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Abstract

In this paper, we consider the exact test statistic for equality of two mean vectors
in the intraclass correlation model with monotone missing data. Simultaneous confi-
dence intervals for all contrasts of two mean vectors are derived by using the idea in
Seo and Srivastava [6]. Finally, to evaluate the procedure proposed by in this paper,
we investigate the power of a test statistic and the width of simultaneous confidence
intervals.
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1 Introduction

In statistical data analysis, we frequently face the matrix of observations with missing
values. EM algorithm by Dempster et al. [1] is a very general iterative algorithm for
maximum likelihood estimation in incomplete-data problems. Since 1977, there have
been many new uses of EM algorithm, as well as further work on its convergence prop-
erties (e.g., McLachran and Krishnan [4]). The procedure to obtain maximum likelihood
estimates from the likelihood equation with missing observations by Newton-Raphson
method is discussed in Srivastava [7].

However both EM algorithm and Srivastava’s method are approximate procedures.
In the case of one sample problem, Seo and Srivastava [6] has dirived the exact test
statistic for the equality of mean components and the simulatanous confidence intervals
for all contrasts in the intraclass correlation model with monotone missing data. When
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the missing observations are of the non-monotone type, they also have given the asymp-
totic simultaneous confidence intervals by usual maximum likelihood ratio method and
an iterative numerical method in Srivastava [7] and Srivastava and Carter [8]. The max-
imum likelihood estimator for an intraclass correlation coefficient in a bivariate normal
distribution, when some observations on either of the variables are missing, has been
discussed by Konishi and Shimizu [3] and Minami and Shimizu [5].

In this paper, we discuss an extention to the procedure proposed by Seo and Srivastava
[6]. We consider the testing for equality and the simultaneous confidence intervals of two
mean vectors in repeated measures with monotone missing data. When the observations
are complete, it is well known that Hotelling’s T 2-statistic (see, Hotelling [2]) is used as
the usual test statistic. Recently, when the missing observations are occur, Yu et al. [9]
developed a pivotal quantity based on maximum likelihood estimators, and derived its
approximate distribution to make inferential procedures. First, in Section 2, we give an
unbiased estimation of unknown parameters σ2 and ρ using the idea in Seo and Srivastava
[6] in the case of one-sample problem. In Section 3, we derive the exact test statistic and
the simultaneous confidence intervals which are an extension of the results in Seo and
Srivastava [6]. In Section 4, to evaluate our procedure, the power of the test statistic are
presented. Finally, in Section 5, we investigate the width of our simultaneous confidence
intervals by numerical examinations.

2 Estimation of parameters

Let x
(i)
1 , x

(i)
2 , . . . , x

(i)

n(i) be the sample vectors from the i-th population (i = 1, 2). Also,
we assume that

x
(i)
1 , x

(i)
2 , . . . , x

(i)

n(i)

i.i.d.∼ Np(µi,Σ
(i)),

where µi = (µ(i)
1 , µ

(i)
2 , . . . , µ

(i)
p )′. Further we assume that Σ(i) = Σ and Σ has the uniform

covariance structure, that is,

Σ = σ2


1 ρ · · · ρ

ρ 1
...

...
. . . ρ

ρ · · · ρ 1

 = σ2[(1 − ρ)Ip + ρ1p1′
p],

where Ip is a p× p identity matrix, 1p = (1, 1, . . . , 1)′ is a p-vector and σ2, ρ ∈ [−1/(p−
1), 1] are unknown parameters.

We consider the case when the missing observations are of the monotone-type. Our
observations {x(i)

`j } can be written, without loss of generality, in the following form:

x
(i)
11 x

(i)
12 · · · · · · x

(i)

1n
(i)
1

...
... · · · x

(i)

2n
(i)
2

∗
...

... · · · ∗ ∗
x

(i)
p1 · · · x

(i)

pn
(i)
p

∗ ∗


,
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where n
(i)
1 ≥ n

(i)
2 ≥ · · · ≥ n

(i)
p and “∗” means missing component. We shall consider

the case n
(i)
1 = n

(i)
2 (≡ n(i)). To provide a test or simultaneous confidence intervals, we

rewrite the observations in the following form:

x
(i)
11 x

(i)
12 · · · x

(i)

1n(i)

...
... · · ·

...
...

... · · · x
(i)

p
(i)
n n(i)

... x
(i)

p
(i)
2 2

∗ ∗

x
(i)

p
(i)
1 1

∗ ∗ ∗


,

where p ≡ p
(i)
1 ≥ p

(i)
2 ≥ · · · ≥ p

(i)
n . Since n

(i)
1 = n

(i)
2 , we note that p

(i)
n ≥ 2.

Writing x
(i)
j = (x(i)

1j , x
(i)
2j , . . . , x

(i)

p
(i)
j j

)′, we find that

x
(i)
j

i.d.∼ N
p
(i)
j

(µij , Σj), j = 1, 2, . . . , n(i),

where µij = (µ(i)
1 , µ

(i)
2 , . . . , µ

(i)

p
(i)
j

)′ and Σj = σ2[(1 − ρ)I
p
(i)
j

+ ρ1
p
(i)
j

1′
p
(i)
j

]. Let C
(i)
j be a

(p(i)
j − 1) × p

(i)
j matrix such that C

(i)
j C

(i)′

j = I
p
(i)
j −1

and C
(i)
j 1

p
(i)
j

= 0. Clearly, then

y
(i)
j = C

(i)
j x

(i)
j ∼ N

p
(i)
j −1

(C(i)
j µij , γ

2I
p
(i)
j −1

),

where γ2 ≡ σ2(1 − ρ). We shall write C : (p − 1) × p for C
(i)
1 , since p

(i)
1 ≡ p. C has the

following form:

C =


1√
2

− 1√
2

0 · · · 0
1√
6

1√
6

− 2√
6

· · · 0
...

...
...

1√
p(p−1)

1√
p(p−1)

1√
p(p−1)

· · · − p−1√
p(p−1)

 .

And put n`+1 = mini=1,2{n(i)
`+1}, ` = 1, 2, . . . , p − 1, then sample means of transfor-

mation data are given by

y
(i)
`· =

1
n`+1

n`+1∑
j=1

y
(i)
`j ,

and an unbiased estimator of γ2 is given by

fγ̂2 =
2∑

i=1

p−1∑
`=1

n`+1∑
j=1

(
y

(i)
`j − y

(i)
`·

)2
, f = 2

(
p−1∑
`=1

n`+1 − p + 1

)
.

We note that fγ̂2/γ2 is distributed as χ2 distribution with f degrees of freedom.
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3 An exact test statistic and simultaneous confidence in-
tervals

Let sample mean vectors for the i-th population be y(i) = (y(i)
1· , y

(i)
2· , . . . , y

(i)
p−1·)

′, then we
can obtain that

E(y(1) − y(2)) = C(µ1 − µ2) ≡ Cδ12,

Cov(y(1) − y(2)) = 2γ2

 n−1
2 0

. . .
0 n−1

p

 ≡ 2γ2V ,

Therefore an exact test statistic T 2
12 is given by

T 2
12 ≡ (y(1) − y(2))′V −1(y(1) − y(2))

2γ̂2
. (3.1)

T 2
12/[2(p− 1)] is distributed as F distribution with p− 1 and f degrees of freedom under

the null hypothesis.
Next, we consider the simultaneous confidence intervals of a′δ12 for a ∈ R∗

p ≡ Rp −
{0}, a′1p = 0. Since a′1p = 0, we can choose ã ∈ R∗

p−1 such that a′ = ã′C. Therefore we
can obtain the simultaneous confidence intervals of a′δ12 with simultaneous confidence
level 1 − α

a′δ12 ∈
[
ã′(y(1) − y(2)) ±

√
E

]
, ∀a ∈ R∗

p, (3.2)

where E = 2t2(α)γ̂2ã′V ã and t2(α) is the upper 100α percentage point of T 2
12 statistic

in (3.1).

4 Power of the test statistic

The power of a test statistic β is given by

Pr
(
T 2

12 > t2(α) | µ1 6= µ2

)
= β. (4.1)

Since T 2
12 statistic in (3.1) is essentially distributed as central F distribution under the

null hypothesis, the distribution of T 2
12 in (3.1) under the alternative hypotheses is non-

central F distribution with p− 1 and f degrees of freedom and non-centrality parameter
ξ2. Non-centrality parameter ξ is given by

ξ =
√

(µ1 − µ2)′C
′(2γ̂2V )−1C(µ1 − µ2).

Therefore we can obtain the power by integrating probability density function of non-
central F distribution. Put σ2 = 1, ρ = 0.5, α = 0.05, then the five patterns (1) ∼ (5)
are as follows:

(1) complete case: n1 = n2 = n3 = n4 = 40

(2) incomplete case: n1 = n2 = 40, n3 = 30, n4 = 20, |µ(1)
1 − µ

(2)
1 | 6= 0

(3) incomplete case: n1 = n2 = 40, n3 = 30, n4 = 20, |µ(1)
3 − µ

(2)
3 | 6= 0
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(4) incomplete case: n1 = n2 = 40, n3 = 30, n4 = 20, |µ(1)
4 − µ

(2)
4 | 6= 0

(5) complete case: n1 = n2 = n3 = n4 = 20 (ignoring missing part of (2) ∼ (4)).

Five cases of (1) ∼ (5) are compared. Figure 1 presents the result of these calculations.
The power in (4.1) of T 2

12 statistic in (3.1) is larger than the one of the earlier procedure

|µ(1)
` − µ

(2)
` |

power

H(1)

@
(2)

A
A
A
(3)

H
(4)

H
(5)

Figure 1. Power of the test statistic

ignoring missing part. In particular, when the first components of two mean vectors
having the most large sample sizes are not the same, the power of the procedure proposed
by in this paper is good. Even for the forth components the power of T 2

12 statistic in
(3.1) is larger than the one of the earlier procedure.

5 Numerical example

Finally, to evaluate the procedure proposed by in this paper, we compare the width of
simultaneous confidence intervals in (3.2). Parameters are as follows:

µ1 =


0
0
0
0

 , µ2 =


m1

m2

m3

m4

 , σ2 = 1, 4, 9, ρ = 0.1, 0.5, 0.9,

where m` (` = 1, 2, 3, 4) are constants. At first, the three cases of (i), (ii) and (iii) are
compared. (i), (ii) and (iii) are as follows:

(i) n1 = n2 = n3 = n4 = 20 (complete case)
x

(i)
11 x

(i)
12 · · · x

(i)
1,20

...
...

...
...

...
...

x
(i)
41 x

(i)
42 · · · x

(i)
4,20

 .
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(ii) n1 = n2 = 40, n3 = 30, n4 = 20 (incomplete case)
x

(i)
11 x

(i)
12 · · · x

(i)
1,20 · · · x

(i)
1,30 · · · x

(i)
1,40

...
...

...
... x

(i)
2,40

...
...

... · · · x
(i)
3,30 ∗ ∗

x
(i)
41 x

(i)
42 · · · x

(i)
4,20 ∗ ∗ ∗ ∗

 .

(iii) n1 = n2 = n3 = n4 = 40 (complete case)
x

(i)
11 x

(i)
12 · · · x

(i)
1,20 · · · x

(i)
1,30 · · · x

(i)
1,40

...
...

...
...

...
...

...
...

...
...

x
(i)
41 x

(i)
42 · · · x

(i)
4,20 · · · x

(i)
4,30 · · · x

(i)
4,40

 .

(ii)-m`, (` = 1, 2, 3, 4) is the width of the simultaneous confidence intervals for changing
values of m`. For example, the case of (ii)-m3, we calculate the

√
E by the 10, 000 Monte

Carlo simulation for m1 = m2 = m4 = 0, m3 6= 0. From Table 1, in the case of (ii)-m4,
we note that the width of the simultaneous confidence intervals are shorter than the
ones of the earlier procedure (i). For the case of (ii)-m1, our procedure is very near the
complete case (iii). Since γ2 = σ2(1 − ρ), when the correlation coefficient ρ is large, the
width of the simultaneous confidence intervals is short and when the variance σ2 is large,
the width of the simultaneous confidence intervals is long. Therefore our procedure is
very useful for the case the observations are of the monotone-type missing.

σ2 ρ (i) (ii)-m4 (ii)-m3 (ii)-m1 (iii)
0.1 0.849 0.778 0.669 0.598 0.597

1 0.5 0.633 0.580 0.498 0.446 0.445
0.9 0.283 0.259 0.223 0.199 0.199
0.1 3.398 3.114 2.675 2.392 2.387

4 0.5 2.532 2.321 1.993 1.783 1.779
0.9 1.132 1.038 0.891 0.797 0.796
0.1 7.645 7.006 6.018 5.383 5.372

9 0.5 5.698 5.222 4.485 4.012 4.003
0.9 2.548 2.335 2.006 1.794 1.790

Table 1. the widths of the simultaneous confidence intervals
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