Numerical Studies on Convergence of Multinomial Goodness-of-fit Statistics to Chisquare Distribution

Zh. Assylbekov
Graduate School of Science, Hiroshima University

October 1, 2008

Abstract

Let $\boldsymbol{Y}=\left(Y_{1}, Y_{2}, \ldots, Y_{k}\right)^{\prime}$ be a random vector with multinomial distribution. In this report we investigate numerically the convergence rate of so-called power divergence family of statistics $\left\{I^{\lambda}(\boldsymbol{Y}), \lambda \in \mathbb{R}\right\}$ introduced by Cressie and Read (1984) to chi-square distribution for $k=4,5,6$.

1 Introduction

Let $\boldsymbol{Y}=\left(Y_{1}, Y_{2}, \ldots, Y_{k}\right)^{\prime}$ be a random vector with the multinomial distribution $M_{k}(n, \boldsymbol{\pi})$, i.e.,

$$
\operatorname{Pr}\left(Y_{1}=n_{1}, Y_{2}=n_{2}, \ldots, Y_{k}=n_{k}\right)= \begin{cases}n!\prod_{j=1}^{k} \frac{\pi_{j}^{n_{j}}}{n_{j}!} & \sum_{j=1}^{k} n_{j}=n \\ 0 & \text { otherwise }\end{cases}
$$

where $n_{j}=0,1, \ldots, n, \boldsymbol{\pi}=\left(\pi_{1}, \pi_{2}, \ldots, \pi_{k}\right)^{\prime}, \pi_{j}>0, \sum_{j=1}^{k} \pi_{j}=1$. For testing the simple hypothesis $\mathrm{H}: \boldsymbol{\pi}=\boldsymbol{p}$ (\boldsymbol{p} is a fixed vector) against $\mathrm{K}: \boldsymbol{\pi} \neq \boldsymbol{p}$ the power divergence statistics (introduced by Cressie and Read in [2]) can be used:

$$
2 n I^{\lambda}=\frac{2}{\lambda(\lambda+1)} \sum_{j=1}^{k} Y_{j}\left(\left(\frac{Y_{j}}{n p_{j}}\right)^{\lambda}-1\right), \lambda \in \mathbb{R}
$$

where $\boldsymbol{p}=\left(p_{1}, p_{2}, \ldots, p_{k}\right)^{\prime}, p_{j}>0(j=1,2, \ldots, k)$ and $\sum_{j=1}^{k} p_{j}=1$.

Throughout this paper we will use the following notation:

$$
\begin{gathered}
\boldsymbol{x}=\left(x_{1}, \ldots, x_{r}\right)^{\prime}, \\
\boldsymbol{x}^{*}=\left(x_{1}, \ldots, x_{l-1}, x_{l+1}, \ldots, x_{r}\right)^{\prime},
\end{gathered}
$$

For any $B \subset \mathbb{R}^{r}$ and for any $l \in\{1, \ldots, r\}$ denote

$$
B_{l}=\left\{\boldsymbol{x}^{*}: \boldsymbol{x} \in B\right\} .
$$

Definition 1. A set $B \subset \mathbb{R}^{r}$ is called an extended convex set, if B has the following representation for every $l \in\{1,2, \ldots, r\}$:

$$
B=\left\{\boldsymbol{x}: \lambda_{l}\left(\boldsymbol{x}^{*}\right)<x_{l}<\theta_{l}\left(\boldsymbol{x}^{*}\right), \boldsymbol{x}^{*} \in B_{l}\right\},
$$

where λ_{l}, θ_{l} are continuous functions on B_{l}.
It is known (see Cressie, Read [2]), that under the null hypothesis $2 n I^{\lambda}$ has the chisquare distribution with $r=k-1$ degrees of freedom in the limit. Moreover the distribution function of $2 n I^{\lambda}$ has the following expansion:

$$
\begin{equation*}
\operatorname{Pr}\left(2 n I^{\lambda}<c\right)=\operatorname{Pr}\left(\chi_{r}^{2}<c\right)+J_{2}+O\left(n^{-1}\right), \tag{1}
\end{equation*}
$$

where

$$
\begin{align*}
& J_{2}=-\frac{1}{\sqrt{n}} \sum_{l=1}^{r} n^{-\frac{r-l}{2}} \sum_{x_{l+1} \in L_{l+1}} \ldots \sum_{x_{r} \in L_{r}} \\
& \int_{-\infty}^{\infty} \ldots \int_{-\infty}^{\infty} \chi_{B_{l}^{\lambda}}\left(\boldsymbol{x}^{*}\right)\left[S_{1}\left(\sqrt{n} x_{l}+p_{l} n\right) \phi(\boldsymbol{x})\right]_{\lambda_{l}}^{\theta_{l}\left(\boldsymbol{x}^{*}\right)} d x_{1} \ldots d x_{l-1}, \tag{2}\\
& L_{j}=\left\{x_{j}: x_{j}=\frac{1}{\sqrt{n}}\left(n_{j}-n p_{j}\right), n_{j} \in \mathbb{Z}\right\}, \tag{3}\\
& S_{1}(x)=x-[x]-\frac{1}{2}, \\
& {[h(\boldsymbol{x})]_{\lambda\left(\boldsymbol{x}^{*}\right)}^{\theta\left(\boldsymbol{x}^{*}\right)}=h\left(x_{1}, \ldots, x_{l-1}, \theta_{l}\left(\boldsymbol{x}^{*}\right), x_{l+1}, \ldots, x_{r}\right) } \\
&-h\left(x_{1}, \ldots, x_{l-1}, \lambda_{l}\left(\boldsymbol{x}^{*}\right), x_{l+1}, \ldots, x_{r}\right), \\
& \phi(\boldsymbol{x})=(2 \pi)^{-\frac{r}{2}}|\Omega|^{-\frac{1}{2}} \exp \left(-\frac{1}{2} \boldsymbol{x}^{\prime} \Omega^{-1} \boldsymbol{x}\right), \\
& \Omega=\operatorname{diag}\left(p_{1}, \ldots, p_{r}\right)-\left(p_{1}, \ldots, p_{r}\right)^{\prime}\left(p_{1}, \ldots, p_{r}\right) .
\end{align*}
$$

Here $\chi_{A}(x)$ is an indicator function, $\theta_{l}\left(\boldsymbol{x}^{*}\right)$ and $\lambda_{l}\left(\boldsymbol{x}^{*}\right)$ are continuous functions from Definition 1 for the set

$$
\begin{equation*}
B^{\lambda}=\left\{\boldsymbol{x}: 2 n I^{\lambda}(\boldsymbol{x})<c\right\} \tag{4}
\end{equation*}
$$

with

$$
\begin{gather*}
2 n I^{\lambda}(\boldsymbol{x})=\frac{2}{\lambda(\lambda+1)} \sum_{j=1}^{k}\left(n p_{j}+\sqrt{n} x_{j}\right)\left(\left(1+\frac{x_{j}}{\sqrt{n} p_{j}}\right)^{\lambda}-1\right), \tag{5}\\
x_{k}=-\left(x_{1}+\cdots+x_{r}\right) .
\end{gather*}
$$

It follows from Yarnold's result [5] that

$$
J_{2}=O\left(n^{-1 / 2}\right)
$$

Zubov and Ulyanov in [6] showed that

$$
J_{2}=O\left(n^{-1+\frac{1}{r+1}}\right) .
$$

This was improved by the author in [1], where it was shown that

$$
J_{2}=O\left(n^{-1+\mu(r)}\right),
$$

with

$$
\mu(r)=\left\{\begin{array}{l}
6 /(7 r+4) \text { for } 3 \leq r \leq 7, \\
5 /(6 r+2) \text { for } r \geq 8
\end{array}\right.
$$

In the present report we investigate numerically whether the upper bound for J_{2} can be improved.

2 Preliminaries

By definition put

$$
L=\left\{\boldsymbol{x}: x_{j}=\frac{1}{\sqrt{n}}\left(m_{j}-n p_{j}\right), m_{j} \in \mathbb{Z}, j=\overline{1, r}\right\},
$$

This means that L is an r-dimensional lattice in \mathbb{R}^{r} and lattice spacing of L is $\frac{1}{\sqrt{n}}$. Let N^{λ} be the number of lattice points in the ellipsoid B^{λ}, i.e, $N^{\lambda}=\#\left(L \cap B^{\lambda}\right)$. Let V^{λ} be the volume of B^{λ}.

Lemma 1. Let J_{2} be the term defined by (2); then

$$
\begin{equation*}
J_{2}=d n^{-\frac{r}{2}}\left(N^{\lambda}-n^{\frac{r}{2}} V^{\lambda}\right)+O\left(n^{-1}\right), \tag{6}
\end{equation*}
$$

where $d=$ const >0.
Proof. The proof is given in [1], Proposition 1.

3 Numerical studies

In [1] it was shown that B^{λ} is a convex boundy which has smooth boundary with nonvanishing and bounded Gaussian curvature throughout. Hence Lemma 1 reduces the original problem of estimating J_{2} (see (2)) to the lattice point problem inside convex body B^{λ} (see (6)). In [4], W. Müller made a conjecture, which in terms of our problem reads

$$
n^{-\frac{r}{2}}\left(N^{\lambda}-n^{\frac{r}{2}} V^{\lambda}\right)= \begin{cases}O\left(n^{-1+\varepsilon}\right), & r=3,4, \\ O\left(n^{-1}\right), & r \geq 5\end{cases}
$$

In order to test this conjecture we calculate the expressions

$$
\begin{cases}n^{-\frac{r}{2}}\left|N^{\lambda}-n^{\frac{r}{2}} V^{\lambda}\right| n^{0.9}, & r=3,4, \tag{7}\\ n^{-\frac{r}{2}}\left|N^{\lambda}-n^{\frac{r}{2}} V^{\lambda}\right| n, & r=5 .\end{cases}
$$

If Müller's conjecture is true then the expressions in (7) should be bounded by above. The results of our computations for $r=3$ and $n=\overline{1,2000}$ are given below

For $r=4$ and $n=\overline{1,720}$ we have

And, finally, for $r=5$ and $n=\overline{1,270}$ we have

As it is seen on these pictures, our results fit Müller's conjecture. The algorithm of computations is rather straightforward and is given for $r=3$ in Appendix A.

A Algorithm of computations in C

```
#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#define C 1.0
#define PI 3.14159265358979323846
#define K 4
double T(int n, double *x, double *p)
{
    double result = 0;
    int j;
    x[K-1] = 0;
    for (j = 0; j < K - 1; j++)
    {
        result += 2*(n*p[j] + sqrt(n)*x[j])*log(1 + x[j]/sqrt(n)/p[j]);
        x[K-1] -= x[j];
    }
    result += 2 * (n*p[K-1] + sqrt(n)*x[K-1])*log(1 + x[j]/sqrt(n)/p[K-1]);
    return result;
}
int N(int n, double *p)
{
    double x[K];
    int i, j, k, count = 0;
    for (i = 1; i < n; i++)
        for (j = 1; j < n - i; j++)
            for (k = 1; k < n - i - j; k++)
            {
                    x[0] = 1/sqrt(n)*(i - n*p[0]);
                        x[1] = 1/sqrt(n)*(j - n*p[1]);
                        x[2] = 1/sqrt(n)*(k - n*p[2]);
                        if (T(n,x,p) < C)
                    {
                        count++;
            }
            }
    return count;
}
```

```
double V(int n, double *p)
{
    return 4*pow (PI*C, 3.0/2)*sqrt(p[0]*p[1]*p[2]*p[3])/3/sqrt(PI);
}
int main(int argc, char *argv[])
{
    double p[K], volume;
    int n;
    p[0] = 0.1;
    p[1] = 0.1;
    p[2] = 0.3;
    p[K-1] = 0.5;
    volume = V(n,p);
    for(n = 1; n < 1000; n++)
    {
        printf("%f\n", (pow(n, -3.0/2)*N(n, p)-volume));
        fprintf(stderr, "%d ", n);
    }
    return 0;
}
```


References

[1] Zh. Assylbekov, Convergence of multinomial goodness-of-fit statistics to chisquare distribution, submitted.
[2] N. C. Cressie and T. R. C. Read, Multinomial goodness-of-fit tests, J. R. Statist. Soc. B (1984) 46, No. 3, 440-464.
[3] E. Hlawka, Über Integrale auf konvexen Körpern I, II, Monatsh. Math. 54, 1-36, 81-99 (1950).
[4] W. MÜLLER, Lattice points in large convex bodies, Mh. Math. 128, 315-330 (1999).
[5] J. K. Yarnold, Asymptotic approximations for the probability that a sum of lattice random vectors lies in a convex set, The Annals of Mathematical Statistics 1972, Vol. 43, No. 5, 1566-1580.
[6] V. N. Zubov, V. V. Ulyanov, Refinement on the convergence of one family of goodness-of-fit statistics to chi-squared distribution, submitted.

