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Abstract

This paper addresses the problem of nonparametric estimation of the conditional
expected shortfall (CES) which has gained popularity in financial risk management.
We propose a new nonparametric estimator of the CES. The proposed estimator is
defined as a conditional counterpart of the sample average estimator of the uncondi-
tional expected shortfall, where the empirical distribution function is replaced by the
weighted Nadaraya-Watson estimator of the conditional distribution function. We
establish asymptotic normality of the proposed estimator under an α-mixing con-
dition. The asymptotic results reveal that the proposed estimator has a good bias
property. Simulation results illustrate the usefulness of the proposed estimator.
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1 Introduction

This paper addresses the problem of nonparametric estimation of the conditional expected

shortfall (CES). The expected shortfall (ES) was first proposed by Artzner et al. (1997)

as a risk measure and has gained popularity in financial risk management. Acerbi and

Tasche (2002) showed that the ES of their definition is coherent in the sense of Artzner et

al. (1999) for a general distribution; whereas the conventional value-at-risk (VaR) measure

is not necessarily coherent because of the lack of subadditivity. In this sense, the ES has

a theoretical advantage over the VaR.

So far, many authors have proposed various estimation methods for the ES and the CES.

The estimation methods may be divided into three categories: parametric, semiparametric

and nonparametric. For parametric and semiparametric methods for estimating the ES
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and the CES, we refer to McNeil et al. (2005). The simplest nonparametric estimator of

the ES is the sample average of excessive losses larger than the VaR; see (4) below for

the definition. Acerbi and Tasche (2002) mentioned the sample average estimator of the

ES. Later, Scaillet (2004) proposed a kernel estimator of the ES as an alternative to the

sample average estimator. Chen (2008) compared the sample average estimator with the

kernel estimator of Scaillet (2004). He evaluated the variance of the kernel estimator up

to the second order and found that the kernel smoothing does not necessarily improve the

estimation accuracy. He remarked that the sample average estimator is good enough for

estimating the ES.

Scaillet (2005) proposed a nonparametric estimator of the CES. His approach is plug-

ging some nonparametric estimators of the conditional density and the conditional quan-

tile into the expression of the CES. Specifically, he used the Nadaraya-Watson (NW) type

double kernel estimator of the conditional density and the conditional quantile associated

with the estimated conditional density. Later, based on the same approach, Cai and Wang

(2008) proposed another nonparametric estimator of the CES. Instead of the NW double

kernel estimator, they used the newly proposed weighted double kernel local linear esti-

mator of the conditional density. Their estimator is advantageous over Scaillet’s estimator

in terms of the design adaptation. Peracchi and Tanase (2008) mentioned a different NW

type kernel estimator of the CES which they called the fully nonparametric estimator.

However, they did not investigate its asymptotic properties.

The purpose of this paper is to propose a new nonparametric estimator of the CES.

The proposed estimator is defined as a conditional counterpart of the sample average

estimator of the unconditional ES, where the empirical distribution function is replaced by

the weighted Nadaraya-Watson (WNW) estimator of the conditional distribution function.

We refer to the proposed estimator as the WNW estimator of the CES. Unlike the double

kernel estimators of Scaillet (2005) and Cai and Wang (2008), the WNW estimator contains

only a single smoothing. We establish asymptotic normality of the WNW estimator under

an α-mixing condition and show that it is design adaptive at interior points of the support

of the design distribution.

We compare the WNW estimator with the double kernel estimator of Cai and Wang

(2008). As expected, the double kernel estimator contains an additional bias term carried

over from the extra smoothing. In addition, by evaluating the variances of the terms

which eventually contribute to the asymptotic variances of both estimators, we find that

unlike the estimation of the conditional distribution function and the conditional quantile,

the double smoothing does not necessarily lead to a higher order variance reduction in

the estimation of the CES. Overall, the theoretical performance of the WNW estimator

is comparable to that of the double kernel estimator despite the fact that the former is

simpler than the latter. The conclusion is parallel to the aforementioned result of Chen

(2008). We also conduct simulation experiments to study the finite sample performance

of both estimators. In our limited simulation examples, the WNW estimator outperforms

the double kernel estimator in the sense of the MSE.

The rest of the paper is organized as follows. In Section 2, we first introduce the
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definition of the (C)ES and describe our method to estimate the CES. In Section 3, we

investigate sampling properties of the proposed estimator. In Section 4, we compare the

proposed estimator with the double kernel estimator of Cai and Wang (2008). In Section

5, we report a simulation study. The technical proofs are relegated to Appendix.

2 Preliminaries

2.1 Definition of CES

In this section, we first introduce the definition of the ES. Suppose we have a random

variable Y . In financial risk management, Y is the negative log return of a portfolio. The

ES at level p ∈ (0, 1) of Y is defined as

p−1[E[Y I{Y ≥ q1−p}] + q1−p{p − P(Y ≥ q1−p)}],

where q1−p is the lower (1 − p)-quantile of Y , namely, q1−p = inf{y : P(Y ≤ y) ≥ 1 − p}.
The present definition of the ES is due to Acerbi and Tasche (2002). They showed that

the ES of their definition is coherent in the sense of Artzner et al. (1999) for a general

distribution. If Y has a continuous distribution, the ES reduces to the conventional form

E[Y |Y ≥ q1−p],

which coincides with the tail conditional expectation of Artzner et al. (1999).

The CES is defined analogously. Suppose we have a response variable Y and a explana-

tory variable X. A typical example of X is a lagged value of Y . Given X = x0, the CES

at level p ∈ (0, 1) of Y is defined as

mp(x0) = p−1[E[Y I{Y ≥ q1−p(x0)}|X = x0] + q1−p(x0){p − P(Y ≥ q1−p(x0)|X = x0)}],

where x0 is a design point, F (y|x0) is the conditional distribution function of Y given

X = x0 and q1−p(x0) is the conditional lower (1 − p)-quantile of Y given X = x0, namely,

q1−p(x0) = inf{y : F (y|x0) ≥ 1 − p}. It is immediate to see that if y 7→ F (y|x0) is

continuous, mp(x0) reduces to

mp(x0) = E[Y |Y ≥ q1−p(x0), X = x0]. (1)

Throughout this paper, we assume that the population conditional distribution is contin-

uous so that mp(x0) is of the form (1).

2.2 Proposed estimator

Let (Yt, Xt), t = 1, . . . , n be observations of (Y,X). In this section, we introduce our

method to estimate the CES and leave some remarks on it. Our basic idea to estimate

mp(x0) is described as follows. The first step is to estimate the conditional distribution

function. Specifically, we use the WNW estimator:

F̂ (y|x0) =

∑n
t=1 pt(x0)Kh(Xt − x0)I(Yt ≤ y)∑n

t=1 pt(x0)Kh(Xt − x0)
, (2)
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where K(·) is a kernel function, h is a bandwidth and Kh(u) = h−1K(u/h). The sequence

of nonnegative weights {pt(x0)} is chosen such that it maximizes
∑n

t=1 log{pt(x0)} subject

to the constraints

n∑
t=1

pt(x0) = 1,
n∑

t=1

pt(x0)(Xt − x0)Kh(Xt − x0) = 0. (3)

The expression of {pt(x0)} is simplified by introducing the Lagrange multiplier. Let λ̂ be

the maximum point of

Ln(λ) = −
n∑

t=1

log {1 + λ(Xt − x0)Kh(Xt − x0)} .

Then, each pt(x0) is expressed as

pt(x0) =
1

n
· 1

1 + λ̂(Xt − x0)Kh(Xt − x0)
.

See Fan and Yao (2005), pp.456-457 for a derivation of the expression. Then, the proposed

estimator is defined as

m̂p(x0) =

∑n
t=1 pt(x0)Kh(Xt − x0)YtI{Yt ≥ q̂1−p(x0)}∑n
t=1 pt(x0)Kh(Xt − x0)I{Yt ≥ q̂1−p(x0)}

.

where q̂1−p(x0) = inf{y : F̂ (y|x0) ≥ 1 − p} is the lower (1 − p)-quantile of F̂ (y|x0). We

refer to m̂p(x0) as the WNW estimator of the CES.

Clearly, the proposed estimator is a conditional counterpart of the sample average

estimator of the unconditional ES which is defined as∑n
t=1 YtI(Yt ≥ q̂1−p)∑n
t=1 I(Yt ≥ q̂1−p)

, (4)

where q̂1−p is the lower (1 − p)-quantile of the empirical distribution function. Under

the condition that the population distribution of Y is continuous, Chen (2008) showed

asymptotic normality of the sample average estimator for geometric α-mixing processes.

The WNW estimator of the conditional distribution function was proposed by Hall et

al. (1999). Later, Cai (2001, 2002) applied the WNW method to the estimation of the con-

ditional mean and the conditional quantile. The WNW estimator is design adaptive due

to the second property of (3) and is advantageous over the NW estimator in terms of the

bias property. The WNW estimator of the conditional distribution function is favoravble

since it lies between 0 to 1 and is nondecreasing in y, which means that the WNW esti-

mator of the conditional distribution function is in itself a distribution function. The local

linear estimator of the conditional distribution function does not necessarily meet these

properties and is not suited to produce an estimator of the conditional quantile. Asymp-

totic properties of q̂1−p(x0) were investigated by Cai (2002). He established asymptotic

normality of q̂1−p(x0) for α-mixing processes.
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Instead of the WNW estimator, we may use the NW estimator of the conditional

distribution function. We note that Peracchi and Tanase (2008) mentioned a NW type

estimator of the CES which they call the fully nonparametric estimator. However, they

did not investigate its asymptotic properties. Mimicking the proof of Theorem 1 below, it

is not difficult to show that under the same conditions of Theorem 1, the NW estimator of

mp(x0) is (nh)1/2-consistent and has the same asymptotic variance as m̂p(x0) when x0 is

an interior point. However, the NW estimator has well known disadvantages that it is not

design adaptive. In some cases of the design distribution, the bias of the NW estimator

may become very large. Therefore, we recommend to use the WNW estimator.

3 Sampling properties

In this section, we investigate asymptotic properties of the WNW estimator of the CES. We

note that the results of this section are not included in Cai (2001) since YtI{Yt ≥ q̂1−p(x0)}
depends on the overall data. In order to justify our asymptotic theory, we consider some

regularity conditions stated as follows:

(A1) The kernel function K(·) is a symmetric, bounded and compactly supported density

function.

(A2) The process {(Yt, Xt), t = 1, 2, . . . } is stationary and α-mixing:

α(j) := sup
i≥1

sup
A∈F i

1,B∈F∞
i+j

|P(A ∩ B) − P(A)P(B)| → 0,

where F j
i is the σ-field generated by {(Yk, Xk), k = i, . . . , j} (j ≥ i). In addition,

∞∑
j=1

jγ{α(j)}1−2/δ < ∞

for some δ > 2 and γ > 1 − 2/δ.

(A3) For j ≥ 1, let g(x1, x1+j; j) denote the joint density of (X1, X1+j). Then, g(x1, x1+j; j)

is bounded in a neighborhood of (x1, x1+j) = (x0, x0) uniformly over j ≥ 1.

(A4) As n → ∞, h → 0 and nh3 → ∞. There exists a sequence of constants sn satisfying

sn → ∞ and sn = o((nh)1/2) such that

(n/h)1/2α(sn) → 0, as n → ∞.

(A5) The map (x, x1+j) 7→ E[Y 2
1 + Y 2

1+j|X1 = x1, X1+j = x1+j] is bounded in a neighbor-

hood of (x0, x0) uniformly over j ≥ 1.

(A6) There exists δ∗ > δ such that the map x 7→ E[|Y |δ∗ |X = x] is bounded in a neighbor-

hood of x0, α(j) = O(j−θ∗) for some θ∗ ≥ δ∗δ/{2(δ∗−δ)} and n1/2−δ/4hδ/δ∗−1/2−δ/4 =

O(1).
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(A7) The map x 7→ F (q1−p(x0)|x) is twice continuously differentiable in a neighborhood

of x0. In addition, the conditional density f(y|x) of Y given X = x satisfies the

following conditions:

(a) The map x 7→ f(q1−p(x0)|x) is positive and continuous at x0.

(b) There exists a constant A1 > 0 such that |f(y|x) − f(q1−p(x0)|x)| ≤ A1|y −
q1−p(x0)| in a neighborhood of (y, x) = (q1−p(x0), x0).

(A8) The marginal density g(x) of X is positive and continuously differentiable in a

neighborhood of x0.

We state some remarks on the conditions. The requirement of the bounded support of

the kernel function can be relaxed at the expense of the lengthier proof. We impose the

α-mixing condition, which covers many commonly used financial time series. See Section

2.6.1 of Fan and Yao (2005) and references therein. Chen (2008) imposed the geometric

α-mixing condition, which is stronger than our α-mixing condition. Conditions (A1)-(A6)

is standard in nonparametric regression. Actually, conditions (A1)-(A5) correspond to

Conditions 1-3 in Masry and Fan (1997) except that we require that nh3 → ∞. The

condition that nh3 → ∞ is not assumed in Cai (2001, 2002) and Cai and Wang (2008) but

is required for the asymptotics of the WNW method; see the proof of Lemma 1. Condition

(A6) corresponds to condition (B7) in Cai (2001). This condition is used to ensure the

central limit theorem. Condition (A7) corresponds to conditions C1 and C2 in Cai (2002).

We note that condition (A7) ensures that the conditional (1 − p)-quantile of Y given

X = x0 is determined uniquely and mp(x0) = E[Y |Y ≥ q1−p(x0)]. From Theorem 3 of

Cai (2002), under conditions (A1)-(A4) and (A7)-(A8), if h = O(n−1/5), then as n → ∞,

q̂1−p(x0) = q1−p(x0) + Op{(nh)−1/2}.1
In the sequel, we use the following notations: lj(u|x) = E[Y jI{Y ≥ u}|X = x] for

j = 1, 2; l
(a)
1 (u|x) = ∂al1(u|x)/∂xa for a = 1, 2; F (a)(y|x) = ∂aF (y|x)/∂xa for a = 1, 2;

µj(K) =
∫∞
−∞ ujK(u)du for j = 0, 2. The next theorem is the main result of this paper.

The proof of the theorem is relegated to Appendix A1.

Theorem 1. Under conditions (A1)-(A8), if h = O(h−1/5), the map x 7→ l1(q1−p(x0)|x) is

twice continuously differentiable in a neighborhood of x0 and the map x 7→ l2(q1−p(x0)|x)

is continuous at x0, then as n → ∞,

(nh)1/2

{
m̂p(x0) − mp(x0) −

h2µ2(K)

2
Bp(x0)

}
d→ N

{
0, µ0(K

2)σ2
p(x0)/g(x0)

}
,

where

Bp(x0) = p−1l
(2)
1 (q1−p(x0)|x0) + p−1q1−p(x0)F

(2)(q1−p(x0)|x0),

σ2
p(x0) = p−2l2(q1−p(x0)|x0) − m2

p(x0) + (p−1 − 1)q1−p(x0){q1−p(x0) − 2mp(x0)}.

1The author thinks that his proof may contain a technical gap. However, the conclusion of Theorem 3
in Cai (2002) still holds under those conditions; see Remark 1 in Appendix A1.
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From the proof of Theorem 1, we obtain the representation

m̂p(x0) − mp(x0) =

∑n
t=1 pt(x0)Kh(Xt − x0){Yt − q1−p(x0)}I{Yt ≥ q1−p(x0)}

p
∑n

t=1 pt(x0)Kh(Xt − x0)

− {mp(x0) − q1−p(x0)} + Op{(nh)−1}, (5)

The first term of the right hand side of (5) is identical to the WNW regression estimator

applied to the infeasible sample {(p−1{Yt − q1−p(x0)}I{Yt ≥ q1−p(x0)}, Xt), t = 1, . . . , n},
which determines the asymptotic bias and variance of m̂p(x0). The sample average esti-

mator of the unconditional ES admits the similar representation; see equation (6) in Chen

(2008). Unlike the estimation of the unconditional ES, the asymptotic variance of m̂p(x0)

is same as that for the independent observations because of the localization effect; see

Section 5.3 of Fan and Yao (2005).

From Theorem 1, we see that the asymptotic mean squared error (AMSE) of m̂p(x0) is

AMSE(x0; p) =
h4

4
{µ2(K)Bp(x0)}2 +

µ0(K
2)

nhg(x0)
σ2

p(x0).

Minimizing the AMSE yields the optimal bandwidth

hopt(x0; p) = n−1/5

[
µ0(K

2)σ2
p(x0)

g(x0){µ2(K)Bp(x0)}2

]1/5

.

Unfortunately, hopt(x0; p) is of a complicated form. The estimation of the unknown quan-

tities in hopt(x0; p) is feasible but complex. In practice, we suggest to use the the bootstrap

approach described in Section 2.3 of Hall et al. (1999), which is simple to implement.

Theorem 1 reveals that the asymptotic bias of m̂p(x0) is independent of the design

density g(·), that is, m̂p(x0) is design adaptive. The design adaptation of m̂p(x0) is due to

the second part of the property (3) of the weights {pt(x0)}. Meanwhile, it is not difficult

to see that the asymptotic bias of the NW estimator of mp(x0) is

h2µ2(K)

2

[
Bp(x0) + 2

g′(x0)

g(x0)
p−1{l(1)

1 (q1−p(x0)|x0) + q1−p(x0)F
(1)(q1−p(x0)|x0)}

]
.

Whereas, the asymptotic variance of the NW estimator is same as that of m̂p(x0). It is well

known that the dependence on the ratio g′(x0)/g(x0) produces a large bias to the estimator

in some cases. See Fan (1992) and Section 3.2.4 of Fan and Gijbels (1996). Thus, in terms

of the bias property, the WNW estimator is advantageous over the NW estimator.

4 Double kernel estimator

In this section, we compare the WNW estimator with the double kernel estimator of Cai

and Wang (2008). The basic idea of Cai and Wang (2008) is plugging some nonparametric

estimators of f(y|x0) and q1−p(x0) into the expression

mp(x0) = p−1

∫ ∞

q1−p(x0)

yf(y|x0)dy.
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Specifically, combining the WNW method and the double kernel local linear method of Yu

and Jones (1998), Cai and Wang (2008) proposed the weighted double kernel local linear

estimator of f(y|x):

f̃(y|x0) =

∑n
t=1 pt(x0)Kh(Xt − x0)Wh0(y − Yt)∑n

t=1 pt(x0)Kh(Xt − x0)
,

where W (·) is a symmetric kernel function and h0 is a bandwidth associated with W (·).
Let F̃ (y|x0) be the conditional distribution function with conditional density f̃(y|x0):

F̃ (y|x0) =

∫ y

−∞
f̃(u|x0)du.

As an estimator of q1−p(x0), Cai and Wang (2008) proposed to use the solution q̃1−p(x0) of

the equation F̃ (q̃1−p(x0)|x0) = 1− p, where we note that such q̃1−p(x0) always exists since

y 7→ F̃ (y|x0) is continuous. Let m̃p(x0) denote the corresponding plug-in estimator:

m̃p(x0) = p−1

∫ ∞

q̃1−p(x0)

yf̃(y|x0)dy.

Cai and Wang (2008) established asymptotic normality of m̃p(x0) for α-mixing processes.

We now compare the asymptotic biases and variances of m̂p(x0) and m̃p(x0).

[1] Bias: From Theorem 4 of Cai and Wang (2008), the asymptotic bias of m̃p(x0) is

bias{m̃p(x0)} :
h2µ2(K)

2
Bp(x0) +

h2
0µ2(W )

2
p−1f(q1−p(x0)|x0).

It is clear that m̃p(x0) contains the additional bias term carried over from the y direction

smoothing. Since the first order asymptotic variance of m̃p(x0) does not depend on h0, it is

reasonable to make h0 small relative to h as suggested in Cai and Wang (2008). Although

the additional term is theoretically negligible if we set h0 = o(h), it might affect the

finite sample performance of m̃p(x0). When h0 is small relative to h, the additional term

improves the bias if Bp(x0) is negative; otherwise, it has an adverse effect on the estimation

accuracy. In a practical situation, we do not know the sign of Bp(x0) in advance and there

is an uncertainty about the effect of the y direction smoothing on the bias. The WNW

estimator does not have such an uncertainty and may be preferable in this respect.

[2] Variance: From Theorem 4 of Cai and Wang (2008), the first order asymptotic

variances of m̂p(x0) and m̃p(x0) are same. However, for the estimation of the conditional

distribution function and the conditional quantile, the y direction smoothing improves the

variance in a higher order sense; see Azzalini (1981), Yu and Jones (1998), Cai and Roussas

(1998), Chen and Tang (2005) and Remark 5 of Cai and Wang (2008), among others. Thus,

we need to look at the variances of m̂p(x0) and m̃p(x0) more carefully. Since it is difficult

to evaluate the exact variances, we evaluate the variances of the terms which eventually

contribute to the asymptotic variances of m̂p(x0) and m̃p(x0). Although the approximation

is formal, we believe that it reflects the true structure of the variance relationship between
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m̂p(x0) and m̃p(x0). From the proof of Theorem 1, the asymptotic variance of m̂p(x0)

comes from the variance of

I1 =
1

npg(x0)

n∑
t=1

bt(x0)Kh(Xt − x0){Yt − q1−p(x0)}I{Yt ≥ q1−p(x0)},

where bt(x0) is defines as (7). Meanwhile, from the proof of Theorem 4 in Cai and Wang

(2008), the asymptotic variance of m̃p(x0) comes from the variance of

I2 =
1

npg(x0)

n∑
t=1

bt(x0)Kh(Xt − x0){Yt − q1−p(x0)}Gh0(Yt − q1−p(x0)),

where G(·) is the distribution function of W (·) and Gh0(u) = G(u/h0). Under certain

regularity conditions, it is shown that

var(I1) − var(I2) = o{(nh)−1h0}. (6)

For a derivation of (6), see Appendix A2. From (6), unlike the estimation of the conditional

distribution function and the conditional quantile, the y direction smoothing does not

improve the variance at the order of (nh)−1h0 for the estimation of the CES.

Overall, we may conclude that theoretical performance of the WNW estimator is com-

parable to that of the double kernel estimator despite the fact that the former is simpler

than the latter. The conclusion is parallel to the result of Chen (2008) who studied the

estimation on the unconditional ES. He compared the sample average estimator with the

kernel estimator of Scaillet (2004) which contains the y direction smoothing. He evaluated

the variance of the kernel estimator up to the second order and found that the y direction

smoothing does not improve the variance at the second order while it produces an addi-

tional bias. He remarked that the simpler sample average estimator is good enough for

estimating the ES. In the next section, we study the finite sample performance of both

estimators.

5 Simulation study

In this section, we report simulation results which evaluate the finite sample performance

of the WNW estimator and the double kernel (DK) estimator of Cai and Wang (2008).

Specifically, we consider the following two models.

I Model 1 [ARCH(1)]: Yt = σtϵt, σ2
t = 0.30 + 0.65Y 2

t−1, ϵt
i.i.d.∼ N(0, 1), Xt = Yt−1.

I Model 2: Yt = sin(0.75Xt) + 0.5ϵt, Xt
i.i.d.∼ N(0, 1), ϵt

i.i.d.∼ N(0, 1), Xt ⊥⊥ ϵt.

The ARCH process of Model 1 is shown to be α-mixing with exponetial decaying coef-

ficients; see remark (viii) in Fan and Yao (2005), pp. 70. Thus, the process of Model 1

trivially satisfies the mixing conditions of Theorem 1. We note that Model 2 is due to Fan

(1992). Figure 1 depicts the CES functions for both models where p = 0.05. Throughout
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Figure 1: The CES functions for Models 1-2 where p = 0.05.

this section, we use the Gaussian kernel. The sample size n is 400 for each model. The

number of repetitions is 10,000 for each simulation. The computational results of this sec-

tion were obtained by using the matrix language Ox (Doornik, 2002). To generate ARCH

processes, we used the G@RCH 4.2 package (Laurent and Peters, 2006). Figures 2-3 dis-

play biases, standard deviations and root mean squared errors of the WNW estimator and

the DK estimator at p = 0.05 over a set of design points and a set of bandwidth values.

Specifically, we choose 0 and the 0.75-quantile of Xt as design points for each model. In

addition, we set h = an−1/5, where a moves from 0.5 to 1.2 by 0.05 for Model 1 and from

0.6 to 1.3 by 0.05 for Model 2. As Cai and Wang (2008) noted, h0 is not sensitive to m̃p(x0)

as far as h0 is sufficiently small relative to h. For simplicity, we set h0 = 0.1h. Figures

2-3 show that m̃p(x0) contains an additional bias in comparison with m̂p(x0), which corre-

sponds to the observation in the previous section. More importantly, the MSE of m̂p(x0)

is smaller than that of m̃p(x0) over the set of bandwidth values for both models. Overall,

the simulation results support the use of m̂p(x0).

A Appendix

A.1 Proof of Theorem 1

In this section, we provide a proof of Theorem 1. Before proving the theorem, we prepare

some auxiliary lemmas.

Lemma 1. Under conditions (A1)-(A4) and (A8), λ̂ = λ∗ + Op(h
3), where

λ∗ = hµ2(K)g′(x0)/{µ2(K
2)g(x0)}.

Proof. See the proof of Lemma 2 in Cai (2002). We remark that his evaluation of A1

contains a minor error. The definition of A1 is

A1 =
1

n

n∑
t=1

(Xt − x0)Kh(Xt − x0).
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Figure 2: Biases, standard deviations (SD) and root mean squared errors (RMSE) of the

WNW estimator and the DK estimator at p = 0.05 for Model 1, where x0 = {0, 0.495},
h = an−1/5 and h0 = 0.1h

11



0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3

0.
00

0.
02

0.
04

0.
06

0.
08

0.
10

0.
12

(a) Model 2:Bias, x0=0

a

B
ia

s

WNW

DK

0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3

0.
08

0.
09

0.
10

0.
11

0.
12

(b) Model 2:SD, x0=0

a

S
D

WNW

DK

0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3

0.
10

0.
11

0.
12

0.
13

0.
14

0.
15

0.
16

(c) Model 2:RMSE, x0=0

a

R
M

S
E

WNW

DK

0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3

−
0.

02
0.

00
0.

02
0.

04
0.

06

(d) Model 2:Bias, x0=0.674

a

B
ia

s

WNW

DK

0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3

0.
10

0.
11

0.
12

0.
13

0.
14

(e) Model 2:SD, x0=0.674

a

S
D

WNW

DK

0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3

0.
11

0
0.

11
5

0.
12

0
0.

12
5

0.
13

0
0.

13
5

0.
14

0

(f) Model 2:RMSE, x0=0.674

a

R
M

S
E

WNW

DK

Figure 3: Biases, standard deviations (SD) and root mean squared errors (RMSE) of the

WNW estimator and the DK estimator at p = 0.05 for Model 2, where x0 ∈ {0, 0.679},
h = an−1/5 and h0 = 0.1h
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A simple algebra yields that

E[A1] = h

∫ ∞

−∞
xK(x)g(x0 + xh)dx = h

∫ ∞

−∞
xK(x){g(x0 + xh) − g(x0)}dx

= h2µ2(K)g′(x0) + o(h2).

From Theorem 1 in Masry and Fan (1997), var(A1) = O(n−1h). By Chebyshev’s inequality,

for every ϵ > 0, we have

P(|A1 − E[A1]| > h2ϵ) ≤ var(A1)

h4ϵ2
= O(n−1h−3) = o(1).

Thus, we have A1 = E[A1] + op(h
2) = h2µ2(K)g′(x0) + op(h

2).

Put

bt(x0) =
1

1 + λ∗(Xt − x0)Kh(Xt − x0)
. (7)

Since λ∗ = O(h), for large n, bt(x0) is non-negative and bounded over all t. Note that for

a sequence of non-negative random variables, say, {wt}, we have

|
∑n

t=1 pt(x0)wt − n−1
∑n

t=1 bt(x0)wt| ≤
∑n

t=1 |pt(x0) − n−1bt(x0)||wt|
≤ op(1)

∑n
t=1 |n−1bt(x0)wt|

=
op(1)

n

∑n
t=1 bt(x0)wt.

Thus, we have
∑n

t=1 pt(x0)wt = {1 + op(1)}n−1
∑n

t=1 bt(x0)wt. The same conclusion holds

for a sequence of non-positive random variables. We will use this fact in the proofs of

Lemma 2 and 3 below.

Lemma 2. Under conditions (A1)-(A4) and (A8),

n∑
t=1

pt(x0)

(
Xt − x0

h

)j

Kh(Xt − x0)
p→ µj(K)g(x0), j = 0, 2.

Proof. Since (Xt − x0)
j is non-negative if j = 0, 2, by Lemma 1, we have

n∑
t=1

pt(x0)

(
Xt − x0

h

)j

Kh(Xt − x0) =
1 + op(1)

n

n∑
t=1

bt(x0)

(
Xt − x0

h

)j

Kh(Xt − x0).

The rest of the proof is standard. See Theorem 1 of Masry and Fan (1997).

Lemma 3. Under conditions (A1)-(A4) and (A7)-(A8), if h = O(n−1/5), then as n → ∞,

n∑
t=1

pt(x0)Kh(Xt − x0){Yt − q1−p(x0)}I{Yt ≥ q̂1−p(x0)}

=
n∑

t=1

pt(x0)Kh(Xt − x0){Yt − q1−p(x0)}I{Yt ≥ q1−p(x0)} + Op{(nh)−1}. (8)
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Proof. Observe that

n∑
t=1

pt(x0)Kh(Xt − x0){Yt − q1−p(x0)}[I{Yt ≥ q̂1−p(x0)} − I{Yt ≥ q1−p(x0)}]

=
1 + op(1)

n

n∑
t=1

bt(x0)Kh(Xt − x0){Yt − q1−p(x0)}[I{Yt ≥ q̂1−p(x0)} − I{Yt ≥ q1−p(x0)}].

=: {1 + op(1)}In,

where the first equality follows from Lemma 1 and the fact that {Yt − q1−p(x0)}[I{Yt ≥
q̂1−p(x0)} − I{Yt ≥ q1−p(x0)}] is non-positive. Thus, it suffices to show that

In = Op{(nh)−1}. (9)

Let Zt = Yt − q1−p(x0). Define

Un(s) =
1

n

n∑
t=1

bt(x0)Kh(Xt − x0)Zt[I{Zt ≥ (nh)−1/2s} − I{Zt ≥ 0}], s ∈ R.

We show that for each fixed l > 0,

sup
|s|≤l

|Un(s)| = Op{(nh)−1}. (10)

Before proceeding to showing (10), we verify that (9) follows from (10). Since q̂1−p(x0) =

q1−p(x0) + Op{(nh)−1/2}, for every ϵ > 0, there exists a constant l > 0 such that for large

n,

P
(
|q̂1−p(x0) − q1−p(x0)| > (nh)−1/2l

)
≤ ϵ

2
.

From (10), there exists a constant M > 0 such that for large n,

P

(
sup
|t|≤l

|Un(t)| > (nh)−1M

)
≤ ϵ

2
.

Thus, for large n,

P
(
|In| > (nh)−1/2M

)
≤ P

(
sup
|t|≤l

|Un(t)| > (nh)−1M

)
+ P

(
|q̂1−p(x0) − q1−p(x0)| > (nh)−1/2l

)
≤ ϵ

2
+

ϵ

2
= ϵ,

which implies (9).

It remains to show (10) for each fixed l > 0. Observe that

Un(s) =

{
−n−1

∑n
t=1 bt(x0)Kh(Xt − x0)ZtI{0 ≤ Zt < (nh)−1/2s} if s > 0,

n−1
∑n

t=1 bt(x0)Kh(Xt − x0)ZtI{(nh)−1/2s ≤ Zt < 0} if s < 0.

14



Define

U1n(s) =
1

n

n∑
t=1

bt(x0)Kh(Xt − x0)ZtI{0 ≤ Zt < (nh)−1/2s}, s > 0,

U2n(s) =
1

n

n∑
t=1

bt(x0)Kh(Xt − x0)ZtI{(nh)−1/2s ≤ Zt < 0}, s < 0.

Then, it suffices to show that

sup
0≤s≤l

U1n(s) = Op{(nh)−1}, sup
−l≤s≤0

{−U2n(s)} = Op{(nh)−1}.

We only prove the first part since the proof for the latter part is completely analogous. By

the monotonicity of the indicator function, we have

sup
0≤s≤l

U1n(t) ≤ 1

n

n∑
t=1

bt(x0)Kh(Xt − x0)ZtI{0 ≤ Zt < (nh)−1/2l}

= Ū1n.

Thus, it suffices to show that Ū1n = Op{(nh)−1}. Let fZ|X(z|x) denote the conditional

density of Zt given Xt = x. Clearly, fZ|X(z|x) = f(z + q1−p(x0)|x). From Condition

(A7)-(b), there exists a constant A0 > 0 such that fZ|X(z|x) ≤ A0 in a neighborhood of

(z, x) = (0, x0). By conditioning on Xt, we have

E[Ū1n] = E

[
bt(x0)Kh(Xt − x0)

∫ (nh)−1/2l

0

zfZ|X(z|Xt)dz

]
≤ A0l

2(nh)−1E[bt(x0)Kh(Xt − x0)] = O{(nh)−1}.

Since Ū1n is a nonnegative random variable, (10) follows from Markov’s inequality.

Lemma 4. Under conditions (A1)-(A4) and (A8),∑n
t=1 pt(x0)Kh(Xt − x0)I{Yt ≥ q̂1−p(x0)}∑n

t=1 pt(x0)Kh(Xt − x0)
= p + Op{(nh)−1}.

Proof. Form the definition of q̂1−p(x0), we have

p ≤
∑n

t=1 pt(x0)Kh(Xt − x0)I{Yt ≥ q̂1−p(x0)}∑n
t=1 pt(x0)Kh(Xt − x0)

≤ p +
max1≤j≤n pj(x0)Kh(Xj − x0)∑n

t=1 pt(x0)Kh(Xt − x0)
.

Because of Lemmas 1-2 and condition (A1), we have

max1≤j≤n pj(x0)Kh(Xj − x0)∑n
t=1 pt(x0)Kh(Xt − x0)

= Op{(nh)−1}.

Therefore, we obtain the desired result.
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Proof of Theorem 1. By Lemmas 2-4, we have

m̂p(x0) − mp(x0)

=

∑n
t=1 pt(x0)Kh(Xt − x0){Yt − q1−p(x0)}I{Yt ≥ q̂1−p(x0)}∑n

t=1 pt(x0)Kh(Xt − x0)I{Yt ≥ q̂1−p(x0)}
− {mp(x0) − q1−p(x0)}

=

∑n
t=1 pt(x0)Kh(Xt − x0){Yt − q1−p(x0)}I{Yt ≥ q1−p(x0)}

p
∑n

t=1 pt(x0)Kh(Xt − x0)
[1 + Op{(nh)−1}]

− {mp(x0) − q1−p(x0)} + Op{(nh)−1}.

Let Zt = {Yt − q1−p(x0)}I{Yt ≥ q1−p(x0)} and µ(x) = E[Zt|Xt = x]. Then, we have∑n
t=1 pt(x0)Kh(Xt − x0)Zt

p
∑n

t=1 pt(x0)Kh(Xt − x0)
− {mp(x0) − q1−p(x0)}

=

∑n
t=1 pt(x0)Kh(Xt − x0){Zt − µ(x0)}

p
∑n

t=1 pt(x0)Kh(Xt − x0)

=

∑n
t=1 pt(x0)Kh(Xt − x0){Zt − µ(Xt)}

p
∑n

t=1 pt(x0)Kh(Xt − x0)

+

∑n
t=1 pt(x0)Kh(Xt − x0){µ(Xt) − µ(x0)}

p
∑n

t=1 pt(x0)Kh(Xt − x0)
.

The Taylor expansion yields that

n∑
t=1

pt(x0)Kh(Xt − x0){µ(Xt) − µ(x0)}

=
h2pBp(x0)

2

n∑
t=1

pt(x0)

(
Xt − x0

h

)2

Kh(Xt − x0){1 + o(1)}

=
h2µ2(K)pg(x0)

2
Bp(x0) + op(h

2),

where we have used the property (3) in the first equality and Lemma 2 in the second

equality. Therefore, we obtain the expression

(nh)1/2

{
m̂p(x0) − mp(x0) −

h2µ2(K)

2
Bp(x0) + op(h

2)

}
= (nh)1/2

∑n
t=1 pt(x0)Kh(Xt − x0){Zt − µ(Xt)}

p
∑n

t=1 pt(x0)Kh(Xt − x0)
[1 + Op{(nh)−1}] + Op{(nh)−1/2}

= (nh)1/2

[
1

pg(x0)

n∑
t=1

pt(x0)Kh(Xt − x0){Zt − µ(Xt)}

]
{1 + op(1)} + Op{(nh)−1/2},

where the last equality follows from Lemma 2. By the Taylor expansion,

n∑
t=1

pt(x0)Kh(Xt − x0){Zt − µ(Xt)}

=
1

n

n∑
t=1

bt(x0)Kh(Xt − x0){Zt − µ(Xt)} + (λ̂ − λ∗)Rn, (11)
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where

|Rn| ≤
Op(1)

n

n∑
t=1

Kh(Xt − x0)|Zt − µ(Xt)| = Op(1).

Since λ̂ − λ∗ = Op(h
3) by Lemma 1, the second term of the right hand side of (11) is of

order Op(h
3). Since (nh)1/2h3 = (nh5)1/2h = O(h), it remains to show that

(nh)1/2

[
1

n

n∑
t=1

bt(x0)Kh(Xt − x0){Zt − µ(Xt)}

]
d→ N

{
0, p2g(x0)µ0(K

2)σ2
p(x0)

}
.

This result can be proved by following the same line as that used in the proof of Theorem 3

in Masry and Fan (1997). We note that the expression of σ2(x) := E[{Zt−µ(Xt)}2|Xt = x]

is derived as follows:

σ2(x) = E[{Zt − µ(Xt)}2|Xt = x]

= E[Z2
t |Xt = x] − (E[Zt|Xt = x])2

=
[
l2(q1−p(x0)|x) + {1 − F (q1−p(x0)|x)}q2

1−p(x0) − 2l1(q1−p(x0)|x)q1−p(x0)
]

− [l1(q1−p(x0)|x) − {1 − F (q1−p(x0)|x)}q1−p(x0)]
2

= l2(q1−p(x0)|x) − l21(q1−p(x0)|x)

+ F (q1−p(x0)|x)q1−p(x0) [{1 − F (q1−p(x0)|x)}q1−p(x0) − 2l1(q1−p(x0)|x)] .

Thus, the map x 7→ σ2(x) is continuous at x0, as required in Masry and Fan (1997). It is

easy to see that σ2
p(x0) = p−2σ2(x0). However, we can not use the truncation argument to

check the Lindeberg condition (3.10) in Masry and Fan (1997) under the present conditions.

Alternatively, we employ Theorem 4.1 in Shao and Yu (1996) and condition (A6) to check

the Lindeberg condition. Since the argument is similar to the proof of Theorem 1 in Cai

(2001), we omit the detail for brevity.

Remark 1. The proof of Theorem 1 in Cai (2002) uses the following argument: Put

J1 =
∑n

t=1{I(Yt ≤ y) − F (y|x0)}pt(x0)Kh(Xt − x0) and J2 = n−1
∑n

t=1{I(Yt ≤ y) −
F (y|x0)}bt(x0)Kh(Xt−x0). He claimed that since pt(x0) = n−1bt(x0){1+op(1)} uniformly

over t, J1 is written as J1 = {1 + op(1)}J2; see also the proofs of Theorem 1 in Cai (2001)

and Theorem 1 in Cai and Wang (2008). However, this argument seems not rigorous since

|J1 − J2| is bounded by op(1) × n−1
∑n

t=1 |I(Yt ≤ y) − F (y|x0)|Kh(Xt − x0) and is not

bounded by op(1) × |J2|. Nevertheless, the conclusion of the theorem still holds. To show

asymptotic normality of J1, expand J1 as J1 = J2 + Rn like (11) and evaluate the order

of the reminder term Rn. Then, we may prove the conclusion of the theorem under the

additional condition that nh3 → ∞ and h = O(n−1/5). Theorem 3 of Cai (2002) is a

direct consequence of Theorem 1 of the same paper and so still holds under the additional

condition. On the other hand, such a modification may not be applied to the proof of

Theorem 2 in Cai (2002), which states the boundary behavior of the WNW estimator of

the conditional distribution function. So we do not pursue the boundary behavior of the

proposed estimator in this paper.
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A.2 Derivation of (6)

In this section, we derive (6). To do this, we need some additional regularity conditions

stated as follows:

(B1) The kernel function W (·) is a symmetric, bounded and compactly supported density.

(B2) The process {(Yt, Xt), t = 1, 2, . . . } is stationary and α-mixing with

∞∑
j=1

{α(j)}(1−2/δ)/2 < ∞

for some δ > 2.

(B3) The map x 7→ E[|Y |δ|X = x] is bounded in a neighborhood of x0, where δ is defined

in (B2).

(B4) For each j ≥ 1 and each (x1, x1+j) in a neighborhood of (x0, x0), the map (u1, u1+j) 7→
E[{Y1 − q1−p(x0)}I(Y1 ≥ u1){Y1+j − q1−p(x0)}I(Y1+j ≥ u1+j)|X1 = x1, X1+j = x1+j]

is twice continuously differentiable in a neighborhood of (q1−p(x0), q1−p(x0)); the par-

tial derivatives of the map are bounded by some constant not depending on j in the

neighborhood of (q1−p(x0), q1−p(x0)) uniformly over (x1, x1+j) in the neighborhood of

(x0, x0).

The substantial additional condition is (B4). The other conditions are more or less

standard. Condition (B4) is high level; however, we put it for a technical convenience. We

note that if the process is independent, condition (B4) is removed. The proof of Proposition

1 below basically follows the proof of Lemma 2 in Cai and Roussas (1998). A part of the

proof overlaps the proof of Lemma 4 in Cai and Wang (2008), which is found in Cai and

Wang (2006).

Proposition 1. Suppose that conditions (A1), (A3), (A5), (A7)-(b), (A8) and (B1)-(B4)

are satisfied. If h, h0 → 0 as n → ∞, then (6) holds.

Proof. Let ct(x0) = bt(x0)Kh(Xt − x0) and Zt = Yt − q1−p(x0). By stationarity,

p2g2(x0) var(I2) =
1

n
var{c1(x0)Z1Gh0(Z1)}

+
1

n

n−1∑
j=1

(1 − j/n) cov{c1(x0)Z1Gh0(Z1), c1+j(x0)Z1+jGh0(Z1+j)}.

Because of conditions (A1), (A7)-(b), (A8), (B1) and (B3), the Taylor expansion yields

that

E[c1(x0)Z1Gh0(Z1)] = E[c1(x0)Z1I(Z1 ≥ 0)] + O(h2
0),

E[{c1(x0)Z1Gh0(Z1)}2] = E[{c1(x0)Z1}2I(Z1 ≥ 0)] + O(h−1h2
0),
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which implies that

var{c1(x0)Z1Gh0(Z1)} = var{c1(x0)Z1I(Z1 ≥ 0)} + o(h−1h0)

See also the proof of Lemma 4 in Cai and Wang (2006).

Define

aj = cov{c1(x0)Z1Gh0(Z1), c1+j(x0)Z1+jGh0(Z1+j)}
− cov{c1(x0)Z1I(Z1 ≥ 0), cj(x0)Z1+jI(Z1+j ≥ 0)}, j ≥ 1.

It suffices to show
n−1∑
j=1

|aj| = o(h−1h0).

Because of conditions (B1) and (B4), the Taylor expansion yields that

E[Z1Gh0(Z1)Z1+jGh0(Z1+j)|X1 = x1, X1+j = x1+j]

= E[Z1I(Z1 ≥ 0)Z1+jI(Z1+j ≥ 0)|X1 = x1, X1+j = x1+j] + O(h2
0),

uniformly over (x1, x1+j) in a neighborhood of (x0, x0) and j ≥ 1, which implies that

|aj| ≤ C1h
2
0, (12)

for some constant C1 > 0 not depending on j, where we have used conditions (A1),

(A3) and (A5). From (A1), (A8) and (B3), Davydov’s inequality (Fan and Yao, 2005,

Proposition 2.5) implies that

|aj| ≤ 16{α(j)}1−2/δ(E[|c1(x0)Z1|δ])2/δ

≤ C2h
2/δ−2{α(j)}1−2/δ, (13)

for some constant C2 > 0 not depending on j. See the proof of Theorem 2 in Masry and

Fan (1997). Combining (12) and (13), we have

|aj| = |aj|1/2|aj|1/2

≤ C3h
−1+1/δh0{α(j)}(1−2/δ)/2,

where C3 = (C1C2)
1/2, which implies that

n−1∑
j=1

|aj| ≤ C3h
−1+1/δh0

∞∑
j=1

{α(j)}(1−2/δ)/2

= o(h−1h0),

where we have used condition (B2). Therefore, the proof is complete.
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