean and variance of the test statistics consist

of skewness and kurtosis of an unknown population’s distribution, we find

conditions where the skewness and kurtosis disappear from the second term

in the asymptotic expansions under any distributions. When such conditions

are satisfied, the Bartlett correction and the modified Bartlett correction in

the normal case improve the chi-square approximation even under nonnor-

mality. By using these conditions, it is possible to see whether the used test

statistic is robust to nonnormality or not.
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1. Introduction

Over the past few decades, many authors have investigated the influ-

ences of nonnormality in several statistical test procedures proposed under

the normal assumption, and we have been able to obtain many results from

these studies. For the test size (or the significant level), it is well known that

Hotelling’s two-sample test is robust to nonnormality and Hotelling’s one-

sample test is not. Chase and Bulge (1971), and Everett (1979) obtained

this fact through numerical experiments. Figure 1 shows the numerical re-

sults of actual test sizes of the two test statistics in the case of sample size

n = 20 and the dimension of observation p = 2 when we use six distribu-

tions as the population distributions (i.e., the true distributions). The six

distributions used are normal, Laplace, uniform, skew-Laplace, chi-square

and log-normal distributions (for details of the setting of true distributions

in numerical studies, see Appendix A.1). This figure shows actual test sizes

under those true distributions when we believe that the data came from the

normal distribution, i.e., we use the F -distribution as the null distribution.

From this figure, we can say that the difference of the actual test sizes of the

two-sample test by the difference in distributions is small, but the one-sample

test is not. In the case of the one-sample test, as the skewness of the true

distributions becomes large, the differences between the actual and nominal

test sizes grow. If the 10% test size becomes the 15 % or 25 % test size,

which we believe happens, we cannot say that this will be used.

Insert Figure 1 around here

There is a large difference in the influence of nonnormality of two test

statistics; however, the statistical model in both tests is essentially a mul-

tivariate linear model. What is the difference between these two? In this

paper, we give the theoretical answer for this question, but not the numer-

ical answer, which has not yet been obtained. There is a serious difference
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between the two tests in the second term of an asymptotic expansion of the

mean of the test statistic. Although there are skewnesses of the true distribu-

tion in the second term of such an expansion of the one-sample test statistic,

there is no skewness to that of the one-sample test statistic. In this paper, we

set the test statistic as robust to nonnormality when there are not cumulants

denoting nonnormality in the second term of an asymptotic expansion of its

moments.

We extend the considered test statistic to the test statistic for a general

multivariate linear hypothesis in the generalized multivariate analysis of vari-

ance (GMANOVA) model (Potthoff & Roy, 1964) from Hotelling’s one- and

two-sample test statistics, and search for conditions where the cumulants de-

noting nonnormality of the true distribution disappear from the second term

of an asymptotic expansion of the mean of the test statistic. In addition,

there is a condition where the cumulants disappear from the second term in

an asymptotic expansion of the variance of the test statistic. These condi-

tions are made clearer through the coefficients of an asymptotic expansion

of the null distribution of the test statistic. By using these conditions, it is

possible to see whether or not the used test statistic is robust to nonnormal-

ity. Moreover, when these conditions are satisfied, the Bartlett correction

(Bartlett, 1937) or the modified Bartlett correction (Fujikoshi, 2000) in the

normal case can give an improvement of the chi-square approximation under

any distributions. It is very important to improve the chi-square approxi-

mation without estimating skewnesses and kurtosis, because it is difficult to

obtain good estimators of skewness and kurtosis without an adequate sample

size. Especially, the bias of the ordinary estimator of kurtosis proposed by

Mardia (1970) becomes large unless the sample size is huge (see Yanagihara,

2006).

The present paper is organized as follows. In Section 2, we state asymp-

totic expansions, obtained by Yanagihara (2001), to the null distributions of

the three test statistics in a GMANOVA model. By using the coefficients of
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these expansions, the conditions under which the test statistics are robust to

nonnormality become clear in Section 3. Then, we confirm that when these

conditions are satisfied, the Bartlett correction and the modified Bartlett

correction in the normal case can give an improvement of the chi-square ap-

proximation under any distributions. We conclude our discussion in Section

4. Technical details are provided in the Appendix.

2. Asymptotic Expansions of Null Distributions

of Test Statistics in the GMANOVA Model

The GMANOVA model proposed by Potthoff and Roy (1964) is defined

by

Y = AΞX ′ + EΣ1/2, (2.1)

where Y = (y1, . . . ,yn)′ is an n×p observation matrix of response variables,

A = (a1, . . . ,an)′ is an n × k between-individuals design matrix of explana-

tory variables with the full rank k (< n), X is a p × q within-individuals

design matrix of explanatory variables with the full rank q (≤ p), Ξ is a k×q

unknown parameter matrix, and E = (ε1, . . . , εn)′ is an n × p unobserved

error matrix. It is assumed that ε1, . . . , εn are independent random vectors

from ε = (ε1, . . . , εp)
′, and the true distribution of ε is distributed follow-

ing an unknown distribution with a mean E[ε] = 0p and covariance matrix

Cov[ε] = Ip, where 0p is a p × 1 vector, all of whose elements are 0. This

model can frequently be applied to the analysis of growth curve data, and

therefore it is also called the growth curve model.

We consider testing for a general linear hypothesis as

H0 : CΞD = Oc×d, (2.2)

where C is a known c× k matrix with the rank c (≤ k), D is a known q × d

matrix with the rank d (≤ q), and Oc×d is a c×d matrix, all of whose elements

are 0. Let Sh and Se be the variation matrices due to the hypothesis and
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the error respectively, i.e.,

Sh = (CΞ̂D)′(CRC ′)−1(CΞ̂D), Se = D′(X ′S−1X)−1D,

where

Ξ̂ = (A′A)−1A′Y S−1X(X ′S−1X)−1,

R = (A′A)−1A′ (In + Y S−1Y ′)A(A′A)−1 − Ξ̂(X ′S−1X)Ξ̂
′
,

and S = Y ′(In − P�)Y . Here, P� is the projection matrix to the linear

space R(A) generated by the column vectors of A, i.e., P� = A(A′A)−1A′.

Then, the three criteria proposed for testing (2.2) under normality, in par-

ticular, are as follows.

(i) the likelihood ratio statistic (LR):
TLR = −{n − k − (p − q)} log(|Se|/|Se + Sh|),

(ii) the Lawley-Hotelling trace criterion (HL):
THL = {n − k − (p − q)}tr(ShS

−1
e ),

(iii) the Bartlett-Nanda-Pillai trace criterion (BNP):
TBNP = {n − k − (p − q)}tr {Sh(Sh + Se)

−1} ,

(2.3)

(for these results, see e.g., von Rosen, 1991; Fujikoshi, 1993; Srivastava & von

Rosen, 1999). By changing the known coefficient matrices for hypotheses C

and D, it is possible to express several linear hypotheses. For these examples,

see Kshirsagar and Smith (1995, p. 40) and Yanagihara (2001).

In order to simplify the results of the asymptotic expansions in Yanagi-

hara (2001), we state some notations of the moments and cumulants of the

true distribution, and some projection matrices. Let μi1 ···im be an mth mul-

tivariate moment of ε defined by

μi1 ···im = E[εi1 · · · εim ].

Similarly, the corresponding mth multivariate cumulant of ε is denoted by

κi1···im , e.g.,

κabc = μabc, κabcd = μabcd − δabδcd − δacδbd − δadδbc,
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where δab is the Kronecker delta, i.e., δaa = 1 and δab = 0 for a �= b. Let e1

and e2 be independent random vectors from ε. We define the multivariate

skewness and kurtosis of the transformed ε by the symmetric p× p matrices

H , L and M , whose (a, b)th elements are hab, lab and mab, respectively, as

κ(H,M) = E�1 [(e′
1He1)(e

′
1Me1)] − {tr(H)tr(M ) + 2tr(HM )}

=

p∑
a,b,c,d

κabcdhabmcd,

γ2
1(H ,L,M) = E�1E�2

[(e′
1He2)(e

′
1Le2)(e

′
1Me2)]

=

p∑
a,b,c,d,e,f

κabcκdefhadlbemcf ,

γ2
2(H ,L,M) = E�1E�2 [(e′

1He1)(e
′
1Le2)(e

′
2Me2)]

=

p∑
a,b,c,d,e,f

κabcκdefhablcdmef ,

where the notation
∑p

a1,...,aj
means

∑p
a1=1 · · ·

∑p
aj=1. Then, the ordinary

multivariate skewnesses and kurtosis (see e.g., Mardia, 1970, and Isogai,

1983) can be expressed as

κ
(1)
4 = κ(Ip, Ip), κ

(1)
3,3 = γ2

1(Ip, Ip, Ip), κ
(2)
3,3 = γ2

2(Ip, Ip, Ip).

Let an n × n idempotent matrix B whose (i, j)th element is bij be given by

B = A(A′A)−1C ′{C(A′A)−1C ′}−1C(A′A)−1A′.

Then, the matrices B(d) and B(3) are defined by bij as B(d) = diag(b11, . . . , bnn)

and B(3) = [b3
ij], which means the (i, j)th element of B(3) is b3

ij. The projec-

tion matrices Ψ and Φ are given by

Ψ = Σ−1/2X(X ′Σ−1X)−1D{D′(X ′Σ−1X)−1D}D′(X ′Σ−1X)−1X ′Σ−1/2,

Φ = Ip −Σ−1/2X(X ′Σ−1X)−1X ′Σ−1/2.

By using these notations, asymptotic expansions of the null distributions of

the test statistics in (2.3), obtained by Yanagihara (2001), are expressed as

in the following lemma.
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Lemma 2.1. Suppose that the between-individuals design matrix A and the

true distribution of the error matrix E satisfy the following five assumptions:

1. lim sup
n→∞

1

n

n∑
j=1

‖aj‖4 < ∞, where ‖ · ‖ denotes the Euclidean norm.

2. lim inf
n→∞

λn

n
> 0, where λn is the smallest eigenvalue of A′A,

3. For some constant δ ∈ (0, 1/2], Mn = O(n1/2−δ), where Mn = maxj=1,...,n ‖aj‖,

4. E[‖ε‖8] < ∞,

5. The Cramér’s condition for the joint distribution of ε and εε′ holds.

Then, the null distributions of the three test statistics in (2.3) are expanded

as

P(T ≤ x) = Gcd(x) +
1

n

3∑
j=0

βjGcd+2j(x) + o(n−1), (2.4)

where Gf(x) is the distribution function of the chi-square distribution with f

degrees of freedom, and the coefficients βj are given by

β0 =
1

8
m

(1)
4 κ(Ψ,Ψ) − 1

24

{
2m

(1)
3,3 + 3(c − 2)(c + 1)m

(1)
3,1

}
γ2

1 (Ψ,Ψ,Ψ)

−1

8

{
m

(2)
3,3 − 2m

(1)
3,1 − (c − 2)m

(1)
1,1

}
γ2

2(Ψ,Ψ,Ψ)

−1

2

{
2m

(1)
3,1 − (2c + 1)m

(1)
1,1

}
γ2

1(Ψ,Ψ,Φ)

−1

2

{
m

(1)
3,1 − cm

(1)
1,1

}
γ2

2(Ψ,Ψ,Φ)

−1

2

{
m

(1)
3,1 − (c + 1)m

(1)
1,1

}
γ2

2 (Ψ,Φ,Ψ)

−1

2
m

(1)
1,1

{
3γ2

1(Ψ,Φ,Φ) + 2γ2
2(Ψ,Φ,Φ) + γ2

2(Φ,Ψ,Φ)
}

+
1

4
cd(c − d − 1),

β1 = −1

4
m

(1)
4 κ(Ψ,Ψ) +

1

8

{
2m

(1)
3,3 − 4m

(1)
3,1 + (3c2 + c − 6)m

(1)
1,1

}
γ2

1(Ψ,Ψ,Ψ)

+
1

8

{
3m

(2)
3,3 − 2(3c + 2)m

(1)
3,1 + (c + 6)m

(1)
1,1

}
γ2

2 (Ψ,Ψ,Ψ)
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+
1

2

{
4m

(1)
3,1 − (4c + 5)m

(1)
1,1

}
γ2

1(Ψ,Ψ,Φ)

+
{

m
(1)
3,1 − (c + 1)m

(1)
1,1

}
γ2

2 (Ψ,Ψ,Φ) (2.5)

+
1

2
{2m(1)

3,1 − (2c + 3)m
(1)
1,1}γ2

2(Ψ,Φ,Ψ)

+
1

2
m

(1)
1,1{3γ2

1(Ψ,Φ,Φ) + 2γ2
2(Ψ,Φ,Φ) + γ2

2(Φ,Ψ,Φ)}

−1

2
cd{c + r(c + d + 1)},

β2 =
1

8
m

(1)
4 κ(Ψ,Ψ) − 1

8

{
2m

(1)
3,3 − 8m

(1)
3,1 + (c + 2)(3c − 1)m

(1)
1,1

}
γ2

1 (Ψ,Ψ,Ψ)

−1

8

{
3m

(2)
3,3 − 6(3c + 4)m

(1)
3,1 + 5(c + 2)m

(1)
1,1

}
γ2

2 (Ψ,Ψ,Ψ)

−
{

m
(1)
3,1 − (c + 2)m

(1)
1,1

}
γ2

1 (Ψ,Ψ,Φ)

−1

2

{
m

(1)
3,1 − (c + 2)m

(1)
1,1

}{
γ2

2 (Ψ,Ψ,Φ) + γ2
2(Ψ,Φ,Ψ)

}
+

1

4
cd(c + d + 1)(1 + 2r),

β3 =
1

24

{
2m

(1)
3,3 − 12m

(1)
3,1 + 3(c + 1)(c + 2)m

(1)
1,1

}
γ2

1(Ψ,Ψ,Ψ)

+
1

8

{
m

(2)
3,3 − 2(c + 2)m

(1)
3,1 + 3(c + 2)m

(1)
1,1

}
γ2

2(Ψ,Ψ,Ψ).

Here, the constant r is determined by the test statistics as

r =

⎧⎨
⎩

−1/2 (when T is TLR)
0 (when T is THL)

−1 (when T is TBNP)

and the coefficients m’s are defined by the between-individuals design matrix

A and the coefficient matrix for hypothesis C as

m
(1)
1,1 =

1

n
1′

nB1n, m
(1)
4 = ntr

(
B2

(d)

)− c(c + 2),

m
(1)
3,1 = 1′

nB(d)B1n, m
(1)
3,3 = n1′

nB(3)1n, m
(2)
3,3 = n1′

nB(d)BB(d)1n,

(2.6)

where 1n is an n × 1 vector, all of whose elements are 1.
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Notice that

m
(1)
1,1 =

1

n2

n∑
i,j

u′
iuj, m

(1)
4 =

1

n

n∑
i=1

‖ui‖4 − c(c + 2),

m
(1)
3,1 =

1

n2

n∑
i,j

‖ui‖2(u′
iuj), m

(1)
3,3 =

1

n2

n∑
i,j

(u′
iuj)

3,

m
(2)
3,3 =

1

n2

n∑
i,j

‖ui‖2‖uj‖2(u′
iuj),

(2.7)

where

ui =
√

n{C(A′A)−1C ′}−1/2C(A′A)−1ai, (i = 1, . . . , n). (2.8)

Therefore, the coefficients βj (j = 0, 1, 2, 3) are determined by the skewnesses

and kurtosis of ε and sample cumulants of ui (i = 1, . . . , n). From Lemma

2.1, we see that the second term in the asymptotic expansion of the null dis-

tribution of the test statistic in (2.3) depends on the skewnesses and kurtosis

of the true distribution. Therefore, we can generally say that the second

terms in expansions of the mean and variance of the test statistic in (2.3)

consist of the skewnesses and kurtosis of the true distribution. However, in

the next section, we show that there are conditions where the skewnesses and

kurtosis disappear from the second terms of the expansions.

3. Conditions for Robustness to Nonnormality

3.1. Conditions for the mean

In this sub-section, we consider conditions where the cumulants denoting

nonnormality of the true distribution disappear from the second term of an

asymptotic expansion of the mean of the test statistic in (2.3). Notice that∫ ∞

0

xsdGf(x) = f(f + 2) × · · · × (f + 2(s − 1)).

From the formula (2.4) in Lemma 2.1, we obtain an asymptotic expansion of
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the mean of the test statistic in (2.3) as

E[T ] = cd +
1

n

3∑
j=0

βj(cd + 2j) + o(n−1).

By using the relation
∑3

j=0 βj = 0, we can write a concrete form of the

expansion of the mean as

E[T ] = cd +
1

n
m

(1)
1,1

[
γ2

1(Ψ,Ψ,Ψ) + γ2
2 (Ψ,Ψ,Ψ)

+3
{
γ2

1(Ψ,Ψ,Φ) + γ2
1(Ψ,Φ,Φ)

}
+2
{
γ2

2(Ψ,Φ,Ψ) + γ2
2(Ψ,Φ,Φ)

}
+γ2

2(Ψ,Ψ,Φ) + γ2
2(Φ,Ψ,Φ)

]
+

1

n
cd {r(c + d + 1) + d + 1} + o(n−1)

= cd
(
1 +

η1

n

)
+ o(n−1). (3.1)

From this equation, we can see that η1 in (3.1) is independent of the cumu-

lants denoting nonnormality if the coefficient m
(1)
1,1 is 0 or all the γ2

j (∗, ∗, ∗)
(j = 1, 2) are 0. It means that a location of the null distribution of the test

statistic is not easily moved due to the nonnormality of the true distribu-

tion. Then, the test statistic becomes robust to nonnormality. Notice that

m
(1)
1,1 = 0 is equivalent to

1

n
1′

nA(A′A)−1C ′{C(A′A)−1C ′}−1C(A′A)−1A′1n = 0.

Since C(A′A)−1C ′ is a positive definite matrix, the above equation can be

rewritten as C(A′A)−1A′1n = 0c. Therefore, we obtain the conditions for

robustness to nonnormality in the following theorem.

Theorem 3.1. If a considered test satisfies either of the following, Condition

1 or 2:

• Condition 1: C(A′A)−1A′1n = 0c,

• Condition 2: All the γ2
j (∗, ∗, ∗) (j = 1, 2) are 0,
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the second term of the asymptotic expansion of the mean of the test statistic

T becomes independent of the cumulants denoting nonnormality of the true

distribution, i.e.,

E[T ] = cd

[
1 +

1

n
{r(c + d + 1) + d + 1}

]
+ o(n−1). (3.2)

Then, the location of the null distribution of T is not easily moved due to

nonnormality of the true distribution.

From Appendix A.2, we can see that all the γ2
j (∗, ∗, ∗) are 0 if the true

distribution is an orthant symmetric (Efron, 1969), which is not a skewed

distribution. Therefore, we obtain the following corollary (the proof is given

in Appendix A.2).

Corollary 3.1.If the true distribution is an orthant symmetric, then Con-

dition 2 holds.

It is well known that the elliptical distribution is an orthant symmetric. Many

authors have reported that a test statistic is robust when the distribution of

observation is the elliptical distribution, e.g., Efron (1969), Eaton and Efron

(1970), Dawid (1977), Kariya (1981a, 1981b) and Khartri (1988). Robustness

to nonnormality, which is caused by Condition 2, corresponds to their results.

Although Condition 2 depends on the unknown true distribution, Condi-

tion 1 only depends on the setting of the hypothesis testing. By using Condi-

tion 1, we can judge whether a used test statistic is robust to nonnormality or

not. Moreover, we can consider two types of the between-individuals design

matrix A. When the matrix A has a segment, i.e., A is given by 1n and any

n× (k −1) matrix A+ with the rank k−1 is given as A = (1n A+), then we

call such a design matrix the type I between-individuals design matrix. On

the other hand, when the matrix A is given by

A =

⎛
⎜⎝ 1n1

· · · 0n1

...
. . .

...
0nk

· · · 1nk

⎞
⎟⎠ , (3.3)
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where
∑k

i=1 ni = n, then we call such a design matrix the type II between-

individuals design matrix. Through these matrices, we can obtain settings

which satisfy Condition 1 in the following corollary (the proof is given in

Appendix A.3).

Corollary 3.2. We consider the two cases of the between-individuals de-

sign matrix A, i.e., A is type I or type II. Then, Condition 1 holds if the

following conditions of the coefficient matrix for hypothesis C are satisfied.

1. In the case that A is type I, if C = (0c C+), where C+ is any c×(k−1)

matrix with the rank c, Condition 1 holds.

2. In the case that A is type II, if the equation C1k = 0c is satisfied,

Condition 1 holds.

From Corollary 3.2, we can see that Hotelling’s two-sample test satisfies

Condition 1 and Hotelling’s one-sample test does not. Even if the between-

individuals design matrix A is not type I or II, the test can be made to satisfy

Condition 1 through the transformations A → (1n A) and C → (0c C).

Furthermore, we can see that testing for equality, e.g., equality for the means

between k-groups, i.e., H0 : μ1 = · · · = μk, satisfies Condition 1, because

matrix A is type II and C1k = 0c in this case. Practical tests are tests of

the equality for parameters, e.g., the testing equality for several means in a

multi-way MANOVA model; therefore, it seems that our result is useful for

actual use.

If the mean of the test statistic T is expanded as (3.1), then the Bartlett

correction can be obtained as

T̃ =

(
1 − η̂1

n

)
T,

where η̂1 is a consistent estimator of η1. Therefore, in general, it is necessary

to estimate skewnesses in order to use the Bartlett correction. However,
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from Theorem 3.1, we can see that the Bartlett correction in the normal

case, which is the transformation by the constant coefficient, can improve

a chi-square approximation, even if the true distribution is not the normal

distribution; this is because η1 is independent of the cumulants denoting

nonnormality. Therefore, we obtain the following corollary.

Corollary 3.3. Let T̃ denote the test statistics adjusted by the Bartlett

correction in the normal case as

T̃ =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

(
1 +

c − d − 1

2n

)
TLR(

1 − d + 1

n

)
THL(

1 +
c

n

)
TBNP

.

Suppose that either Condition 1 or 2 holds. Then, the asymptotic expan-

sion of the mean of T̃ becomes E[T̃ ] = cd + o(n−1). This naturally implies

that the Bartlett correction in the normal case can improve the chi-square

approximation even under nonnormality.

Before concluding this sub-section, we verify the validity of our theorem

through a numerical experiment. The true distributions considered are de-

scribed in Appendix A.1. We dealt with the test for a given matrix in the

case of p = 2 and n = 30. The p × (p − 1) within-individuals design matrix

X was generated from the uniform (-1,1) distribution, and the coefficient

matrix for the hypothesis was D = Iq. We prepared two test statistics, T0

and T1, specified by the between-individuals matrix A and the coefficient

matrix for hypothesis C, and adjusted versions of T0 and T1 by the Bartlett

correction in the normal case as follows:

T0: A = A+ and C = I3,

T̃0: the adjusted version of T0 by the Bartlett correction in the normal

case,
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T1: A = (1n A+) and C = (03 I3),

T̃1: the adjusted version of T1 by the Bartlett correction in the normal

case,

where an n×3 matrix A+ was generated from the uniform (0,1) distribution.

It is easy to see that T1 satisfies Condition 1, and T0 and T1 satisfy Condition

2, when the true distributions are 1, 2 and 3. Table 1 shows the actual test

sizes of these test statistics when we used the chi-square distribution as the

null distribution. The average and standard deviation (S.D.) of actual sizes

for every true distribution are also shown in the table. From this table, we

can see that the difference of the actual test size by the difference of the true

distribution is small when either Condition 1 or 2 holds, because the S.D.

becomes small. In these cases, the Bartlett correction in the normal improves

a chi-square approximation. From the numerical results, we suggest that

the test statistic satisfying Condition 1 should be adjusted by the Bartlett

correction in the normal case.

Insert Table 1 around here

3.2. Condition for the variance

In this sub-section, we consider a condition where the cumulants denot-

ing nonnormality of the true distribution disappear simultaneously from the

second terms of asymptotic expansions of both the mean and variance of the

test statistic in (2.3). From the formula (2.4) in Lemma 2.1, we obtain the

asymptotic expansion of the second moment of the test statistic in (2.3) as

E[T 2] = cd(cd + 2) +
1

n

3∑
j=0

βj(cd + 2j)(cd + 2 + 2j) + o(n−1).

By using the relation
∑3

j=0 βj = 0, we can write a concrete form of the

expansion of the second moment as

E[T 2] = cd(cd + 2) +
1

n

[
m

(1)
4 κ(Ψ,Ψ)

14



−2
{

m
(1)
3,1 − (cd + 2c + 6)m

(1)
1,1

}
γ2

1(Ψ,Ψ,Ψ)

−2
{

2m
(1)
3,1 − (cd + 2c + 6)m

(1)
1,1

}
γ2

2(Ψ,Ψ,Ψ)

−2
{

4m
(1)
3,1 − (cd + 4c + 10)m

(1)
1,1

}
γ2

1(Ψ,Ψ,Φ)

−2
{

2m
(1)
3,1 − (cd + 2c + 6)m

(1)
1,1

}{
γ2

2(Ψ,Ψ,Φ) + γ2
2(Ψ,Φ,Ψ)

}
+2(cd + 2)m

(1)
1,1

{
3γ2

1 (Ψ,Φ,Φ) + 2γ2
2 (Ψ,Φ,Φ) + γ2

2 (Φ,Ψ,Φ)
}]

+
2

n
cd [(cd + 2) {r(c + d + 1) + d + 1} + (c + d + 1)(1 + 2r)] + o(n−1)

= cd(cd + 2)
(
1 +

η2

n

)
+ o(n−1). (3.4)

It is easy to see that the coefficient m
(1)
3,1 becomes 0 if m

(1)
1,1 = 0. Therefore,

from these equations, if either the coefficient m
(1)
1,1 = 0 or all γ2

j (∗, ∗, ∗) =

0 (j = 1, 2) holds and also the equation m
(1)
4 = 0 holds simultaneously,

η1 in (3.1) and η2 in (3.4) become independent of the cumulants denoting

nonnormality of the true distribution. This means that the location and

dispersion of the null distribution of the test statistic are not easily changed

due to nonnormality of the true distribution. Notice that the coefficient m
(1)
4

expresses the sample kurtosis of ui (i = 1, . . . , n) in (2.8). Therefore, we

obtain the condition for robustness to nonnormality in the following theorem.

Theorem 3.2. If a considered test satisfies either Condition 1 or 2 in

Theorem 3.1, and furthermore, if the following condition also holds:

• Condition 3: The sample kurtosis of ui (i = 1, . . . , n) is 0.

Then, the second terms of asymptotic expansions of the mean and variance

of the test statistic T become independent of the cumulants denoting nonnor-

mality of the true distribution, i.e.,

E[T ] = cd

[
1 +

1

n
{r(c + d + 1) + d + 1}

]
+ o(n−1),

Var[T ] = 2cd

[
1 +

1

n
{4r(c + d + 1) + c + 3(d + 1)}

]
+ o(n−1).

(3.5)
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Consequently, the location and dispersion of the null distribution of the test

statistic are not easily changed due to nonnormality of the true distribution.

From Wakaki et al. (2003), if the between-individuals design matrix A

is type II and the equation C1k = 0c holds, then the coefficient m
(1)
4 is

rewritten as m
(1)
4 =

∑k
j=1 n/nj − k2 − 2k + 2. Therefore, we obtain the

following corollary.

Corollary 3.4. Suppose that the between-individuals design matrix A is

type II and equation C1k = 0c holds. If the ratio of sample sizes of k-groups

n1, . . . , nk is satisfied by the following equation,
∑k

j=1 n/nj = k2 + 2k − 2,

then Conditions 1 and 3 hold simultaneously.

This result means that the testing equality for the means of k-groups becomes

robust to nonnormality by adjusting each sample size. In the ANOVA model,

this fact was reported by Box and Watson (1962), and Box and Draper

(1975). They called such a design matrix a robust design matrix. Table 2

shows the robust design of our test statistic in the cases of k = 4, 5 and 6.

If the ratio of sample sizes is satisfied as in Table 2, then the test statistic

becomes more robust to nonnormality.

Insert Table 2 around here

If the mean and variance of the test statistic T are expanded as (3.1) and

(3.4), then the modified Bartlett correction proposed by Fujikoshi (2000),

which not only brings the mean close to an asymptotic one but also brings

the variance close to an asymptotic one, is given as

(1) T̃ ′ = (nν̂1 + ν̂1) log

(
1 +

T

nν̂1

)
, ν̂1 > 0, nν̂1 + ν̂2 > 0,

(2) T̃ ′ = T +
T

n

(
ν̂2

ν̂1

− T

2ν̂1

)
, ν̂1 < 0, nν̂1 + ν̂2 < 0,

(3) T̃ ′ = (nν̂1 + ν̂2)

{
1 − exp

(
− T

nν̂1

)}
, for any ν̂1, n and ν̂2,
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where

ν̂1 =
2

η̂2 − 2η̂1

, ν̂2 =
(cd + 2)η̂2 − 2(cd + 4)η̂1

2(η̂2 − 2η̂1)
,

and η̂1 and η̂2 are consistent estimators of η1 and η2, respectively. In general,

it is necessary to estimate skewnesses and kurtosis in order to use the modified

Bartlett correction. However, from Theorem 3.2, we can see that the modified

Bartlett correction in the normal case, which is the transformation by a

known monotone function, can improve the chi-square approximation, even

if the true distribution is not the normal distribution. This is because η1

and η2 are independent of the cumulants denoting nonnormality of the true

distribution. Therefore, we obtain the following corollary.

Corollary 3.5. Let T̃ ′ denote the test statistics adjusted by the modified

Bartlett corrections in the normal case as

T̃ ′ =

⎧⎪⎪⎨
⎪⎪⎩

cd + 2

c + d + 1

{
n +

1

2
(c − d − 1)

}
log

{
1 +

c + d + 1

n(cd + 2)
THL

}
TBNP +

1

2n

(
c − d − 1 +

c + d + 1

cd + 2
TBNP

)
TBNP

.

Suppose that either Condition 1 or 2 holds, and also Condition 3 holds si-

multaneously, then the mean and variance of T̃ ′ are expanded as E[T̃ ′] =

cd + o(n−1) and Var[T̃ ′] = 2cd + o(n−1). This naturally implies that the

modified Bartlett correction in the normal case can improve the chi-square

approximation even under nonnormality.

From equations (3.1) and (3.4), when either Condition 1 or 2 holds, and

also Condition 3 holds, the mean and the second moment of TLR in the normal

case are expanded as

E[TLR] = cd

{
1 − 1

2n
(c − d − 1)

}
+ o(n−1),

E[T 2
LR] = cd(cd + 2)

{
1 − 1

n
(c − d − 1)

}
+ o(n−1).

These expansions make η2 = 2η1 in the LR test statistic. Therefore, we can

see that the modified Bartlett correction in the LR test statistic cannot be
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defined in the normal case. This is because the Bartlett correction of the

LR test statistic not only brings a mean close to an asymptotic one, but also

it brings the null distribution close to the chi-square distribution, when the

true distribution is also the normal distribution (see e.g., Barndorff-Nielsen &

Cox, 1984; Barndorff-Nielsen & Hall, 1988). However, although the modified

Bartlett correction cannot be defined, TLR adjusted by the Bartlett correction

in the normal case also can improve the chi-square approximation, as in the

modified Bartlett correction in the following corollary (the proof is given in

Appendix A.4).

Corollary 3.6. Let T̃LR be the version of TLR adjusted by the Bartlett

correction in the normal case. Suppose that either Condition 1 or 2 holds,

and also Condition 3 holds simultaneously. Then, T̃LR can improve the chi-

square approximation even under nonnormality, as in the modified Bartlett

correction, i.e., E[T̃LR] = cd + o(n−1) and Var[T̃LR] = 2cd + o(n−1).

Before concluding this sub-section, we verify the validity of our theorem

through a numerical experiment. The error distributions considered are de-

scribed in Appendix A.1. We dealt with the test for equality of Ξ in the case

of p = 2, k = 4 and n = 32. The p× (p−1) within-individuals design matrix

X was generated from the uniform (-1,1) distribution, and the coefficient

matrices for hypothesis were C = (Ik−1 − 1k−1) and D = Iq. We prepared

the three test statistics specified by the between-individuals design matrix

A, which is type II in (3.3), as follows:

Case 1 : n1 = n2 = n3 = n4 = 8 (m
(1)
4 = −6.0).

Case 2 : n1 = n2 = 4, n3 = 8 and n4 = 16 (m
(1)
4 = 0.0).

Case 3 : n1 = 3, n2 = n3 = 4 and n4 = 21 (m
(1)
4 = 6.2).

Moreover, we adjusted each test statistic by the Bartlett correction and the

modified Bartlett correction. It is easy to see that the three test statistics
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satisfy Condition 1 and also Condition 3 when A is Case 2. Tables 3, 4

and 5 show actual test sizes of the LR test statistic, HL test statistic and

BNP test statistic, respectively. The average and S.D. of actual test sizes

for every true distribution are also shown in these tables. From the tables,

we can see that the difference of the actual test size by the difference of the

error distribution is small when Condition 3 holds, because S.D. becomes

small. In this case, the modified Bartlett correction in the normal improves

the chi-square approximation.

Insert Tables 3, 4 and 5 around here

4. Conclusion

In this paper, we find the conditions for robustness to nonnormality. If

either Condition 1 or 2 holds, the cumulants denoting nonnormality of the

true distribution disappear from the second term in the asymptotic expansion

of the mean of the test statistic T . Then, the location of the null distribution

of T is not easily moved due to nonnormality of the true distribution, and we

use the Bartlett correction without estimating several cumulants. Especially,

since Condition 1 does not depend on the unknown true distribution, checking

whether or not Condition 1 holds can determine whether the test statistic

used is robust to nonnormality. Moreover, from the simple transformation,

we can make the test statistic the robust one. Therefore, it is a very useful

Condition 1.

If either Condition 1 or 2 holds, and also Condition 3 holds simultane-

ously, the cumulants denoting nonnormality of the true distribution disap-

pear simultaneously from the second terms of the asymptotic expansions of

the mean and variance of the test statistic T . Then, the location and disper-

sion of the null distribution of T are not easily changed due to nonnormality

of the true distribution, and we use the modified Bartlett correction without
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estimating several cumulants. Especially, by adjusting the ratio of sample

sizes in the k-groups, we make the test statistic for the equality of several

means more robust to nonnormality. However, we do not, of course, suggest

that one would deliberately seek unequal sample sizes to lessen the effect

of nonnormality in the test to compare means. The reduction in precision,

with which comparison among the means could be made and an increase

in sensitivity to variance inequalities would result, would certainly not be

worth the small increase in robustness to nonnormality (see Box & Watson,

1962). Moreover, such unequal sample sizes do not make an optimal design

for estimating variance (see Guiard et al., 2000).

Nevertheless, if Condition 1 holds, the test statistic becomes robust to

nonnormality. Therefore, we encourage using the between-individuals design

matrix having the segment, and adjusting its test statistic by the Bartlett

correction in the normal case.

Actually, our conditions are depend on only the between-individuals de-

sign matrix A and the coefficient matrix for hypothesis C. Therefore, the

robustness to nonnormality of the test in a GMANOVA model is indepen-

dent of the within-individuals design matrix X and the coefficient matrix for

hypothesis D. Consequently, our conditions essentially coincide with condi-

tions of testing H0 : CΞ = Oc×p in a multivariate linear model, which were

similer to obtained by Wakaki et al. (2002).

Appendix

A.1. Used Distributions as True Distributions

In this sub-section, we describe the used distributions as the true dis-

tributions for the numerical studies in our paper. The elements of ε are

independently and identically distributed, and generated from the following

six distributions:
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1. Normal Distribution: εj ∼ N(0, 1), (κ
(1)
3,3 = κ

(2)
3,3 = 0 and κ

(1)
4 = 0).

2. Laplace Distribution: εj is generated from a Laplace distribution with

mean 0 and standard deviation 1 (κ
(1)
3,3 = κ

(2)
3,3 = 0 and κ

(1)
4 = 3p).

3. Uniform Distribution: εj is generated from the uniform (-5,5) distri-

bution divided by the standard deviation 5/
√

3 (κ
(1)
3,3 = κ

(2)
3,3 = 0 and

κ
(1)
4 = −1.2p).

4. Skew-Laplace Distribution: εj is generated from a skew-Laplace dis-

tribution with location parameter 0, dispersion parameter 1 and skew

parameter 1 standardized by mean 3/4 and standard deviation
√

23/4

(κ
(1)
3,3 = κ

(2)
3,3 ≈ 1.12p and κ

(1)
4 ≈ 3.26p).

5. Chi-Square Distribution: εj is generated from a chi-square distribu-

tion with 2 degrees of freedom standardized by mean 2 and standard

deviation 2 (κ
(1)
3,3 = κ

(2)
3,3 = 2p and κ

(1)
4 = 6p).

6. Log-Normal Distribution: εj is generated from a lognormal distribution

such that log εj ∼ N(0, 1), standardized by mean e1/2 and standard

deviation
√

e(e − 1) (κ
(1)
3,3 = κ

(2)
3,3 ≈ 6.18p and κ

(1)
4 ≈ 110.94p).

The skew-Laplace distribution was proposed by Balakrishnan and Amba-

gaspitiya (1994) (for the probability density function, see e.g., Yanagihara &

Yuan, 2005). It is easy to see that distributions 1, 2 and 3 are symmetric

distributions, and distributions 4, 5 and 6 are skewed distributions.

A.2. Proof of Corollary 3.1

In this sub-section, we show the proof of Corollary 3.1. If the true distri-

bution of ε is an orthant symmetric, the third multivariate moment of ε is

given by

μabc = E[εaεbεc] =

∫ ∞

−∞
· · ·
∫ ∞

−∞
εaεbεcf(ε1, . . . , εp)dε,
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where f(·) is a density function of ε. Since the distribution of ε is an orthant

symmetric, the equation f(ε1, . . . , εl, . . . , εp) = f(ε1, . . . ,−εl, . . . , εp) holds

for any εls. Let g(εa, ε, εb) be the marginal distribution of εa, εb and εc.

Therefore,

μabc = 3

∫ ∞

0

∫ ∞

0

∫ ∞

0

(εaεbεc − εaεbεc) g(εa, εb, εc)dεadεbdεc = 0.

Notice that μabc = κabc. We obtain κabc = 0 under an orthant symmetric

distribution. Since all γ2
j (∗, ∗, ∗) (j = 1, 2) consist of κabc, it implies that all

γ2
j (∗, ∗, ∗) = 0 (j = 1, 2) under an orthant symmetric distribution.

A.3. Proof of Corollary 3.2

In this sub-section, we show the proof of Corollary 3.2. For the proof

of Corollary 3.2, it is sufficient to confirm C(A′A)−1A′1n = 0c. When the

between-individuals design matrix A is type I, from the general formula of

an inverse matrix (see e.g., Siotani et al., 1985, p. 592), (A′A)−1 is given by

(A′A)−1 =
1

w1

(
1 −1′

nA1(A
′
1A1)

−1

−(A′
1A1)

−1A′
11n W 1

)
,

where w1 = n − 1′
nP�1

1n and

W 1 = w1(A
′
1A1)

−1 + (A′
1A1)

−1A′
11n1

′
nA1(A

′
1A1)

−1.

If C = (0c C1), where C1 is any c × (k − 1) matrix with the rank c, then,

C(A′A)−1A′1n = − 1

w1

C1

{
(A′

1A1)
−1A′

11n1
′
n − W 1A

′
1

}
1n

= − 1

w1

(n − w1 − 1′
nP�1

1n) C1(A
′
1A1)

−1A′
11n = 0c.

On the other hand, when the between-individuals design matrix A is type

II, (A′A)−1 = diag(n−1
1 , . . . , n−1

k ) and A′1n = (n1, . . . , nk)
′. Notice that

C1k = 0c. Therefore,

C(A′A)−1A′1n = C1k = 0c.
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From these equations, we obtain the proof of Corollary 3.2.

A.4. Proof of Corollary 3.6

In this sub-section, we show the proof of Corollary 3.6. From the equa-

tions (3.5), if either Condition 1 or 2 holds, and also Condition 3 holds, the

variance of TLR is expanded as

Var[TLR] = 2cd

{
1 − 1

n
(c − d − 1)

}
+ o(n−1).

It is known that

Var[T̃LR] =

(
1 +

c − d − 1

2n

)2

Var[TLR] = 2cd + o(n−1).

Therefore, we obtain the proof of Corollary 3.6.
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Table 1. Actual test sizes of several test statistics for testing a given

matrix

(LR)

T0 T̃0 T1 T̃1

Nominal Sizes Nominal Sizes Nominal Sizes Nominal Sizes
Distribution 10% 5% 1% 10% 5% 1% 10% 5% 1% 10% 5% 1%

Normal 9.7 4.9 0.9 10.3 5.2 1.0 9.3 4.8 1.0 9.7 5.0 1.0
Laplace 9.1 4.6 0.7 9.5 4.8 0.8 8.8 4.5 0.9 9.3 4.7 1.0
Uniform 9.5 4.8 1.1 10.0 5.1 1.2 9.6 5.1 1.0 10.1 5.3 1.1

Skew-Laplace 10.4 5.7 1.2 11.0 5.9 1.3 9.3 4.7 0.9 9.8 4.9 1.0
Chi-Sqare 11.7 6.4 1.8 12.2 6.8 1.9 9.6 4.6 0.7 10.0 4.8 0.8

Log-Normal 16.5 10.3 4.1 17.1 10.7 4.3 8.8 4.1 0.8 9.2 4.4 0.9

Average 11.2 6.1 1.6 11.7 6.4 1.8 9.2 4.6 0.9 9.7 4.9 1.0
S.D. 2.52 1.97 1.16 2.56 2.01 1.21 0.33 0.30 0.10 0.36 0.28 0.09

(HL)

T0 T̃0 T1 T̃1

Nominal Sizes Nominal Sizes Nominal Sizes Nominal Sizes
Distribution 10% 5% 1% 10% 5% 1% 10% 5% 1% 10% 5% 1%

Normal 13.1 7.6 2.3 11.1 6.4 1.8 12.8 7.4 2.5 10.7 6.1 1.9
Laplace 12.3 6.9 2.2 10.3 5.6 1.6 12.0 7.0 2.1 10.2 5.8 1.6
Uniform 12.5 7.2 2.5 10.8 5.9 1.9 12.7 7.6 2.4 10.9 6.3 2.0

Skew-Laplace 13.8 8.1 2.9 11.8 6.9 2.4 12.5 7.5 2.3 10.7 6.2 1.8
Chi-Square 14.9 9.5 3.5 13.2 8.0 2.8 12.8 7.3 2.0 11.0 5.9 1.5
Log-Normal 20.3 13.9 6.9 18.0 12.1 6.0 12.1 6.8 1.9 10.4 5.5 1.5

Average 14.5 8.9 3.4 12.6 7.5 2.8 12.5 7.3 2.2 10.7 6.0 1.7
S.D. 2.73 2.40 1.63 2.61 2.21 1.52 0.31 0.29 0.23 0.27 0.29 0.18

(BNP)

T0 T̃0 T1 T̃1

Nominal Sizes Nominal Sizes Nominal Sizes Nominal Sizes
Distribution 10% 5% 1% 10% 5% 1% 10% 5% 1% 10% 5% 1%

Normal 6.7 2.5 0.1 9.1 4.0 0.3 6.1 2.5 0.1 8.6 3.8 0.3
Laplace 5.9 2.3 0.2 8.4 3.8 0.3 5.9 2.1 0.1 8.1 3.5 0.3
Uniform 6.2 2.6 0.3 8.8 4.0 0.5 6.4 2.4 0.1 8.8 3.9 0.4

Skew-Laplace 7.2 3.1 0.1 9.7 4.7 0.5 6.3 2.3 0.1 8.6 3.6 0.4
Chi-Square 8.4 3.7 0.6 11.1 5.5 1.0 6.0 2.0 0.1 8.8 3.5 0.3
Log-Normal 12.6 7.1 1.8 15.7 9.0 2.6 5.5 1.9 0.1 8.0 3.2 0.3

Average 7.9 3.5 0.5 10.5 5.2 0.9 6.1 2.2 0.1 8.5 3.6 0.4
S.D. 2.28 1.65 0.58 2.48 1.82 0.81 0.30 0.22 0.01 0.32 0.23 0.04
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Table 2. Robust design to nonnormality in testing the equality

(k = 4)

n1 : n2 : n3 : n4
1 : 1 : 2 : 4 1 : 2 : 2 : 5 1 : 2 : 4 : 4
1 : 3 : 4 : 4 2 : 5 : 5 : 10

(k = 5)

n1 : n2 : n3 : n4 : n5

1 : 1 : 1 : 3 : 3 1 : 1 : 3 : 3 : 3
1 : 3 : 3 : 3 : 5 3 : 5 : 5 : 7 : 15
3 : 5 : 8 : 12 : 12 3 : 7 : 7 : 10 : 15

(k = 6)

n1 : n2 : n3 : n4 : n5 : n6

2 : 3 : 4 : 5 : 8 : 8 2 : 3 : 5 : 5 : 5 : 10
3 : 3 : 3 : 4 : 5 : 12 3 : 4 : 4 : 4 : 9 : 12
3 : 4 : 6 : 6 : 6 : 15 3 : 6 : 6 : 8 : 10 : 15
3 : 9 : 9 : 9 : 12 : 14 4 : 5 : 5 : 5 : 12 : 15
4 : 5 : 12 : 12 : 12 : 15 4 : 8 : 10 : 15 : 16 : 16
4 : 10 : 10 : 10 : 15 : 20 5 : 8 : 12 : 15 : 20 : 20
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Table 3. Actual test sizes of several test statistics for testing the equality

(LR)

Nominal Test Distribution

Size m
(1)
4 Statistic 1 2 3 4 5 6 Average S.D.

10% -6.0 T 9.7 9.1 9.8 9.6 8.6 8.3 9.2 0.57

T̃ 10.0 9.5 10.2 10.0 8.9 8.7 9.5 0.57
0.0 T 9.7 9.5 9.7 10.0 9.8 9.2 9.7 0.24

T̃ 9.9 10.0 10.0 10.3 10.2 9.6 10.0 0.23
6.2 T 10.0 10.0 9.5 9.4 10.0 9.7 9.8 0.25

T̃ 10.4 10.4 9.8 9.9 10.5 10.1 10.2 0.26

5% -6.0 T 4.7 4.3 4.9 4.6 4.3 4.0 4.5 0.27

T̃ 4.9 4.6 5.1 4.8 4.6 4.2 4.7 0.29
0.0 T 4.4 4.7 4.6 5.2 5.2 4.7 4.8 0.30

T̃ 4.8 4.9 4.8 5.5 5.5 5.0 5.1 0.29
6.2 T 4.8 5.1 4.6 5.0 5.5 5.9 5.2 0.43

T̃ 5.0 5.3 4.9 5.3 5.7 6.1 5.4 0.41

1% -6.0 T 0.9 0.7 1.0 0.8 0.7 0.7 0.8 0.11

T̃ 1.0 0.8 1.1 0.9 0.8 0.7 0.9 0.12
0.0 T 0.9 0.8 1.0 1.0 1.3 1.4 1.1 0.21

T̃ 1.0 0.9 1.0 1.1 1.4 1.5 1.2 0.23
6.2 T 0.8 1.0 0.7 1.4 1.9 1.8 1.3 0.46

T̃ 0.8 1.1 0.8 1.5 2.0 2.0 1.4 0.50
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Table 4. Actual test sizes of several test statistics for testing the equality

(HL)

Nominal Test Distribution

Size m
(1)
4 Statistic 1 2 3 4 5 6 Average S.D.

10% -6.0 T 12.6 12.2 12.9 12.6 11.4 11.4 12.2 0.57

T̃ 10.8 10.4 11.1 10.8 9.7 9.6 10.4 0.57

T̃ ′ 10.5 10.0 10.6 10.3 9.3 9.1 10.0 0.58
0.0 T 12.7 12.5 12.6 13.0 12.5 12.4 12.6 0.18

T̃ 10.9 10.8 11.0 11.3 11.1 10.5 10.9 0.26

T̃ ′ 10.4 10.4 10.4 10.8 10.7 10.1 10.5 0.25
6.2 T 13.2 13.0 12.7 12.2 13.1 12.4 12.7 0.36

T̃ 11.3 11.3 10.9 10.5 11.4 10.9 11.0 0.30

T̃ ′ 10.9 10.8 10.4 10.2 10.9 10.5 10.6 0.28

5% -6.0 T 7.3 6.9 7.4 7.0 6.7 6.1 6.9 0.44

T̃ 5.9 5.7 6.0 5.9 5.7 5.1 5.7 0.28

T̃ ′ 5.3 5.0 5.4 5.1 4.9 4.5 5.0 0.29
0.0 T 7.2 7.2 7.2 7.7 7.6 7.0 7.3 0.25

T̃ 5.9 6.0 5.8 6.6 6.5 5.9 6.1 0.31

T̃ ′ 5.2 5.4 5.2 5.8 5.8 5.3 5.4 0.27
6.2 T 7.5 7.6 7.2 7.5 7.9 8.1 7.6 0.30

T̃ 6.3 6.4 6.0 6.4 6.7 7.0 6.5 0.33

T̃ ′ 5.4 5.7 5.3 5.7 6.1 6.5 5.8 0.42

1% -6.0 T 2.3 1.8 2.3 2.1 2.0 1.8 2.0 0.18

T̃ 1.7 1.4 1.7 1.6 1.5 1.4 1.5 0.12

T̃ ′ 1.2 0.9 1.2 1.1 1.0 0.9 1.0 0.12
0.0 T 2.1 2.2 2.1 2.4 2.7 2.5 2.3 0.23

T̃ 1.7 1.7 1.7 2.0 2.1 2.0 1.9 0.18

T̃ ′ 1.2 1.1 1.1 1.2 1.7 1.6 1.3 0.24
6.2 T 2.3 2.2 2.0 2.7 3.4 3.6 2.7 0.62

T̃ 1.6 1.8 1.5 2.2 2.9 3.0 2.2 0.57

T̃ ′ 0.9 1.2 0.9 1.6 2.2 2.2 1.5 0.52
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Table 5. Actual test sizes of several test statistics for testing the equality

(BNP)

Nominal Test Distribution

Size m
(1)
4 Statistic 1 2 3 4 5 6 Average S.D.

10% -6.0 T 6.3 6.1 6.5 6.3 6.1 5.5 6.1 0.33

T̃ 8.9 8.5 9.0 8.8 7.9 7.8 8.5 0.47

T̃ ′ 9.2 8.8 9.3 9.1 8.1 7.9 8.7 0.53
0.0 T 6.4 6.5 6.3 7.1 6.8 6.4 6.6 0.27

T̃ 9.0 9.0 8.9 9.3 9.2 8.5 9.0 0.26

T̃ ′ 9.2 9.2 9.3 9.6 9.4 8.8 9.2 0.25
6.2 T 6.7 6.7 6.3 6.8 7.0 7.4 6.8 0.32

T̃ 9.2 9.3 8.9 8.9 9.4 9.2 9.1 0.17

T̃ ′ 9.5 9.6 9.2 9.1 9.7 9.4 9.4 0.21

5% -6.0 T 2.6 2.1 2.5 2.4 2.2 2.0 2.3 0.21

T̃ 3.7 3.4 4.0 3.6 3.5 3.2 3.6 0.24

T̃ ′ 4.1 3.9 4.5 4.1 3.9 3.7 4.0 0.24
0.0 T 2.3 2.4 2.4 2.8 3.0 2.8 2.6 0.25

T̃ 3.7 3.7 3.7 4.2 4.3 3.8 3.9 0.24

T̃ ′ 4.1 4.2 4.1 4.7 4.8 4.3 4.4 0.27
6.2 T 2.6 2.6 2.3 3.0 3.6 3.8 3.0 0.58

T̃ 3.8 4.1 3.8 4.2 4.6 5.3 4.3 0.51

T̃ ′ 4.4 4.6 4.2 4.6 5.1 5.6 4.8 0.46

1% -6.0 T 0.2 0.2 0.2 0.1 0.2 0.1 0.2 0.03

T̃ 0.4 0.3 0.5 0.4 0.3 0.3 0.4 0.08

T̃ ′ 0.7 0.5 0.8 0.6 0.5 0.5 0.6 0.11
0.0 T 0.2 0.2 0.2 0.2 0.3 0.4 0.2 0.07

T̃ 0.4 0.4 0.5 0.5 0.7 0.7 0.5 0.14

T̃ ′ 0.7 0.6 0.7 0.8 1.0 1.0 0.8 0.16
6.2 T 0.1 0.2 0.1 0.4 0.5 0.7 0.3 0.22

T̃ 0.3 0.4 0.3 0.7 1.0 1.1 0.6 0.31

T̃ ′ 0.6 0.7 0.5 1.1 1.4 1.4 0.9 0.38
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Figure 1. Actual test sizes of Hotelling’s one- and two-sample tests
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