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Abstract

This paper addresses the problem of estimating the innovation density in non-
linear autoregressive models. Specifically, we establish the convergence rate of the
supremum distance between the residual-based kernel density estimator and the ker-
nel density estimator using the unobservable actual innovation variables. The proof
of the main theorem relies on empirical process theory instead of the conventional
Taylor expansion approach. As applications, we obtain the exact rate of weak uniform
consistency on the whole line, pointwise asymptotic normality of the residual-based
kernel density estimator and the asymptotic distribution of a Bickel-Rosenblatt type
global measure statistic related to it. We also examine the conditions of the main
theorem for some specific time series model.
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1 Introduction

This paper addresses the problem of estimating the innovation density in nonlinear au-

toregressive models. A nonlinear autoregressive model of order p is defined as

Xt = m(Xt−1, . . . , Xt−p; θ) + et, t = 0,±1,±2, . . . , (1.1)

where θ = (θ1, . . . , θq) is a vector of unknown parameters, Θ is a parameter space which

is a Borel measurable subset of Rq, m : Rp × Θ → R is called an autoregression function,

{et} is a sequence of iid random variables and et is independent of {Xt−k, k ≥ 1} for all t.

Let f denote the density of et, which we want to estimate.
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Suppose first that et’s are observable. In this case, the kernel density estimator of f is

defined as

fn(u0) =
1

n

n∑
t=1

Khn(et − u0),

where u0 is an arbitrary point in R, K(·) is a kernel function, hn > 0 is a bandwidth and

Khn(u) = h−1
n K(u/hn). There is much literature on properties of kernel density estimators.

The history of density estimation for observable data is well summarized in Section 5.8

of Fan & Yao (2005). In practice, of course, et’s are not observable. A natural approach

to estimate f is to replace et’s by residuals in the definition of fn. Suppose we have a√
n-consistent estimator θ̂ of θ. Throughout the paper, the sample is {X−p+1, . . . , Xn}.

The residuals for the model (1.1) are defined as êt = Xt −m(Xt−1; θ̂), t = 1, . . . , n, where

Xt−1 = (Xt−1, . . . , Xt−p). Then, the residual-based kernel density estimator of f is defined

as

f̂n(u0) =
1

n

n∑
t=1

Khn(êt − u0).

Since we use êt as a proxy of et, we expect that f̂n behaves like fn. A natural question

is: How “close” is f̂n to fn? The question motivates us to study the convergence rate of the

supremum distance between f̂n and fn, that is, ∥f̂n − fn∥∞ := supu0∈R |f̂n(u0) − fn(u0)|.
Although the statement of the problem is clear, there are some difficulties in analyzing the

convergence rate. The difficulties are listed as follows: (1) the data are dependent; (2) the

estimated parameter of possibly unknown form appears inside the kernel; (3) the supremum

is taken over the whole line. It is worth pointing out that a simple expansion approach

does not provide a useful result. To account for this, let us consider a linear autoregressive

model of order 1: Xt = θ0 + θ1Xt−1 + et where |θ1| < 1. Assuming that K(·) is Lipschitz

continuous, we may infer that |f̂n(u0)− fn(u0)| ≤ Lh−2
n (|θ̂0 − θ0|+ |θ̂1 − θ1|n−1

∑n
t=1Xt−1),

where L > 0 is a Lipschitz constant of K(·). Under standard assumptions, the right hand

side is of order Op(n
−1/2h−2

n ). However, this rate is far from sharp. For example, if we

want to establish the rate of uniform consistency of f̂n, we expect that ∥f̂n − fn∥∞ is of

order op{(nhn)−1/2 log h−1
n }. In this case, the above rate is not enough.

For the supremum distance on a compact subset of R, Liebscher (1999) established the

o{(nhn)−1/2} rate of almost sure convergence under slightly restrictive conditions. He used

the second order Taylor expansion in conjunction with a sophisticated truncation argument

and an exponential inequality for mixing processes established in Liebscher (1996) to obtain

the rate. Müller et al. (2005) also considered a problem similar to ours. Based on the

Taylor expansion approach, they established the convergence rate of the weighted L1 norm

between f̂n and fn. However, their results do not lead to the convergence rate of ∥f̂n−fn∥∞.

To the best of our knowledge, the convergence rate of the supremum distance between f̂n

and fn on the whole line is still an open problem.

The main purpose of this paper is to establish a sharp convergence rate of ∥f̂n − fn∥∞.

The result of this paper improves upon that of Liebscher (1999) in several aspects. Our

result enables us to determine the condition on hn under which the pre-specified rate of

convergence of ∥f̂n − fn∥∞ is ensured. For example, if we want to make ∥f̂n − fn∥∞ =
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op{(nhn)−1/2 log h−1
n }, the main theorem states that if f is Lipschitz continuous, it is enough

to set hn such that hn → 0 and n1/2hn log h−1
n / log n → ∞. It is worth pointing out that

the convergence rate can be even of order Op(n
−1/2), which is faster than the convergence

rate of kernel estimators; see Corollary 2.1 below. As applications, we obtain the exact

rate of uniform consistency and pointwise asymptotic normality of f̂n. Also, we establish

the asymptotic distribution of the maximum deviation of f̂n from E[fn(u0)] on an interval

where f is bounded away from 0 and ∞, which is an extension of Theorem 3.1 in Bickel &

Rosenblatt (1973) to the residual-based kernel density estimator. The last application is

of practical importance since it provides an asymptotically distribution free goodness-of-fit

test for the innovation density; see Proposition 2.3 below.

From a methodological point of view, there is an important difference between the

present paper and the past two papers. The proofs in the past two paper rely on the

Taylor expansion approach. Whereas, the proof of Proposition 4.1 in the present paper,

which is a key to the main theorem, relies on empirical process techniques. Empirical

process techniques are now basic tools for studying uniform asymptotic behaviors of kernel

density estimators. Pollard (1984) demonstrated how empirical process techniques can be

used to prove uniform consistency of kernel density estimators. Yu (1993) established rates

of uniform consistency of kernel density estimators for β-mixing processes. She introduced

the blocking technique to modify Pollard’s methods to β-mixing processes. The blocking

technique plays an important role in the proof of the main theorem. Recent developments

in this fields include Deheuvels (2000), Einmahl & Mason (2000, 2005) and Giné & Guillou

(2002), to name only a few. The contribution of this paper is to demonstrate how empirical

process techniques are incorporated to studying asymptotic behaviors of residual-based

kernel density estimators for possibly nonlinear time series models.

The organization of this paper is as follows. Section 2 presents the main theorem

which establishes the convergence rate of the supremum distance between f̂n and fn. The

latter part of Section 2 includes some applications of the main theorem. In Section 3,

the conditions of the main theorem are examined for some specific nonlinear time series

models. All the technical proofs are provided in Section 4.

We introduce some notations used in the present paper. Let I(A) denote the indicator

of an event A. For a, b ∈ R, a ∧ b = min{a, b}, a ∨ b = max{a, b}. For a ∈ R, [a] denotes

the greatest integer not exceeding a. Let ∥g∥∞ denote the supremum norm of a generic

function g. For two sequences of positive numbers {an} and {bn}, we write an ≍ bn when

there exists a positive constant M such that M−1bn ≤ an ≤Mbn for every n. Throughout

the paper, all vectors are row vectors.

2 Main results

2.1 Convergence rate

In this section, we establish the convergence rate of ∥f̂n − fn∥∞.

To study the convergence rate, we assume that the process {Xt} is stationary and
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geometrically β-mixing. Let (Ω,A,P) denote an underlying probability space. Let Aj
i

denote the σ-field generated by {Xt, i ≤ t ≤ j} (i < j). The β-mixing coefficient of the

process {Xt} is defined as

β(k) = E
[
sup{|P(B|A0

−∞) − P(B)| : B ∈ A∞
k }
]
, k ≥ 1.

From Volkonskii & Rozanov (1959), it is shown that β(k) has an alternative expression

β(k) =
1

2
sup

{∑I
i=1

∑J
j=1|P(Ai ∩Bj) − P(Ai)P(Bj)| :

{Ai}I
i=1 is a finite partition in A0

−∞,

{Bj}J
j=1 is a finite partition in A∞

k

}
. (2.1)

For a general treatment on various mixing conditions, we refer to Section 2.6 of Fan & Yao

(2005) and references therein.

We now state our regularity conditions. Throughout the paper, the true parameter

θ ∈ Θ is fixed.

(A1) The process {Xt} is stationary and β-mixing with exponential decaying coefficients.

(A2) There exists a closed ball B in Rq centered at θ such that B ⊂ Θ.

(A3) The map (x,ϑ) 7→ m(x; ϑ) is Borel measurable; there exists a Borel measurable

function M(x) such that |m(x; ϑ)−m(x; θ)| ≤M(x)∥ϑ−θ∥ for ϑ in a neighborhood

of θ in Θ and E[M2(Xt−1)] <∞.

(A4) The innovation density f is bounded and λ-th Hölder continuous with λ ∈ (0, 1],

that is, |f(u) − f(v)| ≤ const. × |u− v|λ for all u, v ∈ R.

(A5) The kernel function K(·) is a Lipschitz continuous density function with∫ ∞

−∞
|uK ′(u)|du <∞. (2.2)

(A6) The estimator θ̂ is
√
n-consistent for θ; that is, θ̂ = θ +Op(n

−1/2).

We state some remarks on the conditions. There are several sufficient conditions for

stationarity and geometric β-mixing property of the process {Xt}. See, for example, The-

orems 2.2 and 2.4 in Fan & Yao (2005). Remember that stationary geometrically ergodic

Markov chains are β-mixing with exponentially decaying coefficients; see equation (2.58)

in Fan & Yao (2005) and Theorem 2.1 of Nummelin & Tuominen (1982). Liebscher (1999)

imposed the condition adopted in Masry & Tjøstheim (1995) to ensure geometric ergodic-

ity of the process; see Condition G in his paper. In truth, the geometric β-mixing condition

is stronger than needed; however, we put it for a technical convenience. Condition (A3) is

weaker than Condition M in Liebscher (1999). Actually, we do not assume the second or-

der differentiability of the map ϑ 7→ m(x; ϑ) and require the weaker moment condition on
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M(Xt−1). Condition (A5) allows for the Gaussian, the triangular and the Epanchnikov ker-

nels. Equation (2.2) implies that K(·) is of bounded variation on R. Clearly, a compactly

supported Lipschitz continuous density satisfies condition (A5). It is noted that condition

(A5) is weaker than Condition K(2) in Liebscher (1999). Note that Condition K(2) in Lieb-

scher (1999) does not imply the Lipschitz continuity ofK(·). However, he used the property

in the proof of his Theorem 3.1; see equation (3.5) in his paper. There is vast literature on

the estimation of parameters in nonlinear autoregressive models. Among them, Klimko &

Nelson (1978) established asymptotic normality of conditional least squares estimators for

smooth nonlinear autoregressive models. Tjøstheim (1986) developed general conditions

under which consistency and asymptotic normality of M -estimators hold for nonlinear time

series models. More recently, Koul (1996) established asymptotic normality of M -, R- and

minimum distance estimators for nonlinear autoregressive models.

We now present the main result of this paper. The proof of Theorem 2.1 is relegated

to Section 4.

Theorem 2.1. Assume that conditions (A1)-(A6) are satisfied. Let

hn → 0, rn → ∞,
n3/2h2

n

r2
n log n

→ ∞. (2.3)

Then, we have ∥f̂n − fn∥∞ = op(r
−1
n ) +Op(n

−1/2hλ−1
n ∧ 1).

Remark 2.1. It is possible to develop an a.s. version of Theorem 2.1 if we replace condition

(A6) by

lim sup
n→∞

√
n

log log n
∥θ̂ − θ∥ ≤ const., a.s. (2.4)

Liebscher (1999) adopted (2.4) as an initial condition on the estimator. Sufficient condi-

tions under which (2.4) holds are found in Liebscher (2003) and references therein.

We shall compare Theorem 2.1 with Theorem 3.1 of Liebscher (1999). He assumed

that the estimator θ̂ satisfies (2.4) and the bandwidth hn is such that hn → 0 and hn ≥
const.×n−1/5. With some additional conditions including the Lipschitz continuity of f , he

showed in Theorem 3.1 that for any compact subset D of R, supu0∈D |f̂n(u0) − fn(u0)| =

o{(nhn)−1/2}, almost surely. Theorem 2.1 relaxes the condition on the bandwidth, removes

the restriction on compact subsets and gives a sharper result on the convergence rate.

We explain an intuition behind the proof of Theorem 2.1. Put ∆(Xt−1; ϑ) = m(Xt−1; ϑ)−
m(Xt−1; θ). Let us define fn(u0,ϑ) = n−1

∑n
t=1Khn(et − u0 −∆(Xt−1,ϑ)). The difference

f̂n(u0) − fn(u0) is decomposed as

f̂n(u0) − fn(u0) = [{fn(u0, ϑ̂) − E[fn(u0,ϑ)]|ϑ=θ̂} − {fn(u0,θ) − E[fn(u0,θ)]}]
+ {E[fn(u0,ϑ)]|ϑ=θ̂ − E[fn(u0,θ)]}.

Using the fact that θ̂ is
√
n-consistent for θ, we may handle the first term by means of

empirical process techniques. The second term depends only on the smoothness of the

non-random map ϑ 7→ E[fn(u0,ϑ)] and can be handled more easily. In Section 4, we will
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establish that the first term is op(r
−1
n ) and the second term is Op(n

−1/2hλ−1
n ∧ 1) uniformly

over u0 ∈ R.

It is worth pointing out that the Hölder continuity of f is not used in establishing

the uniform convergence rate of the first part. With a suitable choice of hn, the uniform

convergence rate of the first term can be even faster than Op(n
−1/2). In this case, the

second term dominates the first term. Under some additional conditions, we can obtain a

ramification of Theorem 2.1, which is stated as a corollary. Put ṁ(x; ϑ) = ∂m(x; ϑ)/∂ϑ.

We introduce another set of conditions that are stronger than conditions (A3)-(A5).

(A3’) The map (x,ϑ) 7→ m(x; ϑ) is Borel measurable; the map ϑ 7→ m(x; ϑ) is con-

tinuously differentiable for each x. There exists a Borel measurable function M(x)

such that ∥ṁ(x; ϑ)∥ ≤ M(x) for all x and for all ϑ in a neighborhood of θ and

E[M3(Xt−1)] <∞.

(A4’) The innovation density f is bounded and twice continuously differentiable with

bounded first and second derivatives.

(A5’) The kernel function K(·) is a Lipschitz continuous density function with∫ ∞

−∞
|u2K ′(u)|du <∞.

Corollary 2.1. Assume that conditions (A1)-(A2), (A3’)-(A5’) and (A6) are satisfied. If

hn → 0 and n1/2h2
n/ log n→ ∞, then we have

∥f̂n(·) − fn(·) − f ′(·)E[ṁ(Xt−1; θ)](θ̂ − θ)⊤∥∞ = op(n
−1/2).

Müller et al. (2005) obtained a result similar to Corollary 2.1; see Theorem 3.2 in their

paper. Under suitable regularity conditions, they showed that if nh
(50+20q)/(14+5q)
n → ∞,∫ ∞

−∞
|f̂n(u0) − fn(u0) − f ′(u0)E[ṁ(Xt−1; θ)](θ̂ − θ)⊤|V (u0)du0 = op(n

−1/2),

where V (·) is an appropriate weight function. As mentioned earlier, however, their result

does not imply our Corollary 2.1. We note that in order to apply the second order Taylor

expansion to the kernel density estimator, they assumed twice continuous differentiability

of the kernel K(·), which rules out some important kernels such as the Epanchnikov and

the triangular kernels.

2.2 Applications

In this section, we present three applications of Theorem 2.1. Specifically, we consider

the exact rate of weak uniform consistency and pointwise asymptotic normality of the

residual-based kernel density estimator. Also, we establish the asymptotic distribution of

the maximum deviation of f̂n from E[fn(u0)] on a compact interval.

Silverman (1978), Stute (1984), Deheuvels (2000), Einmahl & Mason (2000, 2005) and

Giné & Guillou (2002) studied rates of uniform consistency of kernel density estimators

6



for observable data. Among them, Giné & Guillou (2002) used empirical process theory to

establish the exact rate of strong uniform consistency of fn under very mild assumptions.

Assume that K(·) is a bounded, compactly supported density function, the functional class

K = {e 7→ K((e − u0)/h) : u0 ∈ R, h > 0} is Euclidean (see Definition 4.2 in Section 4)

and f is bounded and uniformly continuous on R. Theorem 3.3 of Giné & Guillou (2002)

shows that if

hn ↓ 0, nhn ↑ ∞,
nhn

| log hn|
→ ∞,

| log hn|
log log n

→ ∞,

we have

lim
n→∞

√
nhn

2 log h−1
n

∥fn − E[fn(·)]∥∞ = ∥K∥2∥f∥1/2
∞ , a.s., (2.5)

where ∥K∥2
2 =

∫∞
−∞K2(u)du. In view of (2.5), we shall seek conditions under which

equation (2.6) below holds:

plim
n→∞

√
nhn

2 log h−1
n

∥f̂n − E[fn(·)]∥∞ = ∥K∥2∥f∥1/2
∞ . (2.6)

To make ∥f̂n−fn∥∞ negligible, take rn =
√
nhn/ log h−1

n . The last part of (2.3) is satisfied

if n1/2hn log h−1
n / log n → ∞. Since K(·) is of bounded variation, the class K is shown to

be Euclidean under condition (A5); see Lemma 22 in Nolan & Pollard (1987). Therefore,

we obtain the next proposition.

Proposition 2.1. Assume that conditions (A1)-(A6) are satisfied with λ ∈ [1/2, 1] in

(A4). If K(·) is compactly supported and if

hn ↓ 0, nhn ↑ ∞,
| log hn|
log log n

→ ∞,
n1/2hn log h−1

n

log n
→ ∞,

then (2.6) holds.

Remark 2.2. To establish the rate only, the compactness of the support of K(·) is not

required. See Theorem 2.3 in Giné & Guillou (2002).

It is rather easy to find sufficient conditions under which pointwise asymptotic normality

of f̂n holds. Fix u0 ∈ R. If K(·) is a bounded density function and f is bounded on R and

continuous at u0, the Lyapunov central limit theorem shows that√
nhn{fn(u0) − E[fn(u0)]}

d→ N{0, f(u0)∥K∥2
2}.

Take rn = (nhn)1/2. The last part of (2.3) is satisfied if n1/2hn/ log n → ∞. Thus, we

obtain the next proposition:

Proposition 2.2. Fix u0 ∈ R. Assume that conditions (A1)-(A6) are satisfied with λ ∈
(1/2, 1] in (A4). If hn → 0 and n1/2hn/ log n→ ∞, then we have√

nhn{f̂n(u0) − E[fn(u0)]}
d→ N{0, f(u0)∥K∥2

2}.
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A replacement of E[fn(u0)] by f(u0) is a routine problem in density estimation theory.

For example, if f is twice continuously differentiable and K(·) is symmetric with µ2(K) :=∫∞
−∞ u2K(u)du <∞, E[fn(u0)] may be expanded as

E[fn(u0)] = f(u0) +
h2

nf
′′(u0)

2
µ2(K) + o(h2

n).

In this case, we can calculate the asymptotic mean squared error (AMSE) of f̂n(u0). Min-

imizing the AMSE yields the optimal bandwidth hopt
n ≍ n−1/5. Clearly, the optimal band-

width for f̂n(u0) is same as that for fn(u0).

The last application is to derive the asymptotic distribution of the maximum devi-

ation of f̂n from E[fn(u0)] on a compact interval. Assume that f is continuous, pos-

itive and bounded. For an arbitrary closed interval [a, b] with −∞ < a < b < ∞,

define M̂n = {(b − a)nhn}1/2 supu0∈[a,b] |f̂n(u0) − E[fn(u0)]|/
√
f(u0) and Mn = {(b −

a)nhn}1/2 supu0∈[a,b] |fn(u0) − E[fn(u0)]|/
√
f(u0). Bickel & Rosenblatt (1973) showed in

Theorem 3.1 that under their conditions A1-(b), A2 and A3, if hn = const. × n−δ with

0 < δ < 1/2,

P

(
(−2 log hn)1/2

(
Mn

∥K∥2

− dn

)
< x

)
→ exp{−2 exp(−x)}, (2.7)

where

dn = (−2 log hn)1/2 +
1

(−2 log hn)1/2

(
log

1

2π

∥K ′∥2

∥K∥2

)
.

In order to make M̂n −Mn = op{(− log hn)−1/2}, take rn = (−nhn log hn)1/2 in Theorem

2.1. The last part of (2.3) is satisfied for hn = const. × n−δ with 0 < δ < 1/2. Condition

(A5) implies condition A1-(b) in Bickel & Rosenblatt (1973). The first part of condition

A3 in Bickel & Rosenblatt (1973) is satisfied if f is Lipschitz continuous and f ′/f1/2 is

bounded in absolute value. Therefore, we obtain the next proposition.

Proposition 2.3. Let [a, b] be an arbitrary closed interval with −∞ < a < b < ∞.

Assume that conditions (A1)-(A6) are satisfied with λ = 1 in (A4), that is, f is Lipschitz

continuous. Assume further that f is positive, f ′/f1/2 is bounded in absolute value and

u2K(u), u2K ′(u) are integrable. If hn = const. × n−δ with 0 < δ < 1/2, then (2.7) holds

for every x with Mn replaced by M̂n.

Cheng (2005), putting more restrictive conditions on hn, established the same conclu-

sion of Proposition 2.3 for a linear autoregressive model of order 1. Proposition 2.3 is

an extension of Cheng’s Theorem 4.1 to a general nonlinear autoregressive model. Ap-

plications of Proposition 2.3 include the construction of uniform confidence bands and

goodness-of-fit tests for the innovation density. For example, let us consider to test the

null hypothesis H0 : f = f0 where f0 is some known density. In this case, it is natural to

reject H0 if M̂n is large. Proposition 2.3 enables us to tabulate approximate critical values

of M̂n. It is worth pointing out that the test based on M̂n is asymptotically distribution

free (ADF), that is, the asymptotic null distribution of the normalized statistic of M̂n does
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not depend on f0 and θ. To construct a non-trivial ADF goodness-of-fit test for the error

distribution is not an easy problem since the asymptotic distribution of a functional of

the residual empirical process generally depends on both the underlying distribution and

the unknown parameter; see Koul (1996). For example, the residual-based Kolmogorov-

Smirnov test is not ADF. The dependence of the asymptotic distribution on the unknown

parameter is apparently undesirable when calculating critical values of the test. Recently,

Khmaladze & Koul (2004) obtained ADF goodness-of-fit tests for the error distribution

in nonlinear regression models. The crux of their approach is a certain martingale type

transform of the residual empirical process. Proposition 2.3 shows that we need no such

transform when using M̂n as a goodness-of-fit test statistic for the innovation distribution.

3 Examples

In this section, we examine the conditions of Theorem 2.1 for some specific nonlinear time

series models. We deal with well known linear autoregressive (AR) models, threshold

autoregressive (TAR) models (Tong & Lim, 1980), exponential autoregressive (EXPAR)

models (Ozaki, 1980; Haggan & Ozaki, 1981) and log transformed squared autoregressive

conditional heteroscedasticity (ARCH) processes (Engle, 1982).

Example 3.1 (Linear AR model). The first example is a linear AR model of order p:

Xt = θ1Xt−1 + · · · + θpXt−p + et,

where θ = (θ1, . . . , θp) is a vector of unknown parameters and {et} is a sequence of iid

random variables with mean zero and finite variance. In this case, q = p, m(x; ϑ) = ϑ1x1 +

· · · + ϑpxp. The stationarity (causality) condition of the AR process is found in Theorem

3.1.1 of Brockwell & Davies (1991); if the characteristic polynomial θ(z) = 1−θ1z−· · ·−θpz
p

has no zero in {z ∈ C : |z| ≤ 1}, the AR equation has the unique stationarity solution

Xt =
∑∞

j=0 ajet−j with aj → 0 exponentially fast as j → ∞. If further et has a positive

density, the process {Xt} is β-mixing with exponentially decaying coefficients. Condition

(A3) is satisfied with M(x) = ∥x∥. Concerning (A6), the maximum likelihood, the least

squares and the Whittle estimators are
√
n-consistent for θ; see Section 10 in Brockwell &

Davies (1991).

Example 3.2 (TAR model). The second example is a TAR model with known thresholds.

For simplicity, we consider a TAR model of order 1:

Xt = θ1Xt−1I(Xt−1 ≤ 0) + θ2Xt−1I(Xt−1 > 0) + et,

where θ = (θ1, θ2) is a vector of unknown parameters with θ1 ̸= θ2 and {et} is a sequence

of iid random variables with mean zero and finite variance. In this case, p = 1, q = 2

and m(x; ϑ) = ϑ1xI(x ≤ 0) + ϑ2xI(x > 0). The process {Xt} satisfies condition (A1) if

θ1 < 1, θ2 < 1, θ1θ2 < 1 and et has a positive density; see Example 3.7 in An & Huang

(1996). Condition (A3) is satisfied with M(x) = |x|. It is not difficult to see that, for

example, the conditional least squares estimator is
√
n-consistent for θ under suitable

regularity conditions.
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Example 3.3 (EXPAR model). Again, for simplicity, we consider an EXPAR model of

order 1:

Xt = {θ1 + θ2 exp(−θ3X
2
t−1)}Xt−1 + et,

where θ = (θ1, θ2, θ3) is a vector of unknown parameters with θ3 > 0, {et} is a sequence

of iid random variables with mean zero and finite variance. In this case, p = 1, q = 3 and

m(x; ϑ) = {ϑ1 + ϑ2 exp(−ϑ3x
2)}x. The process {Xt} satisfies condition (A1) if |θ1| < 1

and et has a positive density; see Example 3.2 in An & Huang (1996). Condition (A3)

is satisfied with M(x) = C|x| for some constant C > 0. Concerning condition (A6),

Tjøstheim (1986) showed in his Theorem 4.1 that if further E[e6
t ] < ∞, the conditional

least squares estimator is
√
n-consistent for θ.

Example 3.4 (Log transformed squared ARCH process). The last example is motivated

by Peng & Yao (2003) who studied least absolute deviation (LAD) type estimators for

GARCH models. An ARCH model of order p is defined as

Yt = σtϵt, σ
2
t = θ0 +

p∑
j=1

θjY
2
t−j,

where θj > 0 (j = 0, . . . , p) are unknown coefficients, θ = (θ0, . . . , θp), {ϵt} is a sequence

of iid random variables with mean zero and finite variance. Often ϵt is standardized such

that E[ϵ2t ] = 1 and the Gaussian quasi maximum likelihood estimator (QMLE) is used.

Asymptotic theory of Gaussian QMLEs was studied by Weiss (1986) for ARCH models,

Hall & Yao (2003) for GARCH models. On the other hand, Peng & Yao (2003) introduced

another standardization of ϵt. They standardized ϵt such that the median of ϵ2t is 1. With

this standardization, they proposed the LAD-type estimator

θ̂LAD = arg min
ϑ

n∑
t=1

| log Y 2
t − log(ϑ0 +

∑p
j=1 ϑjY

2
t−j)|.

The LAD estimator is advantageous over the Gaussian QMLE in the sense that asymptotic

normality of the LAD estimator holds under the weaker moment condition on ϵt than the

Gaussian QMLE. In fact, the LAD estimator is always asymptotically normal provided

that E[ϵ2t ] < ∞. On the other hand, when E[|ϵt|d] = ∞ with 2 < d < 4, the asymptotic

distribution of the Gaussian QLME is no longer normal with a convergence rate slower

than n1/2. The asymptotic distribution of
√
n(θ̂LAD − θ) is obtained as

√
n(θ̂LAD − θ)

d→ N [0,Σ/{4f 2(0)}],

where f is the density of log ϵ2t and Σ is given in Peng & Yao (2003). Thus, in order to

conduct statistical inference using the LAD estimator, we have to estimate f(0). The LAD

estimator is the maximum likelihood estimator when log ϵ2t has a Laplace distribution. So,

it is of practical interest to test whether the distribution of log ϵ2t is close to the Laplace

distribution; see also Huang et al. (2008).

It is not difficult to see that et = log ϵ2t is the innovation variable of the nonlinear AR

model (1.1) with Xt = log Y 2
t and m(x; ϑ) = log{ϑ0 +

∑p
j=1 ϑj exp(xj)}. Thus, the results
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of Section 2 are applicable to the inference on f . The original process {Yt} is stationary and

β-mixing with exponential decaying coefficients if (E[ϵ2t ])
1/2
∑p

j=1 θj < 1 and the density

of ϵt is positive in an interval containing 0; see Carrasco & Chen (2002). Thus, under the

same condition, the process {Xt} satisfies condition (A1). Condition (A3) is satisfied with

M(x) = const.

4 Proofs

4.1 Proof of Theorem 2.1

In this section, we provide a proof of Theorem 2.1. Throughout this section, we assume

all the conditions of Theorem 2.1. We begin with introducing some terminologies related

to empirical process theory.

Definition 4.1. Let ϵ > 0 and let G be a functional class equipped with semimetric ρ.

(a) Every finite collection g1, . . . , gN ∈ G with the property that for every g ∈ G, there

exists a j ∈ {1, . . . , N} such that ρ(g, gj) < ϵ is called an ϵ-cover of G with respect

to ρ.

(b) Let N (ϵ,G, ρ) be the size of the smallest ϵ-cover of G with respect to ρ. Take

N (ϵ,G, ρ) = ∞ if no finite ϵ-cover exists. Then N (ϵ,G, ρ) is called an ϵ-covering

number of G with respect to ρ.

The present definition of a cover of a functional class G requires that the cover is a

subset of G. Compare the definition in Pollard (1984), pp. 25. However, this requirement

does not lose any generality. Suppose that there is a enlarged class of functions equipped

with some semimetric. G is a subset of the enlarged class. Then, it is not difficult to see

that if there is an ϵ-cover of G which is not subset of G, there is a (2ϵ)-cover of G with the

property that it is a subset of G and has the same size as the ϵ-cover.

Following Nolan & Pollard (1987), we introduce an Euclidean class of functions, which

already appeared in Section 2.2. Analogously, we introduce the notion of a uniformly

Euclidean family of functional classes, which will be used in the proof of Proposition 4.1.

Definition 4.2. Let d be a positive integer.

(a) Let G be a class of Borel measurable functions on Rd with Borel measurable envelope

G. The class G is said to be Euclidean with envelope G if there exists positive

constants A and V such that for every probability measure Q on Rd with 0 <

∥G∥1,Q :=
∫
GdQ <∞,

N (ϵ∥G∥1,Q,G, ρ1,Q) ≤ Aϵ−V , 0 < ϵ < 1,

where ρ1,Q is the L1 semimetric with respect to Q.
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(b) Let S be an arbitrary index set. For each s ∈ S, let G(s) be a class of Borel

measurable functions on Rd. Suppose that there exists a Borel measurable function

G such that sups∈S supg∈G(s) |g| ≤ G. The family {G(s), s ∈ S} is said to be uniformly

Euclidean with envelope G if there exists positive constants A and V such that for

every probability measure Q on Rd with 0 < ∥G∥1,Q <∞,

sup
s∈S

N (ϵ∥G∥1,Q,G(s), ρ1,Q) ≤ Aϵ−V , 0 < ϵ < 1.

Section 5 of Nolan & Pollard (1987) summarizes some basic facts on Euclidean classes.

An example of a uniformly Euclidean family is {G(s), s ∈ S} such that each G(s) is a

Vapnik-Červonenkis (VC) subgraph class with VC index less than some constant indepen-

dent of s; use Theorem 2.6.7 of van der Vaart & Wellner (1996, abbreviated as vdVW

hereafter) to check this. For the definitions of a VC subgraph class and a VC index, we

refer to Section 2.6 of vdVW.

We now turn to the proof of Theorem 2.1. Recall that ∆(Xt−1; ϑ) = m(Xt−1; ϑ) −
m(Xt−1; θ). Define the stochastic process on R × Θ

Wn(u0,ϑ) =
1

n

n∑
t=1

{Khn(et − u0 − ∆(Xt−1; ϑ)) −Khn(et − u0)}, (u0,ϑ) ∈ R × Θ.

As explained in Section 2, the proof of Theorem 2.1 is divided into two steps. The first

step is to show that Wn(u0, θ̂) − E[Wn(u0,ϑ)]|ϑ=θ̂ = op(r
−1
n ) uniformly over u0 ∈ R. The

second step is to show E[Wn(u0,ϑ)]|ϑ=θ̂ = Op(n
−1/2) uniformly over u0 ∈ R. Since θ̂ is√

n-consistent for θ, Propositions 4.1 and 4.2 below will suffice for the first and second

steps, respectively.

Proposition 4.1. For every l > 0 and η > 0,

lim
n→∞

P

(
sup

(u0,ϑ)∈R×Θn

∣∣Wn(u0,ϑ) − E[Wn(u0,ϑ)]
∣∣ > r−1

n η

)
= 0, (4.1)

where Θn = {ϑ ∈ Θ : ∥ϑ − θ∥ ≤ ln−1/2}.

The proof of Proposition 4.1 below relies on the blocking technique used in Yu (1993,

1994) and Arcones & Yu (1994). The blocking technique enables us to employ the sym-

metrization technique and an exponential inequality available in the iid case. Before the

proof, we introduce some notations and a key lemme related to the blocking technique.

Put ξt = (et,Xt−1). Divide the n-sequence {1, . . . , n} into blocks of length an with an → ∞
and an = o(n), one after the other:

Hk = {t : 2(k − 1)an + 1 ≤ t ≤ (2k − 1)an},
Tk = {t : (2k − 1)an + 1 ≤ t ≤ 2kan},

for 1 ≤ k ≤ µn, where µn = [n/(2an)]. The exact form of an will be specified later.

Put Ξk = (ξt, t ∈ Hk), 1 ≤ k ≤ µn. With a slight abuse of notation, for a function

12



g : Rp+1 → R, we write g(Ξk) =
∑

t∈Hk
g(ξt). Let Ξ̃k = (ξ̃t, t ∈ Hk), 1 ≤ k ≤ µn be

independent blocks such that each Ξ̃k has the same distribution as Ξ1. The next lemma,

which is a key to the blocking technique, is due to Volkonskii & Rozanov (1959) and

Eberlein (1984). Lemma 4.1 is deduced from the second expression (2.1) of the β-mixing

coefficient and the induction.

Lemma 4.1. Work with the same notations as above. Assume that n ≥ 2an and an ≥ p+1.

For every Borel measurable subset A of R(p+1)anµn, we have∣∣P((Ξ1, . . . ,Ξµn) ∈ A
)
− P

(
(Ξ̃1, . . . , Ξ̃µn) ∈ A

)∣∣ ≤ µnβ(an − p).

The next lemma will be used in the proofs of Propositions 4.1 and 4.2.

Lemma 4.2. For a ∈ R, we have∫ ∞

−∞
|K(u+ a) −K(u)|du ≤ CK |a|,

∫ ∞

−∞
|u|λ|K(u+ a) −K(u)|du ≤ CK |a|(1 + |a|),

where the constant CK depends only on K(·).

Proof. Let a ≥ 0. Because of (A5), Fubini’s theorem implies that∫ ∞

−∞
|K(u+ a) −K(u)|du =

∫ ∞

−∞

∣∣∣∣∫ u+a

u

K ′(v)dv

∣∣∣∣ du
≤
∫ ∞

−∞

{∫ v

v−a

du

}
|K ′(v)|dv = a

∫ ∞

−∞
|K ′(v)|dv.

Similarly, ∫ ∞

−∞
|u|λ|K(u+ a) −K(u)|du =

∫ ∞

−∞
|u|λ

∣∣∣∣∫ u+a

u

K ′(v)dv

∣∣∣∣ du
≤
∫ ∞

−∞

{∫ v

v−a

|u|λdu
}
|K ′(v)|dv ≤ a

∫ ∞

−∞
{1 ∨ (a+ |v|)}|K ′(v)|dv.

The same argument applies for the a < 0 case. Therefore, the lemma holds with

CK = 1 +

∫ ∞

−∞
|K ′(v)|dv +

∫ ∞

−∞
|vK ′(v)|dv.

We are now in position to prove Proposition 4.1.

Proof of Proposition 4.1. Without loss of generality, we may assume that {ϑ ∈ Rq : ∥ϑ −
θ∥ ≤ ln−1/2} ⊂ Θ. Also, we may assume that the inequality |∆(x; ϑ)| ≤ M(x)∥ϑ − θ∥
holds for all x and all ϑ ∈ Θn. Otherwise, take n large enough; see conditions (A2) and

(A3). Put κ = ∥K∥∞. Define the functional class Gn = {gu0,ϑ,hn : u0 ∈ R,ϑ ∈ Θn}, where

gu0,ϑ,h(e,x) = K((e− u0 − ∆(x; ϑ))/h) −K((e− u0)/h), u0 ∈ R,ϑ ∈ Θ, h > 0.
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Since (e,x, u0,ϑ) 7→ gu0,ϑ,hn(e,x) is jointly Borel measurable, the class Gn is image ad-

missible Suslin. Thus, the measurability problem will not occur throughout the proof; see

Chapter 5.3 in Dudley (1999) and Appendix in Yu (1994). Put δn = hnr
−1
n η. It is not

difficult to see that (4.1) is equivalent to

lim
n→∞

P

(
sup
g∈Gn

∣∣∣∣∣ 1n
n∑

t=1

{g(ξt) − E[g(ξt)]}

∣∣∣∣∣ > δn

)
= 0. (4.2)

We divide the proof of (4.2) into six steps.

Step 1. (Symmetrization) Let σ1, . . . , σµn be independent and uniformly distributed over

{−1, 1} and independent of D̃n := {Ξ̃k, 1 ≤ k ≤ µn}. Take an = [(log n)−1n1/4]. We shall

show that

lim sup
n→∞

P

(
sup
g∈Gn

∣∣∣∣∣ 1n
n∑

t=1

{g(ξt) − E[g(ξt)]}

∣∣∣∣∣ > δn

)
≤ lim sup

n→∞
8P

(
sup
g∈Gn

∣∣∣∣∣ 1n
µn∑
k=1

σkg(Ξ̃k)

∣∣∣∣∣ > δn
16

)
.

Observe that

P

(
sup
g∈Gn

∣∣∣∣∣ 1n
n∑

t=1

{g(ξt) − E[g(ξt)]}

∣∣∣∣∣ > δn

)

≤ P

(
sup
g∈Gn

∣∣∣∣∣ 1n
2anµn∑
t=1

{g(ξt) − E[g(ξt)]}

∣∣∣∣∣ > δn
2

)

+ P

(
sup
g∈Gn

∣∣∣∣∣ 1n
n∑

t=2anµn+1

{g(ξt) − E[g(ξt)]}

∣∣∣∣∣ > δn
2

)

≤ 2P

(
sup
g∈Gn

∣∣∣∣∣ 1n
µn∑
k=1

{g(Ξk) − E[g(Ξk)]}

∣∣∣∣∣ > δn
4

)

+ P

(
sup
g∈Gn

∣∣∣∣∣ 1n
n∑

t=2anµn+1

{g(ξt) − E[g(ξt)]}

∣∣∣∣∣ > δn
2

)
. (4.3)

Since supg∈Gn
∥g∥∞ ≤ 2κ, the second term of the right hand side of (4.3) is zero for large

n. On the other hand, in view of Lemma 4.1, for large n, we may bound the first term of

the right hand side of (4.3) by

2P

(
sup
g∈Gn

∣∣∣∣∣ 1n
µn∑
k=1

{g(Ξ̃k) − E[g(Ξ̃k)]}

∣∣∣∣∣ > δn
4

)
+ 2µnβ(an − p).

Since β(m) → 0 exponentially fast as m→ ∞, µnβ(an − p) → 0 as n→ ∞. To bound the

first term, we use the symmetrization technique. Because Ξ̃k (1 ≤ k ≤ µn) are iid blocks,

Lemma 2.3.7 of vdVW implies that

ζnP

(
sup
g∈Gn

∣∣∣∣∣ 1n
µn∑
k=1

{g(Ξ̃k) − E[g(Ξ̃k)]}

∣∣∣∣∣ > δn
4

)
≤ 2P

(
sup
g∈Gn

∣∣∣∣∣ 1n
µn∑
k=1

σkg(Ξ̃k)

∣∣∣∣∣ > δn
16

)
,
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where ζn = 1−(64µn/(nδn)2) supg∈Gn
E[{g(Ξ̃1)}2]. We will show that supg∈Gn

E[{g(Ξ̃1)}2] =

O(ann
−1/2). By stationarity,

E[{g(Ξ̃1)}2] = anE[g2(ξ1)] + 2an

an−1∑
i=1

(1 − i/an)E[g(ξ1)g(ξ1+i)].

By the usual change of variables and Lemma 4.2, E[|gu0,ϑ,hn(ξ1)|] is bounded by a con-

stant times ∥ϑ − θ∥, which, together with the fact that supg∈Gn
∥g∥∞ ≤ 2κ, implies

that E[g2
u0,ϑ,hn

(ξ1)] = O(n−1/2) uniformly over (u0,ϑ) ∈ R × Θn. On the other hand,

invoke that E[|gu0,ϑ,hn(ξ1)gu0,ϑ,hn(ξ1+i)|] = E[|gu0,ϑ,hn(ξ1)| · E[|gu0,ϑ,hn(ξ1+i)||Xi, ξ1]] and

E[|gu0,ϑ,hn(ξ1+i)||Xi, ξ1] ≤ const. ×M(Xi)∥ϑ − θ∥. Truncating M(Xi) at n1/4 and using

the fact that E[M2(Xi)] < ∞, we may show that E[|gu0,ϑ,hn(ξ1)gu0,ϑ,hn(ξ1+i)|] = O(n−3/4)

uniformly over (u0,ϑ) ∈ R × Θn and i ≥ 1. Since an = o(n1/4), we conclude that

supg∈Gn
E[{g(Ξ̃1)}2] = O(ann

−1/2). Thus, we have ζn = 1 − O(n−3/2h−2
n r2

n) = 1 − o(1),

which implies that ζn ≥ 1/2 for large n. Therefore, for large n,

P

(
sup
g∈Gn

∣∣∣∣∣ 1n
µn∑
k=1

{g(Ξ̃k) − E[g(Ξ̃k)]}

∣∣∣∣∣ > δn
4

)
≤ 4P

(
sup
g∈Gn

∣∣∣∣∣ 1n
µn∑
k=1

σkg(Ξ̃k)

∣∣∣∣∣ > δn
16

)
,

which leads to the conclusion of Step 1.

Step 2. Let Gn(ϑ) be the section of Gn at ϑ ∈ Θn, that is, Gn(ϑ) = {gu0,ϑ,hn : u0 ∈ R}.
Clearly, Gn =

∪
ϑ∈Θn

Gn(ϑ). We may cover Θn by a finite number of open balls Bn,j in Rq

centered at ϑn,j in such a way that

Θn ⊂
mn∪
j=1

Bn,j, sup
ϑ∈Bn,j

∥ϑ − ϑn,j∥ ≤ hnδn
log n

, mn = O

{(
log n

n1/2hnδn

)q

∨ 1

}
.

We shall show that

lim sup
n→∞

P

(
sup
g∈Gn

∣∣∣∣∣ 1n
µn∑
k=1

σkg(Ξ̃k)

∣∣∣∣∣ > δn
16

)

≤ lim sup
n→∞

[
mn∑
j=1

P

(
sup

g∈Gn(ϑn,j)

∣∣∣∣∣ 1n
µn∑
k=1

σkg(Ξ̃k)

∣∣∣∣∣ > δn
32

)]
. (4.4)

Suppose for a moment that ϑ ∈ Θn is arbitrarily fixed. By definition, there exists a

j ∈ {1, . . . ,mn} such that ∥ϑ − ϑn,j∥ ≤ hnδn/ log n. For each g = gu0,ϑ,hn ∈ Gn(ϑ), pick

ḡ = gu0,ϑn,j ,hn ∈ Gn(ϑn,j). Because of the Lipschitz continuity of K(·), |g(e,x)− ḡ(e,x)| ≤
Lh−1

n |m(x; ϑ) −m(x; ϑn,j)| ≤ Lh−1
n M(x)∥ϑ − ϑn,j∥ ≤ LδnM(x)/ log n, where L > 0 is a

Lipschitz constant of K(·). Thus, we have∣∣∣∣∣ 1n
µn∑
k=1

σkg(Ξ̃k)

∣∣∣∣∣ ≤
∣∣∣∣∣ 1n

µn∑
k=1

σkḡ(Ξ̃k)

∣∣∣∣∣+ 1

n

µn∑
k=1

|g(Ξ̃k) − ḡ(Ξ̃k)|

≤

∣∣∣∣∣ 1n
µn∑
k=1

σkḡ(Ξ̃k)

∣∣∣∣∣+ Lδn
2 log n

· 1

µn

µn∑
k=1

M̄n,k,
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where M̄n,k = a−1
n

∑
t∈Hk

M(X̃t−1).

Because Gn =
∪
ϑ∈Θn

Gn(ϑ), the preceding argument shows that

P

(
sup
g∈Gn

∣∣∣∣∣ 1n
µn∑
k=1

σkg(Ξ̃k)

∣∣∣∣∣ > δn
16

)

≤ P

(
max

1≤j≤mn

sup
g∈Gn(ϑn,j)

∣∣∣∣∣ 1n
µn∑
k=1

σkg(Ξ̃k)

∣∣∣∣∣ > δn
32

)
+ P

(
Lδn

2 log n
· 1

µn

µn∑
k=1

M̄n,k >
δn
32

)

≤
mn∑
j=1

P

(
sup

g∈Gn(ϑn,j)

∣∣∣∣∣ 1n
µn∑
k=1

σkg(Ξ̃k)

∣∣∣∣∣ > δn
32

)
+ P

(
1

µn

µn∑
k=1

M̄n,k >
log n

16L

)
.

By Markov’s inequality,

P

(
1

µn

µn∑
k=1

M̄n,k >
log n

16L

)
≤ 16LE[M̄n,k]

log n
=

16LE[M(X0)]

log n
→ 0.

Therefore, we obtain (4.4).

Step 3. Fix ϑ ∈ Θn. Let ρ̃1,n be the L1 semimetric with respect to the empirical

distribution on Rp+1 that assigns probability 1/(anµn) to each ξ̃t. We shall show that

for each c > 0,

P

(
sup

g∈Gn(ϑ)

∣∣∣∣∣ 1n
µn∑
k=1

σkg(Ξ̃k)

∣∣∣∣∣ > δn
32

)
≤ 2n−cE[N (δn/32,Gn(ϑ), ρ̃1,n)]

+ P

(
sup

g∈Gn(ϑ)

1

n

µn∑
k=1

{g(Ξ̃k)}2 >
nδ2

n

2 · 642c log n

)
. (4.5)

Let Gn,δn/32 be a minimal (δn/32)-cover of Gn(ϑ) with respect to ρ̃1,n. For every g ∈
Gn(ϑ), there exists a ḡ ∈ Gn,δn/32 such that

1

n

µn∑
k=1

|g(Ξ̃k) − ḡ(Ξ̃k)| ≤
anµn

n
ρ̃1,n(g, ḡ) <

δn
64
,

which leads to ∣∣∣∣∣ 1n
µn∑
k=1

σkg(Ξ̃k)

∣∣∣∣∣ ≤
∣∣∣∣∣ 1n

µn∑
k=1

σkḡ(Ξ̃k)

∣∣∣∣∣+ 1

n

µn∑
k=1

|g(Ξ̃k) − ḡ(Ξ̃k)|

≤

∣∣∣∣∣ 1n
µn∑
k=1

σkḡ(Ξ̃k)

∣∣∣∣∣+ δn
64
.
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Therefore, we have

P

(
sup

g∈Gn(ϑ)

∣∣∣∣∣ 1n
µn∑
k=1

σkg(Ξ̃k)

∣∣∣∣∣ > δn
32

∣∣∣∣∣ D̃n

)

≤ P

(
max

g∈Gn,δn/32

∣∣∣∣∣ 1n
µn∑
k=1

σkg(Ξ̃k)

∣∣∣∣∣ > δn
64

∣∣∣∣∣ D̃n

)

≤ N (δn/32,Gn(ϑ), ρ̃1,n) sup
g∈Gn(ϑ)

P

(∣∣∣∣∣ 1n
µn∑
k=1

σkg(Ξ̃k)

∣∣∣∣∣ > δn
64

∣∣∣∣∣ D̃n

)
∧ 1. (4.6)

It remains to bound the right hand side of (4.6). By Hoeffding’s inequality, we have

sup
g∈Gn(ϑ)

P

(∣∣∣∣∣ 1n
µn∑
k=1

σkg(Ξ̃k)

∣∣∣∣∣ > δn
64

∣∣∣∣∣ D̃n

)
≤ 2 exp

(
− nδ2

n

2 · 642wn

)
,

where wn = supg∈Gn(ϑ)[n
−1
∑µn

k=1{g(Ξ̃k)}2]. Define the event

An =

{
wn >

nδ2
n

2 · 642c log n

}
.

Taking the expectation of both sides of (4.6), we have

P

(
sup

g∈Gn(ϑ)

∣∣∣∣∣ 1n
µn∑
k=1

σkg(Ξ̃k)

∣∣∣∣∣ > δn
32

)

≤ 2E

[
N (δn/32,Gn(ϑ), ρ̃1,n) exp

(
− nδ2

n

2 · 642wn

)
I(Ac

n)

]
+ P(An)

≤ 2n−cE[N (δn/32,Gn(ϑ), ρ̃1,n)] + P(An),

which leads to the conclusion of Step 3.

Step 4. Fix c > 0. Take (δ′n)2 = n2δ2
n/(2 · 643cκ2a2

nµn log n). We shall show that there

exists a positive integer n0 such that for n ≥ n0, the inequality

P

(
sup

g∈Gn(ϑ)

1

n

µn∑
k=1

{g(Ξ̃k)}2 >
nδ2

n

2 · 642c log n

)
≤ 4e−µn(δ′n)2E[N (κ(δ′n)2,Gn(ϑ), ρ̃1,n)] (4.7)

holds for every ϑ ∈ Θn. We note that n0 depends only on c and η.

To show this, we make use of Lemma II 33 of Pollard (1984), which is sometimes

referred to as the “square root trick”. Let

Hn(ϑ) = {(ξ1, . . . , ξan) 7→
∑an

j=1 g(ξj)/(2anκ) : g ∈ Gn(ϑ)}.

Let ρ̃2,µn be the L2 semimetric with respect to the empirical distribution on R(p+1)anthat as-

signs probability 1/µn to each Ξ̃k. Since Ξ̃k (1 ≤ k ≤ µn) are iid blocks and supφ∈Hn(ϑ) ∥φ∥∞ ≤
1, Lemma II 33 of Pollard (1984) shows that

δ ≥ sup
φ∈Hn(ϑ)

(E[φ2(Ξ̃1)])
1/2

⇒ P

(
sup

φ∈Hn(ϑ)

1

µn

µn∑
k=1

φ2(Ξ̃k) > 64δ2

)
≤ 4E[N (δ,Hn(ϑ), ρ̃2,µn)e−µnδ2 ∧ 1]. (4.8)
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Observe that for φi(ξ1, . . . , ξan) =
∑an

j=1 gi(ξj)/(2anκ), gi ∈ Gn, i = 1, 2,

{ρ̃2,µn(φ1, φ2)}2 =
1

4a2
nµnκ2

µn∑
k=1

{g1(Ξ̃k) − g2(Ξ̃k)}2

≤ 1

anµnκ

µn∑
k=1

|g1(Ξ̃k) − g2(Ξ̃k)|

≤ 1

κ
ρ̃1,n(g1, g2). (4.9)

From (4.8) and (4.9), we may infer that

δ ≥ sup
φ∈Hn(ϑ)

(E[φ2(Ξ̃1)])
1/2

⇒ P

(
sup

φ∈Hn(ϑ)

1

µn

µn∑
k=1

φ2(Ξ̃k) > 64δ2

)
≤ 4E[N (κδ2,Gn(ϑ), ρ̃1,n)e−µnδ2 ∧ 1]. (4.10)

The probability in (4.10) is equal to the left hand side of (4.7) when δ = δ′n. Since

(δ′n)2 ≍ nh2
n/(r

2
nan log n) and (δ′′n)2 := supϑ∈Θn

supφ∈Hn(ϑ) E[φ2(Ξ̃1)] = O(a−1
n n−1/2), there

exists a positive integer n0 such that δ′n ≥ δ′′n for n ≥ n0; use (2.3). Therefore, we obtain

the conclusion of Step 4.

Step 5. There exist positive constants A and V such that for some ϵ0 > 0

sup
ϑ∈Θn

N (ϵ,Gn(ϑ), ρ̃1,n) ≤ Aϵ−V , 0 < ϵ < ϵ0, n ≥ 1.

For each ϑ ∈ Θ, define the functional class G(ϑ) = {gu0,ϑ,h : u0 ∈ R, h > 0}. Since

Gn(ϑ) is a subset of G(ϑ), it suffices to show that the family {G(ϑ),ϑ ∈ Θ} is uniformly

Euclidean with some constant envelope. We first look that for each fixed ϑ ∈ Θ the

functional class {(e,x) 7→ (e − u0 − ∆(x; ϑ))/h : u0 ∈ R, h > 0} is a subset of a vector

space of functions on Rp+1 spanned by 1 and e−∆(x; ϑ). By Lemma 2.6.15 of vdVW, the

class is a VC subgraph class with VC index smaller than or equal to 4. Because of (A5),

K(·) is of bounded variation and thus can be written as the difference of two bounded,

non-decreasing functions, K(·) = ϕ(·) − ψ(·), say. By Lemma 2.6.18 (viii) of vdVW,

the functional classes {(e,x) 7→ ϕ((e − u0 − ∆(x; ϑ))/h) : u0 ∈ R, h > 0}, {(e,x) 7→
ψ((e− u0 −∆(x; ϑ))/h) : u0 ∈ R, h > 0} are VC subgraph classes with VC indices smaller

than or equal to 4. Therefore, Theorem 2.6.7 of vdVW and Lemma 16 of Nolan & Pollard

(1987) imply that the family {G(ϑ),ϑ ∈ Θ} is uniformly Euclidean with some constant

envelope.

Step 6. (Conclusion) From Steps 1 and 2, it remains to show that the right hand

side of (4.4) is zero. Because of (2.3), there exist positive constants C1 and α such

that mn ≤ C1n
α. Similarly, in view of Step 5, there exist positive constants C2 and

β such that supϑ∈Θn
N (δn/32,Gn(ϑ), ρ̃1,n) ≤ C2n

β in Step 3. Take c = α + β + 1 in

Steps 3 and 4. Because of Step 5, there exist positive constants C3 and γ such that
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supϑ∈Θn
N (κ(δ′n)2,Gn(ϑ), ρ̃1,n) ≤ C3n

γ in Step 4. With this choice of c, for large n, we

have

mn∑
j=1

P

(
sup

g∈Gn(ϑn,j)

∣∣∣∣∣ 1n
µn∑
k=1

σkg(Ξ̃k)

∣∣∣∣∣ > δn
32

)
≤ 2C1C2n

−1 + 4C1C3n
α+γe−µn(δ′n)2 . (4.11)

Since µn(δ′n)2/ log n ≍ n3/2h2
n/r

2
n and n3/2h2

n/r
2
n → ∞, the second term of the right hand

side of (4.11) goes to zero as n→ ∞. Therefore, we complete the proof.

Remark 4.1. If the functional class {gu0,ϑ,h : u0 ∈ R,ϑ ∈ Θ, h > 0} is Euclidean, we may

apply the arguments in Steps 3 and 4 directly to Gn instead of Gn(ϑ). In this case, Step

2 may be skipped and the Lipschitz continuity of K(·) may be dropped. The proof could

be shortened if we put this assumption. However, it restricts the class of m(x; ϑ) in a less

explicit manner. That is why we do not put such an assumption.

Proposition 4.2. For every l > 0, E[Wn(u0,ϑ)] = O(n−1/2hλ−1
n ∧ 1) uniformly over

(u0,ϑ) ∈ R × Θn, where Θn = {ϑ ∈ Θ : ∥ϑ − θ∥ ≤ ln−1/2}.

Proof. Since K(·) is a density function,

E[Khn(et − u0 − ∆(Xt−1; ϑ)) | Xt−1] − f(u0)

=

∫ ∞

−∞
K(u− h−1

n ∆(Xt−1; ϑ)){f(u0 + uhn) − f(u0)}du. (4.12)

Since f is λ-th Hölder continuous, the absolute value of E[Wn(u0,ϑ)] is bounded by

const. × hλ
nE

[∫ ∞

−∞
|u|λ|K(u− h−1

n ∆(Xt−1; ϑ)) −K(u)|du
]
. (4.13)

Because of Lemma 4.2, (4.13) is of order O(n−1/2hλ−1
n ) uniformly over (u0,ϑ) ∈ R × Θn.

On the other hand, it is not difficult to see that |E[Wn(u0,ϑ)]| ≤ 2∥f∥∞. Therefore, we

obtain the desired result.

Proof of Theorem 2.1. Observe that

f̂n(u0) − fn(u0) = {Wn(u0, θ̂) − E[Wn(u0,ϑ)]|ϑ=θ̂} + E[Wn(u0,ϑ)]|ϑ=θ̂. (4.14)

Recall that θ̂ is
√
n-consistent for θ. By Proposition 4.1 and 4.2, the first term of the

right hand side of (4.14) is op(r
−1
n ) and the second term is Op(n

−1/2hλ−1
n ∧ 1) uniformly

over u0 ∈ R. Therefore, we obtain the desired result.

4.2 Proof of Corollary 2.1

We follow the notations used in the proof of Theorem 2.1. We may take rn = n1/2 in

Proposition 4.1. From (4.14), we have

√
n{f̂n(u0) − fn(u0)} =

√
nE[Wn(u0,ϑ)]|ϑ=θ̂ + op(1),
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where the equality holds uniformly over u0 ∈ R. It remains to show that the equality

√
nE[Wn(u0,ϑ)]|ϑ=θ̂ =

√
nf ′(u0)E[ṁ(Xt−1; θ)](θ̂ − θ)⊤ + op(1)

holds uniformly over u0 ∈ R. Because of (A4’),

|f(u0 + uh) − f(u0) − f ′(u0)uhn| ≤ Cf (uhn)2,

where Cf = ∥f ′′∥∞/2. Using the identity (4.12), we have∣∣∣∣E[Wn(u0,ϑ)] − f ′(u0)hnE

[∫ ∞

−∞
u{K(u− h−1

n ∆(Xt−1; ϑ)) −K(u)}du
]∣∣∣∣

≤ Cfh
2
nE

[∫ ∞

−∞
|u2{K(u− h−1

n ∆(Xt−1; ϑ)) −K(u)}|du
]
.

For each l > 0, the right hand side is shown to be of order O(n−1/2hn) uniformly over

ϑ ∈ Θn := {ϑ ∈ Θ : ∥ϑ − θ∥ ≤ ln−1/2}; use the similar inequality as that in Lemma 4.2.

On the other hand, a direct calculation shows that

hn

∫ ∞

−∞
u{K(u− h−1

n ∆(Xt−1; ϑ)) −K(u)}du

= −∆(Xt−1; ϑ)

∫ ∞

−∞
uK ′(u)du− ∆2(Xt−1; ϑ)

2hn

∫ ∞

−∞
K ′(u)du

= ∆(Xt−1; ϑ).

Because of (A3’), the map ϑ 7→ E[m(Xt−1; ϑ)] is continuously differentiable in a neighbor-

hood of θ with ∂E[m(Xt−1; ϑ)]/∂ϑ = E[ṁ(Xt−1; ϑ)]. Therefore, uniformly over (u0,ϑ) ∈
R × Θn,

E[Wn(u0,ϑ)] = f ′(u0)E[ṁ(Xt−1; θ)](ϑ − θ)⊤ + o(n−1/2).

Since θ̂ is
√
n-consistent for θ, we obtain the desired result.
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