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Abstract

The cross-validation (CV) criterion is known to be a second-order unbiased estimator

of the risk function measuring the discrepancy between the candidate model and the true

model, as well as the generalised information criterion (GIC) and the extended information

criterion (EIC). In the present paper, we show that the 2kth-order unbiased estimator

can be obtained using a linear combination from the leave-one-out CV criterion to the

leave-k-out CV criterion. The proposed scheme is unique in that a bias smaller than that

of a jackknife method can be obtained without any analytic calculation, i.e., it is not

necessary to obtain the explicit form of several terms in an asymptotic expansion of the

bias. Furthermore, the proposed criterion can be regarded as a finite correction of the

bootstrap iterative type of CV criterion.
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1. Introduction

Let y1, . . . ,yn be the p-dimensional independent random vectors from y, where n is

the sample size. Assume that y is a random vector having an unknown probability density

function ϕ(y). Hence, the true model is expressed as

Mϕ : y1, . . . ,yn ∼ i.i.d. ϕ(y). (1.1)
1Corresponding author, E-mail: yanagi@math.sci.hiroshima-u.ac.jp
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We consider a family of parametric models F = {f(y|θ); θ ∈ Θ ⊂ R
q}, where θ =

(θ1, . . . , θq)
′ is the q-dimensional vector of unknown parameters. A candidate model is

expressed as

M : y1, . . . ,yn ∼ i.i.d. f(y|θ). (1.2)

The best model is chosen by minimizing the risk function of the model. The risk

function is based on the predictive discrepancy between f(y|θ̂) and ϕ(y). Here, θ̂ is

an estimator of θ, which is obtained by minimizing the discrepancy between M and Mϕ.

These two discrepancies are sometimes different, for example, θ is estimated by a penalized

log-likelihood function, and the risk function is generated by the Kullback-Leibler (K-L)

discrepancy (Kullback & Leibler, 1951). Therefore, we assume that the two discrepancies

are not always the same. Several estimates of the risk function have been proposed,

e.g., the cross-validation (CV) criterion (Stone, 1974, 1977), the generalised information

criterion (GIC; Konishi & Kitagawa, 1996) and the extended information criterion (EIC;

Ishiguro, Sakamoto & Kitagawa, 1997). The three criteria are the second-order unbiased

estimators of the risk function, i.e., the biases of criteria are O(n−2). The purpose of the

present paper is to propose a higher order unbiased estimator of the risk function without

complicated analytic calculations.

A bias correction is generally achieved by subtracting an estimated bias from the

target estimator. The estimated bias usually depends on estimators of the higher-order

cumulants of ϕ. Note that it is difficult to obtain good estimates of the higher-order

cumulants even when n is relatively large (see Yanagihara, 2007, for the case of kurtosis).

Therefore, in the present paper, we attempt to reduce the bias of the CV criterion without

estimating higher-order cumulants.

The CV criterion is based on the leave-one-out concept. A leave-k-out CV criterion

(see e.g., Shao, 1993) can also be proposed by extending this concept. Using a linear

combination from the leave-one-out CV criterion to the leave-k-out CV criterion, we

propose a bias-corrected CV criterion, which becomes the 2kth-order unbiased estimator

of the risk function, i.e., the bias of the proposed criterion is O(n−2k). The proposed

scheme is unique in that a bias that is smaller than that of a jackknife method can be

obtained without any analytic calculation, i.e., it is not necessary to obtain the explicit

form of several terms in an asymptotic expansion of the bias. We can sometimes reduce the

bias by the bootstrap iteration (see e.g., Efron, 1983; Hall & Martin, 1988; Hall, 1992, p.
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28). The bias-corrected criterion obtained by the kth bootstrap iteration is the (k+1)th-

order unbiased estimator for the risk function. However, the proposed criterion is the

2kth-order unbiased estimator when we use the leave-j-out CV criterion for j = 1, . . . , k.

We will see that coefficients of the kth bootstrap iteration are asymptotically the same

as those of the kth bias-corrected CV criterion. In other words, the coefficients of the

kth bias-corrected CV criterion are finitely adjusted versions of the coefficients of the kth

bootstrap iteration.

The remainder of the present paper is organized as follows. In Section 2, we propose

the kth bias-corrected CV criterion by using a linear combination from the leave-one-out

CV criterion to the leave-k-out CV criterion. Then, we describe the relation between the

proposed criterion and the bias-corrected criterion obtained by bootstrap iteration. In

Section 3, we investigate the performances of the proposed criteria by conducting numer-

ical simulations. In Section 4, we present a discussion and our conclusions. Technical

details are provided in the Appendix.

2. Higher-Order Bias-Corrected CV

2.1. Preliminary

Assume that ψ(y|θ) is a discrepancy function for the candidate model M in (1.2). A

typical example is the K-L type, i.e., ψ(y|θ) = − log f(y|θ). Let Ik be a set of indices on

observation vectors, which is given by

Ik = {i1, . . . , ik ∈ N : 1 ≤ i1 < · · · < ik ≤ n}.

The leave-k-out estimator of θ is defined by

θ̂[−Ik ] = arg min
�

∑
i/∈Ik

ψ(yi|θ). (2.1)

Note that θ̂[−I0] and θ̂[−I1] denote the ordinary estimator θ̂ obtained by the full sample

Y = (y1, . . . ,yn)
′ and the ith jackknife estimator θ̂[−i] obtained by ith jackknife sample,

which is derived from Y by deleting yi. It is easy to see that θ̂ is the maximum likelihood

estimator (MLE) of θ when ψ(y|θ) = − log f(y|θ) and that θ̂ is the penalized MLE, if

ψ(y|θ) = − log f(y|θ) + λπ(θ)/2, where π(θ) is some function of θ and λ is the hyper-

parameter. Basu et al. (1996) proposed the density power divergence with the tuning
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parameter α, which includes the K-L divergence and the L2 distance as special cases, i.e.,

α = 0 and 1, respectively. The corresponding discrepancy is given by

ψ(y|θ) = − 1

α
f(y|θ)α +

1

1 + α

∫
{f(x|θ)}1+αdx. (2.2)

As other discrepancies, we can also use, for example, the residuals of sum of square

(RSS), the quasi-likelihood (Wedderburn, 1974), the extended quasi-likelihood (Nelder &

Pregibon, 1987), and the γ-divergence (Fujisawa & Eguchi, 2008).

We evaluate the fit of the model by another discrepancy γ(y|θ). Note that ψ(y|θ)

and γ(y|θ) are not always the same. For example, we estimate θ by the penalized log-

likelihood ψ(y|θ) = − log f(y|θ)+λπ(θ) and evaluate the model by the K-L discrepancy

γ(y|θ) = − log f(y|θ) (see e.g., Konishi & Kitagawa, 1996, 2003, 2008; Imoto & Konishi,

2003). In addition, we estimate θ by (2.2) and evaluate the model by another discrepancy

(Fujisawa & Eguchi, 2006). Other examples are also shown in Ray and Lindsay (2008)

and Lindsay et al. (2008). The γ(y|θ) yields the target risk function as follows. Let ρ(θ)

denote the expectation of the discrepancy γ(y|θ), i.e.,

ρ(θ) = Eϕ[γ(y|θ)],

where Eϕ is the expectation under the true model Mϕ in (1.1). Then, the risk function

of the model f(y|θ̂) is defined by

Rγ = Eϕ[ρ(θ̂)]. (2.3)

In the model selection based on γ(y|θ), we regard the model having the smallest Rγ

as the best model, which is typically different from the true model. In many contexts

of statistical modeling, the aim is to determine the best model. Obtaining an unbiased

estimator of Rγ will allow us to correctly evaluate the discrepancy between the data and

the model, which will further facilitate the selection of the best model.

The ordinary CV criterion proposed by Stone (1974, 1977) is an asymptotic unbiased

estimator of Rγ. The CV criterion is defined by

CV =
1

n

n∑
i=1

γ(yi|θ̂[−i]). (2.4)

From Theorem A.1 in Appendix A.1, we can see that CV is the second-order unbiased

estimator of Rγ, i.e., Eϕ[CV] = Rγ + O(n−2). Thus, we assume that the expectation of

CV can be expanded as follows:
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Assumption: Eϕ[CV] can be expanded until the n−L term as

Eϕ[CV] = Rγ +
1

n2
β2 +

1

n3
β3 +

1

n4
β4 +

1

n5
β5 + · · ·

= Rγ +

L∑
l=2

βl
nl

+O(n−L−1). (2.5)

An explicit form of β2 is given by (A.6) in Appendix A.1. It is possible to obtain the

coefficients βl (l ≥ 3) by repeating tedious calculations, as described in Appendix A.1.

However, explicit forms of βl are not needed in the subsequent discussion.

The leave-k-out CV criterion (see e.g., Shao, 1993) is defined by

CVk =
1

knCk

∑
Ik⊂In

∑
i∈Ik

γ(yi|θ̂[−Ik ]), (2.6)

where nCk is the binominal coefficient given by nCk = n!/{(n − k)!k!}. The leave-

one-out CV criterion is the ordinary CV criterion, i.e., CV1 = CV. Let θ̂n denote

an estimator of θ evaluated from n observations. Note that yi and θ̂[−Ik] are mu-

tually independent when i ∈ Ik. It follows that Eϕ[γ(yi|θ̂[−i])] = ρ(θ̂[−i]), and then

Eϕ[CVk] =
∑

Ik⊂In
Eϕ[ρ(θ̂[−Ik])]/nCk = Eϕ[ρ(θ̂n−k)]. Recall that Rγ = Eϕ[ρ(θ̂n)]. There-

fore, we obtain the following expansion from the assumption (2.5):

Eϕ[ρ(θ̂n−1)] = Eϕ[ρ(θ̂n)] +
L∑
l=2

βl
nl

+O(n−(L+1)).

It then holds that

Eϕ[CVj+1] =
1

(j + 1)nCk

∑
Ij+1⊂In

∑
i∈Ij+1

Eϕ

[
γ(yi|θ̂[−Ij+1])

]

= Eϕ[ρ(θ̂n−j−1)]

= Eϕ[ρ(θ̂n−j)] +
L∑
l=2

βl
(n− j)l

+O(n−L−1)

= Eϕ[CVj] +
L∑
l=2

βl
nl
alj +O(n−L−1), (2.7)

where the coefficient aj is given by

aj =
n

n − j
. (2.8)

2.2. Basic Concept of Bias Correction
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If we use an ordinary procedure for the bias correction, we propose a bias-corrected

CV criterion by subtracting β̂2/n
2 from CV, where β̂2 is a consistent estimator of β2.

However, this procedure does not work well, even when n is relatively large, because β̂2

usually depends on the higher-order cumulants of ϕ. Therefore, we attempt to correct

the bias of the CV criterion without directly estimating βl.

First, we show the bias correction method using CV1 and CV2. We see that the

bias of the CV criterion may be improved from O(n−2) to O(n−3). Through a detailed

verification, we furthermore observe that the bias of the CV criterion is automatically

corrected to O(n−4). Let Δ1,j be the difference between CVj+1 and CVj standardized by

a2
j , i.e.,

Δ1,j =
1

a2
j

(CVj+1 − CVj) . (2.9)

From (2.7), we can see that

Eϕ [Δ1,1] =
1

n2
β2 +

1

n3
a1β3 +

1

n4
a2

1β4 +
1

n5
a3

1β5 +O(n−6)

=
1

n2
β2 +

1

n3
a1β3 +O(n−4).

It follows that the first term in the above expansion is equal to the first term in the

expansion of the bias of CV in (2.5). Therefore, when we define the bias-corrected CV

criterion as CV − Δ1,1, its expectation is expanded as

Eϕ [CV − Δ1,1] = Rγ +
1

n3
(1 − a1)β3 +

1

n4
(1 − a2

1)β4 +
1

n5
(1 − a3

1)β5 +O(n−6)

= Rγ +
1

n3
(1 − a1)β3 +O(n−4). (2.10)

Note that 1−a1 = O(n−1). This implies that Eϕ[CV−Δ1,1] = Rγ+O(n−4). Consequently,

CV − Δ1,1 becomes the fourth-order, rather than the third-order, unbiased estimator of

Rγ.

Next, we show the bias correction method using CV1, CV2 and CV3. The bias of

CV criterion may be improved from O(n−2) to O(n−4). Through a detailed verification,

we furthermore observe that the bias of the CV criterion is automatically corrected to

O(n−6). Let us define Δk,j as the following recursion formula:

Δk,j =
1

aj − aj−k+1
(Δk−1,j − Δk−1,j−1) , for 2 ≤ k < j. (2.11)

Using (2.11), we have

Δ2,2 =
1

a2 − a1

{
1

a2
2

(CV3 − CV2) − 1

a2
1

(CV2 − CV1)

}
.
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From equation (2.7), we can see that

1

a2
j

Eϕ[CVj+1 − CVj] =
1

n2
β2 +

1

n3
ajβ3 +

1

n4
a2
jβ4 +

1

n5
a3
jβ5 +O(n−6).

Hence, the expectation of Δ2,2 is expanded as

Eϕ [Δ2,2] =
1

a2 − a1

{
1

n3
(a2 − a1)β3 +

1

n4
(a2

2 − a2
1)β4 +

1

n5
(a3

2 − a3
1)β5

}
+O(n−6)

=
1

n3
β3 +

1

n4
(a1 + a2)β4 +

1

n5
(a2

1 + a1a2 + a2
2)β5 +O(n−6).

It follows that the quantity (1−a1) times the first term in the above expansion is equivalent

to the first term in the expansion of the bias of CV− Δ1,1 in (2.10). Therefore, when we

define the second bias-corrected CV criterion as CV−Δ1,1 − (1− a1)Δ2,2, its expectation

is expanded as

Eϕ [CV − Δ1,1 − (1 − a1)Δ2,2]

= Rγ +
1

n4
(1 − a1)(1 − a2)β4 +

1

n5
(1 − a1)(1 − a2)(1 + a1 + a2)β5 +O(n−6).

Note that (1 − a1)(1 − a2) = O(n−2). This implies that Eϕ[CV − Δ1,1 − (1 − a1)Δ2,2] =

Rγ + O(n−6). Consequently, CV − Δ1,1 − (1 − a1)Δ2,2 becomes the sixth-order, rather

than the fourth-order, unbiased estimator of Rγ.

2.3. General Formula

By repeating the technique described in Section 2.2, it is possible to make an even

higher-order bias-corrected CV criterion. The general formula is defined as follows:

Definition: The kth bias-corrected CV (Corrected CV; CCV) criterion is defined as

CCVk = CCVk−1 − ck−2Δk−1,k−1 = CV +

k−1∑
j=1

cj−1Δj,j, (2.12)

where the coefficient cj is given by

cj =

{
1 (j = 0)∏j

l=1(1 − al) (j ≥ 1)
,

and Δk,j is given by (2.9) and (2.11).

The order of the bias of CCVk is shown in the following theorem. The proof is given

in Appendix A.2.
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Theorem 2.1: Assume that Assumption (2.5) holds. Then, the CCVk becomes the 2kth-

order unbiased estimator of Rγ, i.e., Eϕ[CCVk] = Rγ +O(n−2k).

When we apply the general formula (2.12) to the actual situation, it may be some-

what troublesome to calculate CCVk because the definition (2.12) is based on a recursive

formula. However, the formula can be rewritten as in the following theorem. The proof

is given in Appendix A.3.

Theorem 2.2: CCVk is rewritten as the following linear combination from CV1 to CVk:

CCVk =

k∑
j=1

mk,jCVj, (2.13)

where the coefficient mk,j is given by

mk,j =

{
(−1)j+1

(
k−1Cj−1a

−k
j−1 + k−1Cja

−k
j

)
(1 ≤ j ≤ k − 1)

(−1)k+1a−kk−1 (j = k)
(2.14)

Since the coefficient m1,1 becomes 1 when k = 1, CCV1 is equal to the ordinary CV in

(2.4). Moreover, when k = 2 and k = 3, the coefficient mk,j becomes

m2,1 =
n2 + (n− 1)2

n2
, m2,2 = −

(
n− 1

n

)2

,

m3,1 =
n3 + 2(n− 1)3

n3
, m3,2 = −2(n− 1)3 + (n− 2)3

n3
, m3,3 =

(
n − 2

n

)3

.

Note that the coefficient mk,j does not depend on unknown parameters, but depends only

on the sample size. Therefore, we could correct the bias of the CV criterion without

estimating higher-order cumulants of ϕ.

2.4. Relation between CCVk and Bootstrap Iteration

Let θ̂(w) be an estimator of θ obtained by minimizing a weighted discrepancy function,

which is given by

θ̂(w) = arg min
�

n∑
i=1

wiψ(yi|θ),

where w = (w1, . . . , wn)
′ and

∑n
i=1wi = n. Moreover, let Γ(θ|Y ,w) be another weighted

discrepancy given by

Γ(θ|Y ; w) =
1

n

n∑
i=1

wiγ(yi|θ). (2.15)
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For simplicity, we express Γ(θ|Y ) = Γ(θ|Y ; 1n), where 1n is the n-dimensional vector,

the elements of which are 1.

Let Multin(m : p) denote the multinomial distribution, where the number of events

is m and the cell probability vector is p = (p1, . . . , pn)
′. Assume that db = (db1, . . . , dbn)

′

(b = 1, . . . , B) are the n-dimensional independent random vectors from Multin(n : 1n/n).

From Yanagihara et al. (2008), the EIC-type criterion can be expressed as

EIC = Γ(θ̂|Y ) +
1

B

B∑
b=1

Γ(θ̂(db)|Y ; 1n − db). (2.16)

When B → ∞, the bias of EIC has the same order as that of CV, i.e., Eϕ[EIC] =

Rγ +O(n−2).

By using the bootstrap iteration, we can improve the bias of EIC. Let d(b1,b2) (b2 =

1, . . . , B) be the n-dimensional independent random vectors from Multin(n : d(b1)/n),

where d(b1) (b1 = 1, . . . , B) are also the n-dimensional independent random vectors from

Multin(n : 1n/n). Then, we define the second bootstrap bias correction term as

D2 =
1

B2

B∑
b1,b2

Γ(θ̂(d(b1,b2))|Y ; d(b1) − d(b1,b2)),

where the notation
∑B

b1,...,bk
means

∑B
b1=1 · · ·

∑B
bk=1. Let bk = (b1, . . . , bk). In the same

manner as in definition of D2, we define the kth bootstrap bias correction term as

Dk =
1

Bk

B∑
b1,...,bk

Γ(θ̂(d�k
)|Y ; d�k−1

− d�k
), (2.17)

where d�0 = 1n. By applying the general formula of the bias correction obtained by kth

bootstrap iteration (see e.g., Efron, 1983; Hall & Martin, 1988; Hall, 1992, p. 28) to EIC,

the kth bias-corrected EIC (Corrected EIC; CEIC) can be given by

CEICk = Γ(θ̂|Y ) +
k∑
j=1

m
(0)
k,jDk, (2.18)

where m
(0)
k,j = (−1)j+1

kCj. When B → ∞, the bias of CEICk is O(n−k−1).

Note that limn→∞ aj = 1. Therefore, the coefficient mk,j in CCVk converges to

(−1)j+1(k−1Cj−1 + k−1Cj) = (−1)j+1
kCj. This implies that limn→∞mk,j = m

(0)
k,j. Con-

sequently, we can regard mk,j as the finite correction of m
(0)
k,j. In fact, by replacing

mj,k in (2.13) with m
(0)
k,j, we can also define another bias-corrected CV criterion, i.e.,
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CCV
(0)
k =

∑k
j=1 m

(0)
k,jCVj. This criterion corrects the bias of CV to O(n−k−1), and its

order is the same as in CEICk. The proof is omitted because it can be obtained by a

slight modification of the proofs in Appendix A.2. However, we have already shown that

the bias of CCVk is O(n−2k). The order of the bias of CCV
(0)
k is lower than that of CCVk.

In other words, we can regard CCVk as the finite correction of CCV
(0)
k by using only the

sample size n.

3. Numerical Studies

In this section, the performance of CCVk is investigated by simulations. We examined

the bias and the square root mean square error (RMSE) of the information criterion as

well as the frequency of selecting the best model having the smallest Rγ. The bias and

RMSE were evaluated with N = 20, 000 repetitions.

The true model was generated by the following four distributions (κ3 and κ4 denote

the skewness and kurtosis of the distribution, respectively):

Distribution 1: Standard normal distribution (κ3 = 0 and κ4 = 0).

Distribution 2: Laplace distribution with mean 0 and standard deviation 1 (κ3 = 0

and κ4 = 3).

Distribution 3: Uniform distribution on (−1, 1) divided by the standard deviation 1/
√

3

(κ3 = 0 and κ4 = −1.2).

Distribution 4: Skew-Laplace distribution with location parameter 0, dispersion pa-

rameter 1, and skew parameter 1, standardized by mean 3/4 and standard deviation√
23/4 (κ3 ≈ 1.06 and κ4 ≈ 3.26).

The skew-Laplace distribution was proposed by Balakrishnan and Ambagaspitiya (1994).

For the probability density function, see, e.g., Yanagihara and Yuan (2005).

First, in order to study the behavior of CCVk for k = 1, . . . , 5 as the estimator of Rγ,

the biases and RMSE of CCVk were examined. We simulated N data sets consisting of

20 (= n) observations from y with the dimension p = 5. Each element of y was generated

independently from distributions 1 to 4. Let f(y|θ) be the probability density function

of the p-dimensional normal distribution as

f(y|θ) =

(
1

2π

)p/2

|Σ|−1/2exp

{
−1

2
(y −μ)′Σ−1(y − μ)

}
,
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where θ = (μ, vech(Σ))′. To estimate the parameter θ, we used the following log-

likelihood function:

ψ(y|θ) = − log f(y|θ) =
1

2

{
p log 2π + log |Σ| + (y − μ)′Σ−1(y −μ)

}
. (3.1)

Then, the estimators of μ and Σ become MLEs under the normal assumption. On the

other hand, to measure the goodness of fit of the model, we prepared the following two

discrepancies:

Case of K-L : γ(y|θ) = ψ(y|θ) in (3.1),

Case of L2 : γ(y|θ) = −f(y|θ) +
1

2

∫
{f(z|θ)}2dz

=

(
1

2π

)p/2

|Σ|−1/2

[
1

2(p+2)/2
− exp

{
−1

2
(y − μ)′Σ−1(y −μ)

}]
.

Figure 1 shows the plots of relative biases (= 100×Bias/|Rγ | (%)) and relative RMSEs

(= 100×RMSE/|Rγ| (%)) for the K-L and L2 discrepancies, respectively. The plots of the

relative biases are on the left-hand side of the figure, and the plots of the relative RMSEs

are on the right-hand side of the figure. The bias approached 0 as k moved towards 5.

In particular, the bias of CCVk was dramatically improved when k changed from 1 to 2.

Moreover, in the case of K-L, the CCVk for k = 2, . . . , 5 improved not only the bias of CV

but also the RMSE. In the case of L2, the RMSE of CCVk became slightly larger than

that of CV, except for the case of a uniform distribution. In the case of K-L, the biases

and RMSEs appeared to increase when the kurtosis (κ4) increased. On the other hand,

there was no apparent trend with respect to the kurtosis in the case of L2. Comparing

the plots for the Laplace and skew-Laplace distributions, the size of skewness (κ3) had

less of an effect on the bias and RMSE than the kurtosis. The investigation of several

other models yielded similar results (not shown).

Insert Figure 1 around here

Next, a selection of the ridge parameter λ in the ridge regression model was investi-

gated. We simulated N data sets consisting of 20 (= n) observations from the model

z = x′θ∗ + 5ε,

where θ∗ = (3, 1.5, 0, 0, 2, 0, 0, 0)′ and ε is generated from the same four distributions as in

Example 1. The covariate variable x = (x1, . . . , xq)
′ is independent of ε, and each element
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of x is normal with mean 0 and standard deviation 3. The correlation between xa and xb

was (0.5)|a−b|. The setting of θ∗ and the correlation of x were the same as in Tibshirani

(1996). Let y = (z,x′)′. Our result can easily be applied to the ridge regression model,

i.e., the following two discrepancies can be used:

ψ(y|θ) = (z − x′θ)2 + λ‖θ‖2, γ(y|θ) = (z − x′θ)2. (3.2)

Then, θ̂ becomes the penalized least square estimator, i.e., θ̂ = (X ′X+λIq)
−1X ′z, where

z = (z1, . . . , zn)
′ and X = (x1, . . . ,xn)

′. In order to compare the proposed criterion with

other criteria, we prepared the following two criteria: the GCV proposed by Craven and

Wahba (1979), which is commonly used to select λ in ridge regression, and the GIC, which

is obtained by applying equation (A.7) to equation (3.2). Although the EIC is also a well

known criterion, we did not use the EIC herein because several calculations are required

in order to obtain the EIC.

Let σ̂2 = (z −Xθ̂)′(z −Xθ̂)/n and H = X(X ′X + λIq)
−1X ′. Then, the GCV and

GIC are given by

GCV =
σ̂2

1 − tr(H)/n
, GIC = σ̂2 +

2

n

{
tr(DH)− λê′HX(X ′X)−1θ̂

}
,

where D = diag(ê1, . . . , ên), ê = (ê1, . . . , ên)
′, and êi = zi − x′

iθ̂ (i = 1, . . . , n).

The averages of GCV, GIC, CV, and CCV2 with λj = 3(j − 1)/99 (j = 1, . . . , 100)

are shown in Figure 2. The biases of GCV and GIC were very larger than the bias of

CV. However, there was a clear bias in CV. The CCV2 reduced this bias to nearly 0.

The RMSEs of GCV, GIC, CV, and CCV2 are shown in Figure 3. The CCV2 corrected

not only the bias of CV but also the RMSE of CV. The frequencies of λ selected by the

information criteria are shown in Figure 4. The best ridge parameter λ0 minimizing Rγ

was 0.78 for all distributions, because the risk function depended only on the first- and

second-order moments of error distributions (and they were the same for all of the error

distributions). The modes of frequencies of λ selected by GCV and GIC were not near

λ0, but the modes of λ selected by CV and CCV2 were near λ0. Table 1 shows the means

of the selected λ. The mean of λ selected by CCV2 was closer to λ0 than that selected

by CV. The CV tends to choose a more inflexible model as the best model. In the ridge

regression model, an inflexible model denotes the model having a large ridge parameter.

The CCV2 also improved the disadvantage of the CV.

Insert Figures 2, 3, 4 and Table 1 around here
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4. Conclusion and Discussion

In the present paper, we proposed the kth bias-corrected CV criterion (CCVk), which

is defined by the linear combination from CV1 to CVk. The CCVk reduces the bias

of the CV criterion to O(n−2k) without estimating any higher-order cumulants, without

obtaining any explicit form of the asymptotic expansion for the bias of CV criterion, and

without calculating any partial derivatives of ψ(y|θ) or γ(y|θ) with respect to θ. The

Monte Carlo results presented in the previous section verified the advantage of CCVk,

and in particular that of CCV2. In many cases, the CCVk improves not only the bias

of CV but also the RMSE and the frequency, where the model with the smallest Rγ is

selected as the best model. Several second-order bias-corrected information criteria have

been proposed by, e.g., Hurvich, Simonoff and Tsai (1998), Hurvich and Tsai (1998),

Simonoff and Tsai (1999), Naik and Tsai (2001), Yanagihara, Sekiguchi and Fujikoshi

(2003) and Chiou and Tsai (2006). However, these criteria were obtained under specified

models and distributions. On the other hand, Yanagihara, Tonda and Matsumoto (2006)

and Yanagihara et al. (2008) proposed second-order bias-corrected CV criteria without

specifying models and distributions. However, their results can be applied only when

ψ(y|θ) = γ(y|θ). The CCVk criterion presented herein is obtained under a more general

assumption, and can be applied broadly.

Using the bootstrap iteration, we can improve the order of the bias of CV up to a

higher order. However, the order of the bias of CEICk is lower than that of CCVk, and

the computational task of CEICk is larger than that of CCVk in most cases. We can

reduce the computational task of CVk more effectively by using a Monte Carlo CVk (see

e.g., Picard & Cook, 1984; Shao, 1993). However, we should note that the MSE of a

bias-corrected CV criterion based on Monte Carlo CVk might become larger than that of

CCVk.

Furthermore, a serious issue remains regarding the selection of k. A theoretical solution

to this issue will be very difficult to obtain. From the simulation studies and the viewpoint

of the computational task, we recommend the use of k = 2.

Appendix

A.1. Asymptotic Expansions of Eϕ[CV]
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First, we define the following vectors and matrices, which are based on the partial

derivatives up to the third order:

gψ(y|ϑ) =
∂

∂θ
ψ(y|θ)

∣∣∣∣
�=�

, gγ(y|ϑ) =
∂

∂θ
γ(y|θ)

∣∣∣∣
�=�

,

Hψ(y|ϑ) =
∂2

∂θ∂θ′ψ(y|θ)

∣∣∣∣
�=�

, Hγ(y|ϑ) =
∂2

∂θ∂θ′γ(y|θ)

∣∣∣∣
�=�

,

Lψ(y|ϑ) =

(
∂

∂θ′ ⊗
∂2

∂θ∂θ′

)
ψ(y|θ)

∣∣∣∣
�=�

,

and

rψ(θ) = Eϕ[gψ(y|θ)], Iψ(θ) = Eϕ[gψ(y|θ)gψ(y|θ)′], Jψ(θ) = Eϕ[Hψ(y|θ)],

Jγ(θ) = Eϕ[Hγ(y|θ)], Kψ(θ) = Eϕ[Lψ(y|θ)].

Assume that θ0 is a q × 1 vector such that θ̂
a.s.−→ θ0 as n → ∞. Under the proper

regularity conditions, as specified in White (1982), θ0 satisfies rψ(θ0) = 0q, where 0q is a

vector of q zeros.

Let

Ĵψ(θ̂) =
1

n

n∑
i=1

Hψ(yi|θ̂), K̂ψ(θ̂) =
1

n

n∑
i=1

Lψ(yi|θ̂). (A.1)

From Yanagihara et al. (2008), we have the stochastic expansion of θ̂[−i] as

θ̂[−i] = θ̂ +
1

n
z1,i +

1

n2
z2,i +Op(n

−3), (A.2)

where

z1,i = Ĵψ(θ̂)−1gψ(yi|θ̂), z2,i = Ĵψ(θ̂)−1

{
Hψ(yi|θ̂)z1,i − 1

2
K̂ψ(θ̂)vec(z1,iz

′
1,i)

}
. (A.3)

Since yi and θ̂[−i] are mutually independent, the equation Eϕ[γ(yi|θ̂[−i])] = Eϕ[ρ(θ̂[−i])]

holds. Note that Eϕ[CV] = n−1
∑n

i=1 Eϕ[ρ(θ̂[−i])]. Therefore, applying the Taylor expan-

sion of Eϕ[ρ(θ̂[−i])] at θ̂, we obtain

Eϕ[CV] = Rγ +
1

n
R1 +

1

n2
R2 +O(n−3), (A.4)

where

R1 =
1

n

n∑
i=1

Eϕ
[
r′
γ(θ̂)z1,i

]
, R2 =

1

n

n∑
i=1

Eϕ

[
rγ(θ̂)′z2,i +

1

2
z′

1,iJγ(θ̂)z1,i

]
.
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Note that since θ̂ is the minimum of
∑n

i=1 ψ(yi|θ), the equation
∑n

i=1 gψ(yi|θ̂) = 0q

holds. Thus, we have
∑n

i=1 z1,i = 0q. Consequently, R1 becomes 0. By using relations

θ̂
a.s.−→ θ0, Ĵψ(θ̂)

a.s.−→ Jψ(θ0), and K̂ψ(θ̂)
a.s.−→ Kψ(θ0), R2 is expanded as

R2 = η1 − 1

2
η2 +

1

2
η3 +O(n−1),

where

η1 = rγ(θ0)
′Jψ(θ0)

−1Eϕ[Hψ(y|θ0)Jψ(θ0)
−1gψ(y|θ0)],

η2 = rγ(θ0)
′Jψ(θ0)

−1Kψ(θ0){Jψ(θ0)
−1 ⊗ Jψ(θ0)

−1}vec(Iψ(θ0)), (A.5)

η3 = tr
{
Iψ(θ0)Jψ(θ0)

−1Jγ(θ0)Jψ(θ0)
−1
}
.

Substituting above the expansion ofR2 and R1 = 0 into (A.4) yields the following theorem.

Theorem A.1. Under proper regularity conditions, the bias of CV is expanded as

Rγ − Eϕ[CV] = − 1

2n2
(2η1 − η2 + η3) +O(n−3), (A.6)

where η1, η2, and η3 are given by (A.5).

From Theorem A.1, it is easy to see that β2 in (2.5) is −η2 + η2/2 − η3/2.

By using Theorem A.1, we can easily obtain an expansion of the bias of GIC. Under

our setting of the model selection, GIC is written as

GIC = Γ(θ̂|Y ) +
1

n
tr
{
Îψγ(θ̂)Ĵψ(θ̂)−1

}
, (A.7)

where Γ(·|Y ) and Ĵψ(θ̂) are given by (2.15) and (A.1), respectively, and Îψγ(θ̂) is given

by

Îψγ(θ̂) =
1

n

n∑
i=1

gψ(yi|θ̂)gγ(yi|θ̂)′.

By applying the Taylor expansion of CV at θ̂, we have

CV = Γ(θ̂|Y ) +
1

n
G1 +

1

n2

(
G2 +

1

2
G3

)
+Op(n

−3),

where G1, G2, and G3 are given by

G1 =
1

n

n∑
i=1

gγ(yi|θ̂)′z1,i, G2 =
1

n

n∑
i=1

gγ(yi|θ̂)′z2,i, G3 =
1

n

n∑
i=1

z′
1,iHγ(yi|θ̂)′z1,i. (A.8)
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Note that G1 = tr{Îψγ(θ̂)Ĵψ(θ̂)−1}. Thus,

Eϕ[GIC] = Eϕ[CV] − 1

n2

(
Eϕ[G2] +

1

2
Eϕ[G3]

)
+O(n−3).

By using the relations θ̂
a.s.−→ θ0, Ĵψ(θ̂)

a.s.−→ Jψ(θ0), and K̂ψ(θ̂)
a.s.−→ Kψ(θ0), we obtain

Eϕ[G2] =
1

n

n∑
i=1

{
Eϕ

[
gγ(yi|θ̂)′Ĵψ(θ̂)−1Hψ(yi|θ̂)Ĵψ(θ̂)−1gψ(yi|θ̂)

]

−1

2
Eϕ

[
gγ(yi|θ̂)′Ĵψ(θ̂)−1K̂ψ(θ̂)

{
Ĵψ(θ̂)−1 ⊗ Ĵψ(θ̂)−1

}
vec(gψ(yi|θ̂)gψ(yi|θ̂)′)

]}
= η4 − 1

2
η5 +O(n−1),

Eϕ[G3] =
1

n

n∑
i=1

Eϕ
[
gψ(yi|θ̂)′Ĵψ(θ̂)−1Hγ(yi|θ̂)Ĵψ(θ̂)−1gψ(yi|θ̂)

]
= η6 +O(n−1),

where

η4 = Eϕ
[
gγ(y|θ0)

′Jψ(θ0)
−1Hψ(y|θ0)Jψ(θ0)

−1gψ(y|θ0)
]
,

η5 = Eϕ
[
gγ(y|θ0)

′Jψ(θ0)
−1Kψ(θ0)

{
Jψ(θ0)

−1 ⊗ Jψ(θ0)
−1
}

vec(gψ(y|θ0)gψ(y|θ0)
′)
]
,(A.9)

η6 = Eϕ
[
gψ(y|θ0)

′Jψ(θ0)
−1Hγ(y|θ0)Jψ(θ0)

−1gψ(y|θ0)
]
.

Thus,

Eϕ[GIC] = Eϕ[CV] − 1

2n2
(2η4 − η5 + η6) +O(n−3). (A.10)

Substituting (A.6) into (A.10) yields the following theorem.

Theorem A.2. Under proper regularity conditions, the bias of GIC is expanded as

Rγ − Eϕ[GIC] = − 1

2n2
{2(η1 − η4) − (η2 − η5) + (η3 − η6)} +O(n−3), (A.11)

where η1, η2, and η3 are given by (A.5), and η4, η5, and η6 are given by (A.9).

Konishi and Kitagawa (2003) obtained the asymptotic expansion of the bias of GIC

up to the same order of as that of our result in Theorem A.2. However, our result

is simpler than that of Konishi and Kitagawa, although they consider a more general

situation. Theorems A.1 and A.2 in Appendix A.2 show that the n−2 term in the bias

of GIC contains more higher-order moments than that of the CV criterion. On the other

hand, if the equation ψ(y|θ) = γ(y|θ) is satisfied, the GIC is equivalent to Takeuchi’s
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information criterion (TIC; Takeuchi, 1976). Then, rψ(θ̂) becomes 0q. This yields the

relation η1 = η2 = 0. Moreover, when the equation ψ(y|θ) = γ(y|θ) is satisfied, η4 is

equal to η6 because gψ(y|θ0) = gγ(y|θ0) and Hψ(y|θ0) = Hγ(y|θ0) hold. Consequently,

the expansions in Theorems A.1 and A.2 when ψ(y|θ) is equal to γ(y|θ) coincide with

the results in Yanagihara et al. (2008).

A.2. Proof of Theorem 2.1

In this sub-section, we present the proof of Theorem 2.1. First, we present propositions

and lemmas to be used in the proof of Theorem 2.1.

Proposition A.1. Let b
(1)
j,l = al−2

j (l ≥ 2) and

b
(l)
k,j =

b
(l)
k−1,j − b

(l)
k−1,j−1

aj − aj−k+1
, (k ≥ 2, l ≥ k + 1), (A.12)

where aj is given by (2.8). It then holds that

b
(l)
k,j =

∑
αj−k+1+···+αj=l−k−1

a
αj−k+1

j−k+1 · · · aαj

j , (A.13)

where α∗ is a nonnegative integer. In particular, b
(k+1)
k,j,k = 1.

Proof. The case in which k = 1 on equation (A.13) holds because

b
(l)
1,j =

∑
αj=l−2

a
αj

j = al−2
j .

The case in which k ≥ 2 can be proved by mathematical induction. Assume that equation

(A.13) holds until k, and then consider the case in which k + 1. We can see that

b
(l)
k+1,j =

b
(l)
k,j − b

(l)
k,j−1

aj − aj−k

=
1

aj − aj−k

⎛
⎝ ∑
αj−k+1+···+αj=l−k−1

a
αj−k+1

j−k+1 · · · aαj

j −
∑

αj−k+···+αj−1=l−k−1

a
αj−k

j−k · · · aαj−1

j−1

⎞
⎠

=
1

aj − aj−k

l−k−1∑
u=0

∑
αj−k+1+···+αj−1=u

a
αj−k+1

j−k+1 · · · aαj−1

j−1

(
al−k−1−u
j − al−k−1−u

j−k
)

=
l−k−1∑
u=0

∑
αj−k+1+···+αj−1=u

a
αj−k+1

j−k+1 · · · aαj−1

j−1

al−k−1−u
j − al−k−1−u

j−k
aj − aj−k
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=
l−k−2∑
u=0

∑
αj−k+1+···+αj−1=u

a
αj−k+1

j−k+1 · · · aαj−1

j−1

∑
αj+αj−k=l−k−2−u

a
αj

j a
αj−k

j−k+1

=
∑

αj−k+···+αj=l−k−2

a
αj−k

j−k · · · aαj

j .

The proof of equation (A.13) is complete. Furthermore, it follows from (A.13) that

b
(k+1)
k,j =

∑
αj−k+1+···+αj=0

a
αj−k+1

j−k+1 · · · aαj

j = 1. �

Lemma A.1. It holds that

Eϕ [Δk,j] =
L∑

l=k+1

βl
nl
b
(l)
k,j +O(n−L−1), (A.14)

where Δk,j is given by (2.9) and (2.11), and b
(l)
k,j is defined in Proposition A.1.

Proof. The case in which k = 1 follows from equation (2.7). The case in which k ≥ 2

can be proved by mathematical induction. Assume that equation (A.14) holds until k,

and then consider the case in which k + 1. We can see that

Eϕ [Δk+1,j] =
1

aj − aj−k
Eϕ [Δj,k − Δk,j−1]

=
L∑

l=k+1

βl
nl

(
b
(l)
k,j − b

(l)
k,j−1

aj − aj−k

)
+O(n−L−1)

=
L∑

l=k+2

βl
nl
b
(l)
k+1,j +O(n−L−1).

The case in which l = k + 1 vanishes because b
(l)
k,j − b

(l)
k,j−1 = 0 from b

(k+1)
k,j′ = 1 for any j′

by Proposition A.1. The proof is complete. �

Proposition A.2. Let

Q
(l)
k =

k∑
j=1

cj−1b
(l)
j,j. (A.15)

It then holds that

Q
(l)
k = 1 − ck

l−k−2∑
u=0

∑
α1+···+αk=u

aα1
1 · · · aαk

k , (l ≥ k + 1), (A.16)
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where α∗ is a nonnegative integer. In particular, Q
(l)
l−1 =

∑l−1
j=1 cj−1b

(l)
j,j = 1. Furthermore,

1 −Q
(l)
k = O(n−k).

Proof. The case in which k = 1 holds because expressions (A.15) and (A.16) are given

by

Q
(l)
1 = c0b

(l)
1,1 =

∑
α1=l−2

aα1
1 = al−2

1

Q
(l)
1 = 1 − c1

l−3∑
u=0

∑
α1=u

aα1
1 = 1 − (1 − a1)

l−3∑
u=0

au1

= 1 − (1 − a1)
1 − al−2

1

1 − a1
= al−2

1 .

The case in which k ≥ 2 can be proved by mathematical induction. Assume that equation

(A.14) holds until k, and then consider the case in which k + 1. We can see that

Q
(l)
k+1 − 1

ck
=
Q

(l)
k − 1 + ckb

(l)
k+1,k+1

ck
=
Q

(l)
k − 1

ck
+ b

(l)
k+1,k+1

= −
l−k−2∑
u=0

∑
α1+···+αk=u

aα1
1 · · · aαk

k +
∑

α1+···+αk+1=l−k−2

aα1
1 · · · aαk+1

k+1

and then

Q
(l)
k+1 − 1

ck
− ck+1

ck

l−k−3∑
u=0

∑
α1+···+αk+1=u

aα1
1 · · · aαk+1

k+1

= −
l−k−2∑
u=0

∑
α1+···+αk=u

aα1
1 · · · aαk

k +
∑

α1+···+αk+1=l−k−2

aα1
1 · · · aαk+1

k+1

+(1 − ak+1)

l−k−3∑
u=0

∑
α1+···+αk+1=u

aα1
1 · · · aαk+1

k+1

= −
l−k−2∑
u=0

∑
α1+···+αk=u

aα1
1 · · · aαk

k +
l−k−2∑
u=0

∑
α1+···+αk+1=u

aα1
1 · · · aαk+1

k+1

−ak+1

l−k−3∑
u=0

∑
α1+···+αk+1=u

aα1
1 · · · aαk+1

k+1

= −
l−k−2∑
u=0

∑
α1+···+αk=u

aα1
1 · · · aαk

k +
l−k−2∑
u=0

∑
α1+···+αk=u

aα1
1 · · · aαk+1

k+1

+
l−k−3∑
u′=0

∑
α1+···+α′

k+1=u′
aα1

1 · · · aα
′
k+1+1

k+1 −
l−k−3∑
u=0

∑
α1+···+αk+1=u

aα1
1 · · · aαk+1+1

k+1

= 0,
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where on the third equality, the second term is divided into two cases, where αk+1 = 0

and αk+1 ≥ 1, and then we use the transformation αk+1 − 1 = α′
k+1 and u′ = u− 1. It is

clear that Q
(l)
l−1 = 1 by equation (A.16) and that 1−Q

(l)
k = O(n−k) because ck = O(n−k).

The proof is complete. �

Proposition A.3. Let

A
(l)
k = 1 −

min(l−1,k)∑
j=1

cj−1b
(l)
j,j.

It then holds that

A
(l)
k =

{
0 (if l ≤ k + 1)
O(n−k) (if l ≥ k + 2)

Proof. First consider the case in which l ≤ k + 1. It follows from Proposition A.2 that

A
(l)
k = 1 −

l−1∑
j=1

cj−1b
(l)
j,j = 1 −Q

(l)
l−1 = 1 − 1 = 0.

Next consider the case in which l ≥ k + 2. It follows from Proposition A.2 that

A
(l)
k = 1 −

k∑
j=1

cj−1b
(l)
j,j = 1 −D

(l)
k = O(n−k). �

By using Lemma A.1 and Proposition A.2, we give the proof of Theorem 2.1 as follows:

Proof of Theorem 2.1. It follows from Lemma A.1 and Proposition A.2 that

Eϕ [CCVk] = Eϕ [CV] −
k−1∑
j=1

cj−1Eϕ [Δj,j]

= Rγ +
L∑
l=2

βl
nl

−
k−1∑
j=1

cj−1

L∑
l=j+1

βl
nl
b
(l)
j,j +O(n−L−1)

= Rγ +

L∑
l=2

βl
nl

−
L∑
l=2

min(l−1,k−1)∑
j=1

βl
nl
cj−1b

(l)
j,j +O(n−L−1)

= Rγ +
L∑
l=2

βl
nl
A

(l)
k−1 +O(n−L−1)

= Rγ +

L∑
l=k+1

βl
nl
A

(l)
k−1 +O(n−L−1)

= Rγ +O(n−2k). �
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A.3. Proof of Theorem 2.2

In this sub-section, we present the proof of Theorem 2.2. First, we present propositions

and lemmas that will be used in the proof of Theorem 2.2.

Lemma A.2. It holds that

Δk,j =

k∑
l=0

ξ
(l)
k,jCVj+1−l, (A.17)

where

ξ
(l)
k,j =

(−1)lnk−1

(k − 1)!
∏k

α=1 aj−α+1

(
k−1Cl−1

akj−l+1

+
k−1Cl
akj−l

)
, (l = 1, . . . , k − 1),

ξ
(0)
k,j =

nk−1

(k − 1)!akj
∏k

α=1 aj−α+1

,

ξ
(k)
k,j =

(−1)knk−1

(k − 1)!akj−k+1

∏k
α=1 aj−α+1

,

and aj is given by (2.8).

Proof. The case in which k = 1 in equation (A.17) holds because

Δ1,j =
1∑
l=0

ξ
(l)
1,jCVj+1−l =

1

a2
j

CVj+1 − 1

a2
j

CVj,

which is the same as (2.9). The case in which k ≥ 2 can be proven by mathematical

induction. Assume that equation (A.17) holds until k, and then consider the case in

which k + 1. It follows from equation (2.11) that

Δk+1,j =
1

aj − aj−k
(Δk,j − Δk,j−1)

=
n

kajaj−k
(Δk,j − Δk,j−1)

=
n

kajaj−k

{
k∑
l=0

ξ
(l)
k,jCVj+1−l −

k∑
l=0

ξ
(l)
k,j−1CVj−l

}

=
n

kajaj−k

{
CVj+1ξ

(0)
k,j − CVj−kξ

(k)
k,j−1 +

k∑
l=0

CVj+1−l
(
ξ
(l)
k,j − ξ

(l−1)
k,j−1

)}
.

The coefficients of CVj+1 and CVj−k can be easily expressed as follows:

n

kajaj−k
ξ
(0)
k,j =

n

kajaj−k

nk−1

(k − 1)!akj
∏k

α=1 aj−α+1
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=
nk

k!ak+1
j

∏k+1
α=1 aj−α+1

= ξ
(0)
k+1,j,

n

kajaj−k
ξ
(k)
k,j−1 = − n

kajaj−k

(−1)knk−1

(k − 1)!akk−k+1

∏k
α=1 aj−α+1

=
(−1)k+1nk

k!ak+1
j−k+1

∏k+1
α=1 aj−α+1

= ξ
(k+1)
k+1,j .

The coefficient of CVj+1−l can be rewritten as follows:

n

kajaj−k

{
ξ
(l)
k,j − ξ

(l−1)
k,j−1

}

=
n

kajaj−k

{
(−1)lnk−1

(k − 1)!
∏k

α=1 aj−α+1

(
k−1Cl−1

akj−l+1

+
k−1Cl
akj−l

)

− (−1)l−1nk−1

(k − 1)!
∏k

α=1 aj−α

(
k−1Cl−2

akj−l+1

+
k−1Cl−1

akj−l

)}

=
(−1)lnk

k!
∏k+1

α=1 aj−α

{
1

akj−l+1

(
k−1Cl−1

aj
+

k−1Cl−2

aj−k

)
+

1

akj−l

(
k−1Cl
aj

+
k−1Cl−1

aj−k

)}
.

We can see that

k−1Cl−1

aj
+

k−1Cl−2

aj−k

=
(k − 1)!

(k − l)!(l − 1)!

n− j

n
+

(k − 1)!

(k − l + 1)!(l − 2)!

n − j + k

n

=
(k − 1)!

(k − l + 1)!(l− 1)!

(k − l + 1)(n− j) + (l − 1)(n− j + k)

n

=
(k − 1)!

(k − l + 1)!(l− 1)!

k(n− j + l − 1)

n

=
kCl−1

aj−l+1
.

Hence, the coefficient of CVj+1−l can be given by

(−1)lnk

k!
∏k+1

α=1 aj+α−1

(
1

akj−l+1

kCl−1

aj−l+1
+

1

akj−l

kCl
aj−l

)
= ξ

(l)
k+1,j .

Therefore, the proof is complete. �

By using Lemma A.2, we present the proof of Theorem 2.1 as follows:
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Proof of Theorem 2.2. The case in which k = 1 in equation (2.10) is clear because

m1,1 = 1. The case in which k ≥ 2 can be proven by mathematical induction. Assume

that equation (A.17) holds until k, and then consider the case in which k+1. We can see

that

cj =

j∏
l=1

(1 − al) =

j∏
l=1

(
1 − n

n− l

)
=

j∏
l=1

−l
n − l

=
(−1)jj!

nj

j∏
l=1

al.

It then follows from equation (2.12) that

CCVk+1 = CCVk − ck−1Δk,k

=
k∑
j=1

mk,jCVj − ck−1

k∑
l=0

ξ
(l)
k,kCVk+1−l

=
k∑
j=1

(
mk,j − ck−1ξ

(k+1−j)
k,k

)
CVj − ck−1ξ

(0)
k,kCVk+1.

The coefficient of CVk+1 and CV1 can be expressed as follows:

−ck−1ξ
(0)
k,k = −(−1)k−1(k − 1)!

nk−1

(
k−1∏
l=1

al

)
nk−1

(k − 1)!akk
∏k

α=1 aα

=
(−1)k+2

ak+1
k

= mk+1,k+1.

mk,1 − ck−1ξ
(k)
k,k =

(
1 +

k − 1

ak1

)
− (−1)k−1(k − 1)!

nk−1

(
k−1∏
l=1

al

)
(−1)knk−1

(k − 1)!ak1
∏k

α=1 aα

=

(
1 +

k − 1

ak1

)
+

1

aka
k
1

= 1 +
k

ak+1
1

= mk+1,1.

The coefficient of CVj for j ≥ 2 can be rewritten as follows:

mk,j − ck−1ξ
(k+1−j)
k,k

= (−1)j

(
k−1Cj−1

akj−1

+
k−1Cj
akj

)

−(−1)k−1(k − 1)!

nk−1

(
k−1∏
l=1

al

)
(−1)k+1−jnk−1

(k − 1)!
∏k

α=1 aα

(
k−1Cj−1

akj
+

k−1Cj
akj−1

)

= (−1)j+1

{
1

akj

(
k−1Cj +

k−1Cj−1

ak

)
+

1

akj−1

(
k−1Cj−1 +

k−1Cj−2

ak

)}
.

We can see that

k−1Cj +
k−1Cj−1

ak
=

(k − 1)!

(k − 1 − j)!j!
+

(k − 1)!

(k − j)!(j − 1)!

n − k

n
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=
(k − 1)!

(k − j)!j!

{
(k − j) + j

n− k

n

}

=
(k − 1)!

(k − j)!j!

k(n− j)

n

=
kCj
aj

.

Hence, the coefficient of CVj can be given by

(−1)j+1

(
1

akj

kCj
aj

+
1

akj−1

kCj−1

aj−1

)
= mk+1,j.

Therefore, the proof is complete. �
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Table 1. Mean of selected ridge parameter

Criteria
Distribution λ0 GCV GIC CV CCV2

Normal 0.7800 0.4129 0.2761 0.8989 0.8601
Laplace 0.7800 0.4090 0.2739 0.8865 0.8489
Uniform 0.7800 0.4170 0.2789 0.9039 0.8645

Skew-Laplace 0.7800 0.4060 0.2733 0.8816 0.8446
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Figure 1. Relative biases and RMSEs of K-L and L2 discrepancy
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Figure 2. Average of GCV, GIC, CV and CCV2.
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