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ABSTRACT

The present paper considers a bias correction of Akaike’s information criterion (AIC) for selecting

variables in the generalized linear model (GLM). When the sample size is not so large, the AIC has

a non-negligible bias that will negatively affect variable selection. In the present study, we obtain a

simple expression for a bias-corrected AIC (corrected AIC, or CAIC) in GLMs. A numerical study

reveals that the CAIC has better performance than the AIC for variable selection.

Key words: Akaike’s information criterion, Bias correction, Generalized linear model, Maximum

likelihood estimation, Variable selection.

1. INTRODUCTION

In real data analysis, deciding the best subset of variables in regression models is an important

problem. It is common for a model selection to measure the goodness of fit of the model by the risk

function based on the expected Kullback-Leibler (KL) information (Kullback and Leibler (1951)).

For actual use, we must estimate the risk function, which depends on unknown parameters. The

most famous estimator of the risk function is Akaike’s information criterion (AIC) proposed by Akaike

(1973). Since the AIC can be simply defined as −2 × the maximum log-likelihood +2 × the number

of parameters, the AIC is widely applied in chemometrics, engineering, econometrics, psychometrics,

and many other fields for selecting appropriate models using a set of explanatory variables.

In addition, the order of the bias of the AIC to the risk function is O(n−1), which indicates

implicitly that the AIC sometimes has a non-negligible bias to the risk function when the sample

size n is not so large. The AIC tends to underestimate the risk function and the bias of AIC tends

to increase with the number of parameters in the model. Potentially, the AIC tends to choose

the model that has more parameters than the true model as the best model (see Shibata (1980)).

Combined with these characteristics, the bias will cause a disadvantage whereby the model having

the most parameters is easily chosen by the AIC among the candidate models as the best model.

One method of avoiding this undesirable result is to correct the bias of the AIC. A number of authors
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have investigated bias-corrected AIC for various models. For example, Sugiura (1978) developed an

unbiased estimator of the risk function in linear regression models, which is the UMVUE of the risk

function reported by Davies et al. (2006). Hurvich and Tsai (1989) formally adjusted the bias of the

AIC (called AICc) in several models. In particular, the AICc is equivalent to Sugiura’s bias-corrected

AIC in the case of the linear regression model. Wong and Li (1998) extended Hurvich and Tsai’s

AICc to a wider model and verified that their AICc has a higher performance than the original AIC

by conducting numerical studies.

Unfortunately, except for the linear regression model, the AICc does not completely reduce the

bias of the AIC to O(n−2). As mentioned previously, the goodness of fit of the model is measured by

the risk function based on the expected KL information. Thus, obtaining a higher-order asymptotic

unbiased estimator of the risk function will allow us to correctly measure the goodness of fit of

the model. This will further facilitate the reasonable selection of variables. From this viewpoint,

Yanagihara et al. (2003) and Kamo et al. (2011) proposed the bias-corrected AIC’s in the logistic

model and the Poisson regression model, respectively, which complementarily reduce the bias of the

AIC to O(n−2). We refer to the completely bias-corrected AIC to O(n−2) as the corrected AIC

(CAIC). Frequently, the CAIC improves the performance of the original AIC dramatically. This

strongly suggests the usefulness of the CAIC for real data analysis. Nevertheless, the CAIC is rarely

used in real data analysis because the CAIC has been derived only in a few models. Moreover, since

the derivation of the CAIC is complicated, a great deal of practice is needed in order to carry out the

calculation of the CAIC if a researcher wants to use the CAIC in a model in which the CAIC has not

been derived. Hence, the CAIC is not a user-friendly model selector under the present circumstances,

although the CAIC has better performance than the original AIC. If we can obtain the CAIC in a

small amount of time, the CAIC will become a useful and user-friendly model selector.

The goal of the present paper is to derive a simple formula for the CAIC in the widest model

possible. The model considered is the generalized linear model (GLM), which was proposed by

Nelder and Wedderburn (1972). Nevertheless, the GLM can express a number of statistical models

by changing the distribution and the link function, such as the normal linear regression model, the

logistic regression model, and the probit model, which are currently commonly used in a number of

applied fields, cf., Barnett and Nurmagambetov (2010), Matas et al. (2010), Sánchez-Carneo et al.

(2011), and Teste and Lieffers (2011). Practically speaking, the GLM can be easily fitted to real data

using the “glm” function in “R” (R Development Core Team (2011)), which implements a number of

distributions and link functions. Since the model considered herein is wide and can be easily fitted to

real data, the CAIC in the GLM is confirmed useful in real data analysis. Generally, the additional

bias correction terms in the CAIC requires estimators of several orders of moments of the response

variables. Such moments should be calculated for each specified model. However, we emphasize that
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the moments do not remain in our formula. Hence, in order to apply the CAIC to the real data

with our formula, we need only calculate the derivatives of the log-likelihood function of less than or

equal to the fourth order. Our formula can be applied using formula manipulation software such as

“Mathematica”.

The remainder of the present paper is organized as follows: In Section 2, we consider a stochastic

expansion of the maximum likelihood estimator (MLE) in the GLM. In Section 3, we propose a

new information criterion by complementarily reducing the bias of the AIC in the GLMs to O(n−2).

In Section 4, we present several examples of the CAIC in a model in which the “glm” program is

implemented. These examples will be helpful to applied researchers. In Section 5, we investigate the

performance of the proposed CAIC through numerical simulations. Technical details are provided in

the Appendix.

2. STOCHASTIC EXPANSION OF THE MLE IN THE GLM

The GLM considered herein is developed to allow us to fit regression models for the response

variables that follow a very general distribution belonging to the exponential family, the probability

density function of which is given as follows:

f(y; θ, ϕ) = exp

{
θy − b(θ)

a(ϕ)
+ c(y, ϕ)

}
, (2.1)

where a(·), b(·), and c(·) are known functions, the unknown parameter θ is referred to as the natural

location parameter, and ϕ is often referred to as the scale parameter. (For the details of the GLM,

see, e.g., Meyer et al. (2002).) In the present paper, we assume that ϕ is known. The exponential

family includes the normal, binomial, Poisson, geometric, negative binomial, exponential, gamma,

and inverse normal distributions. Let each datum consist of a sequence {(yi,xi); (i = 1, . . . , n)},
where y1, . . . , yn are independent random variables referred to as response variables, and x1, . . . ,xn

are p-dimensional nonstochastic vectors referred to as explanatory variables. The expectation of the

response yi is related to a linear predictor ηi = x′
iβ by a link function h(·), i.e., h(E[yi]) = h(µ(θi)) =

ηi. For theoretical purposes, we define u = (h ◦ µ)−1, i.e., θi = u(ηi). When h = µ−1, i.e., u is an

identity function, we say that h is the natural link function. For example, the logistic regression

model uses the natural link function. Finally, the candidate model is expressed as

yi
i.d∼ f(yi; θi(β), ϕ),

where f(·) is given by (2.1). The p-dimensional unknown vector β can be estimated by the maximum

likelihood method. The joint probability density function of y = (y1, . . . , yn)
′ is given by

f(y;β) =
n∏

i=1

f(yi; θi(β), ϕ) =
n∏

i=1

exp

{
θiyi − b(θi)

a(ϕ)
+ c(yi, ϕ)

}
.
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Hence, the log-likelihood function of the GLM is expressed as

ℓ(β;y) = log f(y;β) =
n∑

i=1

{
θiyi − b(θi)

a(ϕ)
+ c(yi, ϕ)

}
. (2.2)

Let β̂ be the MLE of β. Here, β̂ is given as the solution of the following likelihood equation:

∂

∂β
ℓ(β;y) =

1

a(ϕ)

n∑
i=1

(
yi −

∂b(θi)

∂θi

)
∂θi
∂ηi

xi =
1

a(ϕ)
X ′∆(y − µ) = 0p,

where X = (x1, . . .xn)
′, ∆ = diag(∂θ1/∂η1, . . . , ∂θn/∂ηn), and µ = (∂b(θ1)/∂θ1, . . . , ∂b(θn)/∂θn)

′.

Note that b(θ) is a C∞-class function and all of the orders of the moments of y exist in the interior

Θ0 of the natural parameter space Θ. In using some of the properties of the MLE, we have the

following regularity assumptions (see, e.g., Fahrmeir and Kaufmann (1985)):

C.1 : x′
iβ ∈ h(M) (i = 1, . . . , n), for all β ∈ B,

C.2 : h is three times continuously differentiable,

C.3 : For all xi ∈ χ, ∂θi/∂ηi ̸= 0, (i = 1, . . . , n),

C.4 : ∃n0 s.t. X
′X has full rank for n ≥ n0,

where B is an admissible open set in Rp for the parameter β, χ is a compact set for the regressors

xi, and M denotes the image µ(Θ0). Condition C.1 is necessary in order to obtain the GLM for

all β. Condition C.2 is necessary in order to calculate the bias. Conditions C.3 and 4 ensure that

X ′∆V∆X is positive definite for all β ∈ B, n ≥ n0, where

V = a(ϕ)diag

(
∂2b(θ1)

∂θ21
, . . . ,

∂2b(θn)

∂θ2n

)
.

Moreover, we have the following additional conditions to assure strong consistency and asymptotic

normality of β̂, which can be derived by slightly modifying the results reported by Fahrmeir and

Kaufmann (1985):

C.5 : sequence {xi} lies in χ with u(x′β) ∈ Θ0, β ∈ B,

C.6 : lim infn→∞ λmin(X
′∆V∆X/n) > 0,

C.7 : ∃c > 0, n1, λmin(X
′X) > cλmax(X

′X), n ≥ n1,

where λmin(A) is the smallest eigenvalue of symmetric matrix A. According to Theorem 5 in Fahrmeir

and Kaufmann (1985), β̂ has strong consistency and asymptotic normality under these conditions.

Furthermore, from C.6, X ′∆V∆X = O(n), (n→ ∞).
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Based on the above conditions, β̂ can be formally expanded as follows:

β̂ = β +
1√
n
b1 +

1

n
b2 +

1

n
√
n
b3 +Op(n

−2). (2.3)

Note that ∂ℓ(β̂;y)/∂β = 0p. By applying a Taylor expansion around β̂ = β to this equation, the

likelihood equation is expanded as follows:

0p =
1√
n
(g +G2b1) +

1

n

{
G1b2 +

1

2
G3(b1 ⊗ b1)

}
+

1

n
√
n

{
G2b3 +

1

2
G3(b1 ⊗ b2 + b2 ⊗ b1) +

1

6
(Ip ⊗ b′1)G4(b1 ⊗ b1)

}
+Op(n

−2), (2.4)

where 0p is a p-dimensional vector of zeros, and

g =
1√
n

∂ℓ(β;y)

∂β
=

1√
na(ϕ)

n∑
i=1

(yi − di1)ci1xi,

G2 =
1

n

∂2ℓ(β;y)

∂β∂β′ =
1

na(ϕ)

n∑
i=1

{−di2c2i1 + (yi − di1)ci2}xix
′
i,

G3 =
1

n

(
∂

∂β′ ⊗
∂2

∂β∂β′

)
ℓ(β;y),

=
1

na(ϕ)

n∑
i=1

{−di3c3i1 − 3di2ci1ci2 + (yi − di1)ci3}(x′
i ⊗ xix

′
i),

G4 =
1

n

(
∂2

∂β∂β′ ⊗
∂2

∂β∂β′

)
ℓ(β;y)

=
1

na(ϕ)

n∑
i=1

{−di4c4i1 − 6di3c
2
i1ci2 − 3di2ci1c

2
i2 − 4di2ci3 + (yi − di1)ci4}(xix

′
i ⊗ xix

′
i).

Here, coefficients cik and dik, (i = 1, . . . , n; k = 1, . . . , 4) are defined as

cik =
∂kθi
∂ηki

, dik =
∂kb(θi)

∂θki
. (2.5)

Note that cik is determined by the link function, and dik is determined by the distribution of the

model. Let us define Zi =
√
n(Gi −Mi) (i = 2, 3, 4), where Mi = E[Gi], the explicit forms of which

are

M2 =
1

na(ϕ)

n∑
i=1

(−di2c2i1)xix
′
i,

M3 =
1

na(ϕ)

n∑
i=1

(−di3c3i1 − 3di2ci1ci2)(x
′
i ⊗ xix

′
i),

M4 =
1

na(ϕ)

n∑
i=1

(−di4c4i1 − 6di3c
2
i1ci2 − 3di2c

2
i2 − 4di2ci1ci3)(xix

′
i ⊗ xix

′
i).
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Thus, Zi (i = 2, 3, 4) can be expressed as

Z2 =
1√
na(ϕ)

n∑
i=1

{(yi − di1)ci2}xix
′
i,

Z3 =
1√
na(ϕ)

n∑
i=1

{(yi − di1)ci3}(x′
i ⊗ xix

′
i),

Z4 =
1√
na(ϕ)

n∑
i=1

{(yi − di1)ci4}(xix
′
i ⊗ xix

′
i).

Based on the regularity assumptions, nonsingularity ofM2 is guaranteed. Furthermore, the regularity

assumptions and Conditions C.6 and C.7 ensure the asymptotic normality of Zi. Hence, we can

rewrite (2.4) as

0p =
1√
n
(g +M2b1) +

1

n

{
M2b2 +

1

2
M3(b1 ⊗ b1) + Z2b1

}
+

1

n
√
n

{
M2b3 +

1

2
M3(b1 ⊗ b2 + b2 ⊗ b1)

+
1

6
(Ip ⊗ b′1)M4(b1 ⊗ b1) + Z2b2 +

1

2
Z3(b1 ⊗ b1)

}
+Op(n

−2). (2.6)

Comparing the terms of the same order in both sides of (2.6), the explicit forms of b1, b2, and b3 are

obtained as follows:

b1 = −M−1
2 g,

b2 = −M−1
2

{
1

2
M3(b1 ⊗ b1) + Z2b1

}
,

b3 = −M−1
2

{
1

2
M3(b1 ⊗ b2 + b2 ⊗ b1) +

1

6
(Ip ⊗ b1)

′M4(b1 ⊗ b1) + Z2b2 +
1

2
Z3(b1 ⊗ b1)

}
.

3. BIAS CORRECTION OF THE AIC

The goodness of fit of the model is measured by the risk function based on the expected KL

information, as follows:

R = EyEy∗ [−2ℓ(β̂;y∗)],

where y∗ = (y∗1, . . . , y
∗
n)

′ is an n-dimensional random vector that is independent of y and has the

same distribution as y. At the beginning of this section, we derive the bias of −2ℓ(β̂;y) to R. Under

ordinary circumstances, calculation of the expectations of y under the specific distribution are needed

in order to express the bias. However, based on the characteristics of the exponential family, we can

obtain the bias without calculating the expectations of y under the specific distribution. The explicit

form of the bias can be expressed by several derivatives of the log-likelihood function.
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The bias when we estimate R by −2ℓ(β̂;y) is given as

B = R− Ey[−2ℓ(β̂;y)] = Ey

[
Ey∗

[
2ℓ(β̂;y)− 2ℓ(β̂;y∗)

]]
= 2Ey

[
n∑

i=1

(yi − di1)

a(ϕ)
θ̂i

]
. (3.1)

By applying a Taylor expansion around β̂ = β to θ̂i = (h ◦ µ)−1(x′
iβ̂), θ̂i is expanded as

θ̂i = θi + (β̂ − β)′
∂θi
∂β

+
1

2
(β̂ − β)′

∂2θi
∂β∂β′ (β̂ − β)

+
1

6
(β̂ − β)′

{(
∂

∂β′ ⊗
∂2

∂β∂β′

)
θi

}
{(β̂ − β)⊗ (β̂ − β)}+Op(n

−2). (3.2)

Substituting the stochastic expansion of β̂ in (2.3) into (3.2) yields the following:

θ̂i = θi +
1√
n
ci1x

′
ib1 +

1

n

{
ci1x

′
ib2 +

1

2
ci2(x

′
ib1)

2

}
+

1

n
√
n

{
ci1x

′
ib3 + ci2(x

′
ib1)(x

′
ib2) +

1

6
ci3(x

′
ib1)

3

}
+Op(n

−2). (3.3)

By combining (3.1) and (3.3), we obtain

B = 2E

[
n∑

i=1

(yi − di1)

a(ϕ)
θi

]
+

2√
n
E

[
n∑

i=1

(yi − di1)

a(ϕ)
ci1x

′
ib1

]

+
2

n
E

[
n∑

i=1

(yi − di1)

a(ϕ)

{
ci1x

′
ib2 +

1

2
ci2(x

′
ib1)

2

}]

+
2

n
√
n
E

[
n∑

i=1

(yi − di1)

a(ϕ)

{
ci1x

′
ib3 + ci2(x

′
ib1)(x

′
ib2) +

1

6
ci3(x

′
ib1)

3

}]
+O(n−2). (3.4)

Recall that di1 = ∂b(θi)/∂θi = E[yi]. This yields the first term of (3.4), as follows:

2E

[
n∑

i=1

(yi − di1)

a(ϕ)
θi

]
= 0. (3.5)

Since E[gg′] = −M2, the second term of (3.4) can be calculated as

2√
n
E

[
n∑

i=1

(yi − di1)

a(ϕ)
ci1x

′
ib1

]
= −2E[g′M−1

2 g] = 2p. (3.6)

The third term of (3.4) can be obtained as

E

[
2

n

n∑
i=1

yi − di1
a(ϕ)

{
ci1x

′
ib2 +

1

2
ci2(x

′
ib1)

2

}]

=
3

n2a(ϕ)

n∑
i=1

di3c
2
i1ci2U

2
ii +

1

n3a(ϕ)2

n∑
i,j

di3c
3
i1(dj3c

3
j1 + 3dj2cj1cj2)U

3
ij +O(n−2), (3.7)

where
∑n

i,j refers to
∑n

i=1

∑n
j=1, and Uij is the (i, j)th element of the matrix U = XM−1

2 X ′, i.e.,

Uij = x′
iM

−1
2 xj. (3.8)

7



Note that coefficient Uij is determined by both the link function and the distribution of the model.

The derivation of (3.7) is shown in Appendix A.1. Furthermore, the fourth term of (3.4) can be

expanded as

2

n
√
n
E

[
n∑

i=1

(yi − di1)

a(ϕ)

{
ci1x

′
ib3 + ci2(x

′
ib1)(x

′
ib2) +

1

6
ci3(x

′
ib1)

3

}]

= − 1

n2a(ϕ)

n∑
i=1

(di4c
4
i1 + 6di3c

2
i1ci2 − di2c

2
i2)U

2
ii

− 1

n3a(ϕ)2

n∑
i,j

{2(di3c3i1)(dj3c3j1 + 3dj2cj1cj2) + 4(di2ci1ci2)(dj2cj1cj2)}U3
ij

− 1

n3a(ϕ)2

n∑
i,j

{(di3c3i1)(dj3c3j1 + 3dj2cj1cj2) + 4(di2ci1ci2)(dj2cj1cj2)}UijUiiUjj +O(n−2). (3.9)

The detailed derivation of (3.9) is given in Appendix A.2.

Finally, by substituting (3.5), (3.6), (3.7), and (3.9) into (3.4), we obtain the asymptotic expansion

of B up to order n−1 as

B = 2p+
1

n
(w1 + w2) +O(n−2), (3.10)

where

w1 = − 1

na(ϕ)

n∑
i=1

(di4c
4
i1 + 3di3c

2
i1ci2 − di2c

2
i2)U

2
ii,

w2 = − 1

n2a(ϕ)2

n∑
i,j

{di3c3i1(dj3c3j1 + 3dj2cj1cj2) + 4(di2ci1ci2)(dj2cj1cj2)}(U3
ij + UijUiiUjj).

(3.11)

By a simple calculation, we have ci1 = 1 and ci2 = 0 when the link function is natural. Thus, if the

model has the natural link function, w1 and w2 became simple, as follows:

w1 = − 1

na(ϕ)

n∑
i=1

di4U
2
ii,

w2 = − 1

n2a(ϕ)2

n∑
i,j

di3dj3(U
3
ij + UijUiiUjj).

(3.12)

Equation (3.10) yields the following formula for the CAIC:

CAIC = AIC +
1

n
(ŵ1 + ŵ2), (3.13)

where ŵ1 and ŵ2 are defined by replacing β in w1 and w2 with β̂. On the other hand, if h is not

the natural link function, we have to use w1 and w2 in (3.11). Note that ŵ1 and ŵ2 depend only

on several derivatives. Therefore, we can comfortably obtain coefficients ŵ1 and ŵ2 using formula

manipulation software.
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4. THE CAIC IN THE MODELS IMPLEMENTED IN “glm”

In this section, we will present several examples of the CAIC in the GLM, which can be used

in the “glm” of the “R” software. In “glm”, the binomial distribution accepts the links “logit”,

“Probit”, “cauchit”, and “cloglog” (complementary log-log). The Gamma distribution accepts the

“inverse”, “identity”, and “log” links. The Poisson accepts the distribution of the “log”, “identity”,

and “sqrt” links, and the inverse Gaussian distribution accepts the “1/µ2”, “inverse”, and “log”

links. These examples are obtained through our formula in (3.13). If h is the natural link function,

w1 and w2 in (3.13) are expressed as shown in (3.12). Otherwise, w1 and w2 in (3.13) are expressed

as in (3.11). Next, we present the coefficients of the CAIC in the all of models mentioned above.

The results indicate that the CAIC in the model with a non-natural link function is more complex

than that in the model with the natural link function. An expression of the log-likelihood function

of the GLM is given by Equation (2.1).

4.1. Case of the Binomial Distribution

When we assume that yi is distributed according to the Binomial distribution B(mi, pi) (i =

1, . . . , n), the parameters and functions based on the distribution are given by

θi = log

(
pi

1− pi

)
, b(θi) = mi log(1 + exp(θi)),

ϕ = 1, a(ϕ) = 1, c(yi, ϕ) = log

(
mi

yi

)
.

Then, the coefficients of the CAIC specifying the distribution are given by

di1 =
mi exp(θi)

1 + exp(θi)
, di2 =

mi exp(θi)

(1 + exp(θi))2
,

di3 =
mi exp(θi)(1− exp(θi))

(1 + exp(θi))3
, di4 =

mi exp(θi)(1− 4 exp(θi) + exp(2θi))

(1 + exp(θi))4
.

The remaining coefficients of the CAIC, which are determined by the link function, are as follows:

• Case of the logistic link function, i.e., E[yi] = mipi = mi(1 + exp(−ηi))−1 (natural link function):

Uij = x′
i

{
− 1

n

n∑
k=1

mk exp(−ηk)
(1 + exp(−ηk))2

xkx
′
k

}
xj.

The CAIC derived from the above coefficients coincides with the CAIC reported by Yanagihara et

al. (2003).

• Case of the probit link function, i.e., mipi = miΦ(ηi), where Φ(·) is the cumulative distribution
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function (CDF) of the standard normal distribution:

ci1 =
ϕ(ηi)

(1− Φ(ηi))Φ(ηi)
, ci2 = − ϕ(ηi)

{(1− Φ(ηi))Φ(ηi)}2
{ηiΦ(ηi)(1− Φ(ηi)) + ϕ(ηi)(1− 2Φ(ηi))},

Uij = x′
i

{
− 1

n

n∑
k=1

mkϕ(ηk)
2

(1− Φ(ηk))Φ(ηk)
xkx

′
k

}−1

xj,

where ϕ(·) is the probability density function (PDF) of the standard normal distribution.

• Case of the cauchit link function, i.e., mipi = miΨ(ηi), where Ψ(·) is the CDF of the standard

Cauchy distribution:

ci1 =
ψ(ηi)

(1−Ψ(ηi))Ψ(ηi)
, ci2 =

ψ(ηi)
2

{(1−Ψ(ηi))Ψ(ηi)}2
{2πηiΨ(ηi)(1−Ψ(ηi))− (1− 2Ψ(ηi))},

Uij = x′
i

{
− 1

n

n∑
k=1

mkψ(ηk)
2

(1−Ψ(ηk))Ψ(ηk)
xkx

′
k

}−1

xj,

where ψ(·) is the PDF of the standard Cauchy distribution.

• Case of the cloglog link function i.e., mipi = mi −mi exp{− exp(ηi)}:

ci1 =
exp(ηi)

1− exp(− exp(ηi))
, ci2 =

exp(ηi){1− (1− exp(ηi)) exp(− exp(ηi))}
{1− exp(− exp(ηi))}2

,

Uij = x′
i

{
− 1

n

n∑
k=1

mk exp(2ηk) exp(exp(ηk))

1− exp(− exp(ηk))
xkx

′
k

}−1

xj.

4.2. Case of the Poisson Distribution

Second, when we assume that yi is distributed according to a Poisson distribution Po(λi) (i =

1, . . . , n), the parameters and functions based on the model are given as follows:

θi = log λi, b(θi) = exp(θi),

ϕ = 1, a(ϕ) = 1, c(yi, ϕ) = − log(yi!).

The coefficients of the CAIC specifying the distribution are given by

di1 = di2 = di3 = di4 = exp(θi).

The remaining coefficients of the CAIC, which are determined by the link function, are as follows:

• Case of the log link function, i.e., E[yi] = λi = eηi (natural link function):

Uij = x′
i

{
− 1

n

n∑
k=1

exp(ηk)xkx
′
k

}
xj.

The CAIC obtained from the above coefficients coincides with that reported by Kamo et al. (2011).
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• Case of the identity link function, i.e., λi = ηi:

ci1 =
1

ηi
, ci2 = − 1

η2i
, Uij = x′

i

(
− 1

n

n∑
k=1

1

ηk
xkx

′
k

)
xj.

• Case of the sqrt link function, i.e., λi = η2i :

ci1 =
2

ηi
, ci2 = − 2

η2i
, Uij = x′

i

(
− 4

n

n∑
k=1

xkx
′
k

)
xj.

4.3. Case of the Gamma Distribution

When we assume that a positive observed response, yi, is distributed according to the Gamma

distribution Γ(λi, ν) (i = 1, . . . , n), the parameters and functions based on the model are given as

follows:

θi = − 1

λiν
, b(θi) = − log(−θi),

ϕ = ν, a(ϕ) = ϕ−1, c(yi, ϕ) = ν log ν − log(Γ(ν)) + (ν − 1) log yi,

where Γ(·) is the gamma function. Then, the coefficients of the CAIC specifying the distribution are

given by

di1 = −θ−1
i , di2 = θ−2

i , di3 = −2θ−3
i , di4 = 6θ−4

i .

The remaining coefficients of the CAIC, which are determined by the link function, are as follows:

• Case of the inverse link function, i.e., E[yi] = λiν = η−1
i (natural link function):

Uij = x′
i

(
−ν
n

n∑
k=1

η−2
k xkx

′
k

)−1

xj.

• Case of the log link function, i.e., λiν = exp(ηi):

ci1 = exp(−ηi), ci2 = − exp(−ηi), Uij = x′
i

(
−ν
n

n∑
k=1

xkx
′
k

)−1

xj.

• Case of the identity link function, i.e., λiν = ηi:

ci1 = η−2
i , ci2 = −2η−3

i Uij = x′
i

(
−ν
n

n∑
k=1

η−4
k xkx

′
k

)−1

xj.
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4.4. Case of the Inverse Gaussian Distribution

When we assume that a positive observed response, yi, is distributed according to the inverse

Gaussian distribution IG(µi, λ) (i = 1, . . . , n), the parameters and functions based on the model are

given as follows:

θi = µ−2
i , b(θi) = 2

√
θi,

ϕ = λ, a(ϕ) = −λ
2
, c(yi, ϕ) =

1

2
log(λ)− 1

2
log(2πx3)− λ

2x
,

Then, the coefficients of the CAIC specifying the distribution are given as

di1 = θ
−1/2
i , di2 = −1

2
θ
−3/2
i , di3 = 3θ

−5/2
i , di4 = −15

2
θ
−7/2
i .

The remaining coefficients of the CAIC, which are determined by the link function, are as follows:

• Case of the 1/µ2 link function, i.e., E[yi] = µi = η
−1/2
i (natural link function):

Uij = x′
i

(
− 1

nλ

n∑
k=1

η
−3/2
k xkx

′
k

)−1

xj.

• Case of the inverse link function, i.e., µi = η−1
i :

ci1 = 2ηi, ci2 = 2, Uij = x′
i

(
− 4

nλ

n∑
k=1

η−1
k xkx

′
k

)−1

xj.

• Case of the log link function, i.e., µi = exp(ηi):

ci1 = −2 exp(−2ηi), ci2 = 4 exp(−2ηi), Uij = x′
i

(
− 4

nλ

n∑
k=1

exp(−ηk)xkx
′
k

)−1

xj.

5. NUMERICAL STUDIES

In this section, we conduct numerical studies to show that the CAIC is better than the original

AIC. At the beginning of this section, we examine the numerical studies for the frequencies of the

model and the prediction error of the best models selected by the criteria. We prepared the eight

candidate models with n = 50 and 100. First, we constructed an n× 8 explanatory variable matrix

X = (x1, . . . ,xn)
′. The first column of X is 1n, where 1n is an n-dimensional vector of ones, and

the remaining seven columns of X were defined by realizations of independent dummy variables with

binomial distribution B(1, 0.4). In this simulation, we prepared two parameters β, as follows:

Case1 : β = (0.65,−0.65)′, Case2 : β = (0.1, 0.1, 0.3,−0.5)′.
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The explanatory variables matrix in the jth model consists of the first j columns of X (j = 1, . . . , 8).

Thus, in case 1, the true model is the second model, and in case 2, the true model is the fourth model.

We simulated 1,000 realizations of y = (y1, . . . , yn) in the probit regression model, i.e., yi
i.d∼ B(1, pi),

where pi = Φ(x′
iβ) (i = 1, . . . , n).

Table 1: Selection-probability and prediction error for the case of β = (0.65,−0.65)′

n Model 1 2 3 4 5 6 7 8 PEB

Risk 66.29 64.54 65.58 67.06 68.78 70.45 72.37 74.47 -
50 AIC 28.4 44.8 8.0 6.2 3.2 3.2 3.3 2.9 68.34

CAIC 34.5 48.6 7.8 4.8. 1.6 1.4. 1.0 0.3 66.94
Risk 130.81 126.19 127.31 128.52 129.67 130.98 132.27 133.64 -

100 AIC 11.3 58.8 11.6 6.8 4.1 3.5 1.1 2.8 128.95
CAIC 12.0 62.4 10.8 6.3 3.2 2.8 1.1 1.4 128.55

Table 2: Selection-probability and prediction error for the case in which β = (0.1, 0.1, 0.3,−0.5)′

n Model 1 2 3 4 5 6 7 8 PEB

Risk 70.17 71.36 72.13 71.99 73.63 75.22 77.25 79.22 -
50 AIC 47.2 7.7 7.7 19.4 6.4 5.4 3.0 3.2 74.8

CAIC 55.2 8.7 7.9 17.9 4.9 2.5 1.8 1.1 73.79
Risk 139.54 140.23 140.09 137.91 138.94 140.14 141.25 142.45 -

100 AIC 27.4 4.0 8.2 40.3 8.6 5.1 3.6 2.8 140.42
CAIC 29.8 4.7 8.8 40.9 7.1 4.0 3.0 1.7 140.29

Tables 1 and 2 list the following properties.

(1) selection-probability: the frequency of the model chosen by minimizing the information crite-

rion.

(2) prediction error of the best model (PEB): the risk function of the model selected by the

information criterion as the best model, which is estimated as

P̂EB =
1

1000

1000∑
i=1

Ey∗ [−2ℓ(β̂Bi ;y
∗)],

where y∗ is a future observation, and β̂Bi is the value of β̂ of the selected model at the ith

iteration.

In particular, PEB is an important property because it is equivalent to the expected KL information

between the true model and the best model selected by the criteria. In case 1 with n = 50 and

100 and in case 2 with n = 100, the model having the smallest risk function (referred to as the

principle best model) coincides with the true model. On the other hand, in case 2 with n = 50,
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the principle best model became the first model rather than the fourth model, i.e., the true model

did not conform with the principle best model. This means that using a model that is smaller than

the true model is better for prediction in case 2 with n = 50. From Tables 1 and 2, we can see

that the selection-probabilities and prediction errors of the CAIC were improved in all situations in

comparison with the AIC. We simulated several other models and obtained similar results.

Table 3: Selection-probability and estimated prediction error

Selected model AIC CAIC
Logistic Probit Total Logistic Probit Total

X Ray 0 0 0 0 5 5
X Ray, Acid 0 3 3 0 3 3
X Ray, Age 0 1 1 0 1 1
X Ray, Grade 0 1 1 1 3 4
X Ray, Stage 25 5 30 24 38 62
X Ray, Grade, Acid 0 4 4 0 1 1
X Ray, Stage, Acid 5 22 27 0 15 15
X Ray, Stage, Age 0 4 4 0 6 6
X Ray, Stage, Grade 0 2 2 0 2 2
X Ray, Grade, Age, Acid 2 0 2 1 0 1
X Ray, Stage, Age, Acid 0 17 17 0 0 0
X Ray, Stage, Grade, Acid 1 6 7 0 0 0
X Ray, Stage, Grade, Age 0 1 1 0 0 0
X Ray, Stage, Grade, Age, Acid 0 1 1 0 0 0

P̂EB 146.5 145.8

Next, for the purpose of analyzing the GLM, we consider the data reported in Brown (1980),

who discussed an experiment in which 53 prostate cancer patients underwent surgery to examine

their lymph nodes for evidence of cancer. The response variable is the number of patients with

nodal involvement, and there were five predictor variables: X Ray, Stage, Age, Acid, and Grade.

First, we assume that the response variable yi is distributed according to B(1, pi) (i = 1, . . . , n).

For the link function, we prepare two functions: the logistic link function and the Probit link func-

tion. In this analysis, we select the link functions and variables simultaneously. Table 3 shows the

selection-probability of the model selected by minimizing the information criterion and the estimated

prediction error of the best model selected by the information criterion. We divide the data into

calibration sample data and validation sample data. The sample sizes of the calibration sample and

the validation sample were 43 and 10, respectively. The best subset of the variables and the link

function were selected by criteria derived from the calibration sample. The selection-probabilities

were evaluated from only the calibration sample. The prediction errors were estimated as follows.

Let dj = (d1j, . . . , dnj) be an n-dimensional vector expressing a pattern to leave out 10 data at the

jth iteration j = 1, . . . , 100), i.e., dij = 1 or 0 and
∑n

i=1 dij = 10. Moreover, we let β̂B,[−dj ] denote
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β̂[−dj ] of β of the best model evaluated from the calibration sample, where β̂[−dj ] is given as

β̂[−dj ] = argmax
β

53∑
i=1

(1− dij) log f(yi;β).

Finally, the estimated PEB is given as

P̂EB =
1

100

100∑
j=1

1

10

53∑
i=1

dij

{
−2 log f(yi; β̂B,[−dj ])

}
.

Table 3 indicates that the models selected by the AIC were spread over a wider area than those of

the CAIC, although the model most selected by the AIC is the same as that selected by the CAIC.

In particular, the selection probability of the model most selected by the CAIC is much higher than

that selected by the AIC. The estimated prediction error of the CAIC was smaller than that of the

AIC. Thus, the CAIC is thought to have improved the accuracy of the original AIC.

Consequently, from Tables 1, 2, and 3, we recommend the use of the CAIC rather than the AIC

for selecting variables in the GLMs.

6. CONCLUSION

In the present paper, we derived a simple formula for the CAIC in the GLM. All of the coefficients

in our formula are the first through fourth derivatives of the log-likelihood function. The GLM can

express a number of statistical models by changing the distribution and the link function and can be

easily fitted to the real data using the function “glm” in the “R” software, which implements several

distributions and link functions. Hence, based on the real data analysis, the present result is useful

for real data analysis. Moreover, the numerical studies revealed that the CAIC is better than the

original AIC.

For example, we presented explicit forms of the CAIC in all of the models that are implemented in

“glm”. These explicit forms are thus confirmed to be useful in real data analysis. Even if a researcher

wants to use the CAIC in a model that for which an example CAIC has not yet been derived, the

researcher can easily obtain the CAIC using formula manipulation software.

In the present paper, we deal primarily with variable selection. However, in the simulation of

the real data analysis, we also considered the selection of the link function. If we choose the link

function by minimizing the original AIC, the optimal link function is determined only by maximizing

the log-likelihood function. On the other hand, if we use the CAIC to select the link function, the

optimal link function is not determined only by maximizing the log-likelihood function. Thus, using

the CAIC will allow us to select an appropriate link function.

As mentioned above, we confirm that the results are useful and user friendly.

15



APPENDIX

A.1 Derivation of the Third Term of (3.4)

In order to calculate the moments of b1 and Z2, we rewrite the third term of (3.4) using b1, Z2,

and M3 as

2

n
E

[
n∑

i=1

(yi − di1)

a(ϕ)

{
ci1x

′
ib2 +

1

2
ci2(x

′
ib1)

2

}]
=

1√
n
E [b′1M3(b1 ⊗ b1)] +

3√
n
E [b′1Z2b1] , (A.1)

where cij and dij are defined in (2.5), and Uij is defined in (3.8). Let φb1(t) be the characteristic

function of the distribution of b1, defined as

φb1(t) = E[exp(it′b1)] =
n∏

j=1

E[exp{i(yj − dj1)sj}],

sj = − 1√
na(ϕ)

cj1t
′M−1

2 xj,

where t = (t1, . . . , tp)
′. Note that E[exp{i(y − µ)s}] is the characteristic function of y − µ, which is

expressed as

E[exp{i(y − µ)s}] = exp

{
b(θ + isa(ϕ))− b(θ)

a(ϕ)
− iµs

}
.

Therefore, we have

φb1(t) = exp

{
n∑

j=1

(
b(θj + isja(ϕ))− b(θj)

a(ϕ)
− idj1sj

)}
.

Based on the property of the random variable with mean zero, the third moment is equivalent to the

third cumulant. Since |sj| = O(n−1/2), logφb1(t) can be expanded as

logφb1(t) =
n∑

j=1

{
b(θj + isja(ϕ))− b(θj)

a(ϕ)
− idj1sj

}

=
1

a(ϕ)

n∑
j=1

{
1

2
dj2(isja(ϕ))

2 +
1

6
dj3(isja(ϕ))

3 +
1

24
dj4(isja(ϕ))

4

}
+O(n−3/2).

Thus, the third cumulant of b1 = (b11, . . . , b1p)
′ is computed through the derivative of logφb1(t), i.e.,

E[b1α1b1α2b1α3 ] = i−3 ∂
3 logφb1(t)

∂tα1∂tα2∂tα3

∣∣∣∣
t=0

= a(ϕ)2
n∑

j=1

dj3
∂sj
∂tα1

∂sj
∂tα2

∂sj
∂tα3

+O(n−3/2).

Note that

∂sj
∂tαl

= − 1√
na(ϕ)

cj1e
′
αl
M−1

2 xj,
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where ej is the p-dimensional vector, the jth element of which is 1 and the other elements of which

are 0. Thus, using Equations (2.5) and (3.8), we obtain

1√
n
E[b′1M3(b1 ⊗ b1)] =

1

n3a(ϕ)

n∑
i,j

dj3c
3
j1(di3c

3
i1 + 3di2ci1ci2)U

3
ij +O(n−2). (A.2)

Let φb1,Z2(t, T1) denote the characteristic function of the joint distribution for b1 and Z2 as

φb1,Z2(t, T1) = exp

{
n∑

j=1

b(θj + ivja(ϕ))− b(θj)

a(ϕ)
− idj1vj

}
,

where T1 = (t
(1)
ij ) (i, j = 1, . . . , p) and

vj =
1√
na(ϕ)

(−cj1t′M−1
2 xj + cj2x

′
jT1xj).

In the same manner as in the calculation of log ϕb1(t), we have

logφb1,Z2(t, T ) =
n∑

j=1

{
b(θj + ivja(ϕ))− b(θj)

a(ϕ)
− idj1vj

}

=
1

a(ϕ)

n∑
j=1

{
1

2
dj2(ivja(ϕ))

2 +
1

6
dj3(ivja(ϕ))

3 +
1

24
dj4(ivja(ϕ))

4

}
+O(n−3/2).

Note that

∂vk
∂ti

= − 1√
na(ϕ)

ck1e
′
iM

−1
2 xk,

∂vk
∂Tij

=
1√
na(ϕ)

ck2(e
′
ixk)(e

′
jxk).

Hence, we obtain

1√
n
E[b1Z2b1] =

1

n2a(ϕ)

n∑
i=1

di3c
2
i1ci2U

2
ii +O(n−2). (A.3)

Substituting (A.2) and (A.3) into (A.1), the third term of (3.4) is given by (3.7).

A.2 Derivation of the Fourth Term of (3.4)

In order to use the asymptotic properties, we express the fourth term of (3.4) in terms of b1, Z2,

Z3 M2 M3, and M4 as

2

n
√
n
E

[
n∑

i=1

(yi − di1)

a(ϕ)

{
ci1x

′
ib3 + ci2(x

′
ib1)(x

′
ib2) +

1

6
ci3(x

′
ib1)

3

}]
= − 1

n
E
[
(b1 ⊗ b1)

′M ′
3M

−1
2 M3(b1 ⊗ b1)

]
+

1

3n
E [(b1 ⊗ b1)

′M4(b1 ⊗ b1)]

− 3

n
E
[
(b1 ⊗ b1)

′M ′
3M

−1
2 Z2b1

]
− 4

n
E
[
b′1Z2M

−1
2 Z2b1

]
+

4

3n
E [b′1Z3(b1 ⊗ b1)] . (A.4)
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Let φb1,Z2,Z3(·) denote the characteristic function of the joint distribution for b1, Z2, and Z3 defined

by

φb1,Z2,Z3(t, T2, T3) = exp

{
n∑

j=1

(
b(θj + irja(ϕ))− b(θj)

a(ϕ)
− idj1rj

)}
,

where T2 = (T
(2)
ij ) (i, j = 1, . . . , p), T3 = (T

(3)
ijk ) (i, j, k = 1, . . . , p) and

rj =
1√
na(ϕ)

(−cj1t′M−1
2 xj + cj2x

′
jT2xj + cj3x

′
jT3(xj ⊗ xj)).

In order to simplify the calculations, we define the following notation:

τkj =
1

a(ϕ)

1

k!
(ia(ϕ)djkrj)

k,

κij =
n∑

α=1

∂2τ2α
∂ti∂tj

= − 1

na(ϕ)

n∑
m=1

dm2c
2
m1(e

′
iM

−1
2 xm)(e

′
jM

−1
2 xm), (A.5)

κi,kl =
n∑

α=1

∂2τ2α

∂ti∂T
(2)
jk

=
1

na(ϕ)

n∑
m=1

dm2cm1cm2(e
′
iM

−1
2 xm)(e

′
kxm)(e

′
lxm), (A.6)

κik,jl =
n∑

α=1

∂2τ2α

∂T
(2)
ik ∂T

(2)
jl

= − 1

na(ϕ)

n∑
m=1

dm2c
2
m2(e

′
ixm)(e

′
kxm)(e

′
jxm)(e

′
lxm), (A.7)

κi,ijk =
n∑

α=1

∂2τ2α

∂ti∂T
(3)
ijk

=
1

na(ϕ)

n∑
m=1

dm2cm1cm3(e
′
iM

−1
2 xm)(e

′
ixm)(e

′
jxm)(e

′
kxm). (A.8)

Using the derivations of ϕb1,Z2,Z3 , the first term of (A.4) is given by

E[(b1 ⊗ b1)
′M ′

3M
−1
2 M3(b1 ⊗ b1)] =

p∑
i,j,k,l

[M ′
3M

−1
2 M3]i,j,k,lE[bi1bj1bk1bl1]

=

p∑
i,j,k,l

[M ′
3M

−1
2 M3]i,j,k,l

∂4φb1,Z2,Z3(t, T2, T3)

∂ti∂tj∂tk∂tl

∣∣∣∣
t=0p,T2=0,T3=0

.

By applying a Taylor expansion, we obtain

∂4

∂ti∂tj∂tk∂tl
exp

{
n∑

j=1

(
b(θj + irja(ϕ))− b(θj)

a(ϕ)
− idj1rj

)}∣∣∣∣∣
t=0p,T2=0,T3=0

=
∂4

∂ti∂tj∂tk∂tl
exp

{
n∑

j=1

(τ2j + τ3j + τ4j) +O(n−3/2)

}∣∣∣∣∣
t=0p,T2=0,T3=0

=

{
κijκkl + κikκjl + κjkκil +

n∑
α=1

∂4τ4α
∂ti∂tj∂tk∂tl

+O(n−2/3)

}
exp

{
1 +O(n−3/2)

}
.

Note that |rj| = O(n−1/2) and

∂4τ4α
∂ti∂tj∂tk∂tl

=
n∑

α=1

a(ϕ)3dα4
∂rα
∂ti

∂rα
∂tj

∂rα
∂tk

∂rα
∂tl

= O(n−1).
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Hence, the first term of (A.4) is expressed as

E[(b1 ⊗ b1)
′M ′

3M
−1
2 M3(b1 ⊗ b1)] =

p∑
i,j,k,l

[M ′
3M

−1
2 M3]i,j,k,l(κijκkl + κikκjl + κjkκil) +O(n−1). (A.9)

By substituting (A.5) into (A.9), we obtain

E[(b1 ⊗ b1)
′M ′

3M
−1
2 M3(b1 ⊗ b1)]

=
1

n2a(ϕ)2

n∑
i,j

(di2c
3
i1 + 3di2ci1ci2)(dj2c

3
j1 + 3dj2cj1cj2)(UiiUijUjj + 2U3

ij) +O(n−1). (A.10)

The remaining terms of (A.4), as well as the first term of (A.4), will be calculated. The second

term of (A.4) is similarly obtained from (A.10) as follows:

E[(b1 ⊗ b1)
′M4(b1 ⊗ b1)] = − 3

n

1

a(ϕ)

n∑
i=1

(di4c
4
i1 + 6di3c

2
i1ci2 + 3di2c

2
i2 + 4di2ci1ci3)U

2
ii +O(n−1).

(A.11)

Next, we calculate the third term of (A.4). The third term of (A.4) is expressed as follows:

E
[
(b1 ⊗ b1)

′M ′
3M

−1
2 Z2b1

]
=

p∑
i,j,k,l

[M ′
3M

−1
2 ]i,j,kE[b1ib1jb1lZ2,kl]

=

p∑
i,j,k,l

[M ′
3M

−1
2 ]i,j,k(κijκl,kl + κikκj,kl + κjkκi,kl) +O(n−1), (A.12)

Expression (A.6) implies that

E
[
(b1 ⊗ b1)

′M ′
3M

−1
2 Z2b1

]
= − 1

n2a(ϕ)2

n∑
i,j

(di3c
3
i1 + 3di2ci1ci2)dj2cj1cj2(UiiUijUjj + 2U3

ij) +O(n−1). (A.13)

The fourth term of (A.4) is as follows:

E
[
b′1Z2M

−1
2 Z2b1

]
=

p∑
i,j,k,l

[M−1
2 ]jk(κilκik,jl + κi,ijκl,kl + κi,klκl,ij) +O(n−1). (A.14)

It follows from (A.7) and (A.14) that

E
[
b′1Z2M

−1
2 Z2b1

]
= − 1

na(ϕ)

n∑
i=1

di2c
2
i2Uii +

1

n2a(ϕ)2

n∑
i,j

(di2ci1ci2)(dj2cj1cj2)(UiiUijUjj + U3
ij) +O(n−1). (A.15)

Finally, we calculate the fifth term of (A.4). Note that

E [b′1Z3(b1 ⊗ b1)] =

p∑
i,j,k

E[Z3,ijkb1ib1jb1k]

=

p∑
i,j,k

(κijκk,ijk + κikκj,ijk + κjkκi,ijk) +O(n−1). (A.16)
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Substituting (A.8) into (A.16) yields

E [b′1Z3(b1 ⊗ b1)] =
3

n

n∑
i=1

di2ci1ci3U
2
ii +O(n−1). (A.17)

Consequently, from (A.10), (A.11), (A.13), (A.15), and (A.17), we obtain the fourth term of (3.4) as

(3.9).
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