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Abstract

In this paper, we consider some tests for the multivariate normality based
on the sample measures of multivariate skewness and kurtosis. Sample mea-
sures of multivariate skewness and kurtosis were defined by Mardia (1970),
Srivastava (1984) and so on. We derive new multivariate normality tests by
using Mardia’s and Srivastava’s moments. For univariate sample case, Jar-
que and Bera (1987) proposed bivariate test using skewness and kurtosis. We
propose some new test statistics for assessing multivariate normality which
are natural extensions of Jarque-Bera test. Finally, the numerical results by
Monte Carlo simulation are shown in order to evaluate accuracy of expec-
tations, variances, frequency distributions and upper percentage points for
new test statistics.

Key Words and Phrases: Jarque-Bera test; multivariate skewness; multivari-
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1 Introduction

In statistical analysis, the test for normality is an important problem. This prob-

lem has been considered by many authors. Shapiro and Wilk’s (1965) W -statistic

is well known as the univariate normality test. For the multivariate case, some

tests based on W -statistic were proposed by Malkovich and Afifi (1973), Royston
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(1983), Srivastava and Hui (1987) and so on. Mardia (1970) and Srivastava (1984)

gave different definitions of the multivariate measures of skewness and kurtosis,

and discussed the test statistics using these measures for assessing multivariate

normality, respectively. Mardia (1974) derived exact expectations and variances of

multivariate sample skewness and kurtosis, and discussed their asymptotic distri-

butions. Srivastava’s (1984) sample measures of multivariate skewness and kurtosis

have been discussed by many authors. Seo and Ariga (2006) derived a normaliz-

ing transformation of test statistic using Srivastava’s kurtosis by the asymptotic

expansion. Okamoto and Seo (2008) derived the exact expectation and variance

of Srivastava’s skewness and improved χ2 statistic defined by Srivastava (1984) for

assessing multivariate normality.

In this paper, our purpose is to propose new Jarque-Bera tests for assessing

multivariate normality by using Mardia’s and Srivastava’s measures, respectively.

For univariate sample case, Jarque and Bera (1987) proposed an omnibus test using

skewness and kurtosis. Improved Jarque-Bera tests have been discussed by many

authors. (see, e.g. Urzúa (1996)) But Jarque-Bera test for multivariate sample case

has not been considered by any authors. In Section 2 we describe some properties

of Mardia’s and Srivastava’s multivariate skewness and kurtosis. In Section 3 we

propose new tests for assessing multivariate normality. New test statistics are

asymptotically distributed as χ2-distribution under the normal population. These

tests are extensions of Jarque-Bera test. In Section 4 we investigate accuracy of

expectations, variances, frequency distributions and upper percentage points for

multivariate Jarque-Bera tests by Monte Carlo simulation.
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2 Multivariate measures of skewness and kurto-

sis

2.1 Mardia’s (1970) skewness and kurtosis

Let x = (x1, x2, . . . , xp)
′ and y = (y1, y2, . . . , yp)

′ be random p-vectors distributed

identically and independently with mean vector µ = (µ1, µ2, . . . , µp)
′ and covari-

ance matrix Σ, Σ > 0. Mardia (1970) has defined the population measures of

multivariate skewness and kurtosis as

βM,1 = E
[
{(x − µ)′Σ−1(y − µ)}3

]
,

βM,2 = E
[
{(x − µ)′Σ−1(x − µ)}2

]
,

respectively. When p = 1, βM,1 and βM,2 are reduced to the ordinary univariate

measures. It is obvious that for any symmetric distribution about µ, βM,1 = 0.

Under the normal distribution Np(µ, Σ),

βM,1 = 0, βM,2 = p(p + 2).

To give the sample counterparts of βM,1 and βM,2, let x1,x2, . . . , xN be samples

of size N from a multivariate p-dimensional population. And let x and S be the

sample mean vector and the sample covariance matrix as follows:

x =
1

N

N∑
j=1

xj,

S =
1

N

N∑
j=1

(xj − x)(xj − x)′,

respectively.

Then Mardia (1970) has defined the sample measures of skewness and kurtosis

by

bM,1 =
1

N2

N∑
i=1

N∑
j=1

{(xi − x)′S−1(xj − x)}3,

bM,2 =
1

N

N∑
i=1

{(xi − x)′S−1(xi − x)}2,
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respectively.

Mardia (1970, 1974) have given the following Lemma.

Lemma 1 Mardia (1970, 1974) have given the exact expectation of bM,1, and ex-

pectation and variance of bM,2 when the population is Np(µ, Σ).

E(bM,1) =
p(p + 2)

(N + 1)(N + 3)
{(N + 1)(p + 1) − 6},

E(bM,2) =
p(p + 2)(N − 1)

N + 1
,

Var(bM,2) =
8p(p + 2)(N − 3)

(N + 1)2(N + 3)(N + 5)
(N − p − 1)(N − p + 1),

respectively.

Furthermore Mardia (1970) obtained asymptotic distributions of bM,1 and bM,2 and

used them to test the multivariate normality.

Theorem 1 Let bM,1 and bM,2 be the sample measures of multivariate skewness

and kurtosis, respectively, on the basis of a random sample of size N drawn from

Np(µ, Σ), Σ > 0. Then

zM,1 =
N

6
bM,1

is asymptotically distributed as χ2-distribution with f ≡ p(p + 1)(p + 2)/6 degrees

of freedom, and

zM,2 =

√
N

8p(p + 2)
(bM,2 − p(p + 1))

is asymptotically distributed as N(0, 1).

By making reference to moments of bM,1 and bM,2, Mardia (1974) considered

the following approximate test statistics as competitors of zM,1 and zM,2:

z∗M,1 =
N

6
bM,1

(p + 1)(N + 1)(N + 3)

N{(N + 1)(p + 1) − 6}
∼ χ2

f (2.1)

asymptotically, and

z∗M,2 =

√
(N + 3)(N + 5){(N + 1)bM,2 − p(p + 2)(N − 1)}√

8p(p + 2)(N − 3)(N − p − 1)(N − p + 1)
∼ N(0, 1) (2.2)

asymptotically. It is noted that z∗M,1 is formed so that E(z∗M,1) = f .
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2.2 Srivastava’s (1984) skewness and kurtosis

Let Γ = (γ1,γ2, . . . , γp) be an orthogonal matrix such that Γ′ΣΓ = Dλ, where

Dλ = diag(λ1, λ2, . . . , λp). Note that λ1, λ2, . . . , λp are the eigenvalues of Σ. Then,

Srivastava (1984) defined the population measures of multivariate skewness and

kurtosis by using the principle component as follows:

βS,1 =
1

p

p∑
i=1

{
E [(vi − θi)

3]

λ
3
2
i

}2

,

βS,2 =
1

p

p∑
i=1

E [(vi − θi)
4]

λ2
i

,

respectively, where vi = γ ′
ix and θi = γ ′

iµ (i = 1, 2, . . . , p). We note that βS,1 = 0

and βS,2 = 3 under a multivariate normal population. Let H = (h1, h2, . . . , hp) be

an orthogonal matrix such that H ′SH = Dω, where Dω = diag(ω1, ω2, . . . , ωp) and

ω1, ω2, . . . , ωp are the eigenvalues of S. Then, Srivastava (1984) defined the sample

measures of multivariate skewness and kurtosis as follows:

bS,1 =
1

N2p

p∑
i=1

{
ω
− 3

2
i

N∑
j=1

(vij − vi)
3

}2

,

bS,2 =
1

Np

p∑
i=1

ω−2
i

N∑
j=1

(vij − vi)
4,

respectively, where vij = h′
ixj, vi = (1/N)

∑N
j=1 vij.

Srivastava (1984) obtained the following Lemma:

Lemma 2 For large N , Srivastava (1984) has given the expectations of
√

bS,1 and

bS,1 and expectation and variance of bS,2 when the population is Np(µ, Σ).

E(
√

bS,1) = 0, E(bS,1) =
6

N
,

E(bS,2) = 3, Var(bS,2) =
24

Np
,

respectively.

By using Lemma 2, Srivastava (1984) derived the following theorem:
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Theorem 2 Let bS,1 and bS,2 be the sample measures of multivariate skewness and

kurtosis by using the principle component, respectively, on the basis of a random

sample of size N drawn from Np(µ, Σ). Then

zS,1 =
Np

6
bS,1

is asymptotically distributed as χ2-distribution with p degrees of freedom, and

zS,2 =

√
Np

24
(bS,2 − 3)

is asymptotically distributed as N(0, 1).

Further Okamoto and Seo (2008) gave the expectation of multivariate sample

skewness bS,1 without using Taylor expansion. By using the same way as Okamoto

and Seo (2008), we can obtain the expectation and variance of multivariate sample

kurtosis bS,2. Hence we can get the following Lemma:

Lemma 3 For large N , we give the expectation of bS,1 and expectation and variance

of bS,2 when the population is Np(µ, Σ).

E(bS,1) =
6(N − 2)

(N + 1)(N + 3)
,

E(bS,2) =
3(N − 1)

N + 1
,

Var(bS,2) =
24

p

N(N − 2)(N − 3)

(N + 1)2(N + 3)(N + 5)
,

respectively.

By making reference to moments of bS,1 and bS,2, we consider following approximate

test statistics as competitors of zS,1 and zS,2:

z∗S,1 =
(N + 1)(N + 3)

6(N − 2)
pbS,1 ∼ χ2

p (2.3)

asymptotically, and

z∗S,2 =

√
p(N + 3)(N + 5){(N + 1)bS,2 − 3(N − 1)}√

24N(N − 2)(N − 3)
∼ N(0, 1) (2.4)

asymptotically.
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3 Multivariate Jarque-Bera tests

In this section, we consider new tests for multivariate normality when the popula-

tion is Np(µ, Σ). From Theorem 1, we propose a new test statistic using Mardia’s

measures as follows:

MJBM = N

{
bM,1

6
+

(bM,2 − p(p + 2))2

8p(p + 2)

}
.

MJBM statistic is asymptotically distributed as χ2
f+1-distribution.

From Theorem 2, we propose a new test statistic using Srivastava’s measures

as follows:

MJBS = Np

{
bS,1

6
+

(bS,2 − 3)2

24

}
.

MJBS statistic is asymptotically distributed as χ2
p+1-distribution.

Further, by using (2.1) and (2.2), a modified MJBM is given by

MJB∗
M = z∗M,1 + z∗

2

M,2.

In the same as MJBM , this statistic MJB∗
M is distributed as χ2

f+1-distribution

asymptotically.

Also, by using (2.3) and (2.4), a modified MJBS is given by

MJB∗
S = z∗S,1 + z∗

2

S,2.

In the same as MJBS, this statistic MJB∗
S is distributed as χ2

p+1-distribution

asymptotically.

4 Simulation studies

Accuracy of expectations, variances, frequency distributions and upper percentage

points of multivariate Jarque-Bera tests MJBM , MJBS, MJB∗
M and MJB∗

S is

evaluated by Monte Carlo simulation study. Simulation parameters are as follows:

p = 3, 10, 20, N = 20, 50, 100, 200, 400, 800. As a numerical experiment, we
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carry out 100,000 and 1,000,000 replications for the case of Mardia’s measures and

Srivastava’s measures, respectively.

From Tables 1–2 and Figures 1–6, expectations of approximate χ2 statistics

MJB∗
M and MJB∗

S are invariant for any sample sizes N . That is, MJB∗
M and

MJB∗
S are almost close to the exact expectations even for small N . However,

accuracy of expectations of MJBM and MJBS is not good especially for small

N . We note that expectations of MJBM and MJBS converge on those of χ2-

distribution for large N . Hence it may be noticed that both MJB∗
M and MJB∗

S

are improvements of MJBM and MJBS, respectively.

On the other hand, from Tables 1–2 and Figures 7–12, variances of MJB∗
M

and MJB∗
S are larger than those of MJBM and MJBS. To investigate this cause,

we show frequency distributions of multivariate Jarque-Bera tests proposed in this

paper. These results are in Figures 13–24. In figures, fX(x) represents probability

density function (p.d.f.) of χ2-distribution. It may be noticed from these figures

that frequencies of MJB∗
M and MJB∗

S are closer to p.d.f. of χ2-distribution than

those of MJBM and MJBS, respectively. This tendency appears well when sample

size N is small. But the coming off values of MJB∗
M and MJB∗

S are more than

those of MJBM and MJBS. Therefore there is a tendency for variance to become

large.

Finally, in Table 3 and Figures 25–27, we give upper percentage points of

MJBM and MJB∗
M by using Mardia’s skewness and kurtosis. MJBM tends to

be conservative. Also MJB∗
M is closer to the upper percentage points of χ2

f+1-

distribution even when the sample size N is small. In Table 4 and Figures 28–30,

we give upper percentage points of MJBS and MJB∗
S by using Srivastava’s skew-

ness and kurtosis. We note that the tendency is similar to the case using Mardia’s

moments.
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5 Concluding remarks

For univariate sample case, Jarque-Bera test is well known as a simple procedure

on practical use. In this paper, we proposed four new test statistics for assessing

multivariate normality. MJBM and MJBS are natural forms of extensions in the

case of multivariate normality tests. But approximations of expectations, frequency

distributions and upper percentage points of MJBM and MJBS are not good when

the sample size N is small. Also we proposed improved multivariate normality

test statistics MJB∗
M and MJB∗

S. Hence we improved expectations and upper

percentage points of MJBM and MJBS. But variances of MJBM and MJBS are

not improved. This problem still remains. It is an future problem. In order to solve

this problem, it may be noted that we have to consider covariance of z∗M,1 and z∗
2

M,2

and that of z∗S,1 and z∗
2

S,2. We recommend to use MJB∗
M and MJB∗

S from the aspect

of aproximate accuracy of upper percentage points of test statistics especially for

small N .
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Table 1: Expectations and variances of MJBM and MJB∗
M .

p N E(MJBM) E(MJB∗
M) f + 1 V ar(MJBM) V ar(MJB∗

M) 2(f + 1)
3 20 8.79 10.98 11 14.40 35.78 22

50 10.00 11.01 11 23.27 36.01 22
100 10.47 11.01 11 24.95 31.67 22
200 10.73 11.00 11 24.27 27.55 22
400 10.83 10.96 11 23.18 24.77 22
800 10.91 10.98 11 22.51 23.27 22

10 20 189.20 221.02 221 176.65 304.25 442
50 206.90 220.91 221 427.59 558.73 442

100 213.73 220.99 221 482.40 562.74 442
200 217.27 220.96 221 475.28 518.03 442
400 219.12 220.98 221 468.08 490.30 442
800 219.93 220.87 221 454.81 465.84 442

20 50 1449.36 1541.18 1541 2447.04 3031.77 3082
100 1493.80 1541.17 1541 3467.95 3934.50 3082
200 1516.99 1541.06 1541 3549.40 3818.71 3082
400 1529.23 1541.37 1541 3406.70 3548.59 3082
800 1534.60 1540.69 1541 3227.97 3298.83 3082

Table 2: Expectations and variances of MJBS and MJB∗
S.

p N E(MJBS) E(MJB∗
S) p + 1 V ar(MJBS) V ar(MJB∗

S) 2(p + 1)
3 20 2.93 4.02 4 5.46 18.25 8

50 3.50 4.01 4 9.06 15.67 8
100 3.73 4.00 4 9.65 13.03 8
200 3.86 4.00 4 9.24 10.87 8
400 3.93 4.00 4 8.74 9.52 8
800 3.96 4.00 4 8.37 8.74 8

10 20 8.66 11.08 11 12.14 36.89 22
50 9.91 11.00 11 19.28 31.65 22

100 10.43 11.00 11 21.42 27.98 22
200 10.71 11.01 11 22.08 25.44 22
400 10.86 11.01 11 22.18 23.86 22
800 10.92 10.99 11 22.06 22.90 22

20 50 19.09 21.01 21 34.82 56.24 42
100 20.01 21.01 21 39.31 50.83 42
200 20.49 21.01 21 40.99 46.92 42
400 20.75 21.01 21 41.72 44.73 42
800 20.87 21.00 21 41.63 43.13 42
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Table 3: The upper 5 percentage points of MJBM and MJB∗
M .

p N MJBM MJB∗
M χ2

f+1(0.05)

3 20 15.80 22.07 19.68
50 18.67 21.76 19.68

100 19.43 21.17 19.68
200 19.71 20.61 19.68
400 19.64 20.09 19.68
800 19.63 19.85 19.68

10 20 212.42 252.35 256.68
50 243.03 262.64 256.68

100 252.04 262.59 256.68
200 254.98 260.40 256.68
400 256.16 258.97 256.68
800 256.33 257.74 256.68

20 50 1535.31 1637.63 1633.44
100 1594.99 1649.32 1633.44
200 1618.15 1646.28 1633.44
400 1627.42 1641.72 1633.44
800 1629.50 1636.56 1633.44

Table 4: The upper 5 percentage points of MJBS and MJB∗
S.

p N MJBS MJB∗
S χ2

p+1(0.05)

3 20 6.81 11.24 9.49
50 8.42 10.58 9.49

100 8.98 10.16 9.49
200 9.28 9.90 9.49
400 9.39 9.71 9.49
800 9.45 9.60 9.49

10 20 15.03 22.50 19.68
50 17.86 21.37 19.68

100 18.87 20.76 19.68
200 19.34 20.33 19.68
400 19.54 20.05 19.68
800 19.60 19.86 19.68

20 50 29.79 34.84 32.67
100 31.35 34.06 32.67
200 32.08 33.48 32.67
400 32.41 33.13 32.67
800 32.49 32.86 32.67
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Figure 13: Frequencies of MJBM and
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M for p = 3, N = 20.
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Figure 15: Frequencies of MJBM and
MJB∗

M for p = 10, N = 20.
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Figure 16: Frequencies of MJBM and
MJB∗

M for p = 10, N = 100.
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Figure 17: Frequencies of MJBM and
MJB∗

M for p = 20, N = 50.
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Figure 18: Frequencies of MJBM and
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S for p = 3, N = 20.
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Figure 20: Frequencies of MJBS and
MJB∗

S for p = 3, N = 100.
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Figure 21: Frequencies of MJBS and
MJB∗

S for p = 10, N = 20.
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Figure 22: Frequencies of MJBS and
MJB∗

S for p = 10, N = 100.
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Figure 23: Frequencies of MJBS and
MJB∗

S for p = 20, N = 50.
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Figure 24: Frequencies of MJBS and
MJB∗

S for p = 20, N = 200.
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Figure 25: The upper percentiles of
MJBM and MJB∗

M for p = 3.
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Figure 26: The upper percentiles of
MJBM and MJB∗

M for p = 10.
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Figure 27: The upper percentiles of
MJBM and MJB∗

M for p = 20.
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Figure 28: The upper percentiles of
MJBS and MJB∗

S for p = 3.
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Figure 29: The upper percentiles of
MJBS and MJB∗

S for p = 10.
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Figure 30: The upper percentiles of
MJBS and MJB∗

S for p = 20.
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