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In this paper, we consider the multivariate sample measures of kurtosis defined
by Mardia (1970) and Srivastava (1984). Under normality, asymptotic expansions
for the first, second and third moments of Mardia’s and Srivastava’s multivariate
sample measures of kurtosis are given. Asymptotic expansions for the distributions
of these sample measures of kurtosis are also given. By using these asymptotic
expansions, normalizing transformation for these sample measures of kurtosis can
be derived. Finally, we investigate the approximation accuracy of the normalizing
transformations to the normal distribution by Monte Carlo simulation for some
selected parameters.
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1 Introduction

In multivariate statistical analysis, the test for multivariate normality is an important prob-
lem and has been studied by many authors. To assess multivariate normality, for example,
the multivariate sample measures of skewness and kurtosis and their asymptotic distributions
using expectations and variances of them are given in Mardia (1970, 1974). Srivastava (1984)
has proposed another definition for the multivariate sample measures of skewness and kurtosis
and derived their asymptotic distributions. Also, Song (2001) gave different definition for the
multivariate sample measure of kurtosis. Multivariate extensions of Shapiro-Wilk test(Shapiro
and Wilk (1965)) have been given by Malkovich and Afifi (1973), Royston (1983), Srivastava
and Hui (1987) and so on. Small (1980) gave multivariate extensions of univariate skewness
and kurtosis. For a comparison of these methods, see, Looney (1995).

Mardia and Kanazawa (1983) has proposed the normal approximation for Mardia’s mul-
tivariate sample measure of kurtosis by using Wilson-Hilferty transformation and derived the
asymptotic expansion of the third moment. For the asymptotic distributions of Mardia’s and
Srivastava’s multivariate sample measures of kurtosis under elliptical populations, see, e.g.,
Berkane and Bentler (1990), Seo and Toyama (1996), Maruyama (2005a, 2005b). Seo and
Ariga (2006) discussed the asymptotic distribution of Srivastava’s multivariate sample mea-
sure of kurtosis under normal population for two cases when the population covariance matrix
is known and unknown, but the part of this result has error in calculation. Seo and Ariga
(2009) gave the correct result and the normalizing transformational statistic for Srivastava’s
multivariate sample measure of kurtosis when the population covariance matrix is unknown.

The limit distributions of Mardia’s multivariate measures of kurtosis under Watson ro-
tational symmetric distributions were discussed by Zhao and Konishi (1997). Henze (1994)



discussed with the asymptotic distributions for Mardia’s multivariate measures of kurtosis un-
der non-normal populations. For a survey on multivariate measure of kurtosis, see, Schwager
(1985).

Recently, Koizumi, Okamoto and Seo (2009) has given the multivariate Jaque-Bera statistics
based on Mardia’s and Srivastava’s multivariate skewnesses and Kurtosises.

In this paper, we consider distribution of the multivariate sample measures of kurtosis
defined by Mardia (1970) and Srivastava (1984) in two cases when the population covariance
matrix ¥ is known and unknown under normality. In each case asymptotic expansions for the
first, second and third moments of the multivariate sample measures of kurtosis are obtained
by perturbation method. Further, by using these expansions and the results in Mardia and
Kanazawa (1983), standardized statistics and normalizing transformational statistics can be
derived. Finally, we investigate the approximation accuracy of the normalizing transformational
statistics and the standardized statistics to the normal distribution by Monte Carlo simulation
for some selected parameters.

2 Multivariate kurtosis

Let & be a random p-vector with mean vector g and covariance matrix ¥ = T'D,I",
where I' = (¥1,72,...,7,) is an orthogonal matrix and Dy = diag (A1, X2,...,A,). Note
that Ay, Ao, ..., A\, are the characteristic roots of ¥. Then Mardia (1970) and Srivastava (1984)
have defined the population measures of multivariate kurtosis as
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respectively, where y; = vix and 0; = v, i = 1,2,...,p. We note that Sy = p(p + 2) and
Bs = 3 under a multivariate normal population.

Let :L'l,:cz, ...,xy be N random sample vectors from a multivariate population. Let @
and S = N°! ZZ (@i — %) (x; — =)' = HD,H' be the sample mean vector and the sample
Covariance matrix based on sample size N, where H = (hq, ho, ..., h,) is an orthogonal matrix
and D, = diag (w1, ws,...,w,). We note that wy,ws,...,w, are the characteristic roots of S.
Then, by Mardia (1970) and Srivastava (1984), the sample measures of multivariate kurtosis
are defined as
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respectively, where y;; = hix; and 5, = N~ Z] WYig, t=1,2,....p, 7=1,2,...,N.

Further Mardia (1970) and Srivastava (1984) have obtalned asymptotic distributions of by,
and bg and used them to test the multivariate normality and given the following Theorems 2.1
and 2.2.



Theorem 2.1 (Mardia (1970)) Let by be the multivariate sample measure of kurtosis based
on a random sample of size N drawn from N, (p,X) where ¥ is unknown. Then
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is asymptotically distributed as N (0, 1).

Theorem 2.2 (Srivastava (1984)) Let bs be the multivariate sample measure of kurtosis based
on a random sample of size N drawn from N, (p, X) where ¥ is unknown. Then
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is asymptotically distributed as N (0, 1).

In this paper, without loss of generality, we may assume that > = [ and p = 0 when we
consider the sample measures of multivariate kurtosis (1) and (2).

3 First, second and third moments of sample measures of multivariate kurtosis

In this section we consider asymptotic expansions of first, second and third moments of
Mardia’s multivariate sample kurtosis by in (1) and Srivastava’s multivariate sample kurtosis
bg in (2) under normality in two cases when ¥ is known and unknown.

3.1 Mardia’s multivariate sample kurtosis

For the case of known 3, Mardia’s multivariate sample kurtosis can be written as
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where X2 = (2, — T)' (xo — Z). In order to avoid the dependence of x, and Z, let Z@ be a

sample mean vector defined on the subset of @y, s, ..., xy by deleting some x,, that is,
1 N
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Then we can write



where y is independent of x,, and both y and x, are distributed as a p-dimensional standard
normal distribution. Therefore calculating the expectation with respect to @, and y, we obtain
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Secondly, we consider E [x4x3]. In order to avoid the dependence of 4, x5 and Z, let z(h)
be a sample mean vector defined on the subset of @1, xs,...,xy by deleting x, and xs, that
is,
1 N
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Then we can write
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Note that x, and x are independent of Z(@P) . To obtain the expectation of Xixé, we put
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where y is independent of x, and x3. x,, 3 and y are distributed as a p-dimensional standard
normal distribution. Therefore calculating the expectation with respect to x,,xs and y, we



obtain
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Therefore we may obtain

Var [basy] = 8p (p +2) (p + 3) % —8p(p+2)(3p+10) =
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Further, after a great deal of calculation, we can obtain E [b % k] as

1

B W] =0" (0 +2° = 6" (0 +2)° (0 — 20— 12)

1
+p(p+2) (15p* — 60p° — 404p* + 320p + 1920) =+ O (N73).

Therefore we can obtain the following theorems;

Theorem 3.1  Let by, be the multivariate sample measure of kurtosis based on a random
sample of size N drawn from N, (p, X) where ¥ is known. Then
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is asymptotically distributed as N (0,1).



Theorem 3.2  Let by, be the multivariate sample measure of kurtosis based on a random
sample of size N drawn from N, (p,X) where ¥ is known. Then
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is asymptotically distributed as N (0, 1).
For the case of unknown ¥, Mardia (1970, 1974) and Mardia and Kanazawa (1983) have

given the following exact mean and variance and asymptotic expansion for third moment of by,
when the population is N, (u, X);
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Also, the following theorem is given by Mardia (1974) and Siotani, Hayakawa and Fujikoshi
(1985).

Theorem 3.3 (Mardia (1974)) Let by be the multivariate sample measure of kurtosis based
on a random sample of size N drawn from N, (p,X) where ¥ is unknown. Then
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is asymptotically distributed as N (0, 1).

3.2 Srivastava’s multivariate sample kurtosis

The first, second and third moments for Srivastava’s multivariate sample measure of kurtosis
in two cases when ¥ is known and unknown are discussed by Seo and Ariga (2006, 2009).
Assuming that ¥ is known, we can write
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where my; = N7* Zjvzl (yij — 7.)". In order to avoid the dependence of y;, and 7;, let @Ea) be
a mean defined on the subset of y;1, ¥i2, ..., yin by deleting y;,, that is,
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Then we can write
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Note that y;, is independent of 7.*). Putting 7\* = z/v/N — 1, we have

E[bsik] = E[my] = E [% (1 - %)42]6 (ym - Nl_ 1z)4] :

a=1

where z is independent of y;,, and both z and y;, are distributed as a standard normal distri-
bution. Therefore calculating the expectation E [bgy] with respect to y;, and z, we obtain

Blbgi] = B ma] = 3 — 2 4 = (3)

Similarly, we may obtain the variance for the kurtosis bgy as
Var [b&k] =E [b%,k] — {E [bg’k]}2
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Also, after a great deal of calculation, we obtain E [b%,k} as

E [b%,] =27 - kil (3p — 16) +

N (15p* — 168p + 352) + O (N7%)..
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With the use of these results, the following theorems are given.

Theorem 3.4 (Seo and Ariga (2009)) Let bg be the multivariate sample measure of kurtosis
based on a random sample of size N drawn from N, (p, X) where ¥ is known. Then
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Theorem 3.5 (Seo and Ariga (2009)) Let bs be the multivariate sample measure of kurtosis
based on a random sample of size N drawn from N, (p, X) where ¥ is known. Then
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is asymptotically distributed as N (0, 1).

is asymptotically distributed as N (0, 1).



Next, we consider asymptotic expansions of first, second and third moments for bg when X
is unknown. First we note that

N
1

j=1
Then since S is defined as the maximum likelihood estimator, we can write
1 P My,
bs = — —
D ; m3;’

where
X | X 2
_\2
41':NZ:: Yij — z’ ) mgi:{N;(ym_yi)} :

Under normality, y;1, ¥io, - - -, Yy are independently normally distributed. By Srivastava (1984),
for large N, we note that
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Hence, for large N,
E [m4z]
E[bs] =
Since E [my;] is given (3) and we can obtain E [m3,] as
1
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in a similar way to derive E [my;], for large IV, the expectation for the kurtosis bg is given by
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Similarly, we may obtain the variance Var [bg] = E [b3] — {E [bs]}°. First, we note that
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Since E [my;], E[m3,] and E [m3,] are given by (3),(4) and (5), and we can obtain E [m3,] as

For large N,
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in a similar way to derive E [my;], we have

24N (N? — 5N + 6)

p(N +1)* (N2 + 8N +15)
24 360 2976
=— O(N7).

Var [bg] =

Similarly, after a great deal of calculation for the expectations, for large N, we obtain E [b2] as

4
E [b3] :27—p5—N(3p—4)+

o4
p2N3

With the use of these results, the following theorem is given.

N (9p* — 68p + 32)

+ (19p* — 624p +734) + O (N 1) .

Theorem 3.6 (Seo and Ariga (2009)) Let bs be the multivariate sample measure of kurtosis
based on a random sample of size N drawn from N, (p, X) where ¥ is unknown. Then

% _ 360 n 2976
pN  pN?  pN?
is asymptotically distributed as N (0, 1).

4 Normalizing transformation

In this section, we drive the normalizing transformational statistics for by, and bg. The

method of normalizing transformation for some statistics in multivariate analysis has been
discussed by Konishi (1981), and Seo, Kanda and Fujikoshi (1994) and so on.

4.1 Normalizing transformation for b,
Let Yy = v/N (bar — Bar). Then the distribution function for Y3, can be expanded as

VN (bar — Bur)

g

= ()~ = {

where a;,0?, and a3 are coefficients of the first three cumulants of Yj;

a1

Pr
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k1 (Yar) = j_lﬁ +0 (N—%) ,

ko (Yi)=0>+0O (N7),

ks (Yar) = \/%ag +0 (N_%> :

Further, if we put f (bys) to fill following differential equation;
as  of (bu )

=4 L,

03 2f// (bM>

9



we can obtain

o [V LS (bar) = £ (Bar) = ¢/N}
[ (Bu)o

where

Assuming X is known, ayy, 02, asy, fi (bar) and ¢y are given by

16
e ==2(p+2), oy =8p(p+2) (p+3), as = 7P (p+2) (5" +34p+60),

6p(p+2) (p+3)° 5p2 + 34p + 60
fk(bM):_ 2 exXp | — UM | >
5p? + 34p + 60 6p(p+2)(p+3)
. _2(3p® +20p” + 52p 4 60) y [_5p2+34p—|—60}
‘ 3p(p +3) 6 (p+3)°

Therefore we can obtain the following theorem;

Theorem 4.1  Let by, be the multivariate sample measure of kurtosis based on a random
sample of size N drawn from N, (,>) where ¥ is known. Then

oo [g] o 52 )

ZMNTk =

VO T Dexp [

is asymptotically distributed as N(0,1), where
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and

G2 (p+3)°

d;. =
g 5p2 + 34p + 60

Next, we consider the case when Y is unknown. Then ay, 02, as, f (bys) and ¢; are given by

a1 =-2p(p+2), > =8p(p+2), a3=064p(p+2)(p+3),
C3pp+2) [ p+8
S (bar) = p+s { 3p(p+2)}’

2 8
—3 (Sp2 + 8p + 16) exp {—%} )

CcC =

Therefore we can obtain the following theorem;
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Theorem 4.2  Let by, be the multivariate sample measure of kurtosis based on a random
sample of size N drawn from N, (,>) where ¥ is unknown. Then

efoenfi] vt

Vet By | 2

is asymptotically distributed as N(0,1), where

ZMNT =

__rlpt2)
p+38
and ) .
c= —3 (3102 + 8p + 16) exp {—Z%} :

4.2 Normalizing transformation for by

The normalizing transformation for by, was discussed by Seo and Ariga (2006, 2009).
Let Yg = V/N (bs — fs). Then the distribution function for Yy can be expanded as

VN (bs — Bs)

g

Pr <ys

— s \/LN {%(w (vs) + 220 (ys)} +0 (N7,

where G;,52, and a3 are coefficients of the first three cumulants of Ys. Further, if we put g (bs)
to fill following differential equation;

as g’ (bs)
5—3 29// (bS)

we can obtain

Pr VN {g(bs) — g (Bs) — ¢/N}
g (Bs) o

Sys] = (ys)+ O (N7),

where

Assuming Y is known, a1, 62, Gz, gk (bs) and ¢ are given by

8 L, 96 1584
arx =—06, oy = —, azx = 5
p p

32 11
gk (bs) = —ﬁexp |:—§b5:| s

Therefore the following theorem is given.
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Theorem 4.3 (Seo and Ariga (2006)) Let bs be the multivariate sample measure of kurtosis
based on a random sample of size N drawn from N, (p, X) where ¥ is known. Then

2 11 2 C
\/p_N{—g—exp {——bs} + 3—exp [—E] — %}

11 32 11 32 N
ZSNTk =
’ 33
V 96 exp [—§:|

is asymptotically distributed as N (0, 1), where

S P 33
Cp = 2]9 exp 39|

Next, we consider the case when X is unknown. Then ay, 52, as, g (bs) and ¢ are given by

24 288
iy =6, 6° =", a3 = —

Therefore the following theorem is given by Seo and Ariga (2009).

Theorem 4.4 (Seo and Ariga (2009)) Let bs be the multivariate sample measure of kurtosis
based on a random sample of size N drawn from N, (p, X) where ¥ is unknown. Then

Cc

\/p_N {—eXp [—bs] +e 3+ N}
Z =
SNT NG

is asymptotically distributed as N (0, 1), where
2
5:-4%3(1+-—).
p

In this section, we investigate the accuracy of the normalizing transformational statistics
and the standardized statistics for the multivariate sample measures of kurtosis to the normal
distribution by Monte Carlo simulation for some selected values of parameters.

Computations are made for p = 3,5,7,10; N = 20, 50, 100, 200, 400 for each cases when the
population covariance matrix ¥ is known and unknown for multivariate normal populations.
Without any loss of generality, we may assume that > = I. Simulation results based on
1,000, 000 simulations.

Tables 1 ~ 12 give the values of expectation, variance, skewness and kurtosis, and the
a (= 0.95,0.99) percentiles for 2k, 237y, 2MNTKs 2Ms Zhr, ZMNT, Z5ks 2§10 ZSNTk, 25,25 and
zgnT in theorems 2.1~4.4. Finally, some histograms for these statistics by simulation are given

5 Simulation study
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in Figures 1 ~ 16. We note that zax, 2am, 2skx and zg are the standardized statistics by
using the values of the limiting terms for the expectations and the variance, and 23/, 25,
and 2§ are the standardized statistics by using the values of the asymptotic expansions for the
expectations and the variance derived in this paper, and z}, is the standardized statistic by
using the exact values of the expectation and the variance derived in Mardia and Kanazawa
(1983), and zy N7k, 2vNT, 2snTx and zgyr are the normalizing transformational statistics
derived in this paper. From Table 1, the expectation and variance of 2}, are closer to values of
the normal distribution than those of zp/x, and those of zp/n7x become closer with increasing
p and N. Also, from Table 2, the skewness and kurtosis of zp/nrx are closer to values of the
normal distribution than those of zjsx and zhk. These considerations apply to zur, 23, 2uNT,
28k, z§7k, 2SNT ks 28, 2g and zgyr from Tables 4, 5, 7, 8, 10 and 11. Comparing zynrx, 2MNT,
zgnTx and zgyr, we can confirm that when N is not large to the p enough, the approximation
accuracy of zpr and zpynr are remarkably low when N is not large to p, and those of zgnrx
and zgnr is steady. Also, from Tables 3, 6, 9 and 12, it may be noted that the o percentiles of
the normalizing transformational statistics become closer to values of the normal distribution
with p and N, and the « percentiles of normalizing transformational statistics are closer than
those of the standardized statistics. The above-mentioned considerations can be confirmed
from Figures 1 ~ 16.

In conclusion, it may be noted that the normalizing transformational statistics are consid-
erably good normal approximation and are useful for multivariate normality test. However,
when we treat the data with not large sample size to the number of dimension, it is necessary
to note it.
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Table 1: Expectation and variance for zp, zhk and zpy N7

p=3 Expectation Variance
N ZM K 20k ZMNTX ZM K 20k ZMNT K
20 —0.2437 0.0001 —0.2709 0.8507 1.0107 0.8525
50 —0.1558 0.0008 —0.1788 0.9361 0.9994 0.9319
100 —0.1126 —0.0014 —0.1307 0.9688 1.0005 0.9657
200 —0.0779 0.0010 —0.0913 0.9851 1.0010 0.9823
400 —0.0561 —0.0002 —0.0658 0.9923 1.0002 0.9908
p=5
20 —0.3210 0.0016 —0.3657 0.8552 1.0136 0.9183
50 —0.2069 0.0002 —0.2351 0.9359 0.9982 0.9624
100 —0.1459 0.0013 —0.1661 0.9684 0.9996 0.9812
200 —0.1043 0.0000 —0.1187 0.9843 0.9999 0.9907
400 —0.0733 0.0005 —0.0835 0.9929 1.0007 0.9959
p=T
20 —0.3866 0.0003 —0.4338 0.8543 1.0110 0.9458
20 —0.2486 —0.0001 —0.2761 0.9398 1.0019 0.9793
100 —0.1761 0.0005 —0.1948 0.9669 0.9978 0.9870
200 —0.1242 0.0010 —0.1374 0.9855 1.0010 0.9953
400 —0.0893 —0.0006 —0.0986 0.9942 1.0019 0.9993
p=10
20 —0.4685 —0.0001 —0.5162 0.8554 1.0109 0.9681
50 —0.3012 —0.0005 —0.3267 0.9402 1.0019 0.9884
100 —0.2147 —0.0009 —0.2314 0.9664 0.9971 0.9912
200 —0.1508 0.0008 —0.1623 0.9870 1.0024 0.9994
400 —0.1066 0.0006 —0.1146 0.9921 0.9997 0.9983
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Table 2: Skewness and kurtosis for 2z, zhk and zpy N7k

p=3 Skewness Kurtosis
N M)k ZMk  AMNTk — ZMksZhMx  ZMNTk
20 1.1664 0.0524 5.5489 2.6170
50 0.7267 0.0043 3.9808 2.8215

100 0.5131 0.0004 3.4797 2.9000
200 0.3673 0.0018 3.2604 2.9550
400 0.2602 0.0025 3.1288 29777

p=5
20 0.8535 0.0566 4.3149 2.7537
50 0.5348 0.0124 3.5299 2.8995

100 0.3791 0.0064 3.2681 2.9448
200 0.2691 0.0056 3.1262 2.9666
400 0.1920 0.0048 3.0658 2.9845
p=T

20 0.6966 0.0516 3.8707 2.8210

50 0.4355 0.0116 3.3448 2.9279
100 0.3059 0.0027 3.1750 2.9692
200 0.2206 0.0041 3.0992 2.9904
400 0.1547 0.0019 3.0448 2.9911

p=10
20 0.5566 0.0419 3.5231 2.8680
50 0.3529 0.0132 3.2072 2.9392

100 0.2477 0.0040 3.1033 2.9692
200 0.1760 0.0018 3.0539 2.9842
400 0.1227 —0.0011 3.0321 2.9985
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Table 3: Percentile for 2z, z}"\/[’k and zyn7x (o = 0.95,0.99)

p=3 2(0.95) = 1.645 2(0.99) = 2.326

* *
N Mk 20k ZMNTk 2M k 20k ZMNT K

20 1.478 1.877 1.276 2.639 3.142 1.807
20 1.595 1.810 1.416 2.607 2.856 2.026
100 1.631 1.770 1.488 2.548 2.703 2.130
200 1.649 1.741 1.541 2.499 2.598 2.202
400 1.650 1.712 1.571 2.453 2.519 2.245

P=95

20 1.374 1.847 1.235 2.390 2.953 1.837
20 1.511 1.775 1.386 2.424 2.718 2.031
100 1.568 1.743 1.466 2.418 2.607 2.129
200 1.601 1.718 1.522 2.400 2.524 2.192
400 1.616 1.697 1.559 2.390 2.473 2.241

20 1.284 1.818 1.186 2.229 2.845 1.820
50 1.452 1.756 1.356 2.321 2.653 2.019
100 1.552 1.726 1.442 2.337 2.553 2.112
200 1.567 1.706 1.505 2.350 2.494 2.185
400 1.592 1.687 1.545 2.342 2.441 2.224

20 1.182 1.794 1.119 2.059 2.748 1.770
20 1.383 1.738 1.313 2.213 2.595 1.987
100 1.471 1.711 1.411 2.247 2.500 2.077
200 1.529 1.693 1.480 2.290 2.460 2.161
400 1.563 1.677 1.527 2.307 2.423 2.213
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Table 4: Expectation and variance for zys, 23, and 2y nr

p=3 Expectation Variance
N M 2 ZMNT M 2 ZMNT
20 —0.5841 —0.0014 0.0588 0.3868 1.0018 0.7051
50 —0.3807 —0.0012 0.0256 0.6857 1.0019 0.8331
100 —0.2709 0.0003 0.0121 0.8282 1.0012 0.8952
200 —0.1920 0.0007 0.0056 0.9084 0.9988 0.9377
400 —0.1353 0.0013 0.0029 0.9565 1.0030 0.9688
p=>
20 —0.8922 —0.0025 —0.0392 0.2998 0.9981 0.6456
50 —0.5796 0.0005 0.0011 0.6269 0.9994 0.8310
100 —0.4140 0.0002 0.0022 0.7924 0.9988 0.9031
200 —0.2937 0.0007 0.0016 0.8928 1.0019 0.9478
400 —0.2086 0.0001 0.0005 0.9448 1.0008 0.9726
p=T
20 —1.1949 0.0008 —0.1468 0.2257 1.0022 0.5583
50 —0.7783 —0.0002 —0.0257 0.5715 0.9977 0.8100
100 —0.5560 —0.0003 —0.0076 0.7598 0.9993 0.8980
200 —0.3946 0.0003 —0.0021 0.8745 1.0019 0.9482
400 —0.2796 0.0003 —0.0003 0.9327 0.9981 0.9701
p=10
20 —1.6499 —0.0008 —0.3604 0.1328 1.0004 0.4007
50 —1.0743 —0.0004 —0.0738 0.4957 1.0001 0.7686
100 —0.7675 —0.0007 —0.0242 0.7105 0.9978 0.8807
200 —0.5439 0.0012 —0.0069 0.8497 1.0044 0.9435
400 —0.3882 —0.0019 —0.0045 0.9167 0.9961 0.9660
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Table 5: Skewness and kurtosis for 2, 23, and 2y 7

p=3 Skewness Kurtosis

N ZM, 2y ZMNT ZMy 2y ZMNT
20 0.8549  —0.2081  4.2278  2.7464
50 0.8363  —0.1548  4.4588  2.8711
100 0.6918  —0.0963  4.0954  2.9446
200 0.5251  —0.0507  3.6193  2.9800
400 0.3862 —0.0227 3.3519  3.0035
P=5

20 0.6171  —0.0990 3.5544  2.7500
50 0.6231  —0.0877  3.7597  2.8834
100 0.5176  —0.0566  3.5714  2.9497
200 0.4077  —0.0214  3.3672  2.9790
400 0.2971  —0.0119  3.2034  2.9970

20 0.5292  —0.0098  3.3715  2.7747
50 0.5267  —0.0487  3.5089  2.8912
100 0.4435 —0.0331  3.4000  2.9493
200 0.3409 —0.0205 3.2514  2.9864
400 0.2543  —0.0072  3.1379  2.9938

20 0.4973 0.1292 3.3269  2.8428
50 0.4451  —0.0151 3.3330  2.8947
100 0.3782  —0.0172  3.2704  2.9481
200 0.2976  —0.0087  3.1770  2.9764
400 0.2170  —0.0069  3.0943  2.9885
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Table 6: Percentile for zy, 23, and zpynr (o = 0.95,0.99)

p=3 2(0.95) = 1.645 2 (0.99) = 2.326
N ZMm 2 ZMNT M 2 2ZMNT
20 0.562 1.843 1.389 1.251 2.952 1.792
50 1.121 1.814 1.490 2.053 2.941 2.004
100 1.355 1.788 1.544 2.307 2.834 2.129
200 1.490 1.764 1.586 2.397 2.716 2.215
400 1.563 1.746 1.614 2.425 2.623 2.275
pP=5
20 0.095 1.799 1.260 0.623 2.762 1.708
50 0.835 1.786 1.478 1.625 2.784 2.031
100 1.158 1.765 1.552 2.004 2.715 2.162
200 1.352 1.744 1.596 2.198 2.641 2.249
400 1.463 1.721 1.619 2.271 2.552 2.284
p="7
20 —0.347 1.787 1.082 0.087 2.701 1.540
50 0.563 1.773 1.445 1.274 2.711 2.009
100 0.971 1.751 1.542 1.762 2.657 2.162
200 1.224 1.733 1.592 2.022 2.587 2.245
400 1.376 1.713 1.620 2.148 2.512 2.280
p=10
20 —1.003 1.774 0.706 —0.673 2.681 1.148
50 0.164 1.757 1.365 0.793 2.623 1.933
100 0.700 1.738 1.515 1.429 2.603 2.134
200 1.043 1.726 1.588 1.805 2.555 2.240

400 1.242 1.697 1.620 1.998 2.486 2277
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Table 7: Expectation and variance for zg, Z;,k and zgnrx

p=3 Expectation Variance
N 28k 25k ZSNTk 28k 25k ZSNTk
20 —0.2328 —0.0017 0.0293 0.8417 0.9939 0.8302
50 —0.1494 —0.0009 0.0078 0.9352 0.9986 0.9203
100 —0.1071 —0.0016 0.0015 0.9681 1.0002 0.9577
200 —0.0748 0.0000 0.0011 0.9850 1.0012 0.9783
400 —0.0534 —0.0004 0.0001 0.9902 0.9983 0.9868
p=5
20 —0.2992 —0.0007 0.0130 0.8491 1.0026 0.8991
50 —0.1908 0.0009 0.0051 0.9344 0.9977 0.9520
100 —0.1369 —0.0006 0.0009 0.9666 0.9987 0.9748
200 —0.0987 —0.0022 —0.0017 0.9845 1.0007 0.9887
400 —0.0691 —0.0008 —0.0006 0.9918 0.9999 0.9940
p=T
20 —0.3534 —0.0002 0.0069 0.8436 0.9962 0.9296
50 —0.2265 0.0004 0.0022 0.9369 1.0004 0.9715
100 —0.1623 —0.0011 —0.0006 0.9693 1.0015 0.9872
200 —0.1140 0.0003 0.0006 0.9828 0.9990 0.9913
400 —0.0803 0.0006 0.0007 0.9939 1.0020 0.9981
p=10
20 —0.4209 0.0014 0.0021 0.8479 1.0012 0.9584
50 —0.2709 0.0002 0.0003 0.9370 1.0005 0.9838
100 —0.1918 0.0008 0.0009 0.9678 1.0000 0.9916
200 —0.1375 —0.0009 —0.0010 0.9850 1.0012 0.9973
400 —0.0966 0.0002 0.0002 0.9904 0.9985 0.9964
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Table 8: Skewness and kurtosis for zgy, Z;,k and zgnT

p=3 Skewness Kurtosis

N ZSks 2§k  ASNTk  ZSk; 25k ASNTk
20 1.3066 0.0183 6.3465 2.5801
50 0.8233 —0.0152 4.3473 2.8023
100 0.5826 —0.0097 3.6723 2.8971
200 0.4133 —0.0029 3.3315 2.9459
400 0.2909 —0.0021 3.1653 2.9748
p=>5

20 1.0254 0.0268 5.0835 2.7192
50 0.6413 —0.0003 3.8252 2.8749
100 0.4547 —0.0009 3.4170 2.9430
200 0.3213 —0.0002 3.2077 2.9751
400 0.2230 —0.0029 3.0934 2.9828

20 0.8457 0.0262 4.3819 2.7892
50 0.5381 —0.0003 3.5680 2.9180
100 0.3784 —0.0040 3.2858 2.9607
200 0.2696 —0.0007  3.1435 2.9821
400 0.1899 —-0.0017  3.0752 2.9951

20 0.7224 0.0314 4.0216 2.8558
20 0.4548 0.0063 3.4122 2.9460
100 0.3197 0.0007 3.2050 2.9787
200 0.2252 —0.0002 3.0973 2.9840
400 0.1607 0.0005 3.0589 3.0014
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Table 9: Percentile for zgy, 2§, and zgnrk (@ = 0.95,0.99)

p=3 2(0.95) = 1.645 2 (0.99) = 2.326
N 25k Z5k ZSNTk 25k 25k ZSNTk
20 1.480 1.860 1.546 2.697 3.182 2.042
50 1.606 1.813 1.586 2.674 2.917 2.181
100 1.643 1.777 1.609 2.609 2.759 2.249
200 1.660 1.749 1.628 2.540 2.636 2.288
400 1.661 1.721 1.635 2.474 2.538 2.309
p=5
20 1.400 1.846 1.591 2.496 3.036 2.163
50 1.540 1.790 1.613 2.508 2.789 2.243
100 1.587 1.752 1.624 2.480 2.659 2.282
200 1.616 1.727 1.635 2.444 2.562 2.302
400 1.628 1.703 1.638 2.409 2.488 2.310
p=T
20 1.324 1.822 1.608 2.342 2.926 2.214
50 1.488 1.772 1.625 2.412 2.727 2.276
100 1.553 1.743 1.635 2.406 2.610 2.298
200 1.587 1.715 1.638 2.397 2.532 2.316
400 1.610 1.698 1.643 2.383 2.474 2.324
p=10
20 1.240 1.806 1.625 2.200 2.849 2.265
50 1.429 1.757 1.635 2.312 2.669 2.302
100 1.508 1.729 1.640 2.332 2.556 2.312
200 1.554 1.705 1.642 2.335 2.492 2.316
400 1.584 1.687 1.642 2.338 2.445 2.322
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Table 10: Expectation and variance for zg, 25 and zgnyr

p=3 Expectation Variance
N 2s 2 ZSNT 25 2 ZSNT
20 —0.4524 —0.0008 0.0813 0.4815 0.8598 0.7567
50 —0.2941 0.0000 0.0318 0.7418 0.9896 0.8462
100 —0.2103 —0.0003 0.0132 0.8609 0.9983 0.9001
200 —0.1502 —0.0010 0.0044 0.9269 0.9987 0.9402
400 —0.1057 0.0002 0.0022 0.9626 0.9993 0.9664
p=>
20 —0.5841 —0.0011 0.0321 0.4832 0.8628 0.7911
50 —0.3804 —0.0008 0.0140 0.7451 0.9940 0.8797
100 —0.2708 0.0004 0.0068 0.8627 1.0003 0.9260
200 —0.1941 —0.0015 0.0014 0.9234 0.9949 0.9533
400 —0.1368 —0.0002 0.0009 0.9621 0.9988 0.9753
p=T
20 —0.6900 0.0003 0.0055 0.4818 0.8603 0.8055
50 —0.4481 0.0014 0.0075 0.7441 0.9926 0.8946
100 —0.3219 —0.0012 0.0019 0.8608 0.9981 0.9370
200 —0.2272 0.0008 0.0020 0.9285 1.0004 0.9648
400 —0.1618 —0.0003 0.0002 0.9625 0.9991 0.9806
p=10
20 —0.8242 0.0010 —0.0228 0.4830 0.8625 0.8197
50 —0.5368 0.0002 —0.0019 0.7421 0.9900 0.9045
100 —0.3837 —0.0003 —0.0004 0.8615 0.9990 0.9459
200 —0.2717 0.0008 0.0008 0.9300 1.0020 0.9723
400 —0.1953 —0.0022 —0.0020 0.9615 0.9981 0.9829
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Table 11: Skewness and kurtosis for zg, 25 and zgyr

p=3 Skewness Kurtosis
N 23, 25 ZSNT 25,25 ZSNT
20 1.0066 —0.2929 4.8734 2.8340
50 0.9096  —0.2009 4.7890  2.9076
100 0.7391 —0.1183 4.2715 2.9441
200 0.5585  —0.0629 3.7597 2.9914
400 0.4083 —0.0272 3.3975  3.0049
pP=>
20 0.7802 —0.2317  4.1059  2.8779
50 0.7117  —0.1340  4.1050 2.9341
100 0.5717  —0.0790  3.7599  2.9771
200 0.4274  —0.0394  3.4326  2.9949
400 0.3198  —0.0135 3.2538 3.0117
p=T
20 0.6530 —0.2024 3.7744  2.9048
50 0.5919 —0.1162 3.7560  2.9561
100 0.4752  —0.0609 3.4958 2.9782
200 0.3668  —0.0266  3.3253  3.0076
400 0.2649 —0.0152  3.1817 3.0176
p=10
20 0.5518 —0.1699 3.5721  2.9275
50 0.4996 —0.0871 3.5403  2.9667
100 0.4063 —0.0440 3.3964 3.0015
200 0.3068 —0.0194 3.2299 3.0073
400 0.2250 —0.0066  3.1215  3.0063
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Table 12: Percentile for zg, 2§ and zgyr (o = 0.95,0.99)

p=3 2 (0.95) = 1.645 2 (0.99) = 2.326
N 25 2 ZSNT 25 2 ZSNT
20 0.830 1.713 1.436 1.668 2.833 1.821
50 1.269 1.806 1.495 2.269 2.960 1.991
100 1.449 1.787 1.542 2.448 2.862 2.120
200 1.546 1.760 1.580 2.491 2.741 2.212
400 1.603 1.741 1.611 2.481 2.636 2.269
P=5
20 0.683 1.692 1.438 1.438 2.701 1.890
50 1.167 1.786 1.521 2.082 2.844 2.077
100 1.372 1.770 1.569 2.284 2.751 2.180
200 1.481 1.737 1.594 2.347 2.636 2.239
400 1.553 1.721 1.620 2.380 2.563 2.286
p="7
20 0.560 1.669 1.431 1.266 2.613 1.917
50 1.084 1.771 1.533 1.942 2.762 2.112
100 1.309 1.755 1.579 2.169 2.681 2.203
200 1.442 1.734 1.609 2.282 2.606 2.268
400 1.515 1.709 1.622 2.321 2.529 2.297
p=10
20 0.412 1.653 1.424 1.079 2.544 1.940
50 0.981 1.754 1.540 1.795 2.694 2.141
100 1.232 1.739 1.586 2.064 2.635 2.231
200 1.388 1.723 1.616 2.191 2.557 2.277
400 1.476 1.701 1.627 2.250 2.490 2.297
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Figure 1: The sample distributions for zpsy, z}‘%k and zyyrx by simulation, and the density
plot for standard normal distribution(p = 3).
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Figure 2: The sample distributions for zpsy, z}k\“ and zyyrx by simulation, and the density
plot for standard normal distribution(p = 5).
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Figure 3: The sample distributions for zps, z}‘%k and zyyrx by simulation, and the density
plot for standard normal distribution(p = 7).
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Figure 4: The sample distributions for zpsx, z}k\“ and zyyrx by simulation, and the density
plot for standard normal distribution(p = 10).
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Figure 5: The sample distributions for z,;, 23, and zy/nr by simulation, and the density plot
for standard normal distribution(p = 3).
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Figure 6: The sample distributions for z;;, 23, and zy/nr by simulation, and the density plot
for standard normal distribution(p = 5).
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Figure 7: The sample distributions for z;, 23, and zy/nr by simulation, and the density plot
for standard normal distribution(p = 7).

Figure 8: The sample distributions for z,;, 23, and zy/nr by simulation, and the density plot
for standard normal distribution(p = 10).
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Figure 9: The sample distributions for 25, 2§, and zsyrx by simulation, and the density plot
for standard normal distribution(p = 3).
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Figure 10: The sample distributions for 25, 25, and zgy7 by simulation, and the density plot
for standard normal distribution(p = 5).
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Figure 11: The sample distributions for 25, 25, and zgyrx by simulation, and the density plot
for standard normal distribution(p = 7).
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Figure 12: The sample distributions for zg, 25, and zgyrx by simulation, and the density plot
for standard normal distribution(p = 10).
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Figure 13: The sample distributions for zg, 2§ and zgyr by simulation, and the density plot
for standard normal distribution(p = 3).
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Figure 14: The sample distributions for zg, 2§ and zgyr by simulation, and the density plot
for standard normal distribution(p = 5).
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Figure 15: The sample distributions for zg, 2§ and zgyr by simulation, and the density plot
for standard normal distribution(p = 7).
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Figure 16: The sample distributions for zg, 2§ and zgyr by simulation, and the density plot
for standard normal distribution(p = 10).
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