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Abstract

Longitudinal trends of observations can be estimated using the generalized multivariate analysis

of variance (GMANOVA) model proposed by Potthoff and Roy (1964). In the present paper, we

consider estimating the trends nonparametrically using known basis functions. Then, as in non-

parametric regression, an overfitting problem occurs. Satoh and Yanagihara (2010) showed that the

GMANOVA model is equivalent to the varying coefficient model with non-longitudinal covariates.

Hence, as in the case of the ordinary linear regression model, when the number of covariates becomes

large, the estimator of the varying coefficient becomes unstable. In the present paper, we avoid the

overfitting problem and the instability problem by applying the concept behind penalized smoothing

spline regression and multivariate generalized ridge regression. In addition, we propose two criteria

to optimize hyperparameters, namely, a smoothing parameter and ridge parameters. Finally, we

compare the ordinary least square estimator and the new estimator.

Key words: Generalized ridge regression; Mallows’ Cp statistic; GMANOVA; Non-iterative estimator;

Shrinkage estimator; Varying coefficient model.

1. Introduction

We consider the generalized multivariate analysis of variance (GMANOVA) model with n obser-

vations of p-dimensional vectors of response variables. This model was proposed by Potthoff and

Roy (1964). Let Y = (y1, . . . ,yn)
′, A, X and E = (ε1, . . . , εn)

′ be an n × p matrix of response

variables, an n×k matrix of non-stochastic centerized between-individual explanatory variables (i.e.,

A′1n = 0k) of rank(A) = k (k < n), a p× q matrix of non-stochastic within-individual explanatory

variables of rank(X) = q (q ≤ p), and an n× p matrix of error variables, respectively, where n is the
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sample size, 1n is an n-dimensional vector of ones and 0k is a k-dimensional vector of zeros. Then,

the GMANOVA model is expressed as

Y = 1nµ
′X ′ +AΞX ′ + E , (1.1)

where µ is a q-dimensional unknown vector and Ξ = (ξ1, . . . , ξk)
′ is a k × q unknown regression

coefficient matrix. We assume that ε1, . . . , εn
i.i.d.∼ Np(0p,Σ) where Σ is a p× p unknown covariance

matrix of rank(Σ) = p. Then, we can express the GMANOVA model as

Y ∼ Nn×p(1nµ
′X ′ +AΞX ′,Σ⊗ In).

Let S be an unbiased estimator of the unknown covariance matrix Σ that is given by

S =
1

n− k − 1
Y ′{In − n−11n1

′
n −A(A′A)−1A′}Y . (1.2)

Then, the maximum likelihood (ML) estimators of µ and Ξ are given by n−1(X ′S−1X)−1X ′S−1Y ′1n

and (A′A)−1A′Y S−1X(X ′S−1X)−1, respectively. The ML estimators are the unbiased and asymp-

totically efficiency estimators of µ and Ξ.

In the GMANOVA model, x(t) = (1, t, . . . , tq−1)′, (t = t1, . . . , tp) is often used as the jth row

vector of X. Then, we estimate the longitudinal trends of Y using (q − 1)-polynomial curves.

However, occasionally, the polynomial curve cannot thoroughly express flexible longitudinal trends.

Hence, we consider estimating the longitudinal trends nonparametrically in the same manner as

Riedel and Imre (1993) and Kshirsagar and Smith (1995), i.e., we use the known basis function as

x(t) and assume that p is large. In the present paper, we refer to the GMANOVA model with X

obtained from the basis function as the nonparametric GMANOVA model. In the nonparametric

GMANOVA model, it is well known that the ML estimators become unstable because S−1 becomes

unstable when p is large. Thus, we deal with the least square (LS) estimators of µ and Ξ, which are

obtained by minimizing tr{(Y −1nµ
′X ′−AΞX ′)(Y −1nµ

′X ′−AΞX ′)′}. Then, the LS estimators

of µ and Ξ are obtained by µ̂ = n−1(X ′X)−1X ′Y ′1n and

Ξ̂ = (A′A)−1A′Y X(X ′X)−1, (1.3)

respectively. Note that µ̂ does not depend on A. The LS estimators are simple and unbiased esti-

mators of µ and Ξ. However, as well as ordinary nonparametric regression model, the LS estimators

cause an overfitting problem when we use basis functions to estimate the longitudinal trends non-

parametrically. In order to avoid the overfitting problem, we use X ′X + λK instead of X ′X as

the penalized smoothing spline regression (see e.g., Green and Silverman (1994)), where λ (≥ 0) is a

smoothing parameter and K is a q × q known penalty matrix.
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Let yi = (yi(t1), . . . , yi(tp))
′, and let εi = (εi(t1), . . . , εi(tp))

′. Then, the GMANOVA model can

be expressed as

yi(t) = x(t)′µ+
k∑

j=1

aijx(t)
′ξj + εi(t), (i = 1, . . . , n; t = t1, . . . , tp),

where aij is the (i, j)th element of A. This expression indicates that the GMANOVA model is

equivalent to the varying coefficient model with non-longitudinal covariates (Satoh & Yanagihara,

2010), i.e.,

yi(t) = ϕ0(t) +
k∑

j=1

aijϕj(t) + εi(t), (i = 1, . . . , n; t = 1, . . . , tp), (1.4)

where ϕ0(t) = x(t)′µ and ϕj(t) = x(t)′ξj, (j = 1, . . . , k). Hence, estimating the longitudinal trends

in the GMANOVA model nonparametrically is equivalent to estimating the varying coefficients ϕj(t),

(j = 0, . . . , k) nonparametrically. However, when multicollinearity occurs in A, the estimate of ϕj(t),

(j = 1, . . . , k) becomes unstable, as does the ordinary LS estimator of regression coefficient, because

the variance of an estimator of ϕj(t) becomes large. Hence, we avoid the multicollinearity problem

in A by the ridge regression.

When X = Ip and p = 1 in the model (1.1), Hoerl and Kennard (1970) proposed a ridge

regression. This estimator is generally defined by adding θIk to A′A in (1.3), where θ ≥ 0 is referred

to as a ridge parameter. Since the ridge estimator changes with θ, optimization of θ is very important.

One method for optimizing θ is minimizing the Cp criterion proposed by Mallows (1973; 1995) in the

univariate linear regression model (for multivariate case, see e.g., Sparks, Coutsourides and Troskie

(1983)). For the case in which X = Ip and p ≥ 1, Yanagihara and Satoh (2010) proposed the Cp

and its bias-corrected Cp (modified Cp; MCp) criteria for optimizing the ridge parameter. However,

an optimal θ cannot be obtained without an iterative computational algorithm because an optimal

θ cannot be obtained in closed form.

On the other hand, Hoerl and Kennard (1970) also proposed a generalized ridge (GR) regression

in the univariate linear regression model, i.e., the model (1.1) with X = Ip and p = 1, simultaneously

with the ridge regression. The GR estimator is defined not by a single ridge parameter, but rather by

multiple ridge parameters θ = (θ1, . . . , θk)
′, (θi ≥ 0, i = 1, . . . , k). Then, several authors proposed a

non-iterative GR estimator (see, e.g., Lawless (1981)). Yanagihara, Nagai and Satoh (2009) proposed

a GR regression in the multivariate linear regression model, i.e., the model (1.1) with X = Ip and

p ≥ 1. We call this generalized ridge regression the multivariate GR (MGR) regression. They

also proposed the Cp and MCp criteria for optimizing ridge parameters θ in the MGR regression.

They showed that the optimized θ by minimizing two criteria are obtained in closed form. Nagai,

Yanagihara and Satoh (2010) proposed non-iterative MGR estimators by extending non-iterative

GR estimators. Several computational tasks are required in estimating ϕj(t) nonparametrically
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because we determine the optimal λ and the number of basis functions simultaneously. Fortunately,

Yanagihara, Nagai and Satoh (2009) reported that the performance of the MGR regression is the

almost same as that of the multivariate ridge regression. Hence, we use the MGR regression in

order to avoid the multicollinearity problem that occurs in A in order to reduce the number of

computational tasks.

The remainder of the present paper is organized as follows: In Section 2, we propose new es-

timators using the concept of the penalized smoothing spline regression and the MGR regression.

In Section 3, we show the target mean squared error (MSE) of a predicted value of Y . We then

propose the Cp and MCp criteria to optimize ridge parameters and smoothing parameters in the

new estimator. Using these criteria, we show that the optimized ridge parameters are obtained in

closed form under the fixed λ. We also show the magnitude relationship between the optimized ridge

parameters. In Section 4, we compare the LS estimator in (1.3) with the proposed estimator through

numerical studies. In Section 5, we present our conclusions.

2. The New Estimators

In the model (1.1), we consider estimating the longitudinal trends nonparametrically by using

basis functions X. Then, we consider the following estimators in order to avoid the overfitting

problem in the nonparametric GMANOVA model, µ̂λ = n−1(X ′X + λK)−1X ′Y ′1n and

Ξ̂λ = (ξ̂λ,1, . . . , ξ̂λ,k)
′ = (A′A)−1A′Y X(X ′X + λK)−1, (2.1)

where λ (≥ 0) is a smoothing parameter and K is a q×q known penalty matrix. In this estimator, we

must determine K before using this estimator. Since K is usually set as some nonnegative definite

matrix, we assume that K is a nonnegative definite matrix. If λK = Oq,q, where Oq,q is a q × q

matrix of zeros, then this estimator corresponds to the LS estimators µ̂ and Ξ̂ in (1.3). Note that

this estimator controls the smoothness of each estimated curve ϕ̂0(t) = x(t)′µ̂λ and ϕ̂j(t) = x(t)′ξ̂λ,j,

(j = 1, . . . , k) through only one parameter λ. When we use this estimator, we need to optimize the

parameter λ because this estimator changes with λ.

If multicollinearity occurs in A, then the LS estimator Ξ̂ in (1.3) and the proposed estimator

Ξ̂λ in (2.1) are not good estimators in the sense of having large variance. Note that neither the

LS estimator µ̂ nor the proposed estimator µ̂λ depend on A. Hence, we avoid the multicollinearity

problem for estimating Ξ. Multicollinearity often occurs when k becomes large. Using the following

estimator, the multicollinearity problem in A can be avoided,

Ξ̂θ,λ = (ξ̂θλ,1, . . . , ξ̂θλ,k)
′ = (A′A+ θIk)

−1A′Y X(X ′X + λK)−1, (2.2)

where θ ≥ 0 is a ridge parameter. This estimator with K = Iq corresponds to the estimator of

Takane, Jung and Hwang (2011). If θ = 0, then this estimator corresponds to the estimator in
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(2.1). Note that (A′A + θIk)
−1A′Y in this estimator corresponds to the ridge estimator for a

multivariate linear model (Yanagihara & Satoh, 2010). In this estimator, we need to optimize θ and

λ because this estimator changes with these parameters. However, we cannot obtain the optimized

θ and λ in closed form. Thus, we need to use an iterative computational algorithm to optimize two

parameters. From another point of view, this estimator controls the smoothness of each estimated

curve ϕ̂j(t) = x(t)′ξ̂θλ,j, (j = 1, . . . , k) through only one parameter λ. Hence, this estimator is not a

well fitting curve when the smoothnesses of the true curves differ.

Hence, we apply the concept of the MGR estimator (Yanagihara, Nagai & Satoh, 2009) to (A′A+

θIk)
−1A′Y in order to obtain the optimized ridge parameter in closed form. Here, we derive the

MGR estimator for the nonparametric GMANOVA model as follows:

Ξ̂θ,λ = (A′A+QΘQ′)−1A′Y X(X ′X + λK)−1, (2.3)

where θ = (θ1, . . . , θk)
′, (θi ≥ 0, i = 1, . . . , k) is also a ridge parameter, Θ = diag(θ), and Q is the

k× k orthogonal matrix that diagonalizes A′A, i.e., Q′A′AQ = D where D = diag(d1, . . . , dk) and

d1, . . . , dk are eigenvalues of A′A. It is clearly that di > 0, (i = 1, . . . , k). In this estimator, since θ

shrinks the estimators of ϕj(t), (j = 1, . . . , k) to 0, we can regard θ as controlling the smoothness of

ϕ1(t), . . . , ϕk(t). Therefore, in this estimator, rough smoothness of the estimated curves is controlled

by λ, and each smoothness of ϕ1(t), . . . , ϕk(t) is controlled by θ.

Clearly, Ξ̂0k,0 = Ξ̂ and Ξ̂0k,λ = Ξ̂λ. The Ξ̂θ,λ with θ = 1kθ for some θ (≥ 0) corresponds to Ξ̂θ,λ

in (2.2). Thus, the estimator Ξ̂θ,λ includes these estimators. The estimator Ξ̂θ,λ is more flexible than

these estimators Ξ̂λ and Ξ̂θ,λ because Ξ̂θ,λ has k+ 1 parameters and Ξ̂λ or Ξ̂θ,λ has only one or two

parameters. Hence, we consider µ̂λ and Ξ̂θ,λ in estimating the longitudinal trends or the varying

coefficient curve, while avoiding the overfitting and multicollinearity problems in the nonparametric

GMANOVA model. When X = Ip and λK = Oq,q, Ξ̂θ,λ corresponds to the MGR estimator in

Yanagihara, Nagai and Satoh (2009).

3. Main Results

3.1. Target MSE

In order to define the MSE of the predicted value of Y , we prepare the following discrepancy

function for measuring the distance between n× p matrices E and F :

r(E,F ) = tr{(E − F )Σ−1(E − F )′}.

Since Σ is an unknown covariance matrix, we use the unbiased estimator S in (1.2) instead of Σ to

estimate r(E,F ). Hence, we estimate r(E,F ) using the following sample discrepancy function:

r̂(E,F ) = tr{(E − F )S−1(E − F )′}. (3.1)
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These two functions, r(E,F ) and r̂(E,F ), correspond to the summation of the Mahalanobis distance

and the sample Mahalanobis distance between the rows of E and F , respectively. Clearly, r(E,F ) =

r(F ,E) and r̂(E,F ) = r̂(F ,E). Through simple calculation, we obtain the following properties:

r(E1 +E2,E3) = r(E1,E3) + 2tr{(E1 −E3)Σ
−1E2}+ r(E2,On,p),

r̂(E1 +E2,E3) = r̂(E1,E3) + 2tr{(E1 −E3)S
−1E2}+ r̂(E2,On,p),

for any n× p matrices E1, E2 and E3.

Using the discrepancy function r, the MSE of the predicted value of Y is defined as

MSE[Ŷθ,λ] = E[r(E[Y ], Ŷθ,λ)], (3.2)

where Ŷθ,λ = 1nµ̂
′
λX

′ + AΞ̂θ,λX
′, which is the predicted value of Y when we use µ̂λ and Ξ̂θ,λ

in (2.3). In the present paper, we regard θ and λ making the MSE the smallest as the principle

optimum. However, we cannot use the MSE in (3.2) in actual application because this MSE includes

unknown parameters. Hence, we must estimate (3.2) in order to estimate the optimum θ and λ.

3.2. The Cp and MCp criteria

Let Hθ = A(A′A + QΘQ′)−1A′ and Gλ = X(X ′X + λK)−1X ′. Note that Y = E[Y ] + E .
Hence, we obtain

MSE[Ŷθ,λ] = E[r(Y − E , Ŷθ,λ)]

From the properties of the function r and using E[tr(Y Σ−1E ′)] = E[tr(EΣ−1E ′)], since E[Y ] is a

non-stochastic variable and E[E ] = On,p and E[tr(E4)] = tr(E[E4]) for any square matrix E4, we

obtain

MSE[Ŷθ,λ] = E[r(Y , Ŷθ,λ)]− 2E[tr{(Y − Ŷθ,λ)Σ
−1E ′}] + E[r(E ,On,p)]

= E[r(Y , Ŷθ,λ)]− 2E[tr(Y Σ−1E ′)] + 2E[tr(Ŷθ,λΣ
−1E ′)] + E[tr(EΣ−1E ′)]

= E[r(Y , Ŷθ,λ)]− E[tr(EΣ−1E ′)] + 2E[tr(Ŷθ,λΣ
−1E ′)].

Note that Ŷθ,λ = 1nµ̂
′
λX

′ + AΞ̂θ,λX
′ = (n−11n1

′
n + Hθ)Y Gλ = (n−11n1

′
n + Hθ)(E[Y ] + E)Gλ.

Thus, we can calculate E[tr(Ŷθ,λΣ
−1E ′)] as follows:

E[tr(Ŷθ,λΣ
−1E ′)] = E[tr{(n−11n1

′
n +Hθ)(E[Y ] + E)GλΣ

−1E ′}]

= tr{(n−11n1
′
n +Hθ)E[EGλΣ

−1E ′]},

because E[Y ], Gλ and Σ−1 are non-stochastic variables. For calculating the expectations in the

MSE, we prove the following lemma.
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Lemma 3.1. For any p× p non-stochastic matrix J , we obtain E[EJΣ−1E ′] = tr(J)In.

Proof. Since E = (ε1, . . . , εn)
′, we obtain the (i, j)th element of E[EJΣ−1E ′] as E[ε′iJΣ

−1εj], (i =

1, . . . , n; j = 1, . . . , n). We obtain E[εiε
′
j] = δi,jΣ because εi⊥⊥ εj for any i ̸= j and Cov(εi) = Σ for

any i, where δi,j is defined as δi,j = 1 if i = j and δi,j = 0 if i ̸= j. Hence, we obtain E[ε′iJΣ
−1εj] =

E[tr(JΣ−1εjε
′
i)] = tr(δj,iJΣ

−1Σ) = δj,itr(J). This result means that E[ε′iJΣ
−1εj] = tr(J) if i = j

and E[ε′iJΣ
−1εj] = 0 if i ̸= j. Thus, the lemma is proven.

Using this lemma, we obtain E[tr(EΣ−1E ′)] = tr(tr(Ip)In) = np and E[EGλΣ
−1E ′] = tr(Gλ)In.

Hence, we obtain

MSE[Ŷθ,λ] = E[r(Y , Ŷθ,λ)]− np+ 2tr{(n−11n1
′
n +Hθ)tr(Gλ)In}

= E[r(Y , Ŷθ,λ)]− np+ 2tr(Gλ)tr(n
−11n1

′
n +Hθ)

= E[r(Y , Ŷθ,λ)]− np+ 2tr(Gλ){1 + tr(Hθ)}.

By replacing E[r(Y , Ŷθ,λ)] with r̂(Y , Ŷθ,λ), we can propose the instinctive estimator of MSE, referred

to as the Cp criterion, as follows:

Cp(θ, λ) = r̂(Y , Ŷθ,λ)− np+ 2tr(Gλ){tr(Hθ) + 1}. (3.3)

When we use this criterion, we optimize the ridge parameter θ and the smoothing parameter λ by

the following algorithm:

(i) We obtain θ̂(C)(λ) = argmin
θ

Cp(θ, λ), where θ̂(C)(λ) = (θ̂
(C)
1 (λ), . . . , θ̂

(C)
k (λ))′, (θ̂

(C)
i (λ) ≥ 0, i =

1, . . . , k) if λ is given.

(ii) We obtain λ̂(C) = argmin
λ≥0

Cp(θ̂
(C)(λ), λ), where λ̂(C) ≥ 0.

(iii) We can obtain θ̂(C)(λ̂(C)) = argmin
θ

Cp(θ, λ̂
(C)), where θ̂(C)(λ̂(C)) = (θ̂

(C)
1 (λ̂(C)), . . . , θ̂

(C)
k (λ̂(C)))′,

(θ̂
(C)
i (λ̂(C)) ≥ 0, i = 1, . . . , k) under fixed λ̂(C).

(iv) We optimize the ridge parameter and the smoothing parameter as θ̂(C)(λ̂(C)) and λ̂(C), respec-

tively.

Note that this Cp criterion corresponds to that in Yanagihara, Nagai and Satoh (2009) when X = Ip

and λK = Oq,q.

There is some bias between the MSE in (3.2) and the Cp criterion in (3.3) because the Cp criterion

is obtained by replacing E[r(Y , Ŷθ,λ)] in the MSE with r̂(Y , Ŷθ,λ). Generally, when the sample size n

is small or the number of explanatory variables k is large, this bias becomes large. Then, we cannot

obtain the higher-accuracy estimation of the optimum parameters because we cannot obtain the

higher-accuracy estimation of MSE of Ŷθ,λ in (3.2). Hence, we correct the bias between MSE[Ŷθ,λ]
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and the Cp criterion. To correct the bias, we assume n−k−p−2 > 0. LetWθ,λ = (Y −Ŷθ,λ)
′(Y −Ŷθ,λ)

and W = (n−k−1)S. Note that W ∼ Wp(n−k−1,Σ) and Wθ,λ−W ⊥⊥W−1 because A′1n = 0k

and A′{In −A(A′A)−1A′} = Ok,n. Then, we obtain

E[r̂(Y , Ŷθ,λ)] = (n− k − 1)E[tr{(Wθ,λ −W )W−1 + Ip}].

Since E[W−1] = Σ−1/(n − k − p − 2), E[W ] = (n − k − 1)Σ (see, e.g., Siotani, Hayakawa and

Fujikoshi (1985)) and tr{E[Wθ,λΣ
−1]} = E[r(Y , Ŷθ,λ)], we obtain

E[r̂(Y , Ŷθ,λ)] =
n− k − 1

n− k − p− 2
tr{E[Wθ,λ −W ]Σ−1 + (n− k − p− 2)Ip}

=
n− k − 1

n− k − p− 2
{E[r(Y , Ŷθ,λ)]− (p+ 1)p}.

Therefore, we obtain the unbiased estimator for E[r(Y , Ŷθ,λ)] as cMr̂(Y , Ŷθ,λ) + p(p + 1), where

cM = 1 − (p + 1)/(n − k − 1). This implies that the bias corrected Cp criterion, denoted as MCp

(modified Cp) criterion, is obtained by

MCp(θ, λ) = cMr̂(Y , Ŷθ,λ) + p(p+ 1− n) + 2tr(Gλ){tr(Hθ) + 1}. (3.4)

As in the case of using the Cp, we optimize θ and λ using this criterion as follows:

(i) We obtain θ̂(M)(λ) = argmin
θ

MCp(θ, λ), where θ̂(M)(λ) = (θ̂
(M)
1 (λ), . . . , θ̂

(M)
k (λ))′, (θ̂

(M)
i (λ) ≥

0, i = 1, . . . , k) if λ is given.

(ii) We obtain λ̂(M) = argmin
λ≥0

MCp(θ̂
(M)(λ), λ).

(iii) We obtain θ̂(M)(λ̂(M)) = argmin
θ

MCp(θ, λ̂
(M)), where θ̂(M)(λ̂(M)) = (θ̂

(M)
1 (λ̂(M)), . . . , θ̂

(M)
k (λ̂(M)))′,

(θ̂
(M)
i (λ̂(M)) ≥ 0, i = 1, . . . , k) under fixed λ̂(M).

(iv) We optimize the ridge parameter and the smoothing parameter as θ̂(M)(λ̂(M)) and λ̂(M), respec-

tively.

Note that the MCp criterion corresponds to that in Yanagihara, Nagai and Satoh (2009) when

X = Ip and λK = Oq,q. The MCp criterion completely omits the bias between the MSE of Ŷθ,λ in

(3.2) and the Cp criterion in (3.3) by using a number of constant terms cM and p(p + 1). If θ̂(C)(λ)

and θ̂(M)(λ) can be expressed in closed form for any fixed λ ≥ 0, we do not need the above iterative

computational algorithm.

3.3. Optimizations using the Cp and MCp criteria

Using the generalized Cp (GCp) criterion, which is given in (A.1), we can express the Cp and

MCp criteria as follows:

Cp(θ, λ) = GCp(θ, λ|1)− np+ 2tr(Gλ),

MCp(θ, λ) = GCp(θ, λ|cM) + p(p+ 1− n) + 2tr(Gλ).
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Note that the terms with respect to θ in the Cp and MCp criteria correspond to GCp(θ, λ|1) and

GCp(θ, λ|cM), respectively. Hence, we consider obtaining the optimum θ by minimizing the GCp

criterion. From Theorem A.1, the optimum θ is obtained in closed form as (A.2). Using the closed

form in (A.2), we obtain θ̂
(C)
i (λ) and θ̂

(M)
i (λ) for each i = 1, . . . , k and any fixed λ ≥ 0 as follows:

θ̂
(C)
i (λ) = θ̂

(G)
i (λ|1) =


0 (t

(C)
i (λ) ≥ 0)

−dit
(C)
i (λ)

t
(C)
i (λ) + uii

(t
(C)
i (λ) < 0 and 0 < t

(C)
i (λ) + uii)

∞ (otherwise)

, (3.5)

θ̂
(M)
i (λ) = θ̂

(G)
i (λ|cM) =


0 (t

(M)
i (λ) ≥ 0)

−dit
(M)
i (λ)

t
(M)
i (λ) + uii

(t
(M)
i (λ) < 0 and 0 < t

(M)
i (λ) + cMuii)

∞ (otherwise)

, (3.6)

where uii and vii are the (i, i)th elements of Q′A′Y GλS
−1GλY

′AQ and Q′A′Y S−1GλY
′AQ,

respectively, t
(C)
i (λ) = ti(λ|1) = uii − vii − ditr(Gλ) and t

(M)
i (λ) = ti(λ|cM) = cM(uii − vii)− ditr(Gλ).

Note that uii and vii vary with λ. Since θ̂(C)(λ) and θ̂(M)(λ) are regarded as a function of λ, we can

regard the Cp and MCp criteria for optimizing θ and λ in (3.3) and (3.4) as a function of λ. This

means that we can use these criteria to optimize λ.

Then, we can rewrite the optimization algorithms to optimize the ridge parameter θ and the

smoothing parameter λ by minimizing the Cp and MCp criteria in (3.3) and (3.4) as follows:

(i) We obtain λ̂(C) = argmin
λ≥0

Cp(θ̂
(C)(λ), λ) and λ̂(M) = argmin

λ≥0
MCp(θ̂

(M)(λ), λ).

(ii) We optimize the ridge parameter and the smoothing parameter as θ̂(C)(λ̂(C)) and θ̂(M)(λ̂(M)),

respectively, by using λ̂(C), λ̂(M) and the closed forms in (3.5) and (3.6).

This means that we can reduce the processing time to optimize the parameters, and we need to use

the optimization algorithm for only one parameter, λ, for any k.

3.4. Magnitude relationships between optimized ridge parameters

In this subsection, we prove the magnitude relationships between θ̂
(C)
i (λ̂(C)) and θ̂

(M)
i (λ̂(M)), (i =

1, . . . , k).

Lemma 3.2. For any λ ≥ 0, we obtain tr(Gλ) ≥ 0.

Proof. Since we assume K as a nonnegative definite matrix, there exists L that satisfies K = L′L

(see, e.g., Harville (1997)). Then, since λ ≥ 0, we haveX ′X+λK = (X ′,
√
λL′)(X ′,

√
λL′)′. Hence,

X ′X+λK is a nonnegative definite matrix. This means that all of the eigenvalues of X ′X+λK are

nonnegative. Hence, all of the eigenvalues of (X ′X+λK)−1 are nonnegative. Thus, (X ′X+λK)−1

is also a nonnegative definite matrix for any λ ≥ 0. Since Gλ = X(X ′X + λK)−1X ′, we obtain Gλ

as a nonnegative definite matrix for any λ ≥ 0. Thus, the lemma is proven.
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Using the same idea, we have tr(Hθ) ≥ 0 for any θ (θi ≥ 0, i = 1, . . . , k). Therefore, the final terms

of the Cp and MCp criteria in (3.3) and (3.4) are always greater than tr(Gλ) ≥ 0. In order to prove

the magnitude relationship between θ̂
(C)
i (λ̂(C)) and θ̂

(M)
i (λ̂(M)), we consider two situations in which

λ̂(C) = λ̂(M) is satisfied and λ̂(C) ̸= λ̂(M) is satisfied.

First, we consider λ̂(C) = λ̂(M) to be satisfied. Let λ̂ = λ̂(C) = λ̂(M) (λ̂ ≥ 0). Using λ̂, we obtain

the following corollary.

Corollary 3.1. For any λ̂ ≥ 0, we obtain cMt
(C)
i (λ̂) ≥ t

(M)
i (λ̂).

Proof. Through simple calculation, we obtain

cMt
(C)
i (λ̂)− t

(M)
i (λ̂) = ditr(Gλ̂)(1− cM).

Since di > 0, 0 < cM < 1 and tr(Gλ̂) ≥ 0 from lemma 3.2, the corollary is proven.

This corollary indicates that t
(C)
i (λ̂) ≥ 0 is satisfied when t

(M)
i (λ̂) ≥ 0 is satisfied because cM > 0

and t
(C)
i (λ̂) + uii > 0 is satisfied when t

(M)
i (λ̂) + cMuii > 0 is satisfied because cM{t(C)i (λ̂) + uii} >

t
(M)
i (λ̂) + cMuii > 0 and cM > 0. Using these relationships, we obtain the following theorem.

Theorem 3.1. For any λ̂ ≥ 0, we obtain θ̂
(M)
i (λ̂) ≥ θ̂

(C)
i (λ̂).

Proof. We consider the following situations:

(1) t
(M)
i (λ̂) ≥ 0 is satisfied,

(2) t
(M)
i (λ̂) < 0 < t

(M)
i (λ̂) + cMuii is satisfied,

(3) t
(M)
i (λ̂) + cMuii < 0 is satisfied.

In (1), θ̂
(M)
i (λ̂) = θ̂

(C)
i (λ̂) = 0, because t

(C)
i (λ̂) ≥ 0. In (3), θ̂

(M)
i (λ̂) ≥ θ̂

(C)
i (λ̂), because θ̂

(M)
i (λ̂) becomes

∞. Hence, we only consider situation (2). Note that t
(C)
i (λ̂) + uii > 0, because cM{t(C)i (λ̂) + uii} > 0

and cM > 0. This means that θ̂
(C)
i (λ̂) does not become ∞. This theorem holds when t

(C)
i (λ̂) ≥ 0,

because, in this case, θ̂
(C)
i (λ̂) = 0 and θ̂

(M)
i (λ̂) ≥ 0. We also consider t

(C)
i (λ̂) < 0 < t

(C)
i (λ̂) + uii to be

satisfied. Then, we obtain

θ̂
(M)
i (λ̂)− θ̂

(C)
i (λ̂) =

diuii{cMt(C)i (λ̂)− t
(M)
i (λ̂)}

{t(M)
i (λ̂) + cMuii}{t(C)i (λ̂) + uii}

.

Since S−1 is a positive definite matrix, uii ≥ 0 for any λ̂ ≥ 0. From corollary 3.1, we have cMt
(C)
i (λ̂) ≥

t
(M)
i (λ̂) for any λ̂ ≥ 0. Hence we obtain θ̂

(M)
i (λ̂) ≥ θ̂

(C)
i (λ̂) for any λ̂ ≥ 0 since di > 0, t

(M)
i (λ̂)+cMuii > 0

and t
(C)
i (λ̂) + uii > 0. Thus, the theorem is proven.

This theorem corresponds to that in Nagai, Yanagihara and Satoh (2010) when X = Ip and λK =

Oq,q.

From Theorem 3.1, we obtained the relationships between θ̂
(C)
i (λ̂(C)) and θ̂

(M)
i (λ̂(M)) for the case

in which the optimized smoothing parameters λ̂(C) and λ̂(M) are the same. However, λ̂(C) and λ̂(M)

10



are optimized by minimizing the Cp and MCp criteria in (3.3) and (3.4). Hence, λ̂(C) and λ̂(M)

are generally different. Thus, we consider the relationship between θ̂
(C)
i (λ̂(C)) and θ̂

(M)
i (λ̂(M)) when

λ̂(C) ̸= λ̂(M). Since uii is regarded as a function of λ, we write uii as uii(λ̂
(C)) and uii(λ̂

(M)) for each

optimized smoothing parameter.

Theorem 3.2. We consider the following situations:

(1) t
(C)
i (λ̂(C)) + uii(λ̂

(C)) ≤ 0 or t
(M)
i (λ̂(M)) ≥ 0 is satisfied,

(2) t
(C)
i (λ̂(C)) < 0 < t

(C)
i (λ̂(C)) + uii(λ̂

(C)) and t
(M)
i (λ̂(M)) < 0 < t

(M)
i (λ̂(M)) + cMuii(λ̂

(M)) are satisfied,

(3) cMt
(C)
i (λ̂(C))uii(λ̂

(M)) ≤ t
(M)
i (λ̂(M))uii(λ̂

(C)) is satisfied,

(4) t
(M)
i (λ̂(M))uii(λ̂

(C)) ≤ cMt
(C)
i (λ̂(C))uii(λ̂

(M)) is satisfied,

(5) t
(C)
i (λ̂(C)) ≥ 0 or t

(M)
i (λ̂(M)) + cMuii(λ̂

(M)) ≤ 0 is satisfied.

For any λ̂(C) ≥ 0 and λ̂(M) ≥ 0, we obtain the following relationships based on the above situations:

(i) If (1), then θ̂
(M)
i (λ̂(M)) ≤ θ̂

(C)
i (λ̂(C)),

(ii) If (2) and (3), then we obtain θ̂
(M)
i (λ̂(M)) ≤ θ̂

(C)
i (λ̂(C)),

(iii) If (2) and (4), then we obtain θ̂
(C)
i (λ̂(C)) ≤ θ̂

(M)
i (λ̂(M)),

(iv) If (5), then θ̂
(C)
i (λ̂(C)) ≤ θ̂

(M)
i (λ̂(M)).

Proof. In (1) and (5), the relationships (i) and (iv) are true. Hence, we need only prove relationships

(ii) and (iii). Then, we obtain θ̂
(C)
i (λ̂(C)) and θ̂

(M)
i (λ̂(M)) using the closed forms of (3.5) and (3.6) and

each optimized smoothing parameter. Through simple calculation, we obtain

θ̂
(M)
i (λ̂(M))− θ̂

(C)
i (λ̂(C)) =

di{cMtCi (λ̂(C))uii(λ̂
(M))− tMi (λ̂

(M))uii(λ̂
(C))}

{t(C)i (λ̂(C)) + uii(λ̂(C))}{t(M)
i (λ̂(M)) + cMuii(λ̂(M))}

.

Since di > 0, t
(C)
i (λ̂(C))+uii(λ̂

(C)) > 0 and t
(M)
i (λ̂(M))+cMuii(λ̂

(M)) > 0, the sign of θ̂
(M)
i (λ̂(M))−θ̂

(C)
i (λ̂(C))

is the same as the sign of cMt
(C)
i (λ̂(C))uii(λ̂

(M)) − t
(M)
i (λ̂(M))uii(λ̂

(C)). Hence, we obtain relationships

(ii) and (iii). Thus, the theorem is proven.

4. Numerical studies

In this section, we compare the LS estimator µ̂ and Ξ̂ in (1.3) with the proposed estimator µ̂λ

and Ξ̂θ,λ in (2.3) through a numerical study. Let Rr = diag(1, . . . , r), and let ∆r(ρ) be an r × r

matrix as follows:

∆r(ρ) =


1 ρ ρ2 · · · ρr−1

ρ 1 ρ · · · ρr−2

ρ2 ρ 1 · · · ρr−3

...
...

...
. . . · · ·

ρr−1 ρr−2 ρr−3 · · · 1

 .
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The explanatory matrixA is given byA = NΨ1/2 whereΨ = R
1/2
k ∆k(ρa)R

1/2
k , N is an n×k matrix

and each row vector of N is generated from the independent k-dimensional normal distribution with

mean 0k and covariance matrix Ik. Let mi, (i = 1, . . . , 12) be a p-dimensional vector. We set each

mi as follows:

m1= h(t; e2, e−1.5, e1), m2 = h(t; e2, e−1.5, e2), m3 = h(t; e2, e−2.0, e1), m4 = h(t; e2, e−2.0, e2),
m5= h(t; e2, e−2.5, e1), m6 = h(t; e2, e−2.5, e2), m7 = h(t; e3, e−1.5, e1), m8 = h(t; e3, e−1.5, e2),
m9= h(t; e3, e−2.0, e1), m10= h(t; e3, e−2.0, e2), m11= h(t; e3, e−2.5, e1), m12= h(t; e3, e−2.5, e2),

where t = (1, . . . , p)′ and the ith element of h(t; z1, z2, z3) is z1{1 − exp(−z2ti)}z3 . Each element

of h(t; z1, z2, z3) is Richard’s growth curve model (Richard, 1959). We set the longitudinal trends

using these mi as Mk(t) = (m1, . . . ,mk)
′. Note that mi+6 = emi, (i = 1, . . . , 6), which indicates

that the last six rows of M12(t) are obtained by changing the scale of M6(t). The response matrix

Y is generated by Nn×p(AM (t),Σ ⊗ In) where Σ = R
1/2
p ∆p(ρy)R

1/2
p . Then, we standardized

A. Let ki = (0′
i−1, 1,−2, 1,0′

q−2−i)
′, (i = 1, . . . , q − 2) which is a q-dimensional vector, and K =

(k1, . . . ,kq−2)(k1, . . . ,kq−2)
′. We set each element of X as a cubic B-spline basis function. Since X

is set using the cubic B-spline, we note that 3 ≤ q ≤ p. Additional details concerning K and X

are reported in Green and Silverman (1994). We simulate 10, 000 repetitions for each n, p, k, ρa,

and ρy. In each repetition, we fixed A, but Y varies. We search λ̂(C) and λ̂(M) using fminsearch,

which is a program in the software Matlab used to search for a minimum value, because λ̂(C) and λ̂(M)

cannot be obtained in closed form. In searching λ̂(C) and λ̂(M), we transform λ′ = exp(λ) and search

optimized λ′ by each criterion because λ̂(C) ≥ 0 and λ̂(M) ≥ 0. In the search algorithm, the starting

point for the search is set as λ = 0. Then, we obtain the optimized ridge parameters θ̂(C)(λ̂(C)) and

θ̂(M)(λ̂(M)) using the closed forms of (3.5) and (3.6) in each repetition. In each repetition, we need to

optimize q becauseX andK vary with q. We calculate Cp(θ̂
(C)(λ̂(C)), λ̂(C)) andMCp(θ̂

(M)(λ̂(M)), λ̂(M))

for each q = 3, . . . , p in each repetition. Then, we adopt the optimized q by minimizing each

criterion in each repetition. After that, we calculate r(E[Y ], Ŷθ̂(λ̂),λ̂)/(np) for each criterion, where

Ŷθ̂(λ̂),λ̂ = 1nµ̂
′
λ̂
X ′ +AΞ̂θ̂(λ̂),λ̂X

′ = n−11n1
′
nY Gλ̂ +Hθ̂(λ̂)Y Gλ̂, which is obtained using λ̂ and θ̂(λ̂)

for each criterion and the optimized q in each repetition. The average of r(E[Y ], Ŷθ̂(λ̂),λ̂) over 10, 000

repetitions is regarded as the MSE of Ŷθ̂(λ̂),λ̂. We compare the values predicted using the estimators

µ̂λ̂ and Ξ̂θ̂(λ̂),λ̂ with those using the LS estimators µ̂ and Ξ̂ and the estimators µ̂λ̂ and Ξ̂λ̂ in (2.1).

When we use Ξ̂λ, we obtain λ̂ by minimizing Cp(0k, λ) and MCp(0k, λ). As in the case of using

Ξ̂θ̂(λ̂),λ̂, we adopt q by using each criterion in each repetition for Ξ̂ and Ξ̂λ. Some of the results are

shown in Tables 1 and 2. The values in the tables are obtained by MSE[Ŷθ̂(λ̂),λ̂]/(np), MSE[Ŷλ̂]/(np)

where Ŷλ̂ = 1nµ̂
′
λ̂
X ′ +AΞ̂λ̂X

′, and MSE[Ŷ ]/(np) where Ŷ = 1nµ̂
′X ′ +AΞ̂X ′.

Please insert Tables 1 and 2 around here

Each estimator optimized by using the MCp criterion for λ, θ, and q is more improve than that

by using the Cp criterion for each estimator in almost all situations. This indicates that the MCp
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criterion is a better estimator of the MSE of each predicted value of Y than the Cp criterion. The

reasons for this are that theMCp criterion is an unbiased estimator of MSE and each of the parameters

in each estimator is optimized by minimizing the MCp criterion. When k = 6, Ξ̂θ,λ provides a greater

improvement than either Ξ̂λ or Ξ̂ in all situations. The estimator Ξ̂θ,λ, which is optimized using

the MCp criterion, has the smallest MSE among these estimators for almost situations when k = 6.

Here, Ξ̂λ provides a greater improvement than Ξ̂ when k = 6 in all situations. When ρa is large,

the estimator Ξ̂θ,λ provides a greater improvement than Ξ̂λ in most situations when k = 12. On the

other hand, Ξ̂λ provides a greater improvement than Ξ̂θ,λ in most situations when ρa is small, k = 12

and p = 10. If k = 12, then Ξ̂θ,λ and Ξ̂λ improve the LS estimator. Comparing the results for k = 6

with the results for k = 12 reveals that these estimators become poor estimators when k becomes

large. The reasons for this are thought to be that S−1 and A become unstable and the M12(t) has

some curves that are in a different scale. Each MSE using each method and the Cp criterion is similar

to that using the MCp criterion if n becomes large because cM is close to 1. When ρa becomes large,

Ξ̂θ,λ improves the LS estimator more than when ρa is small. Since ρa controls the correlation in A,

the multicollinearity in A becomes large when ρa becomes large. Then, Ξ̂λ is not a good estimator

because (A′A)−1 is unstable. Hence, we can avoid the multicollinearity problem in A by using Ξ̂θ,λ,

which is one of the purposes of the present study. In all situations, the new estimators improve the

LS estimator Ξ̂. In addition, Ξ̂θ,λ is better than Ξ̂λ in most situations, especially when k is small or

ρa is large. In general, Ξ̂θ,λ optimized using MCp is the best method.

5. Conclusions

In the present paper, we estimate the longitudinal trends nonparametrically by using the nonpara-

metric GMANOVA model in (1.1), which is defined using basis functions as X in the GMANOVA

model. When we use basis functions as X, the LS estimators µ̂ and Ξ̂ incur overfitting. In order to

avoid this problem, we proposed µ̂λ and Ξ̂λ in (2.1) using the smoothing parameter λ (≥ 0) and the

q × q known penalty non-negative definite matrix K. However, if multicollinearity occurs in A, Ξ̂

and Ξ̂λ are not good estimators due to large variance. In the present paper, we also proposed Ξ̂θ,λ in

(2.3) in order to avoid the multicollinearity problem that occurs in A and the overfitting problem by

using basis functions as X. The estimator Ξ̂λ controls the smoothness of each estimated longitudinal

curve using only one parameter λ. On the other hand, in the estimator Ξ̂θ,λ, the rough smoothness

of estimated longitudinal curves is controlled using λ, and each smoothness of ϕ1(t), . . . , ϕk(t) in the

varying coefficient model (1.4) is controlled by θ.

We also proposed the Cp and MCp criteria in (3.3) and (3.4) for optimizing the ridge parameter

θ and the smoothing parameter λ. Then, using the GCp criterion in (A.1) and minimizing this

criterion in Theorem A.1, we obtain the optimized θ using the Cp and MCp criteria in closed form
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as (3.5) and (3.6) for any λ. Thus, we can regard the Cp and MCp criteria as a function of λ.

Hence, we need to optimize only one parameter λ in order to optimize k + 1 parameters in Ξ̂θ,λ

using these criteria. On the other hand, we must optimize two parameters when we use Ξ̂θ,λ in (2.2).

This optimization is difficult and requires a complicated program and a long processing time for

simulation or analysis of real data because the optimized θ cannot be obtained in closed form even

if λ is fixed. This is the advantage of using Ξ̂θ,λ. This advantage does not appear to be important

because of the high calculation power of CPUs. However, this advantage is made clear when we use

Ξ̂θ,λ together with variable selection. Even if k becomes large, then this advantage remains when

Ξ̂θ,λ is used because the optimized θ obtained using each criterion is always obtained as (3.5) and

(3.6) for any k. Furthermore, we must optimize q if we use model (1.1) to estimate the longitudinal

trends. This means that we optimize the parameters in the estimators and calculate the valuation

of the estimator for each q, and then we compare these values in order to optimize q. Since this

optimization requires an iterative computational algorithm, we must reduce the processing time for

estimating the parameters in the estimator. Hence, the advantage of using Ξ̂θ,λ is very important.

This optimized ridge parameter in (3.5) and (3.6) corresponds to that in Yanagihara, Nagai and

Satoh (2009) when X = Ip and λK = Oq,q.

Using some matrix properties, we showed that tr(Gλ) and tr(Hθ) in the Cp and MCp criteria are

always nonnegative. From tr(Gλ) ≥ 0 for any λ ≥ 0 in lemma 3.2, we also established the relationship

between t
(C)
i (λ) and t

(M)
i (λ) for any λ ≥ 0 in corollary 3.1. Then, in Theorem 3.1, we established the

relationship between θ̂
(C)
i (λ̂(C)) and θ̂

(M)
i (λ̂(M)) if λ̂(C) and λ̂(M) are the same, where λ̂(C) and λ̂(M) are

obtained by minimizing the Cp and MCp criteria. Note that this relationship corresponds to that

in Nagai, Yanagihara and Satoh (2010) when X = Ip and λK = Oq,q. In Theorem 3.2, we also

established the relationships between θ̂
(C)
i (λ̂(C)) and θ̂

(M)
i (λ̂(M)) for the more general case, in which

λ̂(C) and λ̂(M) are different. The reason of the relationship in Theorem 3.2 is occurred is that θ̂
(C)
i (λ)

and θ̂
(M)
i (λ) for each i = 1, . . . , k can be regarded as a function of λ.

The numerical results reveal that Ξ̂λ and Ξ̂θ,λ have some following properties. These estimation

methods Ξ̂λ and Ξ̂θ,λ improve the LS estimator in all situations, especially when ρa is large. This

indicates that the proposed estimators are better than the LS estimator. Even if ρa becomes large,

we note that Ξ̂θ,λ is stable because we add the ridge parameter to A′A in the LS estimator. This

result indicates that the multicollinearity problem in A can be avoided by using the estimator in

(2.3). These estimators can be used to estimate the true longitudinal trends nonparametrically using

basis functions as X without overfitting. The LS estimator and the proposed estimators Ξ̂λ and

Ξ̂θ,λ optimized using theMCp criterion provide a greater improvement than the estimators optimized

using the Cp criterion in most situations. The reason for this is that the MCp criterion is the unbias

estimator of MSE of the predicted value of Y . Based on the present numerical study, µ̂λ and Ξ̂θ,λ
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can be used to estimate the longitudinal trends in most situations. In addition, the MCp can be

used to optimize the smoothing parameter λ and the number of basis functions q. Hence, we can use

µ̂λ and Ξ̂θ,λ, the parameters θ, λ, and q of which are optimized by the MCp criterion for estimating

the longitudinal trends.
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Appendix

A.1. Minimization of the GCp criterion

In this appendix, we show that the optimizations using the Cp and MCp criteria in (3.3) and (3.4)

are obtained in closed form as (3.5) and (3.6) for any λ (≥ 0). Nagai, Yanagihara and Satoh (2010)

proposed the generalized Cp (GCp) criterion for the MGR regression (originally the GCp criterion for

selection variables in the univariate regression was proposed by Atkinson (1980)). Similar to their

idea, we proposed the GCp criterion for the nonparametric GMANOVA model.

By omitting constant terms and some terms with respect to λ in the Cp and MCp criteria in (3.3)

and (3.4), these criteria are included in a class of criteria specified by α (> 0). This class is expressed

by the GCp criterion as

GCp(θ, λ|α) = αr̂(Y , Ŷθ,λ) + 2tr(Gλ)tr(Hθ), (A.1)

where the function r̂ is given by (3.1). Note that GCp(θ, λ|1) and GCp(θ, λ|cM) correspond to the

terms with respect to θ in the Cp and MCp criteria. Using this GCp criterion, we can deal system-

atically with the Cp and MCp criteria for optimizing θ. Let θ̂(G)(λ|α) = (θ̂
(G)
1 (λ|α), . . . , θ̂(G)k (λ|α))′,

and let (θ̂
(G)
i (λ|α) ≥ 0, i = 1, . . . , k) minimize the GCp criterion for any λ (≥ 0). Then, θ̂(C)(λ) and

θ̂(M)(λ) are obtained as θ̂(C)(λ) = θ̂(G)(λ|1) and θ̂(M)(λ) = θ̂(G)(λ|cM), respectively. Thus, we can

deal systematically with the optimizations of θ when we use the Cp and MCp criteria. This means

that we need only obtain θ̂(G)(λ|α) in order to obtain θ̂(C)(λ) and θ̂(M)(λ) for any λ and some α. If

θ̂(G)(λ|α) is obtained in closed form for any fixed λ, we do not need to use the iterative computational

algorithm for optimizing the ridge parameter θ. In order to obtain θ̂(G)(λ|α), we obtain θ̂
(G)
i (λ|α),

(i = 1, . . . , k) in closed form, as shown in the following theorem.
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Theorem A.1. For each i and any λ (≥ 0), θ̂
(G)
i (λ) is obtained as

θ̂
(G)
i (λ|α) =


0 (ti(λ|α) ≥ 0)
−diti(λ|α)

ti(λ|α) + αuii

(ti(λ|α) < 0 and 0 < ti(λ|α) + αuii)

∞ (otherwise)

, (A.2)

where ti(λ|α) = α(vii − uii)− ditr(Gλ).

Proof. Since Ŷθ,λ = 1nµ̂
′
λX

′ +HθY Gλ and we use the properties of the function r̂ in Section 3.1,

we can calculate r̂(Y , Ŷθ,λ) in the GCp criterion in (A.1) as follows:

r̂(Y , Ŷθ,λ) = r̂(Y ,1nµ̂
′
λX

′) + 2tr{(1nµ̂λX
′ − Y )S−1(HθY Gλ)

′}+ r̂(HθY Gλ,On,p).

Since Gλ = G′
λ for any λ, Hθ = H ′

θ and Hθ1n = 0n for any θ, the second term in the right-hand

side of the above equation can be calculated as

tr{(1nµ̂λX
′ − Y )S−1(HθY Gλ)

′} = −tr(Y S−1GλY
′Hθ).

Note that Hθ = A(A′A +QΘQ′)−1A′ = AQ(D +Θ)−1Q′A′ because Q is an orthogonal matrix

and Q′A′AQ = D. Hence, we obtain the following results:

tr(Y S−1GλY
′Hθ) = tr{Q′A′Y S−1GλY

′AQ(D +Θ)−1},

r̂(HθY Gλ,On,p) = tr(HθY GλS
−1GλY

′Hθ)

= tr{Q′A′Y GλS
−1GλY

′AQ(D +Θ)−1D(D +Θ)−1}.

Since D and (D +Θ)−1 are diagonal matrices, we obtain (D +Θ)−1D(D +Θ)−1 = D(D +Θ)−2.

Hence, r̂(Y , Ŷθ,λ) is calculated as

r̂(Y , Ŷθ,λ) = r̂(Y ,1nµ̂
′
λX

′)− 2tr{V (D +Θ)−1}+ tr{UD(D +Θ)−2},

where V = Q′A′Y S−1GλY
′AQ and U = Q′A′Y GλS

−1GλY
′AQ. Clearly, V and U change with

λ. Based on this result and tr(Hθ) = tr{D(D +Θ)}, we can calculate the GCp criterion in (A.1)

as follows:

GCp(θ|λ, α) = αr̂(Y ,1nµ̂
′
λX

′) + αtr{UD(D +Θ)−2} − 2tr{(αV − tr(Gλ)D)(D +Θ)−1},

Then, we calculate the second and third terms in the right-hand side of the above equation as follows:

αtr{UD(D +Θ)−2} − 2tr{(αV − tr(Gλ)D)(D +Θ)−1} =
k∑

i=1

{
αdiuii

(di + θi)2
− 2

αvii − ditr(Gλ)

di + θi

}
,

where uij and vij are the (i, j)th elements of U and V , respectively. Clearly, uij and vij also vary

with λ. Note that uii ≥ 0, (i = 1, . . . , k) for any λ ≥ 0 because S−1 is a positive definite matrix (see,

e.g., Harville (1997)). Let φi(θi), (i = 1, . . . , k) be as follows:

φi(θi, λ|α) =
αdiuii

(di + θi)2
− 2

αvii − ditr(Gλ)

di + θi
. (A.3)
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Using φi(θi, λ|α), we can express GCp(θ, λ|α) as follows:

GCp(θ, λ|α) = αr̂(Y ,1nµ̂
′
λX

′) +
k∑

i=1

φi(θi, λ|α).

Since αr̂(Y ,1nµ̂
′
λX

′) does not depend on θ, we can obtain θ̂
(G)
i (λ|α) by minimizing φi(θi, λ|α) for

each i = 1, . . . , k and any λ (≥ 0). In order to obtain θ̂
(G)
i (λ|α), we consider the following function

for w ∈ R:

φi(w) =
αdiuii

(di + w)2
− 2

αvii − ditr(Gλ)

di + w
, (A.4)

If we restrict w to be greater than or equal to 0, then this function is equivalent to the function

φi(θi, λ|α) in (A.3), which must be minimized. Note that limw→±∞ φi(w) = 0 and limw→−di±0 φi(w) =

+∞. Letting φ̇i(w) = ∂φi(w)/∂w, we obtain

φ̇i(w) = − 2

(di + w)3
{αdiuii − (αvii − ditr(Gλ))(di + w)} .

Let ŵ satisfy φ̇i(w)|w=ŵ = 0 and ŵ ̸= ±∞, then ŵ is obtained by

ŵ =
−diti(λ|α)

ti(λ|α) + αuii

, (if ti(λ|α) + αuii ̸= 0),

where ti(λ|α) = α(vii − uii)− ditr(Gλ). Note that the function φi(w) in (A.4) has a minimum value

at ŵ, which is φ̇i(w)|w<ŵ < 0 and φ̇i(w)|w>ŵ > 0. Note that the sign of ti(λ|α) is the same as the

sign of φ̇i(w)|w=0. In order to obtain θ̂
(G)
i (λ|α) (≥ 0), we consider the following situations:

(1) ti(λ|α) ≥ 0 is satisfied,

(2) ti(λ|α) < 0 and ti(λ|α) + αuii > 0 are satisfied,

(3) ti(λ|α) < 0 and ti(λ|α) + αuii < 0 are satisfied,

In (1), −di < ŵ < 0, because uii ≥ 0 and α > 0. In addition, φ(w) ≥ φ(0) for any w ≥ 0, because

ŵ < 0, and ti(λ|α) ≥ 0 indicates that the sign of φ̇i(w)|w=0 is nonnegative. This means that the

minimum value of φ(w) in w ≥ 0 is obtained when w = 0 in situation (1). In (2), ŵ > 0, and then the

minimum value of φ(w) in w ≥ 0 is obtained when w = ŵ. In (3), since ŵ < −di and φ̇(w)|w=0 < 0,

we obtain φ(0) > φ(w1) > φ(w2) for any w2 > w1 > 0. Hence, φ(w) is minimized when w = ∞ in

w ≥ 0. From the above results, we obtain θ̂
(G)
i (λ|α) (≥ 0) as follows:

θ̂
(G)
i (λ|α) =


0 (ti(λ|α) ≥ 0)
−diti(λ|α)

ti(λ|α) + αuii

(ti(λ|α) < 0 and 0 < ti(λ|α) + αuii)

∞ (otherwise)

, (i = 1, . . . , k).

Thus, the theorem is proven.

Note that θ̂(G)(λ|α) corresponds to that in Nagai, Yanagihara and Satoh (2010) when X = Ip and

λK = Oq,q. Since we obtain θ̂(C)(λ) and θ̂(M)(λ) in closed form as (A.2) for any λ, we must optimize
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only one parameter λ in order to optimize k+1 parameters. The use of Ξ̂θ,λ is advantageous because

only an iterative computational algorithm is required for optimizing only one parameter λ for any

k. This means that we can reduce the processing time required to optimize the parameters in the

estimator Ξ̂θ,λ which is defined by (2.3). When we use Ξ̂λ in (2.1), we also need the same iterative

computational algorithm to optimize only one parameter λ.

On the other hand, when we use Ξ̂θ,λ in (2.2), the GCp criterion for optimizing θ for any fixed λ

is obtained as

GCp(θ|λ, α) = αr̂(Y ,1nµ̂
′
λX

′) +
k∑

i=1

φi(θ, λ|α).

Since we need to minimize
∑k

i=1 φi(θ, λ|α) in order to optimize θ, we cannot obtain θ̂(G)(λ|α) that
minimizes this GCp criterion for Ξ̂θ,λ in closed form, even if λ is fixed. Thus, we use an iterative

computational algorithm to optimize the parameters λ and θ simultaneously. This iterative compu-

tational algorithm for optimizing two parameters is difficult and requires a longer processing time

than the optimization of a single parameter.
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Table 1. MSE when q is selected using each criterion
for each method in each repetition (k = 6)

Using Ŷθ̂(λ̂),λ̂ Using Ŷλ̂ Using Ŷ

ρy ρa p n Cp MCp Cp MCp Cp MCp

0.2 0.2 5 30 0.127 0.123 0.133 0.125 0.206 0.199
50 0.080 0.079 0.082 0.080 0.121 0.119

10 30 0.119 0.098 0.121 0.090 0.168 0.119
50 0.063 0.058 0.062 0.056 0.080 0.070

0.8 5 30 0.110 0.101 0.143 0.135 0.206 0.199
50 0.067 0.065 0.088 0.086 0.122 0.119

10 30 0.111 0.080 0.128 0.093 0.170 0.119
50 0.056 0.049 0.063 0.057 0.080 0.070

0.99 5 30 0.090 0.078 0.147 0.140 0.207 0.199
50 0.054 0.050 0.090 0.088 0.122 0.120

10 30 0.095 0.060 0.129 0.094 0.169 0.118
50 0.045 0.036 0.064 0.058 0.079 0.069

0.8 0.2 5 30 0.133 0.131 0.154 0.147 0.208 0.201
50 0.087 0.086 0.093 0.092 0.122 0.120

10 30 0.123 0.101 0.136 0.106 0.179 0.133
50 0.069 0.065 0.070 0.065 0.089 0.080

0.8 5 30 0.113 0.103 0.159 0.153 0.207 0.200
50 0.066 0.063 0.094 0.092 0.122 0.120

10 30 0.108 0.074 0.140 0.107 0.178 0.131
50 0.055 0.047 0.072 0.065 0.088 0.078

0.99 5 30 0.092 0.078 0.162 0.156 0.208 0.201
50 0.053 0.049 0.095 0.094 0.122 0.120

10 30 0.096 0.059 0.142 0.108 0.178 0.131
50 0.046 0.037 0.073 0.066 0.087 0.078

Average 0.086 0.074 0.110 0.098 0.147 0.130

20



Table 2. MSE when q is selected using each criterion
for each method in each repetition (k = 12)

Using Ŷθ̂(λ̂),λ̂ Using Ŷλ̂ Using Ŷ

ρy ρa p n Cp MCp Cp MCp Cp MCp

0.2 0.2 5 30 0.299 0.292 0.312 0.296 0.383 0.364
50 0.184 0.183 0.183 0.180 0.222 0.217

10 30 0.317 0.247 0.326 0.226 0.382 0.248
50 0.146 0.137 0.146 0.134 0.165 0.150

0.8 5 30 0.285 0.279 0.313 0.295 0.384 0.365
50 0.175 0.173 0.182 0.179 0.223 0.218

10 30 0.305 0.223 0.329 0.216 0.378 0.226
50 0.145 0.132 0.145 0.129 0.155 0.135

0.99 5 30 0.224 0.204 0.314 0.296 0.383 0.364
50 0.142 0.138 0.183 0.180 0.222 0.218

10 30 0.270 0.173 0.330 0.211 0.377 0.221
50 0.134 0.119 0.143 0.123 0.148 0.127

0.8 0.2 5 30 0.323 0.321 0.342 0.331 0.387 0.368
50 0.204 0.204 0.205 0.203 0.224 0.219

10 30 0.330 0.277 0.344 0.256 0.389 0.282
50 0.165 0.153 0.167 0.152 0.178 0.159

0.8 5 30 0.298 0.294 0.337 0.321 0.385 0.367
50 0.191 0.191 0.200 0.197 0.224 0.220

10 30 0.309 0.244 0.346 0.251 0.386 0.265
50 0.161 0.150 0.166 0.151 0.175 0.159

0.99 5 30 0.228 0.208 0.338 0.322 0.386 0.368
50 0.142 0.137 0.199 0.196 0.223 0.219

10 30 0.263 0.170 0.347 0.236 0.384 0.247
50 0.126 0.106 0.161 0.139 0.166 0.145

Average 0.224 0.198 0.252 0.217 0.289 0.245
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