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Abstract

In structural equation modeling (SEM), a covariance parameter is derived by minimizing the
discrepancy between a sample covariance matrix and a covariance matrix having a specified structure.
When a sample covariance matrix is a near singular matrix, Yuan and Chan (2008) proposed the use
of an adjusted sample covariance matrix instead of the sample covariance matrix in the discrepancy
function for estimating the covariance estimator. The adjusted sample covariance matrix was defined
by adding an identity matrix multiplied by a shrinkage parameter to the existing sample covariance
matrix. They used a constant value as the shrinkage parameter, which was chosen based solely
on the sample size and the number of dimensions of the observation, and not on the data itself.
However, selecting the shrinkage parameter from the data may lead to a greater improvement in
prediction compared to the use of a constant shrinkage parameter. Hence, we attempt to select the
shrinkage parameter using an information criterion minimization method. Therefore, we propose an
information criterion based on the discrepancy function measured by the normal theory maximum
likelihood (ML). Using the Monte Carlo method, we demonstrate that the proposed criterion works
well.

Key words: bias correction, GIC, model selection, near singular covariance matrix, SEM, shrinkage
parameter.

1. INTRODUCTION

Let x1, . . . ,xN be independent random samples from x distributed according to a p-variate normal
distribution Np(µ,Σ). We are interested in modeling the population covariance matrix Σ. Denote
the model of interest as Σ(θ), where θ = (θ1, . . . , θq)

′. For simplicity, we write Σ(θ) as Σθ. Let S
be an unbiased estimator of Σ, i.e.,

S =
1

N − 1

N∑
i=1

(xi − x̄)(xi − x̄)′,

where x̄ is the sample mean of x1, . . . ,xN defined by x̄ = N−1
∑N

i=1 xi. Then, the candidate model
is represented by

M : nS ∼ Wp(n,Σθ), (1.1)

1



where n = N − 1. Suppose that Σ0 is a true covariance matrix, i.e., Cov[x] = Σ0. The true model
is represented by

M0 : nS ∼ Wp(n,Σ0). (1.2)

If the covariance structure can be correctly specified, then there exists θ0 such that Σ0 = Σθ0 . The
classical approach to structural equation modeling (SEM) fits the sample covariance matrix S by Σθ

through minimizing the normal theory maximum likelihood (ML) discrepancy function as

F (S,Σθ) = tr(SΣ−1
θ )− log |SΣ−1

θ | − p. (1.3)

Then, the ML estimator of θ, which is represented by θ̂, is defined by

θ̂ = argmin
θ

F (S,Σθ).

In general, θ̂ is obtained using a modification of Newton’s algorithm (see e.g., Lee and Jennrich
(1979)), which requires iteration to solve the estimating equation. When S is near singular (not
full rank), the iteration process for obtaining θ̂ will be very unstable and may require hundreds of
iterations to reach convergence (e.g., Boomsma (1985)). When S is literally singular, it is very likely
that the iteration will never converge.

In order to avoid such a problem, Yuan and Chan (2008) proposed a new method in which θ
is estimated by minimizing F (Sa,Σθ), where Sa = S + aIp, a is a small positive value and Ip is a
p-dimensional identity matrix. Here, a is commonly referred to as the shrinkage parameter. Hence,
a new estimator θ̂a is defined by

θ̂a = argmin
θ

F (Sa,Σθ).

Although θ̂a has a constant bias, under LISREL models (see Jöreskog and Sörbom (1996), pp.1-3),
they reported that θ̃a is adjusted to a consistent estimator through a simple procedure when the
covariance structure is the correct model. The adjustment is as follows:

θ̃a = θ̂a − aj,

where j is a q-dimensional vector, the elements of which are 1, corresponding to the parameters on
the diagonals of the covariance matrix of the vectors of the measurement errors, and otherwise are
zero.

The selection of the shrinkage parameter is crucial because if the shrinkage parameter is changed,
the estimate will be also changed. In Yuan and Chan (2008), the shrinkage parameter was taken
to be a constant, determined by only N and p. This means that the shrinkage parameter was not
chosen based on the data. However, it is possible that the prediction could be improved by basing
the shrinkage parameter on the data itself. Therefore, we attempt to select the shrinkage parameter
based on the predictive Kullback-Leibler (KL) discrepancy (Kullback and Leibler (1951)). The basic
concept is to measure the goodness of fit of the model by the risk function assessed by predictive KL
discrepancy. In the present paper, our objective is to select the appropriate value of a by minimizing
the risk function. However, we cannot directly use the risk function to select a because the risk
function includes unknown parameters. Hence, instead of the risk function, we use its estimator.
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Akaike’s information criterion (AIC) (Akaike (1973)) is an estimator of the risk function assessed
by the predictive KL information (for the AIC for SEM, see, e.g., Cudeck and Brown (1983), Akaike
(1987), Ichikawa and Konishi (1999), Yanagihara (2005)). The objective of the present study may
be achieved by minimizing the AIC rather than the risk function. In general, the AIC is defined by
adding the bias to the risk function, i.e., the number of independent parameters divided by n, to the
KL discrepancy function with an estimated parameter, which is referred to as a sample discrepancy
function. However, the bias term of the AIC is obtained under the situation that the discrepancy
function for estimating θ is the same as that for evaluating the model fit. In the present paper, the
discrepancy function for estimating θ is

F (Sa,Σθ) = F (S,Σθ) + atr(Σ−1
θ )− log |Sa|+ log |S|,

and that for evaluating the model is F (S,Σθ). Since the two functions are different, we cannot use
the bias term of the ordinary AIC. Therefore, we must revaluate the bias using the same approach
as the generalized information criterion (GIC) proposed by Konishi and Kitagawa (1996). Hence,
we denote the proposed information criterion as GIC(a). We define GIC(a) by adding an estimator
of the revaluated bias to the sample discrepancy function F (S,Σθ̃a

). Then, the best a is chosen by
minimizing GIC(a).

The remainder of the present paper is organized as follows: In Section 2, we obtain GIC(a) from
a stochastic expansion of θ̂a. In Section 3, we verify the performance of our criteria using the Monte
Carlo method. In Section 4, we present conclusions and discussions. The proof of the theorem
presented herein is provided in the Appendix.

2. GIC FOR SELECTING THE SHRINKAGE PARAMETER

Since Σθ is not always correctly specified, when Σθ is misspecified, we denote θa∗ as a population
parameter minimizing F (Σa,Σθ), i.e.,

θa∗ = argmin
θ

F (Σa,Σθ),

where Σa is the expectation of Sa, i.e., Σa = Σ0 + aIp. There also exists a unique vector θ∗ such

that Σθa∗ = Σθ∗ + aIp under the LISREL model. Then, θ̂a is consistent for θa∗, and θ̃a is consistent
for θ∗ (see Yuan and Chan (2008)). If Σθ is correctly specified, θa∗ = θa and θ∗ = θ0.

We consider the risk function between the true model and the candidate model. Let S be a
sample covariance matrix that is independent of S and that has the same distribution as S. Hence,
two matrices nS and nS are independently and identically distributed according to the Wishart
distribution Wp(n,Σ0). The matrix S is regarded as a future observation or an imaginary new
observation. Then, we measure the discrepancy between the candidate model M in (1.1) and the
true model M0 in (1.2) by the following discrepancy function:∫

log
f(S|n,Σ0)

f(S|n,Σθ̃a
)
dS =

n

2
ES

[
F (S,Σθ̃a

)− F (S,Σ0)
]
,

Omitting the terms that do not depend on a, yields∫
F (S,Σθ̃a

)dS = ES
[
F (S,Σθ̃a

)
]
.
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Hence, we define the risk function assessed by the predictive ML discrepancy as

R = ESES

[
F (S,Σθ̃a

)
]
.

In the present paper, ES and ES denote the expectations under the true model M0 in (1.2) with
respect to S and S. We regard the shrinkage parameter a l having the smallest R as the principle
best model. Obtaining an unbiased estimator of R will allow us to correctly evaluate the discrepancy
between the data and the model, which will further facilitate the selection of the best shrinkage
parameter. A rough estimator of R is the sample ML discrepancy function F (S,Σθ̃a

). However,

since F (S,Σθ̃a
) has a bias, the information criterion can be defined as F (S,Σθ̃a

) + B̂, where B̂ is
an estimator of the bias given as

B = R− ES[F (S,Σθ̃a
)]. (2.1)

The following development contains the technical details for obtaining and estimating B.
Since θ̂a is a minimizer of F (Sa,Σθ) under the conditions of Theorem 1 in Yuan and Chan (2008),

then θ̂a satisfies

∆′
θ̂a
vec(Σ−1

θ̂a
(Σθ̂a

− Sa)Σ
−1

θ̂a
) = 0q,

where 0q is a q-dimensional vector of zeros, and

∆θ =
∂

∂θ′vec(Σθ). (2.2)

Let

Gθa∗ =
∂2

∂θ∂θ′F (Σa,Σθ)

∣∣∣∣
θ=θa∗

,

where

∂2

∂θ∂θ′F (Σa,Σθ) = 2∆′
θ(Σ

−1
θ ΣaΣ

−1
θ ⊗Σ−1

θ )∆θ −∆′
θ(Σ

−1
θ ⊗Σ−1

θ )∆θ

−
q∑
i,j

tr{Σ−1
θ (Σa −Σθ)Σ

−1
θ Σ̈θij}eiej

′. (2.3)

Here, ei is a q-dimensional vector, the ith element of which is 1, with all others being 0, and
Σ̈θij =

∂2

∂θi∂θj
Σθ. Since θa∗ is the minimizer of F (Σa,Σθ), Gθa∗ is a nonsingular matrix. Using the

above notation, we have the following theorem for the bias.

Theorem 1 Suppose that a set of standard regularity conditions, as given in Browne (1984) or Yuan
and Bentler (1997), is satisfied. Then, the bias of ES[F (S,Σθ̃a

)] is expanded as

B =
2

n
tr
{
∆θ∗G

−1
θa∗

∆′
θa∗(Σ

−1
θa∗

Σ0Σ
−1
θ∗

⊗Σ−1
θa∗

Σ0Σ
−1
θ∗
)
}
+O(n−2). (2.4)

The proof of this theorem is given in the Appendix. The proof is derived by modifying the results
presented in Yanagihara, Himeno, and Yuan (2010).
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By replacing θa∗, θ∗, and Σ0 by neglecting O(n−2) in (2.4) with θ̂a, θ̃a, and S, respectively, an
estimator of B is given by

B̂ =
2

n
tr
{
∆θ̃a

G−1

θ̂a
∆′

θ̂a
(Σ−1

θ̂a
SΣ−1

θ̃a
⊗Σ−1

θ̂a
SΣ−1

θ̃a
)
}
.

Thus, the information criterion for selecting a (GIC(a)) is defined by

GIC(a) = F (S,Σθ̃a
) + B̂.

Let A be a set A = {a | a ≧ 0 and θ̃a gives a proper solution}. Then, the best a is chosen by
minimizing GIC(a), i.e.,

â = argmin
a∈A

GIC(a).

When the candidate model is correctly specified, Σθa∗ = Σa. Then, the bias become simple, as
in the following corollary.

Corollary 1. If the candidate model is correctly specified, the bias of ES[F (S,Σθ̃a
)] is expanded

B =
2

n
q +O(n−2).

This corollary indicates that the bias does not depend on a by neglecting the O(n−2) term when the
candidate model is correctly specified. Hence, the best a is the smallest value in A when the model
is correctly specified because F (S,Σθ̃a

) is an increasing function with respect to a.

3. MONTE CARLO RESULTS

In this section, we compare the risk functions of estimated Σ obtained from the following meth-
ods.

Method 1 (new method): We estimate Σ by Σθ̃â
, where â is selected by minimizing GIC(a).

Method 2 (Yuan and Chan’s (YC) method): We estimate Σ by Σθ̃p/N
.

Method 3 (ordinary ML method): We estimate Σ by Σθ̂.

Namely, the risk functions considered herein areRnew = ESES[F (S,Σθ̃â
)], RYC = ESES[F (S,Σθ̃p/N

)],

RML = ESES[F (S,Σθ̂)]. The true model M0 used in the simulation is the confirmatory two-factor
model, which is included in the LISREL model, i.e., the true covariance matrix is Σ0 = Λ0Φ0Λ

′
0+Θ0,

where Λ0 is the factor loading matrix, Φ0 is a 2×2 correlation matrix, and Θ0 is the covariance with
the vectors of the measurement errors. Each of the two factors has five unidimensional indicators.
The factor loading and factor correlation matrices in the population are given by

Λ0 =

 b 0
0 b
0 b

 , Φ0 =

(
1.0 .30
.30 1.0

)
,
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Table 1: Frequencies of the proper solutions and the risk functions for each method

Frequency Risk
N New YC ML New YC ML
30 1000 996 987 16.8295 ——– ——–
50 1000 1000 1000 15.9808 15.9858 16.0088
100 1000 1000 1000 15.5024 15.5044 15.5067

where b = (.70, .70, .75, .80, .80)′ and 0 = (0, 0, 0, 0, 0)′.
The candidate model used in the simulation is the confirmatory three-factor model, which also

has five unidimensional indicators, i.e., the covariance matrix Σθ = ΛΦΛ′ +Θ. The factor loading
and factor correlation matrices in the candidate model are given by

Λ =

 b1 0 0
0 b2 0
0 0 b3

 , Φ =

 1.0 ϕ12 ϕ13

ϕ21 1.0 ϕ23

ϕ31 ϕ32 1.0

 .

There are 15 factor loadings, three factor correlations, and 15 error variances. In order to obtain
smaller sample sizes, we chose N = 30, 50, and 100. The number of replications is 1, 000.

In order to calculate Rnew, RYC, and RML, we first obtain an estimator of θ for each method
using R Ver. 2.12.1. We then count the frequencies when the estimate of θ is the proper solution
(i.e., an estimator of Θ0 is the positive define). Then, in order to generate a normal random sample
of the sample size N again, we obtain the sample covariance matrix S. Next, we record the value
of F (S, Σ̂) for each method, where Σ̂ is an estimated Σ for each method. After the replication is
finished, we obtain the arithmetic mean of F (S, Σ̂) for each method. If all of the estimators are
proper solutions, then the arithmetic mean is regarded as a target risk function.

Table 1 shows the frequencies of the proper solutions and the values of the risk functions for each
method. From Table 1, when N = 30, the Rnew is obtained, but RYC and RML are not obtained
because there are several improper solutions for a = p/N , 0. On the other hand, when N = 50
and 100, since there are no improper solutions, we can obtain all risk functions. Then, Rnew is the
smallest. Hence, the proposed information criterion works well.

4. CONCLUSION

In the present paper, we proposed a GIC for selecting the shrinkage parameter, which is used to
obtain the estimator for SEM with a near singular covariance matrix. In order to derive the GIC,
we revaluated the bias of the risk function. Then, GIC(a) was obtained by adding the estimator of
the revaluated bias to the sample discrepancy function. We have observed that when the candidate
model is correctly specified, the bias does not depend on a when the O(n−2) term is neglected, i.e.,
the bias term is equivalent to that of the AIC. This means that the best a is the smallest value
among shrinkage parameters making θ̃a a proper solution. In the Monte Carlo results of θ̃â was
proper solutions, and the risk function of the estimated covariance matrix based on θ̃â with the
selected a was the smallest.
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APPENDIX

The proof of Theorem 1 is presented in this appendix. The bias of F (S,Σθ̃a
), defined in (2.1),

can be written as

B = ES[ES [F (S,Σθ̃a
)]− F (S,Σθ̃a

)] = ES[tr{Σ−1

θ̃a
(Σ0 − S)}]. (A.1)

Since Σ0 − S = Op(n
−1/2) and ES[S] = Σ0, applying the Taylor expansion to tr{Σ−1

θ̃a
(Σ0 − S)} at

θ̃a = θ∗ yields

ES[tr{Σ−1

θ̃a
(Σ0 − S)}] = ES[dθ∗(θ̃a − θ∗)] +O(n−2),

where

dθ∗ =
∂

∂θ′ tr{Σ
−1
θ (Σ0 − S)}

∣∣∣∣
θ=θ∗

.

The remainder term is O(n−2) because a general moment can be expanded by n−1 (see Hall (1992)).
Letting V =

√
n(S −Σ0), we obtain

dθ∗ = vec′{Σ−1
θ∗
(S −Σ0)Σ

−1
θ∗
}∆θ∗

=
1√
n
vec′(V )Γθ∗∆θ∗ . (A.2)

Then, under a set of standard regularity conditions, it follows from ∂F (Sa,Σθ)/∂θ|θ=θ̂a
= 0q that

0q = ∆′
θ̂a
vec(Σ−1

θ̂a
(Σθ̂a

−Σa)Σ
−1

θ̂a
)− 1√

n
∆′

θ̂a
Γθ̂a

vec(V ),

where Γθ̂a
= (Σ−1

θ̂a
⊗Σ−1

θ̂a
). Hence, we obtain

∆′
θ̂a
vec(Σ−1

θ̂a
(Σθ̂a

−Σa)Σ
−1

θ̂a
) =

1√
n
∆′

θ̂a
Γθ̂a

vec(V ). (A.3)

Note that
√
n(θ̂a − θa∗) = Op(1) and that both sides of (A.3) are functions of θ̂a. Applying the

Taylor expansion to (A.3) at θ̂a = θa∗ and comparing the Op(n
−1) term on both sides of the resulting

equation, we obtain

θ̂a − θa∗ =
1√
n
G−1

θa∗
∆′

θa∗Γθa∗vec(V ) +Op(n
−1),

where Gθ is given by (2.3).

ES [vec(V )vec′(V )] = nES [vec(S −Σ0)vec
′(S −Σ0)]

= nCov [vec (S)]

= (Ip2 +Kp) (Σ0 ⊗Σ0) ,
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where Kp is the commutation matrix (see Magnus and Neudecker, 1999, p. 48). Therefore,

B = ES[dθ∗(θ̂a − θa∗)] +O(n−2)

=
1

n
tr
{
Γθ∗∆θ∗G

−1
θa∗

∆′
θa∗Γθa∗ (Ip2 +Kpp) (Σ0 ⊗Σ0)

}
+O(n−2). (A.4)

Moreover, using (see Magnus and Neudecker 1999, p. 47) Kp(A⊗C) = (C ⊗A)Kpp, Kpvec(C) =
vec(C ′), yields Equation (2.4) in Theorem 1.
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