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Abstract

In this paper, we define a class of cross-validatory model selection criteria as an estimator

of the predictive risk based on a discrepancy between a candidate model and the true model.

For a vector of unknown parameters, n estimators are required for the definition of the class,

where n is the sample size. The ith estimator (i = 1, . . . , n) is obtained by minimizing

a weighted discrepancy function in which the ith observation has a weight of 1 − λ and

others have weight of 1. Cross-validatory model selection criteria in the class are specified

by the individual λ. The sample discrepancy function and the ordinary cross-validation

(CV) criterion are special cases of the class. One may choose λ to minimize the biases. The

1Corresponding author. E-mail: yanagi@math.sci.hiroshima-u.ac.jp
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optimal λ makes the bias-corrected CV (CCV) criterion a second-order unbiased estimator

for the risk, while the ordinary CV criterion is a first-order unbiased estimator of the risk.

AMS 2000 subject classifications. Primary 62H25; Secondary 62F07.

Key words: Asymptotic expansion, Bias correction, Cross-validation criterion, Model mis-

specification, Model selection, Predictive discrepancy, Sample discrepancy function, Struc-
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1. Introduction

Let y1, . . . ,yn be a random sample from a p-dimensional population y whose probability

density function ϕ(y) is unknown. Nevertheless, the true model can be expressed as

M∗ : y1, . . . ,yn ∼ i.i.d. ϕ(y). (1)

Consider a family of parametric models F = {f(y|θ); θ ∈ Θ ⊂ R
q}, where θ = (θ1, . . . , θq)

′

is a q-dimensional vector of unknown parameters. This implies that a candidate model is

given by

M : y1, . . . ,yn ∼ i.i.d. f(y|θ). (2)

Most model selection criteria (or information criteria) for determining the best model among

all candidate models are estimators of the predictive risk based on the discrepancy between

the candidate model and the true model. For example, Akaike’s information criterion (AIC;

Akaike, 1973, 1974), Takeuchi’s (1976) bias-corrected information criterion (TIC), and the

extended information criterion (EIC; Ishiguro, Sakamoto, & Kitagawa, 1997) are estimators

of the predictive Kullback-Leibler (K-L) discrepancy (Kullback & Leibler, 1951). On the

other hand, the cross-validation (CV) criterion (Stone, 1974, 1977) serves as an estimator

of the predictive risk based on an arbitrary discrepancy, e.g., K-L discrepancy, L2 distance,

and density power divergence (Basu et al., 1998).

In this paper, we propose a class of model selection criteria by the cross-validatory

method. For a given discrepancy, n estimators of θ are required to define the class. The ith

estimator (i = 1, . . . , n) is obtained by minimizing a weighted discrepancy function in which

the ith observation has a weight of 1 − λ (0 ≤ λ ≤ 1) and others have weights of 1. Each λ

represents a cross-validatory model selection criteria. The sample discrepancy function and

the ordinary CV criterion correspond to λ = 0 and 1, respectively. From the viewpoint of sec-

ond order asymptotics for biases, the optimal λ can be expanded as λ = 1−1/(2n)+O(n−2).
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The optimal λ yield a bias-corrected CV (CCV) criterion that corrects the bias to O(n−2)

while the bias of the ordinary CV criterion is O(n−1). The CCV criterion extends the result

of Yanagihara, Tonda, and Matsumoto (2006), which consists of the K-L discrepancy.

In Section 2, we define the class of cross-validatory model selection criteria and study its

mathematical properties. In Section 3, we describe other model selection criteria and their

properties. In Section 4, the developed criteria will be applied to selecting structural equation

models (SEM) under the normal distribution assumption. In Section 5, via the Monte Carlo

method, we check the mathematical properties of the developed model selection criteria and

compare CV and CCV criteria with other criteria such as AIC, TIC, and EIC. Conclusions

and discussion are given in Section 6. Technical details are provided in an appendix.

2. A Class of Cross-Validatory Model Selection Criteria

Suppose that ψ(y|θ) is a discrepancy function for the candidate model M in (2), which

is typically a function of f(y|θ). Let Ψ(θ|Y ,w) be a weighted discrepancy function defined

by

Ψ(θ|Y ,w) =

n∑
i=1

wiψ(yi|θ), (3)

where Y = (y1, . . . ,yn)′ and w = (w1, . . . , wn)′. Then an estimator of θ is obtained by

minimizing the discrepancy function Ψ(θ|Y ,w) in (3), i.e.,

θ̂(w) = arg min
�

Ψ(θ|Y ,w). (4)

It is easy to see that θ̂(w) is the maximum likelihood estimator (MLE) of θ when ψ(y|θ) =

− log f(y|θ) and w = 1n = (1, . . . , 1)′. When

ψ(y|θ) = − 1

β
f(y|θ)β +

1

1 + β

∫
{f(x|θ)}1+βdx,

Ψ(θ|Y ,w) is the density power divergence (Basu et al., 1998). An application of the power

density divergence can be found in Fujisawa and Eguchi (2006). For simplicity, we use

Ψ(θ|Y ) = Ψ(θ|Y , 1n) and θ̂ = θ̂(1n). Furthermore, we write θ̂[−i] = θ̂(1n − ei), where ei

is a n × 1 vector whose ith element is 1, and the other elements are 0. Notice that θ̂[−i]

becomes the jackknife estimator evaluated from the ith jackknife sample, which is obtained

from Y by deleting yi. Let u1, . . . ,un be p× 1 independent random vectors from u ∼ ϕ(u)

with U = (u1, . . . ,un)′, which is also independent from Y . Notice that θ̂ is a function of
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Y . We define a risk based on the predictive discrepancy Ψ(θ|·) as

RPD = E∗
�E

∗
�

[
Ψ(θ̂|U )

]
= nE∗

�E
∗
�

[
ψ(u|θ̂)

]
, (5)

where E∗
� and E∗

� are expectations under the true model M∗ in (1) with respect to y and u,

respectively. In model selection based on ψ(y|θ), we regard the model having the smallest

RPD as the best model, which is typically different from the true model. In many contexts

of statistical modeling, the aim is to determine the best model. Obtaining an unbiased

estimator of RPD will allows us to correctly evaluate the discrepancy between data and

model, which will further facilitate the selection of the best model. The simplest estimator

of RPD is the sample discrepancy function Ψ(θ̂|Y ). The CV criterion proposed by Stone

(1974, 1977),

CV =

n∑
i=1

ψ(yi|θ̂[−i]), (6)

is also an estimator of RPD. Let

g(y|ϑ) =
∂

∂θ
ψ(y|θ)

∣∣∣∣
�=�

, H(y|ϑ) =
∂2

∂θ∂θ′ψ(y|θ)

∣∣∣∣
�=�

, (7)

and

r(θ) = E∗
�[g(y|θ)], I(θ) = E∗

�[g(y|θ)g(y|θ)′], J(θ) = E∗
�[H(y|θ)]. (8)

Suppose that θ0 is a q × 1 vector such that θ̂
a.s.−→ θ0 as n → ∞. Under proper conditions,

as specified in White (1982), θ0 satisfies

r(θ0) = 0q, (9)

where 0q is a vector of q zeros. Notice that I(θ0) is called the Fisher’s information matrix

when ψ(y|θ) = − log f(y|θ). Because θ0 is a local minimum of E∗
�[ψ(y|θ)], equation (9)

leads to a natural assumption that J(θ0) is positive definite.

Let θ̂i(λ) (0 ≤ λ ≤ 1) be the estimator of θ, which is obtained by minimizing the weighted

discrepancy function Ψ(θ|Y , 1n − λei), i.e., θ̂i(λ) = θ̂(1n − λei). Notice that, with weight

1n−λei, the effect of the ith observation yi on θ̂i(λ) decreases as λ increases. The estimator

θ̂i(λ) includes the ordinary estimator and the ith jackknife estimator as special cases, i.e.,

θ̂i(0) = θ̂ and θ̂i(1) = θ̂[−i]. Replacing θ̂ by θ̂i(λ), we define the following cross-validatory

model selection criterion:

CV(λ) =

n∑
i=1

ψ(yi|θ̂i(λ)), (0 ≤ λ ≤ 1). (10)
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Let

Gλ = {E∗
�[CV(λ)]| 0 ≤ λ ≤ 1},

and

R1 =

n∑
i=1

E∗
�

[
r(θ̂)′(θ̂[−i] − θ̂)

]
, R2 =

n∑
i=1

E∗
�

[
(θ̂[−i] − θ̂)′J(θ̄i(δi))(θ̂[−i] − θ̂)

]
, (11)

where

θ̄i(δi) = θ̂ + δi(θ̂[−i] − θ̂), (i = 1, . . . , n), (12)

with δi ∈ (0, 1). The following theorem characterizes the properties of CV(λ) (the proof is

given in Appendix A.1).

Theorem 1. The model selection criterion CV(λ) has the following properties:

1. CV(0) = Ψ(θ̂|Y ) and CV(1) = CV.

2. CV(λ) is an increasing function of λ.

3. nE∗
�[ψ(y|θ0)] ∈ Gλ when θ0 is a global minimum of E∗

�[ψ(y|θ)].

4. RPD ∈ Gλ when R1 +R2/2 ≥ 0.

Appendix A.2 provides the detail leading to R1 = O(n−2) and R2 = γ1 + O(n−2), where γ1

is given by

γ1 = tr{I(θ0)J(θ0)
−1}. (13)

Because J(θ0) is positive definite, γ1 is positive. Thus, R1 +R2/2 ≥ 0 asymptotically holds.

Consequently, RPD ∈ Gλ when n is adequate. When ψ(y|θ) is a strictly convex function

of θ, H(y|θ) is positive definite for any θ and y (see e.g., Lehmann & Casella, 1998, p.

49). Then, J(θ) will be positive definite for any θ. This directly implies that R2 > 0 when

ψ(y|θ) is a strictly convex function of θ. Thus, RPD ∈ Gλ when R1 ≥ 0. Although the order

of R1 is O(n−2), R1 ≥ 0 holds under special cases, as in the following example.

Example 1. Suppose that the candidate model M and the true model M∗ are given by

M : y1, . . . ,yn ∼ i.i.d. Np(μ,Σ),

M∗ : y1, . . . ,yn ∼ i.i.d. E[y] = μ∗ and Cov[y] = Σ∗.
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If the K-L discrepancy is used to define CV(λ), Appendix A.3 shows that R1 > 0 always

holds. Thus, RPD ∈ Gλ.

An important issue is how to choose λ. It follows from Theorem 1 that, when R1 +

R2/2 ≥ 0, a λ0 exists such that E∗
�[CV(λ0)] = RPD. However, since λ0 depends on the

unknown distribution ϕ(y), it is very difficult to find the exact λ0. Even if we can obtain λ0

somehow, it may be difficult to put it to practice. This is because the optimal λ0 may depend

on cumulants of ϕ(y). It is difficult to obtain good estimates of higher-order cumulants

even when n is relatively large (see Yanagihara (2007) for the case of kurtosis). Thus,

an estimator of λ that does not involve higher-order cumulants is preferable. Let βabcd =

E∗
�[∂

4ψ(y|θ)/(∂θa∂θb∂θc∂θd)]|�=�0 (1 ≤ a, b, c, d ≤ q). The following theorem characterizes

the bias of CV(λ) (the proof is given in Appendix A.4).

Theorem 2. Under the condition |βabcd| < ∞ (1 ≤ a, b, c, d ≤ q), the bias of CV(λ) is

characterized as

RPD − E∗
�[CV(λ)] =

{
(1 − λ)γ1 +O(n−1) (λ is independent of n)
{1 − λ− 1/(2n)} γ1 +O(n−2) (λ = 1 +O(n−1))

, (14)

where γ1 is given by (13).

The moment condition in Theorem 2 (also Theorems A.1 and A.2) may be weakened as in

Hall (1987). If λ = 1 − 1/(2n), then the O(n−1) term in the bias of CV(λ) in Theorem 2

vanishes. Thus, using second-order asymptotics, the optimal value of λ is λ = 1 − 1/(2n) +

O(n−2). Based on this, we propose a bias-corrected CV (CCV) criterion as in the following

theorem.

Theorem 3. Let an ∈ (0, 1) that can be expanded as an = 1 − 1/(2n) +O(n−2), and

CCV = CV(an) =

n∑
i=1

ψ(yi|θ̂i(an)). (15)

Then the bias of the CCV criterion is O(n−2), while the bias in the ordinary CV criterion

is O(n−1). Because an < 1, the CCV criterion is always smaller than the ordinary CV

criterion.

Notice that the CCV in (15) coincides with the CCV criterion in Yanagihara, Tonda, and

Matsumoto (2006) when ψ(y|θ) = −2 log f(y|θ).

6



Since our assumption is that y1, . . . ,yn are i.i.d., it may seem that Theorem 3 does not

apply to selecting explanatory variables in regression models, which are widely used in data

analysis. Let y = (z′,x′)′, where z is the vector of response variables and x is the vector

of explanatory variables. Then our result immediately applies to the regression model. In

order to calculate CV(λ), it is often necessary to obtain each θ̂i(λ). However, CV(λ) in the

linear regression model under the normal distribution assumption can be derived using θ̂

alone, as in the following example.

Example 2. Let z and x be m × 1 and k × 1 vectors and y = (z′,x′)′. Suppose that the

candidate model M and the true model M∗ are given by

M : zi|xi ∼ Nm(Ξ′x̃i,Γ),

M∗ : y1, . . . ,yn ∼ i.i.d. E[y] = μ∗ and Cov[y] = Σ∗,

where x̃i = (1,x′
i)
′. Notice that the MLEs of Ξ and Γ are Ξ̂ = (X̃

′
X̃)−1X̃

′
Z and Γ̂ =

Z ′{In−X̃(X̃
′
X̃)−1X̃

′}Z/n, where Z = (z1, . . . , zn)′ and X̃ = (x̃1, . . . , x̃n)′. Then, CV(λ)

in the case of ψ(y|θ) = −2 log f(y|θ) is given by

CV(λ) = n log |Γ̂| + nm log

(
2nπ

n− λ

)
+

n∑
i=1

log

{
1 − λr̂2

i

n(1 − λci)

}

+

(
1 − λ

n

) n∑
i=1

r̂2
i

(1 − λci)2

{
1 − λr̂2

i

n(1 − λci)

}−1

,

where ci = x̃′
i(X̃

′
X̃)−1x̃i and r̂2

i = (zi − Ξ̂
′
x̃i)

′Γ̂
−1

(zi − Ξ̂
′
x̃i).

Yanagihara, Kamo, and Tonda (2006) proposed a second-order bias-corrected AIC, called

CAICJ, in multivariate linear models. The order of the bias of CAICJ is the same as that of

CCV. However, CAICJ was obtained under the assumption that the explanatory variables

x are nonstochastic, while the condition here is that both the explanatory variables x and

the response variables z are stochastic.

For linear regression models, the well-known CV criterion is defined by the predicted

residual sum of squares. Our general formula also applies to this case, and the CV(λ) is

given by the following example.

Example 3. Let x be a k × 1 vector and y = (z,x′)′. Suppose that the candidate model

M and the true model M∗ are

M : E[zi|xi] = β′x̃i,
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M∗ : y1, . . . ,yn ∼ i.i.d. E[y] = μ∗ and Cov[y] = Σ∗,

where x̃i = (1,x′
i)
′. Notice that the least square estimator of β is given by β̂ = (X̃

′
X̃)−1X̃

′
z,

where z = (z1, . . . , zn)′ and X̃ = (x̃1, . . . , x̃n)′. Thus, CV(λ) in the case of the predicted

residual sum of squares is given by

CV(λ) =

n∑
i=1

{
zi − β̂

′
x̃i

1 − λx̃′
i(X̃

′
X̃)−1x̃i

}2

.

3. Other Model Selection Criteria

In this section, we discuss other criteria for selecting the best model among all the

candidate models using the general discrepancy function ψ(y|θ). The AIC-type criterion

can be defined by adding the number of parameters to the sample discrepancy function as

AIC = Ψ(θ̂|Y ) + q. (16)

However, unless ψ(y|θ) = − log f(y|θ) and F contains ϕ(y), (16) has a constant bias in

estimating RPD. The TIC-type criterion corrects the bias of the AIC-type criterion, reducing

the bias to O(n−1). The TIC-type criterion is given by

TIC = Ψ(θ̂|Y ) + tr{Î(θ̂)Ĵ(θ̂)−1}, (17)

where

Î(θ̂) =
1

n

n∑
i=1

g(yi|θ̂)g(yi|θ̂)′, Ĵ(θ̂) =
1

n

n∑
i=1

H(yi|θ̂), (18)

with g(·|·) and H(·|·) being given by (7). Although the order of the bias in TIC is the same

as that in the CV criterion, the bias of TIC tends to be larger than that of CV because

tr{Î(θ̂)Ĵ(θ̂)−1} may contain a large bias. Actually, Theorems A.1 and A.2 in Appendix A.2

show that the n−1 term of the bias in TIC contains more terms of higher-order moments

than that of the CV criterion.

The bootstrap method can also correct the bias of the AIC-type criterion. The resulting

criterion is called the EIC-type criterion. Let y�
b,1, ...,y

�
b,n be the bth bootstrap resample

from Y (b = 1, . . . , B) and θ̂
�

b be the estimator of θ, where

θ̂
�

b = arg min
�

n∑
i=1

ψ(y�
b,i|θ).
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Replacing the log-likelihood function by the discrepancy function ψ(y|θ) in the formula of

Konishi (1999), the EIC-type criterion can be defined by

EIC = Ψ(θ̂|Y ) +
1

B

B∑
b=1

{
n∑

i=1

ψ(yi|θ̂
�

b) −
n∑

i=1

ψ(y�
b,i|θ̂

�

b)

}
. (19)

By using random vectors distributed according to the multinomial distribution, we can

rewrite the definition of EIC in (19). Let db = (db1, . . . , dbn)′ (b = 1, . . . , B) be random

samples of size n from the multinomial distribution Multin(n; 1/n, . . . , 1/n). Then, the EIC

in (19) is equivalent to the following formula (the derivation is given in Appendix A.5):

EIC = Ψ(θ̂|Y ) +
1

B

B∑
b=1

Ψ(θ̂(db)|Y , 1n − db). (20)

where θ̂(·) is given by (4). Because the bias of EIC is O(n−1), the order of bias in EIC is the

same as those in TIC and the ordinary CV criterion. However, since EIC does not contain

the term tr{Î(θ̂)Ĵ(θ̂)−1}, the bias of EIC tends to be smaller than that of TIC. On the

other hand, EIC involves more computation than the CV criterion. Furthermore, EIC may

behave poorly when the sample size is small and the number of parameters is large. Caution

is needed when using EIC with small samples.

4. Application to Selecting Structural Equation Models

Under the Normal Distribution Assumption

SEM is a multivariate statistical technique designed to model the covariance matrix by

a structure with relatively few parameters (see e.g., Lee & Kontoghiorghes, 2007; Yuan &

Bentler, 2007). The normal distribution assumption is typically used in the practice of SEM

and is the default option of all statistical software (AMOS, EQS, LISREL, Mplus, SAS

Calis). We will obtain the analytical expression of CV(λ) when the candidate model is from

the normal family while the true model is unknown.

Let the candidate model M and the true model M∗ be

M : y1, . . . ,yn ∼ i.i.d. Np(μ,Σ(ξ)),

M∗ : y1, . . . ,yn ∼ i.i.d. E[y] = μ∗ and Cov[y] = Σ∗,
(21)

where μ = (μ1, . . . , μp)
′ and ξ = (ξ1, . . . , ξq)

′ are p × 1 and q × 1 unknown vectors of

parameters, respectively, and the true distribution of y is unknown. Consider the K-L
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discrepancy with

ψ(y|θ) = −2 log f(y|θ) = p log(2π) + log |Σ(ξ)| + (y − μ)′Σ(ξ)−1(y − μ), (22)

where θ = (μ′, ξ′)′. Let

ȳ =
1

n

n∑
i=1

yi, S =
1

n

n∑
i=1

(yi − ȳ)(yi − ȳ)′, (23)

and

F (ξ|A) = log |Σ(ξ)| + tr
{
AΣ(ξ)−1

}
. (24)

Then, the CV(λ) defined in (10) is given by the following corollary (the proof is given in

Appendix A.6).

Corollary 1. The CV(λ) under the candidate model M in (21) is given by

CV(λ) = np log(2π)

+

n∑
i=1

{
log

∣∣∣Σ(θ̂i(λ))
∣∣∣ +

(
n

n− λ

)2

(yi − ȳ)′Σ(ξ̂i(λ))−1(yi − ȳ)

}
,

(25)

where ξ̂i(λ) is the estimator of ξ defined by

ξ̂i(λ) = arg min
�
F (ξ|Si(λ)), (26)

with

Si(λ) =
n

n− λ

{
S − λ

n− λ
(yi − ȳ)(yi − ȳ)′

}
. (27)

The following corollary provides the analytical expression for other model selection cri-

teria.

Corollary 2. Let ξ̂ be the estimator of ξ such that

ξ̂ = arg min
�
F (ξ|S). (28)

Then, AIC, TIC, and EIC under the candidate model M in (21) are given by

AIC = nF (ξ̂|S) + np log(2π) + 2(p+ q);

TIC = AIC − 2(p+ q) + 2F (ξ̂|S)

+tr
{
Ω̂(Σ(ξ̂)−1 ⊗Σ(ξ̂)−1)Q(ξ̂|S)(Σ(ξ̂)−1 ⊗ Σ(ξ̂)−1)

}
−vec(S)′(Σ(ξ̂)−1 ⊗ Σ(ξ̂)−1)Q(ξ̂|S)(Σ(ξ̂)−1 ⊗Σ(ξ̂)−1)vec(S),

10



where

Ω̂ =
1

n

n∑
i=1

vec((yi − ȳ)(yi − ȳ)′)vec((yi − ȳ)(yi − ȳ)′)′,

Q(ξ̂|S) =

{
∂

∂ξ′vec(Σ(ξ))

}{
∂2

∂ξ′∂ξ′F (ξ|S)

}−1 {
∂

∂ξ
vec(Σ(ξ))′

}∣∣∣∣∣
�=�̂

;

EIC = AIC − 2(p+ q) +
n

B

B∑
b=1

tr
{

V (db)Σ(ξ̂(db))
−1

}
, (29)

where

ξ̂(db) = arg min
�
F (ξ|S(db)), (30)

V (db) =
1

n
Y ′

{
Ip − diag(db) +

1

n
(2dbd

′
b − 1nd′

b − db1
′
n)

}
Y , (31)

with

S(db) =
1

n
Y ′

{
diag(db) − 1

n
dbd

′
b

}
Y . (32)

The use of AIC for selecting the number of factors in the explanatory factor model was

discussed by Akaike (1987). TIC for selecting SEM models under the normal distribution

assumption was obtained by Yanagihara (2005). The details leading to the expression for

EIC are provided in Appendix A.7.

5. Numerical Examinations

In this section, we verify the mathematical properties of model selection criteria using

a Monte Carlo method. In particular, we compare CV and CCV criteria with AIC, TIC,

and EIC. Bayesian information criterion (BIC; Schwarz, 1978) and the consistent Akaike’s

information criterion (CAIC; Bozdogan, 1987) are also frequently used for model selection,

but their expectations do not convergence to RPD. Thus, our study will not include BIC and

CAIC.

In designing the Monte Carlo, we let the candidate distribution be multivariate normal as

in the previous section, while the true distribution varies. Let y be the 6× 1 vector defined
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by y = Σ∗1/2ε, where

Σ∗ =

⎛
⎜⎜⎜⎜⎜⎜⎝

2 1 0 0 0 0
1 2 1 0 0 0
0 1 2 0 0 0
0 0 1 2 1 0
0 0 0 1 2 1
0 0 0 0 1 6

⎞
⎟⎟⎟⎟⎟⎟⎠
.

We use Mardia’s (1970) multivariate skewnesses κ
(1)
3,3 and κ

(2)
3,3 and kurtosis κ

(1)
4 to measure

the departure of the candidate distribution from the true distribution. These are given by

κ
(1)
3,3 = E[(ε′

1ε2)
3], κ

(2)
3,3 = E[(ε′

1ε1)(ε
′
1ε2)(ε

′
2ε2)], κ

(1)
4 = E[(ε′

1ε1)
2] − 48,

where ε1 and ε2 are independent random vectors having the same distribution of ε.

Six populations or true models are created when the elements εj of ε = (ε1, . . . , ε6)
′ are

independently and identically distributed standardized variables from each of the following

six distributions:

1. Normal Distribution: εj ∼ N(0, 1), (κ
(1)
3,3 = κ

(2)
3,3 = 0 and κ

(1)
4 = 0).

2. Laplace Distribution: εj is generated from the Laplace distribution with mean 0 and

standard deviation 1 (κ
(1)
3,3 = κ

(2)
3,3 = 0 and κ

(1)
4 = 18).

3. Uniform Distribution: εj is generated from the uniform distribution on (−1, 1), divided

by the standard deviation 1/
√

3 (κ
(1)
3,3 = κ

(2)
3,3 = 0 and κ

(1)
4 = −7.2).

4. Skew-Laplace Distribution: εj is generated from the skew-Laplace distribution with

location parameter 0, dispersion parameter 1 and skew parameter 1, standardized by

mean 3/4 and standard deviation
√

23/4 (κ
(1)
3,3 = κ

(2)
3,3 ≈ 7.32 and κ

(1)
4 ≈ 19.56).

5. Chi-Square Distribution: εj is generated from the chi-square distribution with 2 degrees

of freedom, standardized by mean 2 and standard deviation 2 (κ
(1)
3,3 = κ

(2)
3,3 = 12 and

κ
(1)
4 = 36).

6. Log-Normal Distribution: εj is generated from the lognormal distribution such that

log εj ∼ N(0, 1/2), standardized by mean e1/4 and standard deviation
√
e1/2(e1/2 − 1)

(κ
(1)
3,3 = κ

(2)
3,3 ≈ 17.64 and κ

(1)
4 ≈ 111.06).

The skew-Laplace distribution was proposed by Balakrishnan and Ambagaspitiya (1994) (for

the probability density function, see e.g., Yanagihara & Yuan, 2005). The distributions in

1, 2, and 3 are symmetric, and distributions in 4, 5, and 6 are skewed.
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A sample of size 20 is generated from y = Σ∗1/2ε. The three candidate models are:

Model 1, M1 : y1, . . . ,y20 ∼ i.i.d. N6(μ, σ
2I6),

Model 2, M2 : y1, . . . ,y20 ∼ i.i.d. N6(μ, (σ
2 − ρ)I6 + ρ161

′
6),

Model 3, M3 : y1, . . . ,y20 ∼ i.i.d. N6(μ, diag(σ2
1 , σ

2
2, σ

2
3, σ

2
4, σ

2
5, σ

2
6)).

Because the sample size n (= 20) is rather small compared with the dimension p (= 6), the

saturated model, i.e., y1, . . . ,y20 ∼ i.i.d. N6(μ,Σ), is not considered here. Since Σ∗ �= Σ(ξ)

for any ξ in any of the candidate models, all the candidate models are misspecified. We use

the K-L discrepancy to select the best model among the three candidates. For each of the

candidate models and distributions, results of Appendix A.3 imply that R1 > 0 and R2 > 0.

Thus, RPD ∈ Gλ in all three models.

The number of replications is chosen as Nr = 10, 000. The following quantities are

evaluated at each replication: CV(λ) with λ = 0.00, 0.01, 0.02, . . . , 0.98, 0.99, 1.00; CCV =

CV(an) with an =
√
n/(n+ 1) =

√
20/21; AIC; TIC; and EIC using B = 1, 000 nested

resamples. For each of the Nr θ̂’s, R =
∑20

i=1 ψ(ui|θ̂) with u1, . . . ,u20 being simulated from

u = Σ∗1/2ε is also obtained, where ui are independent of y1, . . . ,y20. The average of R

across the Nr replications, R̄, is regarded as the risk RPD. Let IC be the average of any

of the above criteria; the relative bias and relative root mean square error (RMSE) of the

criterion are evaluated by

Relative Bias =
R̄ − IC

|R̄| × 100, Relative RMSE =

√∑Nr

l=1(R̄− ICl)2/Nr

|R̄| × 100.

The smallest IC at each replication for a given model is recorded, as are its frequencies

among the 10,000 replications.

Table 1 contains the risks (R̄) of all the candidate models at each true distribution. Model

3 has the smallest risk when the true distribution is normal and uniform; model 2 becomes

the best when the true distribution is Laplace, skew-Laplace, chi-square, or log-normal.

Insert Table 1 around here

Figures 1 and 2 contain the plots of relative biases and RMSEs of CV(λ) against λ,

respectively. Figure 3 contains the frequencies of the model being selected by CV(λ). The

plots in Figure 1 clearly show that there is an λ0 which makes CV(λ) an unbiased estimator

of RPD. In all the figures, the optimal λ0 is close to 1.0 or approximately 1−1/(2n) = 39/40.
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The bias approaches 0 as λ moves towards λ0, and departs from 0 as λ moves away from λ0.

Larger biases of CV(λ) are associated with more unknown parameters or larger multivariate

kurtosis of the true distribution (κ
(1)
4 ). Comparing the plots for Laplace and skew-Laplace

distributions, we may notice that the sizes of multivariate skewnesses κ
(1)
3,3 and κ

(2)
3,3 have little

effect on the bias of CV(λ). Similar to Figure 1, the plots in Figure 2 clearly show that,

regardless of the model and distribution, there exists an λM ∈ (0, 1) such that CV(λM) has

the smallest RMSE. Furthermore, Figure 3 shows that CV(λ) tends to choose model 3 for

smaller λ and model 2 for larger λ.

Insert Figures 1, 2, and 3 around here

Table 2 contains the relative biases, RMSEs, and the frequencies of each of the models

being selected by AIC, TIC, EIC, CV, and CCV criteria. The table clearly shows that the

CCV criterion has the smallest bias among all the criteria. Moreover, the CCV criterion not

only improves the bias of the CV criterion, but also its RMSE. The biases of AIC and TIC

are greater than those of EIC, CV, and CCV criteria. In particular, AIC has a very large

bias when κ
(1)
4 is large. RMSE of EIC tends to be smaller than that of the CV criterion,

although the bias of EIC tends to be greater than that of the CV criterion. Comparing

Tables 1 and 2, CV and CCV select the model with the smallest risk most often. But AIC

and TIC select model 3 most often while the best model changes with the true distribution.

Notice that the frequency of choosing the best model by each criterion varies when the true

distribution changes. Table 3 contains the average frequencies of choosing the best model

by each criterion across all the true models. Among the 5 criteria, CCV chooses the best

model most frequently; EIC and CV also work well.

In addition to the results reported above, several other models were also studied and

similar results were obtained. While the frequency of choosing the best model by each

criterion changes with the true model/distribution, the best criterion is mostly among EIC,

CV and CCV.

Insert Tables 2 and 3 around here

6. Conclusion

In this paper, we defined the class of cross-validatory model selection criterion CV(λ)

(0 ≤ λ ≤ 1), which includes the sample discrepancy function and the ordinary CV criterion
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as special cases. CV(λ) is an increasing function of λ. In particular, under proper conditions,

there exists an λ0 ∈ [0, 1] such that CV(λ0) is unbiased for RPD. Because R1 = O(n−2) and

R2 = γ1 +O(n−2) with γ1 > 0, |R1| tends to be smaller than |R2|. Thus, RPD ∈ Gλ in most

cases. From the viewpoint of second-order asymptotics for the bias, λ = 1−1/(2n)+O(n−2)

is optimal. We found that λ =
√
n/(n+ 1) worked well empirically. In particular, without

estimating any higher-order cumulants, such a λ reduces the bias in CCV to O(n−2). Such

a result is especially valuable with small samples, where any criterion involving higher-order

cumulants will inevitably perform poorly. The Monte Carlo results in the previous section

verify the merit of CCV. In addition to the CCV criterion, other second-order bias-corrected

criteria also exist. Those other criteria were generally obtained under specified models and

distributions. The CCV criterion here is obtained under the general assumption, and can be

applied broadly.

The aim of the CCV criterion is to minimize the bias in estimating RPD. More important

theme is to have a criterion that selects the model with the smallest risk. An unbiased

estimator of RRD does not necessarily lead to the model with the smallest RPD being selected

most frequently. Fortunately, the merits of least bias and selecting the best model both occur

most frequently with CCV. Thus, we recommend the use of the CCV criterion for general

model selection.
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Appendix

A.1. Proof of Theorem 1

Proof of Property 1: We omit the proof because it is easy to verify.

Proof of Property 2: Let Ψi(θ|Y , λ) = Ψ(θ|Y , 1n − λei), and λ1 < λ2. Because θ̂i(λ)

minimizes Ψi(θ|Y , λ), there exist Ψi(θ̂(λ1)|Y , λ1) ≤ Ψi(θ̂(λ2)|Y , λ1) and Ψi(θ̂(λ2)|Y , λ2) ≤

15



Ψi(θ̂(λ1)|Y , λ2). By using these relations we obtain

Ψ(θ̂i(λ1)|Y ) − λ1ψ(yi|θ̂i(λ1)) = Ψi(θ̂i(λ1)|Y , λ1)

≤ Ψi(θ̂i(λ2)|Y , λ1)

= Ψ(θ̂i(λ2)|Y ) − λ1ψ(yi|θ̂i(λ2))

= Ψi(θ̂i(λ2)|Y , λ2) + (λ2 − λ1)ψ(yi|θ̂i(λ2))

≤ Ψi(θ̂i(λ1)|Y , λ2) + (λ2 − λ1)ψ(yi|θ̂i(λ2))

= Ψ(θ̂i(λ1)|Y ) − λ2ψ(yi|θ̂i(λ1)) + (λ2 − λ1)ψ(yi|θ̂i(λ2)).

Thus,

ψ(yi|θ̂i(λ1)) ≤ ψ(yi|θ̂i(λ2)). (A1)

It follows from (A1) that

CV(λ1) =
n∑

i=1

ψ(yi|θ̂i(λ1)) ≤
n∑

i=1

ψ(yi|θ̂i(λ2)) = CV(λ2).

Consequently, CV(λ) is an increasing function of λ.

Proof of Property 3: Because θ̂[−i] minimizes
∑n

j �=i ψ(yj|θ), there exists

n∑
j �=i

ψ(yj|θ̂[−i]) ≤
n∑

j �=i

ψ(yj|θ̂).

Thus,

E∗
�[ψ(yj|θ̂[−i])] ≤ E∗

�[ψ(yj|θ̂)], (j �= i). (A2)

Let θ̂n be the minimizer of the discrepancy function based on y1, . . . ,yn, and αn = E∗
�[ψ(y1|θ̂n)].

Then αn−1 = E∗
�[ψ(yj |θ̂[−i])] and αn = E∗

�[ψ(yj |θ̂)]. It follows from (A2) that αn−1 ≤ αn for

any n. Thus, αn monotonically increases. Let γ(θ) = E∗
�[ψ(y|θ)]. Then limn→∞ αn = γ(θ0)

follows from θ̂n
a.s.−→ θ0. Therefore, αn is bounded and monotonically increases. This directly

implies that αn ≤ γ(θ0) and

E∗
�[CV(0)] ≤ nE∗

�[ψ(y|θ0)]. (A3)

On the other hand, if θ0 is the global minimum of γ(θ), there must exist γ(θ0) ≤ γ(θ) for

any θ. Thus, γ(θ0) ≤ E∗
�[ψ(yi|θ̂[−i])], or equivalently

nE∗
�[ψ(y|θ0)] ≤ E∗

�[CV(1)]. (A4)
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Equations (A3) and (A4) imply nE∗
�[ψ(y|θ0)] ∈ Gλ.

Proof of Property 4: We will first show E∗
�[CV] ≤ RPD, where RPD is given by

(5). Let θ̂� be the minimizer of Ψ(θ|U ). Because U and Y are identically distributed,

E∗
�E

∗
�[Ψ(θ̂� |Y )] = E∗

�E
∗
�[Ψ(θ̂|U )] = RPD. The property E∗

�[CV(0)] ≤ RPD follows by

noticing that CV(0) = Ψ(θ̂|Y ) ≤ Ψ(θ̂� |Y ). We next show that RPD ≤ E∗
�[CV(1)] when

R1 + R2/2 ≥ 0, where R1 and R2 are given by (11). Notice that CV(1) = CV and

θ̂[−i] and yi are independent. Because the distribution of ui is identical to that of yi,

E∗
�[ψ(yi|θ̂[−i])] = E∗

�E
∗
�[ψ(ui|θ̂[−i])]. Applying the Taylor expansion at θ̂, we obtain

n∑
i=1

ψ(ui|θ̂[−i]) =

n∑
i=1

ψ(ui|θ̂) +

n∑
i=1

g(ui|θ̂)′(θ̂[−i] − θ̂)

+
1

2

n∑
i=1

(θ̂[−i] − θ̂)′H(ui|θ̄i(δi))(θ̂[−i] − θ̂),

where θ̄i(δi) is given by (12). Thus,

E∗
�[CV] = RPD +R1 +

1

2
R2. (A5)

Consequently, RPD ≤ E∗
�[CV(1)] whenever R1 +R2/2 ≥ 0.

A.2. Expansions of Biases of CV and TIC

Let

L(y|ϑ) =

(
∂

∂θ
⊗ ∂2

∂θ∂θ′

)
ψ(y|θ)

∣∣∣∣
�=�

,

and

K(θ) = E∗
�[L(y|θ)], K̂(θ̂) =

1

n

n∑
i=1

L(yi|θ̂).

Because θ̂i(λ) is the minimizer of Ψ(θ|Y , 1n − λei), there exists

n∑
j=1

g(yj|θ̂i(λ)) = λg(yi|θ̂i(λ)), (A6)

where g(·|·) is given by (7). The following stochastic expansion is needed

θ̂i(λ) = θ̂ +
λ

n
z1,i +

λ2

n2
z2,i +Op(n

−3), (A7)

where λ = O(1) and z1,i and z2,1 are to be determined. Applying the Taylor expansion to

both sides of (A6) at θ̂, replacing θ̂i(λ) by (A7), and comparing the O(n−1) and O(n−2)
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terms in both sides of the resulting equation in sequence, we obtain

z1,i = Ĵ(θ̂)−1g(yi|θ̂), z2,i = Ĵ(θ̂)−1

{
H(yi|θ̂)z1,i − 1

2
K̂(θ̂)vec(z1,iz

′
1,i)

}
, (A8)

where H(·|·) and Ĵ(θ̂) are given by (7) and (18), respectively. Notice that θ̂[−i] = θ̂i(1).

Substituting λ = 1 into (A7), we obtain the stochastic expansion of θ̂[−i] as

θ̂[−i] = θ̂ +
1

n
z1,i +

1

n2
z2,i +Op(n

−3). (A9)

In order to calculate the asymptotic expansion of the bias of the CV criterion in (6), we

first substitute the stochastic expansion of θ̂[−i] in (A9) into R1 and R2, where R1 and R2

are given by (11); we then use the relation θ̄i(δi)
a.s.−→ θ0, where θ̄i(δi) and θ0 are given by

(12) and (9), respectively. These two steps yield

R1 =
1

n

n∑
i=1

E∗
�

[
r(θ̂)′

(
z1,i +

1

n
z2,i

)]
+O(n−2),

R2 =
1

n2

n∑
i=1

E∗
�

[
z′

1,iJ(θ0)z
′
1,i

]
+O(n−2),

where r(·) and J(·) are given by (8). Notice that
∑n

i=1 g(yi|θ̂) = 0q due to θ̂ being the

minimizer of Ψ(θ|Y ). Thus,

n∑
i=1

E∗
�

[
r(θ̂)′z1,i

]
= E∗

�

[
r(θ̂)′Ĵ(θ̂)−1

n∑
i=1

g(yi|θ̂)

]
= 0.

Moreover, from θ̂
a.s.−→ θ0 and r(θ0) = 0q, the second term in the expansion of R1 is expanded

as
1

n2

n∑
i=1

E∗
�

[
r(θ̂)′z2,i

]
=

1

n2

n∑
i=1

E∗
� [r(θ0)

′zi,2] +O(n−2) = O(n−2).

Consequently, R1 = O(n−2). Using θ̂
a.s.−→ θ0 and Ĵ(θ̂)

a.s.−→ J(θ0), R2 is expanded as

R2 =
1

n2

n∑
i=1

E∗
�

[
g(yi|θ0)

′J(θ0)
−1J(θ0)J(θ0)

−1g(yi|θ0)
]
+O(n−2) =

1

n
γ1 +O(n−2),

where γ1 is given by (13). Substituting the above two results into (A5) yields the following

theorem.

Theorem A.1. When |βabcd| < ∞ holds (1 ≤ a, b, c, d ≤ q), the bias of the CV criterion is

expanded as

RPD − E∗
�[CV] = − 1

2n
γ1 +O(n−2). (A10)
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Using Theorem A.1, we can easily obtain an expansion of the bias of TIC in (17). Ap-

plying the Taylor expansion of CV at θ̂ yields

CV = Ψ(θ̂|Y ) + C1 +
1

n

(
C2 +

1

2
C3

)
+Op(n

−2),

where C1, C2, and C3 are given by

C1 =
1

n

n∑
i=1

g(yi|θ̂)′z1,i, C2 =
1

n

n∑
i=1

g(yi|θ̂)′z2,i, C3 =
1

n

n∑
i=1

z′
1,iH(yi|θ̂)′z1,i. (A11)

Notice that C1 = tr{Î(θ̂)Ĵ(θ̂)−1} and TIC = Ψ(θ̂|Y ) + tr{Î(θ̂)Ĵ(θ̂)−1}. Thus,

E∗
�[TIC] = E∗

�[CV] − 1

n

{
E∗
�[C2] +

1

2
E∗
�[C3]

}
+O(n−2).

By using θ̂
a.s.−→ θ0, Ĵ(θ̂)

a.s.−→ J(θ0), and K̂(θ̂)
a.s.−→ K(θ0), we obtain

E∗
�[C2] =

1

n

n∑
i=1

{
E∗
�

[
g(yi|θ̂)′Ĵ(θ̂)−1H(yi|θ̂)Ĵ(θ̂)−1g(yi|θ̂)

]

−1

2
E∗
�

[
g(yi|θ̂)′Ĵ(θ̂)−1K̂(θ̂)

{
[Ĵ(θ̂)−1g(yi|θ̂)] ⊗ [Ĵ(θ̂)−1g(yi|θ̂)]

}]}
= γ2 − 1

2
γ3 +O(n−1),

E∗
�[C3] =

1

n

n∑
i=1

E∗
�

[
g(yi|θ̂)′Ĵ(θ̂)−1H(yi|θ̂)Ĵ(θ̂)−1g(yi|θ̂)

]
= γ2 +O(n−1),

where

γ2 = E∗
�

[
g(y|θ0)

′J(θ0)
−1H(y|θ0)J(θ0)

−1g(y|θ0)
]
,

γ3 = E∗
�

[
g(y|θ0)

′J(θ0)
−1K(θ0)

{
[J(θ0)

−1g(y|θ0)] ⊗ [J(θ0)
−1g(y|θ0)]

}]
.

Thus,

E∗
�[TIC] = E∗

�[CV] − 1

2n
(3γ2 − γ3) +O(n−2). (A12)

Equations (A10) and (A12) lead to the following theorem.

Theorem A.2. When |βabcd| <∞ holds (1 ≤ a, b, c, d ≤ q), the bias of TIC is expanded as

RPD − E∗
�[TIC] = − 1

2n
(γ1 − 3γ2 + γ3) +O(n−2).
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A.3. Proof of Example 1

The discrepancy function corresponding to the multivariate normal distribution is

ψ(y|θ) =
1

2

{
p log(2π) + log |Σ| + (y − μ)′Σ−1(y − μ)

}
,

where θ = (μ′, vech(Σ)′) with vech(A) being the vector of staking the distinct elements of

a symmetric matrix A columnwise. Let Dp be the duplication matrix such that vec(A) =

Dpvech(A) (see Magnus & Neudecker, 1999, p. 48). Then, the corresponding r(θ) in (8) is

given by

r(θ) =
1

2

(
Ip D′

pDp

)( 2Σ−1(μ − μ∗)
vech(Σ−1 −Σ−1{Σ∗ + (μ − μ∗)(μ − μ∗)′}Σ−1)

)
.

It is well known that the MLE of θ is θ̂ = (ȳ′, vech(S)′)′, where ȳ and S are the sample mean

and covariance matrix given by (23). On the other hand, the ith jackknife estimator of θ is

θ̂[−i] = (ȳ′
[−i], vech(S[−i])

′)′, where ȳ[−i] = (n−1)−1
∑n

j �=i yj and S [−i] = (n−1)−1
∑n

j �=i(yj −
ȳ[−i])(yj − ȳ[−i])

′. Fujikoshi et al. (2003) gives

ȳ[−i] = ȳ − 1

n− 1
(yi − ȳ), S [−i] =

n

n− 1

{
S − 1

n− 1
(yi − ȳ)(yi − ȳ)′

}
.

Therefore, θ̂[−i] − θ̂ becomes

θ̂[−i] − θ̂ =
1

n− 1

( −(yi − ȳ)

vech(S) − n

n− 1
vech((yi − ȳ)(yi − ȳ)′)

)
.

Notice that vech(A)′D′
pDpvech(B) = tr(B′A) = tr(A′B) for symmetric matrices A and

B. It follows from the definition of R1 in (11) that

R1 =
n

2(n− 1)2

{
E∗
�

[
tr(Σ∗S−1)

]
+ E∗

�

[
(ȳ − μ∗)′S−1(ȳ − μ∗)

]− p
}
.

Jensen’s inequality implies E∗
�[tr(Σ

∗S−1)] ≥ np/(n− 1) > p, and thus R1 > 0.

A.4. Proof of Theorem 2

It follows from (A9) and (A7) that

θ̂i(λ) = θ̂[−i] +
1

n
(λ− 1)z1,i +

1

n2
(λ2 − 1)z2,i +Op(n

−3), (λ = O(1)), (A13)
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where z1,i and z2,i are given by (A8). Using the expansion (A13) after applying the Taylor

expansion of CV(λ) at θ̂[−i] yields

CV(λ) = CV + (λ− 1)C1 +
1

n

{
(λ2 − 1)C2 +

1

2
(λ− 1)2C3

}
+Op(n

−3),

where C1, C2 and C3 are given by (A11). Notice that E∗
�[C1] = O(1), E∗

�[C2] = O(1) and

E∗
�[C3] = O(1). Using the expansion of E∗

�[CV] in (A10), we obtain

E∗
�[CV(λ)] = RPD + (λ− 1)E∗

�[C1]

+
1

2n

{
γ1 + 2(λ2 − 1)E∗

�[C2] + (λ− 1)2E∗
�[C3]

}
+O(n−2),

where γ1 is given by (13). The first equation in (14) follows by noticing that E∗
�[C1] =

γ1 +O(n−1). If λ = 1 +O(n−1), then λ− 1 = O(n−1) and λ2 − 1 = O(n−1). Consequently,

E∗
�[CV(λ)] = RPD +

1

2n

{
γ1 + 2n(λ− 1)E∗

�[C1]
}

+O(n−2),

and from which the second equation in (14) follows.

A.5. Derivation of Redefining EIC

Notice that the bth bootstrap resample y�
b,i (i = 1, . . . , n) is one of y1, . . . ,yn. Let

db = (db1, db2, . . . , dbn) with dbi equal to the number of times yi appeares in the bth bootstrap

resample. Then
n∑

i=1

ψ(y�
b,i|θ) =

n∑
i=1

dbiψ(yi|θ) = Ψ(θ|Y ,db).

Thus, θ̂
�

b = θ̂(db). Consequently,

n∑
i=1

ψ(yi|θ̂
�

b) −
n∑

i=1

ψ(y�
b,i|θ̂

�

b) =

n∑
i=1

ψ(yi|θ̂(db)) −
n∑

i=1

dbiψ(yi|θ̂(db))

=
n∑

i=1

(1 − dbi)ψ(yi|θ̂(db))

= Ψ(θ̂(db)|Y , 1n − db). (A14)

Substituting (A14) into (19) yields equation (20). The distribution property db ∼ Multin(n;

1/n, . . . , 1/n) is the definition of the bootstrap sampling.

A.6. Proof of Corollary 1
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For the discrepancy function given by (22), we obtain by direct calculation

∂

∂μ
Ψ(θ|Y , 1n − λei) = −2Σ(ξ)−1 {(n− λ)μ − (nȳ − λyi)} ,

∂

∂ξ
Ψ(θ|Y , 1n − λei) =

∂

∂ξ
(n− λ)F (ξ|M i(μ, λ)),

where F (ξ|·) is given by (24) and

M i(μ, λ) =
1

n− λ

{
n∑

j=1

(yj − μ)(yj − μ)′ − λ(yi − μ)(yi − μ)′
}
.

Denote θ̂i(λ) = (μ̂i(λ)′, ξ̂i(λ)′)′. Solving the equation ∂Ψ(θ|Y , 1n − λei)/∂μ = 0p leads to

μ̂i(λ) = ȳ − λ

n− λ
(yi − ȳ).

Notice that

yj − μ̂i(λ) =

⎧⎪⎨
⎪⎩

n

n− λ
(yi − ȳ) (j = i)

yj − ȳ +
λ

n− λ
(yi − ȳ) (j �= i)

. (A15)

It follows from (A15) that M i(μ̂i(λ), λ) = Si(λ), where Si(λ) is given by (27). Equation

(22) implies

CV(λ) = np log(2π) +

n∑
i=1

{
log |Σ(ξ̂i(λ))| + (yi − μ̂i(λ))′Σ(ξ̂i(λ))−1(yi − μ̂i(λ))

}
,

where ξ̂i(λ) is given by (26). Substituting (A15) into the above equation yields (25).

A.7. Derivation of EIC in Corollary 2

Notice that θ̂(db) is the minimizer of Ψ(θ|Y ,db) and 1′
ndb = n. With the discrepancy

function given by (22), by direct calculations we obtain

∂

∂μ
Ψ(θ|Y ,db) = −2Σ(ξ)−1(Y ′db − nμ),

∂

∂ξ
Ψ(θ|Y ,db) =

∂

∂ξ
(n− λ)F (ξ|M (μ,db)),

where F (ξ|S) is given by (24) and

M(μ,db) =
1

n
(Y − 1nμ′)′diag(db)(Y − 1nμ′).

Denote θ̂(db) = (μ̂(db)
′, ξ̂(db)

′)′. Solving the equation ∂Ψ(θ|Y ,db)/∂μ = 0p leads to

μ̂(db) =
1

n
Y ′db. (A16)
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Substituting (A16) into M(μ,db) yields M i(μ̂(db),db) = S(db), where S(db) is given by

(32). Notice that the EIC under the candidate model M in (21) is

EIC = nF (ξ̂|S) + np log(2π) +
n

B

n∑
i=1

tr
{
M(μ̂(db), 1n − db)Σ(ξ̂(db))

−1
}
,

where ξ̂ is given by (28). Substituting (A16) into M (μ, 1n−db) yields M(μ̂(db), 1n−db) =

V (db) in (31), which further leads to (29).
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Table 1. Risk of each candidate model

True Distribution Model 1 Model 2 Model 3
1 466.7 464.7 461.5
2 468.9 467.1 470.6
3 466.0 463.9 457.6
4 469.1 467.2 470.7
5 471.0 469.2 480.3
6 475.7 474.0 493.8
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Table 2. Relative biases, RMSEs, and selection frequencies of five information criteria

True Model 1 Model 2 Model 3
Dist. Criterion Bias (RMSE Freq.) Bias (RMSE Freq.) Bias (RMSE Freq.)

AIC 0.52 (4.3 0.0) 1.13 (4.4 43.1) 0.99 (4.2 56.9)
TIC -0.51 (4.7 1.6) 0.12 (4.8 35.7) 0.62 (4.4 62.7)

1 EIC 0.05 (4.3 11.4) 0.08 (4.4 31.6) 0.16 (4.2 57.0)
CV -0.08 (4.3 13.5) -0.10 (4.4 31.8) -0.16 (4.2 54.6)

CCV 0.02 (4.3 12.4) 0.02 (4.4 31.5) 0.05 (4.2 56.1)
AIC 1.40 (6.3 0.0) 2.04 (6.6 37.2) 4.21 (7.0 62.8)
TIC -2.71 (8.8 1.7) -2.04 (8.8 26.3) 2.25 (6.6 72.0)

2 EIC 0.30 (6.5 19.6) 0.36 (6.7 38.6) 1.08 (6.4 41.7)
CV -0.04 (6.7 24.4) -0.07 (6.9 40.2) -0.19 (7.0 35.4)

CCV 0.09 (6.7 22.8) 0.09 (6.9 40.0) 0.22 (6.8 37.2)
AIC 0.16 (3.1 0.0) 0.74 (3.2 47.0) -0.50 (3.2 53.0)
TIC 0.68 (3.1 1.2) 1.29 (3.3 43.8) 0.11 (3.2 55.1)

3 EIC -0.02 (3.0 4.4) -0.02 (3.1 22.7) -0.20 (3.1 72.8)
CV -0.08 (3.0 3.7) -0.11 (3.1 20.9) -0.15 (3.1 75.3)

CCV 0.01 (3.0 3.3) 0.00 (3.1 20.7) -0.01 (3.1 76.0)
AIC 1.39 (6.4 0.0) 2.02 (6.6 37.8) 4.16 (6.9 62.2)
TIC -2.71 (9.6 1.8) -2.08 (9.5 26.8) 2.37 (6.8 71.5)

4 EIC 0.27 (6.8 19.7) 0.30 (6.9 38.5) 1.02 (6.7 41.9)
CV -0.11 (7.1 24.7) -0.15 (7.3 39.3) -0.33 (7.6 36.0)

CCV 0.03 (7.0 22.9) 0.02 (7.2 39.2) 0.12 (7.3 37.8)
AIC 2.06 ( 7.7 0.0) 2.74 ( 8.0 32.2) 7.12 ( 9.6 67.8)
TIC -4.34 (12.8 1.6) -3.69 (12.7 19.6) 4.46 ( 8.8 78.8)

5 EIC 0.37 ( 8.4 24.2) 0.46 ( 8.5 41.3) 1.73 ( 8.7 34.5)
CV -0.25 ( 9.1 29.4) -0.25 ( 9.4 41.1) -0.55 (10.9 29.5)

CCV -0.07 ( 9.0 27.2) -0.04 ( 9.2 41.2) 0.26 (10.0 31.6)
AIC 4.07 (10.5 0.0) 4.75 (10.9 27.1) 11.65 (13.8 72.9)
TIC -6.10 (20.0 1.1) -5.45 (19.9 13.4) 8.05 (12.4 85.5)

6 EIC 1.22 (12.9 25.6) 1.29 (13.2 42.1) 3.72 (14.4 32.3)
CV -0.21 (16.5 30.6) -0.26 (16.9 42.5) -0.77 (21.9 26.9)

CCV 0.13 (15.5 28.7) 0.13 (15.8 42.3) 1.17 (15.9 29.0)

Table 3. Averages of frequencies of choosing the model having the smallest risk

Criterion AIC TIC EIC CV CCV
Average of Frequencies (%) 40.7 34.0 48.4 48.8 49.1
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Figure 1. Relative biases of cross-validatory model selection criteria
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Figure 2. Relative RMSEs of cross-validatory model selection criteria
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Figure 3. Selection frequencies of cross-validatory model selection criteria
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