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SYNOPTIC ABSTRACT

In this article, we consider a test for the equality among k mean vectors in

the intraclass correlation model with monotone missing data. We derive simul-

taneous confidence intervals for all pairwise comparisons and for comparisons

with a control by using the idea in Koizumi and Seo (2008). To find sampling

distributions of T 2
max type statistic exactly is extremely difficult even if the

observations are obtained complete. Therefore we consider the approximation

to the upper percentage point of T 2
max type statistic by using Bonferroni’s in-

equality. Finally, the accuracy and conservativeness for procedures proposed

by in this paper are evaluated by the Monte Carlo simulation.
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1. INTRODUCTION

Hotelling’s T 2-statistic is well known as a test statistic for the equality of

two mean vectors (see, Hotelling (1931)). Simultaneous confidence intervals

for multivariate multiple comparisons among k mean vectors has been con-

sidered by many authors (e.g., Roy and Bose (1953), Siotani, Hayakawa and

Fujikoshi (1985)). Siotani (1959) has discussed in the approximation to the

upper percentage point of T 2
max type statistic by using Bonferroni’s inequal-

ity under the normal population. The first order Bonferroni approximation

yields conservative simultaneous confidence intervals. But when the number

of populations is large, this simultaneous confidence intervals become too con-

servative. So, Siotani (1959) derived the modified second order Bonferroni

approximation by asymptotic expansion for the joint probability of Hotelling’s

T 2 statistics. This procedure doesn’t always give the conservative simultane-

ous confidence intervals. But this procedure give a good approximation. Under

the elliptical population, the modified second order Bonferroni approximation

has been considered Seo (2002), Okamoto (2005) and so on. Recently, Kak-

izawa (2006) considered this problem under the general distribution. On the

other hand, Seo, Mano and Fujikoshi (1994) has discussed in the multivariate

Tukey-Kramer procedure for the case of pairwise comparisons among k mean

vectors. The multivariate Tukey-Kramer procedure is an attractive and sim-

ple procedure. The multivariate generalized Tukey conjecture is known as the

statement that the multivariate Tukey-Kramer procedure yields the conserva-

tive simultaneous confidence intervals for all pairwise comparisons. In the case

of comparisons with a control, concerning to the multivariate Tukey-Kramer

procedure, Seo (1995) proposed a conservative simultaneous confidence proce-

dure.

When the missing observations are occur, we often use the approximate pro-

cedures. The well known procedure is EM algorithm proposed by Dempster,

Laird and Rubin (1977). By the way, Srivastava (1985) proposed iterative

numerical method to obtain maximum likelihood estimates by using Newton-

Raphson method. On the other hand, Seo and Srivastava (2000) has derived an

exact test statistic for the equality of mean components and the simultaneous

confidence intervals for all contrasts and for linear contrasts with monotone



missing data. Recently, the exact test statistic for the equality of two mean

vectors and Scheffé type of simultaneous confidence intervals have been given

by Koizumi and Seo (2008). This is an extension of the procedure proposed

by Seo and Srivastava (2000).

In this article, we discuss in simultaneous confidence intervals for multivari-

ate multiple comparisons among k mean vectors in the intraclass correlation

model with monotone missing data. In particular, we focus on the case of

pairwise comparisons and the case of comparisons with a control for multi-

variate multiple comparison procedure. First, in Section 2, we introduce the

notation in this paper and derive an unbiased estimator of unknown parame-

ter. In Section 3, for the case k = 2, we describe the exact test statistic and

the simultaneous confidence intervals which are the results in Koizumi and

Seo (2008). In Section 4, we derive simultaneous confidence intervals among k

mean vectors for all pairwise comparisons and for comparisons with a control

by using Bonferroni’s inequality. Finally, in Section 5, we investigate the accu-

racy and the conservativeness for the approximation to the upper percentage

points of T 2
max·p and T 2

max·c statistics by 1,000,000 Monte Carlo simulation.

2. UNBIASED ESTIMATOR OF PARAMETER

Let x
(i)
1 ,x

(i)
2 , . . . , x

(i)

n(i) be the sample vectors from the i-th population (i =
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matrix, 1p = (1, 1, . . . , 1)′ is a p-vector and σ2, ρ ∈ [−1/(p−1), 1] are unknown

parameters.

We consider the case when the missing observations are of the monotone-

type. Our observations {x(i)
`j } can be written, without loss of generality, in the

following form: 
x

(i)
11 x

(i)
12 · · · · · · x

(i)

1n
(i)
1

...
... · · · x

(i)

2n
(i)
2

∗
...

... · · · ∗ ∗
x

(i)
p1 · · · x

(i)

pn
(i)
p

∗ ∗

 ,



where n
(i)
1 ≥ n

(i)
2 ≥ · · · ≥ n

(i)
p and “∗” means missing component. We shall

consider the case n
(i)
1 = n

(i)
2 (≡ n(i)). To provide a test or simultaneous

confidence intervals, we rewrite the observations in the following form:
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where p ≡ p
(i)
1 ≥ p

(i)
2 ≥ · · · ≥ p

(i)
n . Since n
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2 , we note that p
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where γ2 ≡ σ2(1 − ρ) and y
(i)
j = (y

(i)
1j , y

(i)
2j , . . . , y

(i)

p
(i)
j −1,j

)′. We shall write C :

(p − 1) × p for C
(i)
1 , since p

(i)
1 ≡ p. When the missing patterns are same,

we put n`+1 ≡ n
(1)
`+1 = n

(2)
`+1 = · · · = n

(k)
`+1, ` = 1, 2, . . . , p − 1. Otherwise we

put n`+1 = mini=1,2,...,k{n(i)
`+1}, ` = 1, 2, . . . , p − 1. Hence we can calculate the

estimators of parameters, that is, sample means of transformation data are

given by

y
(i)
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1
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n`+1∑
j=1

y
(i)
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Further, we can obtain an unbiased estimator of γ2 which is given by

fγ̂2 =
k∑

i=1
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`=1
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j=1

(
y
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(i)
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, f = k

(
p−1∑
`=1

n`+1 − p + 1

)
.

3. TWO SAMPLE PROBLEM



In this Section, we consider the case k = 2. Let sample mean vectors for the

i-th population be y(i) = (y
(i)
1· , y

(i)
2· , . . . , y

(i)
p−1·)

′, then we can obtain the following

equations, as follows;

E(y(1) − y(2)) = C(µ1 − µ2)

Cov(y(1) − y(2)) = 2γ2

 n−1
2 0

. . .

0 n−1
p

 ≡ 2γ2V .

Hence, the exact test statistic T 2
12 is given by

T 2
12 ≡

(y(1) − y(2))′V −1(y(1) − y(2))

2γ̂2
. (1)

T 2
12/(p−1) is distributed as F distribution with p−1 and f degrees of freedom

under the null hypothesis.

We consider the simultaneous confidence intervals of a′(µ1 − µ2) for a ∈
R∗

p ≡ Rp−{0}, a′1p = 0. Since a′1p = 0, we can write it as a′ = ã′C for some

ã ∈ R∗
p−1, C1p = 0. Therefore, we can obtain the simultaneous confidence

intervals of a′(µ1 − µ2) with simultaneous confidence level 1 − α

a′(µ1 − µ2) ∈
[
ã′(y(1) − y(2)) ±

√
L1

]
, ∀a ∈ R∗

p, (2)

where L1 = 2t2αγ̂2ã′V ã and t2α is the upper 100α percentage point of T 2
12

statistic in (1).

4. k SAMPLE PROBLEM

Next, we consider the simultaneous confidence intervals for multivariate mul-

tiple comparisons among k mean vectors, that is, the simultaneous confidence

intervals of a′Mb for ∀a ∈ R∗
p, ∀b ∈ R∗

p−1, a′1p = 0, b′1p−1 = 0, where

M = [µ1, µ2, . . . , µk].

In the case of pairwise comparisons, b is given by

b = ei − ej, 1 ≤ i < j ≤ k,

where ei is a unit k-dimensional vector having 1 at the i-th component and 0 at

others. Hence, we consider the simultaneous confidence intervals of a′Mb =

a′(µi − µj).



We wish to find the percentage point tp such that

Pr
(
T 2

ij ≤ t2p, i < j, i, j = 1, 2, . . . , k
)

= 1 − α, (3)

where

T 2
ij ≡

(y(i) − y(j))′V −1(y(i) − y(j))

2γ̂2
.

We note that the above equation in (3) is equivalent to

Pr(T 2
max·p > t2p) = α,

where T 2
max·p ≡ maxi<j{T 2

ij}.
So, we can obtain the simultaneous confidence intervals of a′(µi − µj) fol-

lowing form:

a′(µi − µj) ∈
[
ã′(y(i) − y(j)) ±

√
L
]
, ∀a ∈ R∗

p, a′1p = 0

where a′ = ã′C, L = 2t2pγ̂
2ã′V ã and t2p is the upper 100α percentage points

of T 2
max·p statistic. In order to construct the simultaneous confidence intervals

with the given confidence level 1 − α, it is necessary to find the value of

tp. But the exact value of tp is extremely difficult even if the observations

are obtained complete. The approximate procedure based on Bonferroni’s

inequality is adopted in order to obtain conservative simultaneous confidence

intervals estimation.

The probability P of the realization of at least one among the N -events

E1, E2, . . . , EN in the case of pairwise comparisons is given by

P = NPr{E1} −
1

2
N(N − 1)Pr{E1, E2} + · · · ± Pr{E1, E2, . . . , EN}.

Hence, we can obtain the following inequality:

P ≤ NPr{E1}. (4)

We wish to find the percentage point t such that

Pr(T 2
max·p > t2p) = α,

where α is the significance level. The exact value of tp is extremely difficult to

find. We adopt the above inequality in (4). Hence, we can obtain the following

result.

Pr(T 2
max·p > t2p) ≤

∑∑
i<j

Pr(T 2
ij > t21·p) = α



This approximate procedure is called the first order Bonferroni approximation.

This procedure yields the conservative simultaneous confidence intervals. t21·p

is essentially the upper percentage point of F distribution with p − 1 and

f degrees of freedom. Therefore we construct the conservative simultaneous

confidence intervals for pairwise comparisons among mean vectors as follows:

a′(µi − µj) ∈
[
ã′(y(i) − y(j)) ±

√
L2

]
, ∀a ∈ R∗

p, a′1p = 0,

where a′ = ã′C, L2 = 2t21·pγ̂
2ã′V ã, t21·p is the upper 100α∗ percentage points

of T 2
ij statistic and α∗ ≡ 2α/[k(k − 1)].

In the case of comparisons with a control, b is given by

b = ei − ek, i = 1, 2, . . . , k − 1.

Here, we assume that the k-th treatment is a control treatment. Hence, we

consider the simultaneous confidence intervals of a′Mb = a′(µi − µk).

Similarly the case of pairwise comparisons, we construct the conservative

simultaneous confidence intervals for comparisons with a control among mean

vectors as follows:

a′(µi − µk) ∈
[
ã′(y(i) − y(k)) ±

√
L3

]
, ∀a ∈ R∗

p, a′1p = 0,

where a′ = ã′C, L3 = 2t21·cγ̂
2ã′V ã, t21·c is the upper 100α∗∗ percentage points

of T 2
ik statistic and α∗∗ ≡ α/(k − 1).

5. SIMULATION STUDIES

The accuracy and conservativeness for the first order Bonferroni approxi-

mate the upper percentage points of T 2
max·p and T 2

max·c statistics are evaluated

by 1,000,000 Monte Carlo simulation, where T 2
max·c ≡ maxi=1,2,...,k−1{T 2

ik}. Sim-

ulation parameters are as follows:

p = 4, 6,

n1 = n2 = 40, n3 = 30, n4 = 20, (p = 4)

n1 = n2 = n3 = 40, n4 = n5 = 30, n6 = 20, (p = 6)

k = 3, 5, 7, 9

σ2 = 1, 4, 9, ρ = 0.5

α̃∗ = Pr(T 2
max·p > t21·p)

α̃∗∗ = Pr(T 2
max·c > t21·c)

t2 : simulated value of the upper percentage point



We note that the upper percentage points of T 2
max type statistic don’t depend

on unknown parameters. Hence, we delete σ2 and ρ in our tables. This is a

result for the case of pairwise comparisons and p = 4 in Table 1.

p k 1 − α t2 t21·p 1 − α̃∗

0.90 8.48 8.84 0.914

3 0.95 10.16 10.42 0.955

0.99 13.95 14.05 0.990

0.90 10.87 11.48 0.921

5 0.95 12.57 13.01 0.959

4 0.99 16.34 16.55 0.991

0.90 12.36 13.07 0.925

7 0.95 14.08 14.58 0.960

0.99 17.83 18.08 0.991

0.90 13.45 14.21 0.926

9 0.95 15.15 15.72 0.960

0.99 18.90 19.19 0.991

Table 1. pairwise comparisons

From Table 1, the conservativeness for the first order Bonferroni approximation

is large, when the number of population is large.

This is a result for the case of pairwise comparisons and p = 6 in Table 2.

p k 1 − α t2 t21·p 1 − α̃∗

0.90 11.81 12.23 0.913

3 0.95 13.63 14.00 0.955

0.99 17.97 17.99 0.991

0.90 14.58 15.20 0.920

5 0.95 16.48 16.90 0.958

6 0.99 20.54 20.75 0.991

0.90 16.28 16.97 0.922

7 0.95 18.15 18.63 0.958

0.99 22.14 22.41 0.991

0.90 17.50 18.24 0.924

9 0.95 19.35 19.87 0.959

0.99 23.36 23.61 0.991

Table 2. pairwise comparisons



This is a result for the case of comparisons with a control and p = 4 in Table

3.

p k 1 − α t2 t21·c 1 − α̃∗∗

0.90 7.70 7.92 0.909

3 0.95 9.34 9.50 0.953

0.99 13.08 13.13 0.990

0.90 9.03 9.44 0.915

5 0.95 10.70 10.99 0.956

4 0.99 14.40 14.54 0.991

0.90 9.79 10.31 0.920

7 0.95 11.46 11.84 0.958

0.99 15.20 15.36 0.991

0.90 10.32 10.93 0.922

9 0.95 11.99 12.45 0.959

0.99 15.71 15.94 0.991

Table 3. comparisons with a control

This is a result for the case of comparisons with a control and p = 6 in Table

4.

p k 1 − α t2 t21·p 1 − α̃∗

0.90 10.94 11.17 0.908

3 0.95 12.82 12.97 0.953

0.99 16.91 17.00 0.990

0.90 12.47 12.91 0.915

5 0.95 14.35 14.65 0.956

6 0.99 18.39 18.57 0.991

0.90 13.35 13.91 0.918

7 0.95 15.22 15.62 0.957

0.99 19.28 19.48 0.991

0.90 13.98 14.60 0.920

9 0.95 15.85 16.29 0.958

0.99 19.89 20.12 0.991

Table 4. comparisons with a control

It may be noticed from Tables that our procedure gives a good approxima-

tion to the upper percentage point of T 2
max type statistic even if the case the

number of population is not small.
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