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Abstract

Principal components analysis (PCA) is one method for reducing the dimension of the explanatory

variables, although the principal components are derived by using all the explanatory variables.

Several authors have proposed a modified PCA (MPCA), which is based on using only selected

explanatory variables in order to obtain the principal components (see e.g., Jolliffie, 1972, 1986;

Robert and Escoufier, 1976; Tanaka and Mori, 1997). However, MPCA uses all of the selected

explanatory variables to obtain the principal components. There may, therefore, be extra variables

for some of the principal components. Hence, in the present paper, we propose a generalized PCA

(GPCA) by extending the partitioning of the explanatory variables. In this paper, we estimate the

unknown vector in the linear regression model based on the result of a GPCA. We also propose some

improvements in the method to reduce the computational cost.

Key words: Cross validation; MPCA; Linear regression model; Principal components analysis; Step-

up procedure; Variable selection.

1. Introduction

In the present paper, we work with a linear regression model with n observations of the response

variables and a p-dimensional vector of the regressors. Let y = (y1, . . . , yn) be the n-dimensional

response vector, X = (x1, . . . , xn)′ be the n × p matrix of nonstochastic explanatory variables of

rank(X) = p (< n), and let ε be the n-dimensional error vector, where n is the sample size. Then,

the form of the linear regression model is expressed as follows:

y = Xβ + ε,

where β is a p-dimensional unknown vector. The least-square estimator of β is derived as β̂ =

(X ′X)−1X ′y. When n becomes small or p becomes large, the multicollinearity problem tends to

occur. When that happens, the estimator of β becomes unstable.
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In order to avoid this problem, several methods for reducing the dimension of X have been

proposed and are often used. One of these methods is to use principal components analysis (PCA)

(see, e.g., Jollifie (1986), Hasie, Tibshirani, and Friedman (2009), Srivastava (2002)). When we use

PCA, we combine the explanatory variables based on the eigenvalues and eigenvectors of the sample

covariance matrix S =
∑n

i=1(xi −
∑n

j=1 xj/n)(xi −
∑n

j=1 xj/n)′/(n− 1). For estimating β, we solve

the following eigenvalue problem:

Sa = λa. (1.1)

Let the solutions of the above equation be λ1 ≥ · · · ≥ λp ≥ 0 where λi is an eigenvalue of S, and

let ai be the eigenvector corresponding with λi. When we use the first through r0th eigenvectors

a1, . . . , ar0 (1 ≤ r0 ≤ p), we estimate β and derive the predictor of y as follows:

β̂PCR = (A′X ′XA)−1A′X ′y and ŷPCR = XAβ̂PCR,

where A = (a1, . . . , ar0), which is a p × r0 matrix. This method of estimation is called principal

components regression (PCR). One method to decide r0 is based on the cross-validation (CV) method

for minimizing the predicted mean squared error (PMSE). In Section 3, we illustrate the algorithm

for selecting r0 in detail.

The principal components in PCR are derived by using all of the explanatory variables X.

However, occasionally, β̂PCR or ŷPCR becomes unstable. In order to stabilize the estimation method,

we combine the variable selection method with PCA. Tanaka and Mori (1997) proposed a modified

PCA (MPCA), which is obtained by using PCA after selecting the explanatory variables. In MPCA,

we partition X as X = (X1, X2), where Xi is an n×qi matrix, q1+q2 = p, and X1 corresponds with

the variables selected by some method. Then, we use PCA only for X1, and then we can estimate β

and derive the predictor of y with the same method as the PCR. We refer to this method as MPCR

and will illustrate it in more detail in Section 2.

In MPCA, the principal components are derived from X1, which contains the selected variables.

If some principal components depend only on part of X1, we can further partition X1 into dependent

and independent variables. By thus partitioning the selected explanatory variables of X1, we obtain

more accurate principal components. We refer to this method as generalized PCA (GPCA) since we

generalize the partitioning of the explanatory variables, and more details are presented in Section 2.

In Section, 2 we propose that we can estimate β and derive the predictor of y by using the result

of this method, which we call generalized PCR (GPCR). On the other hand, some group of the

explanatory variables may depend on several of the principal components. If this is the case, then

we change the partitioning of X1 and obtain the estimator and predictor by using almost the same

method as in GPCR. We call this method the more generalized PCR (MGPCR), and we illustrate

this method in the appendix.
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The remainder of the present paper is organized as follows: In Section 2, we illustrate MPCA

and MPCR and propose our methods of GPCA and GPCR. In Section 3, we show the algorithm for

optimizing several parameters in each of the estimating methods for β. In Section 4, we compare these

methods by conducting numerical studies and show some techniques for reducing the computational

cost. In Section 5, we present our conclusions.

2. MPCA, MPCR, and GPCR

In this section, firstly, we illustrate the MPCA method that was proposed by Tanaka and Mori

(1997), and propose a new method, MPCR, which is based on MPCA. These methods are obtained

by partitioning X into two parts, the selected variables and the non-selected variables. Then, we

obtain the results of MPCA by using PCA for the selected variables, and then we are able to perform

MPCR by using the results of MPCA. In MPCA, we use the principal components that are obtained

from all of the selected variables. Some of the principal components may depend on only some of

the selected variables. Then, for obtaining these principal components, we can partition the selected

variables into those that are dependent or independent for these components. Based on this idea, we

propose a new method, which is referred as GPCA.

2.1. MPCA and MPCR

In this subsection, we illustrate MPCA, which was proposed by Tanaka and Mori (1997), and

also MPCR, which is based on the results of MPCA. MPCA uses PCA for the selected variables in

order to stabilize the estimator of β. That is, MPCA is based on X1 which contains the selected

variables, where X = (X1, X2), Xi is an n× qi matrix, and q1 + q2 = p. For introducing MPCA, we

partition the sample covariance matrix S as follows:

S =

(
S

[1]
11 S

[1]
12

S
[1]
21 S

[1]
22

)
=

(
S

[1]
1

S
[1]
2

)
,

where S
[1]
ij is a qi × qj matrix. This partitioning corresponds with the partitioning of X = (X1,X2).

Based on the results in Rao (1964), we wish to minimize tr{S −S
[1]′

1 W (W ′S
[1]
11W )−1WS

[1]
1 }, which

is the trace of the residual covariance matrix between X and the best linear prediction for X by

using W ′X ′
1. This minimization problem boils down to the following generalized eigenvalue problem:

S
[1]
1 S

[1]′

1 b = νS
[1]
11b. (2.1)

By solving the above problem, we derive the generalized eigenvalues ν1 ≥ · · · ≥ νq1 and bi, which is

the eigenvector that corresponds with νi. When we use the first through r1th eigenvectors, we obtain

the estimator of β and predictor of y as follows:

β̂MPCR = (B′X ′
1X1B)−1B′X ′

1y and ŷMPCR = X1Bβ̂MPCR,
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where B = (b1, . . . , br1) is a q1 × r1 matrix. This estimation method is referred as MPCR. Note

that MPCR only depends on X1, which contains the selected explanatory variables. In MPCR, we

need to decide the selected variables X1, the dimension q1 of X1, and the number r1 of principal

components. We determine these parameters by using the CV method. Details of the selection

algorithm are shown in Section 3. Extensions of this method for qualitative data were proposed by

Mori, Tanaka, and Tarumi (1997).

2.2. GPCA and GPCR

In this subsection, we propose our methods of GPCA and GPCR. In MPCA, the principal com-

ponents b1, . . . , br1 are obtained from X1. For example, there is some group of variables that are

meaningful to the principal component bi but meaningless to the other principal components bj

(i ̸= j); there is another group of variables that are meaningful to bj but meaningless to bi. Hence

we consider extending the partitioning of X with and without overlapping partitions in order to de-

rive more accurate principal components. We present GPCA, which is based on partitioning without

overlapping partitions, in this subsection. MGPCR, which is based on partitioning with overlapping

partitions, is presented in the appendix.

For GPCA, let X be partitioned as (X1, . . . , Xs+1) without overlapping, where Xi is an n × q′i

matrix, q′s+1 = q2, and q′1 + · · · + q′s+1 = p. First, we derive a simple extension method in which

the ith principal component is obtained from Xi. As we did for MPCA in the above subsection, we

partition the sample covariance matrix S as follows:

S =

 S
[2]
11 · · · S

[2]
1(s+1)

...
. . .

...

S
[2]
(s+1)1 · · · S

[2]
(s+1)(s+1)

 =

 S
[2]
1
...

S
[2]
(s+1)

 ,

where S
[2]
ij is a q′i × q′j matrix. This partitioning also corresponds with the partitioning of the

explanatory variables X = (X1, . . . , Xs+1). From Rao (1964), as was done for MPCA, we wish

to minimize tr{S − S
[2]′

1 c(c′S
[2]
11c)−1c′S

[2]
1 }, which is the trace of the residual covariance matrix

between X and the best linear prediction for X by using c′X1. Without loss of generality, we

assume c′S
[2]
11c = 1. By using the Lagrange multiplier and by differentiating it with respect to c, the

following generalized eigenvalue problem is derived:

S
[2]
1 S

[2]′

1 c = ηS
[2]
11c,

. A simpler form is obtained by letting γ = (S
[2]
11 )1/2c, and the eigenvalue problem is expressed as

follows:

(S
[2]
11 )−1/2S

[2]
1 S

[2]′

1 (S
[2]
11 )−1/2γ = ηγ. (2.2)
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Hence we obtain the maximum eigenvalue η1 and the corresponding eigenvector γ1. Then the first

principal component is derived by c1 = (S
[2]
11 )−1/2γ1. The kth principal component is obtained by

maximizing c′S
[2]
k S

[2]′

k c under c, and satisfies c′S
[2]
kkc = 1 and c′S

[2]
kj cj = 0 (j = 1, . . . , k − 1). Let

γ = (S
[2]
kk)

1/2c and γi = (S
[2]
ii )1/2ci (i = 1, . . . , k − 1). Then these conditions can be represented as

follows:

γ ′γ = 1 and γ ∈
⟨
(S

[2]
kk)

−1/2S
[2]
k1(S

[2]
11 )−1/2γ1, . . . , (S

[2]
kk)

−1/2Sk(k−1)(S
[2]
(k−1)(k−1))

−1/2γk−1

⟩⊥
,

where ⟨δ1, . . . , δκ⟩ is the space that is based on δ1, . . . , δκ, and < · >⊥ is the orthogonal complement

space. Let Πk be the orthogonal projection matrix (i.e., Πk satisfies Π2
k = Π′

k = Πk, and Πkγ = γ)

for the space
⟨
(S

[2]
kk)

−1/2S
[2]
k1(S

[2]
11 )−1/2γ1, . . . , (S

[2]
kk)

−1/2Sk(k−1)(S
[2]
(k−1)(k−1))

−1/2γk−1

⟩⊥
. Then maximiz-

ing c′S
[2]
k S

[2]′

k c under the conditions of c′S
[2]
kkc = 1 and c′S

[2]
kj cj = 0 (j = 1, . . . , k− 1) is equivalent to

maximizing γ ′Πk(S
[2]
kk)

−1/2S
[2]′

k (S
[2]
kk)

−1/2Πkγ under the condition of γ ′γ = 1. By using the Lagrange

multiplier and differentiating with respect to γ, the following eigenvalue problem is obtained:

Πk(S
[2]
kk)

−1/2S
[2]
k S

[2]′

k (S
[2]
kk)

−1/2Πkγ = ζγ. (2.3)

When we solve this equation, we obtain the maximum eigenvalue and the corresponding eigenvector

γk. We obtain the kth principal component as ck = (S
[2]
kk)

−1/2γk.

When we use this simple extended method, we obtain only the ith principal component in the

ith group Xi (i = 1, . . . , s). Next, we consider obtaining more than one principal component from

each group Xi. The j1th through jr′j
th (r′j ≤ q′j) principal components are derived from the jth

group Xj (j = 1, . . . , s). When all jr′j
are 1, the following method corresponds with the above

simple extension. Letting γ = (S11)
1/2c and considering the same problem as in the above simple

extension, the 11th through 1r′1
th principal components are obtained by solving equation (2.2). When

we solve equation (2.2), we obtain the eigenvalues η1 ≥ · · · ≥ ηq′1
and the corresponding eigenvectors

γ1, . . . , γq′1
. By using these eigenvectors γ1, . . . , γr′1

(r′1 ≤ q′1), we obtain the 1jth principal components

as c1j
= (S

[2]
11 )−1/2γj (j = 1, . . . , r′1, r′1 ≤ q′1). By using these principal components, we obtain

the matrix C1 = (c11 , . . . , c1r′1
), which is a q′1 × r′1 matrix. As in the simple extension, we solve

equation (2.3) to obtain the k1th through kr′k
th principal components. Let the solutions of equation

(2.3) be ζ1 ≥ · · · ≥ ζq′k
that are eigenvalues, and the corresponding eigenvectors be γ1, . . . , γq′k

.

Since we need the first through kr′k
th principal components, we use γ1, . . . , γr′k

and refer to them as

γk1 , . . . , γkr′
k

. Then we obtain Ck = (ck1 , . . . , ckr′
k

), which is a q′k×r′k matrix where ckj
= (S

[2]
kk)

−1/2γkj

(j = 1, . . . , r′k). Let Z = (X1, . . . , Xs) and

Ψ =


C1 Oq′1×r′2

· · · Oq′1×r′s

Oq′2×r′1
C2 · · · Oq′2×r′s

...
...

. . .
...

Oq′s×r′1
Oq′s×r′2

· · · Cs

 ,
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where Ol×m is a l × m matrix where all the elements are zero. Then we obtain the estimator of β

and the predictor of y as follows:

β̂GPCR = (Ψ′Z ′ZΨ)−1Ψ′Z ′y and ŷGPCR = ZΨβ̂MMPCR.

This estimation method is referred as GPCR. To use this method, we need to decide the selected

variables Z, the dimension q′i (i = 1, . . . , s) of each matrix Xi, and the number r′i (i = 1, . . . , s) of

principal components in each Xi. In this paper, by using the CV method, we can determine these

parameters. We present the details of the algorithm for deciding these parameters in Section 3.

3. The algorithms for each method

In this section, we present the algorithms for PCR, MPCR, and GPCR. Many computational

tasks are required when we consider determining several parameters in each method by using the

CV method. Hence we propose the modified CV (MCV), which determines several parameters and

thus reduces the computational cost.

3.1. The algorithm for PCR

In this subsection, we illustrate the algorithm for PCR. In PCR, we need to determine the number

of principal components. The algorithm for deciding the parameters for PCR by using the CV method

is as follows:

1. Delete the ith row in y and X to obtain y(−i) and X(−i).

2. Solve equation (1.1) using X(−i), that is, use S(−i) =
∑

j ̸=i{xj −
∑

l ̸=i xl/(n − 1)}{xj −∑
l ̸=i xl/(n − 1)}′/(n − 2) instead of S.

3. Obtain the solutions λ1(−i) ≥ · · · ≥ λp(−i), which are eigenvalues, and the corresponding eigen-

vectors a1(−i), . . . , ap(−i) for S(−i), and make A(−i,r0) = (a1(−i), . . . , ar0(−i)).

4. Obtain the estimator and predictor, β̂PCR(−i,r0) = (A′
(−i,r0)X

′
(−i)X(−i)A(−i,r0))

−1A′
(−i,r0)X

′
(−i)y(−i)

and ŷ(−i,r0) = x′
iA(−i,r0)β̂PCR(−i,r0), where X = (x1, . . . , xn)′.

5. Calculate si,r0 = (yi − ŷ(−i,r0))
2 for i = 1, . . . , n.

6. Obtain Er0 =
∑n

i=1 si,r0/n after calculation for the fixed r0.

7. Calculate Er0 for r0 = 1, . . . , p − 1, and minimize Er0 to obtain the optimal r∗0.

8. Obtain the eigenvalues λ1 ≥ · · · ≥ λr∗0
≥ · · · ≥ λp and the corresponding eigenvectors

a1, . . . , ar∗0
, . . . , ap by solving equation (1.1).
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9. Obtain the estimator and predictor, β̂PCR = (A∗′X ′XA∗)−1A∗′X ′y and ŷPCR = XA∗β̂PCR,

where A∗ = (a1, . . . , ar∗0
).

Note that for this method it is necessary to optimize only r0.

Deciding r0 is one of the important problems in PCA. We use the CV method in this paper, and

thus we can determine r0 with the same method when we use PCA.

3.2. The algorithm for MPCR

In this subsection, we illustrate the algorithm for MPCR which is based on the result of MPCA

(Tanaka and Mori, 1997). For MPCA and MPCR, we need to select the variables for X1, the

dimension q1 of X1, and the number r1 of the principal components. Note that q1 is decided when

we choose X1. There are several methods for selecting variables in order to derive X1 from X =

(x(1), . . . , x(p)). We use a step-up procedure, since many computational tasks would otherwise be

required if we were to consider all combinations of the explanatory variables. The algorithm for

optimizing parameters and variable selection with a step-up procedure in MPCR is as follows:

1. Let y(−i) be obtained by deleting the ith row from y, and let X(·,−j) be obtained by deleting

x(j), which is the jth column of X, and set t = 1. More generally, we express x(j) as X(·,j).

2. Let x′
(i,j) and x′

(i,−j) be the ith row vectors in X(·,j) and X(·,−j), respectively. Let X(−i,j) and

X(−i,−j) be obtained by deleting x′
(i,j) and x′

(i,−j) from X(·,j) and X(·,−j), respectively.

3. Calculate S
[1]
11 and S

[1]
12 , which are the sample covariance matrices in X(−i,j) and between X(−i,j)

and X(−i,−j), respectively. Note that S
[1]
11 is a t × t matrix, and S

[1]
12 is a t × (p − t) matrix.

4. Obtain the eigenvalues ν
(−i,j)
1 ≥ · · · ≥ ν

(−i,j)
t and the corresponding eigenvectors b

(−i,j)
1 , . . . , b

(−i,j)
t

by solving the generalized eigenvalue problem in equation (2.1) where S
[1]
1 = (S

[1]
11 ,S

[1]
12 ).

5. Obtain the estimator and predictor as β̂MPCR(−i,j,r1) = (B′
(−i,j,r1)X

′
(−i,j)X(−i,j)B(−i,j,r1))

−1B′
(−i,j,r1)

X ′
(−i,j)y and ŷMPCR(−i,j,r1) = x′

(i,j)B(−i,j,r1)β̂MPCR(−i,j,r1), where B(−i,j,r1) = (b
(−i,j)
1 , . . . , b

(−i,j)
r1 )

(r1 ≤ t) under a given r1.

6. Calculate si,j,r1 = (yi − ŷMPCR(−i,j,r1)) for i = 1, . . . , n; j = 1, . . . , p − t + 1.

7. Calculate E1(j, r1) =
∑n

i=1 si,j,r1 .

8. Obtain j∗t (r1), which minimizes E1(j, r1) under fixed r1, and let ℓt = x(j∗t (r1)).

9. Renew t as t = t + 1. Set X(·,−j) = X [1] and X(·,j) = X [2], where X [1] is X with x(j∗t (r1))

deleted, and X [2] = (ℓ1, . . . , ℓt−1,x
(j∗t (r1))).
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10. Return to step 2 until t = p. Note that this method coincides with the method of PCR when

t = p.

11. Obtain the optimized t as t∗, r1 as r∗1, and X1 as X∗
1 = (x(j∗1 (r∗1)), . . . , x(j∗

t∗ (r∗1))) after iteration

over i, j, and r1.

12. Obtain the eigenvalues ν1 ≥ · · · ≥ νr∗1
≥ · · · ≥ νq1 and the corresponding eigenvectors

b∗
1, . . . , b

∗
r∗1

, . . . , b∗
q1

by using X∗
1 , which is an n × q1 matrix. Partition S corresponding to

the dimension of X∗
1 , and solve equation (2.1).

13. Obtain the estimator and predictor as β̂MPCR = (B∗′X∗
1
′X∗

1B
∗)−1B∗′X∗

1
′y and ŷMPCR =

X∗
1B

∗β̂MPCR, where B∗ = (b∗
1, . . . , b

∗
r∗1

).

Note that this method needs to obtain X∗
1 , q1, and r∗1. Hence, it is easy to predict that this method has

more computations than PCR. Since GPCR needs to decide a greater number of parameters than are

needed for MPCR, we can predict that more computations are required. Thus, when we use GPCR

with the same methods as for PCR in Section 3.1 and MPCR in Section 3.2, it becomes impractical.

Hence we consider improving the CV method in order to reduce the number of computations.

3.3. Improvements to the CV method

In this subsection, we improve the CV method in order to reduce the required computations so

that it becomes a practical system. When we use the CV method with MPCR or GPCR, we must

make many computations in order to optimize several parameters. In order to reduce the number

of computations, we will improve the CV method, as follows. Let P be the principal components

matrix for each method, that is, P = A when we use PCR, and P = B when we use MPCR. First,

we consider improving the method for si,r0 or si,j,r1 in each method. Using matrices, we can calculate

this as follows:

n∑
i=1

(yi − x′
iP β̂)2 = y′(In − H)(In − G)−2(In − H)y,

where H = XP (P ′X ′XP )−1P ′X ′, G = diag(h11, . . . , hnn), hij is the (i, j)th element of H , and β̂

is the estimator of each method. Second, we consider reducing the computations for obtaining the

eigenvalues and eigenvectors, which are in P for each method. Using the ordinary CV method, we

delete the ith row vector in y and X. Then we obtain P by using the eigenvectors in each method

and calculate si,r0 or si,j,r1 . For each i, we calculate P(−i), which contains the eigenvectors based

on deleting the ith row vector in X. We consider using P , which is made up of the eigenvectors

obtained by X, instead of using P(−i). By using P , we can obtain Q = (P ′x1, . . . , P
′xn)′. Then

we consider deleting the ith row vector in Q and using it to obtain β̂(−i) for each method. Then we

8



calculate si,r0 or si,j,r1 . When we use this method, the number of computations is reduced since we

obtain the eigenvector only one time for several fixed parameters. We call this improved method the

modified CV (MCV) method.

When we use these improvements, especially the second improvement methods, the eigenvectors

are changed. But, by conducting numerical studies with MPCR, we will show below that the precision

of the CV method is not harmed with these improvements. First, we compare the CV and MCV

methods based on the PMSE. Let xi be obtained independently from Np(0p, Ip) (i = 1, . . . , n + 1),

and then X = (x1, . . . , xn)′, where 0p is a p-dimensional vector all of whose elements are zero.

Next, we obtain y from y = Xβ + ε, where ε ∼ Nn(0n, In) and β = (1m,0p−m)′, and 1m is an

m-dimensional vector all of whose elements are ones, and yn+1 = x′
n+1β + e, where e ∼ N(0, 1). We

consider the following two estimators for R = E[(yn+1 − x′
n+1Bβ̂MPCR)2]:

R1 =
1

n

n∑
i=1

(yi − x′
iBβ̂MPCR(−i))

2 and R2 =
1

n

n∑
i=1

(yi − x′
iB(−i)β̂MPCR(−i))

2.

In these estimators, R1 is the risk corresponding with the MCV method, and R2 is the risk cor-

responding with the ordinary CV method. In order to compare these estimators, we calculate the

averages of R−R1, R−R2, (R−R1)
2, and (R−R2)

2, all across 1, 000 repetitions. By the following

method, we compared the R1 and R2 obtained from using MPCR:

1. Let X0 be obtained by the first through wth columns in X, and let X1 be obtained by deleting

x(w) from X.

2. Let r′ be the number of principal components, B be a w×r′ matrix, and B(−i) be a (w−1)×r1

matrix.

3. Obtain β̂MPCR and β̂MPCR(−i).

4. Let x′
i·0 be the ith row vector in X0, and then calculate R, R1, and R2 by using x′

n+1 and x′
i·0.

5. Calculate the average of R − Ri and (R − Ri)
2 for i = 1, 2 across 1, 000 repetitions.

The results of several situations are provided in Tables 1 and 2.

In Tables 1 and 2, R1 was obtained by using the MCV method, and R2 was obtained by the CV

method. Based on the results, although R1 is biased, the mean squared error (MSE) of R1 is smaller

than that of R2. The values of the MSE obtained from R1, R2, and R are nearly equal. Hence, we

use R1 instead of using R2 on the sense of the MSE

Second, we conducted numerical studies to compare the PMSEs for the CV and MCV methods. As

in the above numerical studies, we obtained the xi independently from Np(0p, Ip) for i = 1, . . . , n+1,

and let X = (x1, . . . , xn)′, ε ∼ Nn(0n, In), and β = (1m,0p−m)′. Then we obtained y = Xβ + ε
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Table 1. The results of comparison when (n, p) = (30, 10)

m w r′ E[R1] E[R2] E[R] E[R − R1] E[R − R2] E[(R − R1)
2] E[(R − R2)

2]
3 5 3 1.9762 2.2412 2.1579 0.1817 -0.0834 0.7017 0.9081
8 5 3 5.8131 6.4084 6.2043 0.3911 -0.2042 3.2592 4.5862

Table 2. The results of comparison when (n, p) = (40, 15)

m w r′ E[R1] E[R2] E[R] E[R − R1] E[R − R2] E[(R − R1)
2] E[(R − R2)

2]
3 12 9 1.7933 1.9922 1.9847 0.1914 -0.0076 0.3692 0.4970
10 9 7 3.6245 4.3016 4.5416 0.9170 0.2399 2.5817 2.9288
12 13 12 1.8991 2.2638 2.2950 0.3960 0.0312 0.7219 1.2654

Table 3. The results of comparison based on the PMSE when (n, p) = (30, 15)

m MPCR with CV MPCR with MCV p-value EMPCR 95% confidence interval
3 1.7837 1.7630 0.5372 0.0206 (-0.0445,0.0863)
8 1.9468 1.8920 0.2645 0.0548 (-0.0415,0.1511)
13 2.5616 2.6992 0.1759 0.1759 (-0.3370,0.0618)

and yn+1 = x′
n+1β + e, where e ∼ N(0, 1). By using the algorithm for MPCR in Section 3.2, with

the CV and MCV methods, we determined X1, the dimension of X1, and the number of principal

components. Based on X1, we let xi·1 be the corresponding variables in xn+1. Then, by using

the number of principal components and X1, we obtained B and β̂MPCR. We calculated EMPCR =

(yn+1 − x′
i·1Bβ̂MPCR)2 and averaged EMPCR across 1, 000 repetitions. We fixed (n, p) = (30, 15), and

m = 3, 5, 8. We used the t test, which is a method to test if the difference is 0.

As shown in Table 3, the results of the t test show that there are not significant differences

between the methods. Hence, based on the PMSE, the results of using the CV and MCV methods

are nearly equal, and so, in order to reduce the number of computations, we can safely use the MCV

method instead of the CV method.

3.4. The improved algorithms for PCR and MPCR

By using the MCV method, we improve the algorithms for both the PCR and MPCR methods,

and the number of computations may be reduced to only a tenth of those needed for ordinary PCR

and MPCR .

First, we present this improved method for PCR. We have to decide the number of the principal

components r0 for PCR. We propose the following improved algorithm:

1. Solve the eigenvalue problem (1.1), and form A(r0) from r0th eigenvectors (1 ≤ r0 ≤ p).

2. Calculate y′(In − H(r0))(In − G(r0))
−2(In − H(r0))y, where G(r0) = diag(h

(r0)
11 , . . . , h

(r0)
nn ), h

(r0)
ij

is the (i, j)th element of H(r0), and H(r0) = XA(r0)(A
′
(r0)X

′XA(r0))
−1A′

(r0)X
′.

3. Calculate the above value for r0 = 1, . . . , p, and then obtain the r∗0 which minimizes it.

10



4. Obtain the estimator and predictor by the same method as for ordinary PCR.

By using this algorithm, we can obtain the estimator and predictor with fewer computations.

Second, we propose an improved method for MPCR. We need to decide the dimension of X1, the

selected variables X1, and the number of principal components r1. The proposed improved algorithm

is as follows:

1. Let t = 1, let X(·,−j) be obtained by deleting x(j), and let X(·,j) be x(j).

2. Obtain S
[1]
11 and S

[1]
12 , which are calculated by the sample covariance matrix of X(·,j) and the sam-

ple covariance matrix between X(·,j) and X(·,−j), respectively, then we obtain S
[1]
1 = (S

[1]
11 ,S

[1]
12 ).

3. Obtain the eigenvalues ν
(j)
1 ≥ · · · ≥ ν

(j)
t and the corresponding eigenvectors b

(j)
1 , . . . , b

(j)
t by

solving the generalized eigenvalue problem in equation (2.1).

4. When we use B(j,r1) = (b
(j)
1 , . . . , b

(j)
r1 ), we obtain y′(In −H(j,r1))(In −G(j,r1))

−2(In −H(j,r1))y,

where G(j,r1) = diag(h
(j,r1)
11 , . . . , h

(j,r1)
nn ), h

(j,r1)
st is the (s, t)th element of H(j,r1), and H(j,r1) =

XB(j,r1)(B
′
(j,r1)X

′XB(j,r1))
−1B′

(j,r1)X
′.

5. Calculate the above value for 1 ≤ r1 ≤ t and obtain j∗t (r1) that minimizes the above value, and

let ℓt = x(j∗t (r1)).

6. Return to step 2 until t = p, the same as in step 9 in the algorithm for MPCR in Section 3.2.

7. Obtain the optimized t as t∗, r1 as r∗1, and X∗
1 = (x(j∗1 (r∗1)), . . . , x(j∗

t∗ (r∗1))), the same as in the

algorithm for MPCR, and the estimator and predictor are as obtained by the same method as

in step 13 in the algorithm for the MPCR in Section 3.2.

By using this algorithm, we can reduce the number of computations for obtaining the estimator and

predictor.

3.5. The algorithm for GPCR

Since we can reduce the number of computations, we propose an algorithm for GPCR that uses

the MCV method. When we perform GPCR, the number of computations increases with the number

of partitions of X. Hence we consider partitioning X into three groups, X = (X1, X2, X3). For

selecting the explanatory variables and obtaining X1 and X2, we use the step-up procedure. We fix

one explanatory variable as X1, one as X2, and then the rest of X is X3. Then we use the same

step-up procedure method for X2 as we used for MPCR until the dimension of X3 becomes zero, and

we obtain the optimal X∗
2 which minimizes y′(In −H)(In −G)−2(In −H)y. Then we use the same

method for selecting X1 under fixed X∗
2 . Although we selected the explanatory variable for obtaining
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X1 until the dimension of X1 becomes p in MPCR, since GPCR requires many computations, we

stop the loop for selection when the minimized value by using the added explanatory variables is

no larger than that by using the originally explanatory variables. In GPCR, we need to determine

X1, X2, the dimensions of each matrix, and the number of principal components r1 and r2. The

proposed algorithm for this method is as follows:

1. Let X(·,j) = X1; X(·,−j) = L, which is obtained by deleting x(j) from X; Lq = X2; L−q = X3;

t = 1; and l = 1.

2. Calculate S
[2]
11 , S

[2]
12 , S

[2]
13 , S

[2]
22 , S

[2]
23 , and S

[2]
33 , where S

[2]
ij is the sample covariance matrix between

Xi and Xj.

3. Obtain the 11th through 1r′1
th principal components and C

(j,r′1)
1 based on these principal com-

ponents by solving equation (2.2), where S
[2]
1 = (S

[2]
11 ,S

[2]
12 ,S

[2]
13 ) and S2 = (S

[2]′

12 ,S
[2]
22 , S

[2]
23 ).

4. Make Π2 and obtain the 21th through 2r′2
th principal components by solving (2.3), and then

we obtain C
(j,r′2)
2 based on these principal components and Ψ(j,r′1,r′2).

5. Calculate y′(In−H(j,r′1,r′2))(In−G(j,r′1,r′2))
−2(In−H(j,r1,′r′2))y, where Z = (X1,X2), H(j,r′1,r′2) =

ZΨ(j,r′1,r′2)(Ψ
′
(j,r′1,r′2)Z

′ZΨ(j,r′1,r′2))
−1Ψ′

(j,r′1,r′2)Z
′, h

(j,r′1,r′2)

ii′ is the (i, i′)th element of H(j,r′1,r′2), and

G(j,r′1,r′2) = diag(h
(j,r′1,r′2)
11 , . . . , h

(j,r′1,r′2)
nn ).

6. Obtain q∗ which minimizes the above value after changing q.

7. Renew Ll = Lq∗ , l = l+1, and L by deleting the q∗th column of L. Then X2 = (L1, . . . , Ll−1,Lq)

and L−q = X3. We return to step 3 until the dimension of (X1,X2) is equal to the dimension

of X. When l ≥ 2, we must select r′2.

8. Obtain r′∗2 and X2 that minimize y′(In − H(j,r′1,r′2))(In − G(j,r′1,r′2))
−2(In − H(j,r′1,r′2))y, change

j to 1, and return to step 2.

9. Obtain d, r′∗2 , and X2 that minimize y′(In − H(j,r′1,r′2))(In − G(j,r′1,r′2))
−2(In − H(j,r′1,r′2))y.

10. Let Xd = Kt, obtain X by deleting the dth column of X, and increase t to t + 1. Also, let

(K1, . . . , Kt−1, X(·,j)) = X1, X(·,−j) = L, Lq = X2, and L−q = X3. Return to step 2. When

t ≥ 2, we have to select the number r′1 of principal components.

11. Stop the loop when the minimized value in t = t + 1 is greater than the minimized value in t.

If we stop the loop, X∗
1 , X∗

2 , r′∗1 , and r′∗2 are obtained by minimizing y′(In − H(j,r′1,r′2))(In −
G(j,r′1,r′2))

−2(In − H(j,r′1,r′2))y.

12



12. Obtain X∗
1 based on d, X∗

2 based on q∗, then X3 contains the remainder of X. Derive C1 and

C2 based on r′∗1 and r′∗2 , respectively, and Ψ.

13. Obtain the estimator and predictor as β̂GPCR and ŷGPCR.

4. Numerical studies

In this section, we compare PCR, MPCR, and GPCR by conducting numerical studies. We then

propose a new method for improving the GPCR, which is referred to as GPCR-h and is based on

the selected variables in MPCR. After proposing GPCR-h, we compare PCR, MPCR, GPCR, and

GPCR-h by conducting numerical studies.

4.1. Numerical study 1

By using the algorithm proposed in Section 3.4, we compare these methods as follows:

1. Obtain xi ∼ Np(0p, Ip) (i = 1, . . . , n + 1) independently and set X = (x1, . . . , xn)′.

2. Obtain y = Xβ + ε and yn+1 = x′
n+1β + e, where ε ∼ Nn(0n, In), e ∼ N(0, 1), and β =

(1m,0p−m)′.

3. By using the appropriate algorithms, decide r∗0 for PCR; r∗1 and X∗
1 for MPCR; and r′∗1 , r′∗2 ,

X∗
1 , and X∗

2 for GPCR .

4. Use X in PCR, X∗
1 in MPCR, and X# = (X∗

1 ,X
∗
2 ) in GPCR, and obtain the estimator for β

in each method.

5. Calculate EPCR = (yn+1 − x′
n+1Aβ̂PCR)2 for PCR; EMPCR = (yn+1 − x′

[1]Bβ̂MPCR)2 for MPCR,

where x[1] is the corresponding column with X∗
1 in xn+1; and EGPCR = (yn+1 − x′

[2]Ψβ̂GPCR)2

for GPCR, where x[2] is the corresponding column with X# in xn+1.

6. Calculate the averages of EPCR, EMPCR, and EGPCR across 1, 000 repetitions. Using each value of

EPCR, EMPCR, and EGPCR in each repetition, perform the t test for the expected predicted error.

The results when (n, p) = (30, 15) are presented in Tables 4 and 5.

Based on these results, when p is nearly equal to m, PCR is the best and MPCR is the worst

method. On the other hand, MPCR is the best method when m is small with respect to p. This

result means that MPCR is the best method when we need to select the explanatory variables.

GPCR is the second best method when m is small. However, the results of GPCR become worse as

m becomes large. The estimator or predictor may become unstable, that is become very small or

13



Table 4. The results of each method when (n, p) = (30, 15)

m EPCR EMPCR EGPCR

3 2.2540 1.5719 1.8663
8 2.1247 1.9694 2.0181
13 2.0682 2.3362 2.3709

Table 5. The test between each method when (n, p) = (30, 15)

m testing methods p-value the difference 95% confidence interval
3 GPCR and PCR 2.30 × 10−6 -0.3878 (-0.5479,-0.2277)

GPCR and MPCR 7.58 × 10−6 0.2944 (0.1660,0.4227)
PCR and MPCR 2.20 × 10−6 0.6821 (0.5352,0.8291)

8 GPCR and PCR 0.2645 -0.1066 (-0.2940,0.0808)
GPCR and MPCR 0.5624 0.0487 (-0.1162,0.2136)
PCR and MPCR 0.1188 0.1553 (-0.0399,0.3506)

13 GPCR and PCR 0.0020 0.3027 (0.1110,0.4943)
GPCR and MPCR 0.7092 0.0347 (-0.1479,0.2174)
PCR and MPCR 0.000 -0.2679 (-0.4034,-0.1325)

very large values because of this reason. For this reason, we stopped the selection algorithm even

when we did not compare the all of adding explanatory variables. Thus, we propose a new method

(GPCR-h) for stabilizing the result of GPCR.

4.2. Proposal of GPCR-h

Since the algorithm for GPCR is complex, occasionally the estimator or predictor may become

unstable and the GPCR’s results become worse. We improved the complexity of GPCR by combining

it with MPCR. In this improvement, we used the step-up procedure based on the result of the selected

variables in MPCR. That is, we lead the 11th through 1r′1
th principal components based on MPCR,

then we use the step-up procedure and lead 21th through 2r′2
th principal components based on the

added variables. By using this method, we not only combine the merits of MPCR and that of GPCR,

but also reduce the number of computations since the algorithm can be simplified. We refer to this

method as GPCR-h, and the algorithm we used for the GPCR-h numerical studies is as follows:

1. From MPCR, derive X∗
1 , which contains the selected variables and is an n × q′1 matrix, and

the number r∗0 of principal components. Obtain L by omitting X∗
1 from X.

2. Set t = q′1, Lj = X2, L−j = X3, and l = 1 in the algorithm for GPCR. Then return to step 2

in the algorithm for GPCR in Section 3.5.

3. Obtain r′∗1 that minimizes y′(In −H(r′1,r′2))(In −G(r′1,r′2))
−2(In −H(r′1,r′2))y for fixed r′2 by using

the GPCR algorithm for each r′1.
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Table 6. The results of each method when (n, p) = (30, 15)

m EPCR EMPCR EGPCR EGPCR-h

3 2.1580 1.6307 1.9550 1.7381
8 2.1386 1.8213 1.9230 1.8340
13 2.3924 2.7941 2.6455 2.4176

Table 7. The tests between each method when (n, p) = (30, 15)

m testing methods p-value
3 GPCR-h and GPCR 3.17 × 10−4

GPCR-h and PCR 4.00 × 10−9

GPCR-h and MPCR 4.16 × 10−5

8 GPCR-h and GPCR 0.2831
GPCR-h and PCR 0.000

GPCR-h and MPCR 0.7009
13 GPCR-h and GPCR 0.0237

GPCR-h and PCR 0.7902
GPCR-h and MPCR 0.0069

4. Instead of comparing the values when t and t + 1 to select the variables in X2, use the step-up

procedure until the number of selected variables becomes p − q′1. Then obtain X∗
2 and r′∗2 to

minimize the evaluation for GPCR under fixed X∗
1 , r′∗1 and q′1.

5. Decide X∗
1 by using MPCR, and decide X∗

2 , r′∗1 , and r′∗2 by using GPCR. Then we make X3

and Ψ. After making them, we use the same method as we used to obtain β̂GPCR to obtain the

estimator for β, which is referred as β̂GPCR-h.

6. Calculate the average of EGPCR-h = (yn+1 − x′
[3]Ψβ̂GPCR-h)

2 across 1, 000 repetitions, where x[3]

contains the explanatory variables that correspond with X∗
1 and X∗

2 .

By using this method, the number of computations may be reduced to a third of those required

for ordinary GPCR. We compared the improved PCR and MPCR methods, and the GPCR and

GPCR-h methods by conducting numerical studies in the next subsection.

4.3. Numerical study 2

By conducting numerical studies, we compared these four methods. The setting is the same as

in numerical study 1 in Section 4.1, and the algorithm for GPCR-h is in the above subsection. We

present the results in Tables 6 through 11.

From these results, it is obvious that the number of computations and the MSE of GPCR-h

are better than those of GPCR. Thus we recommend using GPCR-h instead of GPCR. Hence, we

compare only PCR, MPCR, and GPCR-h.
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Table 8. The results of each method when (n, p) = (60, 20)

m EPCR EMPCR EGPCR-h

5 1.5595 1.2581 1.3376
10 1.5314 1.3843 1.4230
15 1.4525 1.3550 1.3801
18 1.4878 1.4564 1.4703

Table 9. The tests between each method when (n, p) = (60, 20)

m testing methods p-value the difference 95% confidence interval
5 GPCR-h and PCR 1.09 × 10−9 -0.2219 (-0.2887,-0.1552)

GPCR-h and MPCR 6.56 × 10−5 0.0795 (0.0406,0.1184)
PCR and MPCR 3.40 × 10−14 0.3014 (0.2245,0.3783)

10 GPCR-h and PCR 9.17 × 10−5 -0.1084 (-0.1626,-0.0543)
GPCR-h and MPCR 0.0386 0.0386 (0.0075,0.0698)

PCR and MPCR 4.83 × 10−6 0.1471 (0.0843,0.2099)
15 GPCR-h and PCR 0.0015 -0.0724 (-0.1170,-0.0278)

GPCR-h and MPCR 0.0118 0.0251 (0.0056,0.0447)
PCR and MPCR 0.000 0.0975 (0.0462,0.1488)

18 GPCR-h and PCR 0.3965 -0.0175 (-0.0580,0.0230)
GPCR-h and MPCR 0.2577 0.0138 (-0.0101,0.0378)

PCR and MPCR 0.1009 0.0314 (-0.061,0.0688)

Table 10. The results of each method when (n, p) = (30, 25)

m EPCR EMPCR EGPCR-h

5 3.3668 2.4664 3.0130
13 5.1312 5.6361 5.6260
20 5.60311 8.9809 7.554

Table 11. The tests between each method when (n, p) = (30, 25)

m testing methods p-value the difference 95% confidence interval
5 GPCR-h and PCR 0.3251 -0.3538 (-0.6780,-0.0295)

GPCR-h and MPCR 1.41 × 10−10 0.5466 (0.3812,0.7121)
PCR and MPCR 1.12 × 10−9 0.9004 (0.6131,1.1877)

13 GPCR-h and PCR 0.0768 0.4948 (-0.0533,1.0430)
GPCR-h and MPCR 0.9539 -0.0101 (-0.3535,0.3333)

PCR and MPCR 0.0586 -0.5049 (-1.0283,0.0184)
20 GPCR-h and PCR 5.76 × 10−6 1.9510 (1.1113,2.7906)

GPCR-h and MPCR 6.97 × 10−7 -1.4268 (-1.9874,-0.8662)
PCR and MPCR 1.60 × 10−12 -3.3777 (-4.3039,-2.4515)
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Table 12. The summarized results of our numerical studies
HHHHHHn

m
1 · · · p

n ≫ p MPCR∗ MPCR∗ MPCR
n > p MPCR∗ GPCR-h PCR∗

n ≈ p MPCR∗ PCR∗ PCR∗

We note the following results. First, we discuss the results when (n, p) = (60, 20), which are

presented in Tables 8 and 9. For all m, MPCR is the best method when it is easy to estimate

the unknown vector, since the difference between n and p becomes large. We consider that this is

the reason that MPCR includes the PCR, and that the results of MPCR are stable. We note that

sometimes GPCR-h derived the same values as did MPCR, though GPCR-h derived significantly

different values when m was small. When m was nearly equal to p, the methods were did not produce

significantly different results. We can see that GPCR-h is always the second-best method and derives

stable values. Second, we discuss the results when (n, p) = (30, 25), which are presented in Tables 10

and 11. For this setting, n is nearly equal to p. When m is small, MPCR is the best method. The

differences between the methods become small when m becomes large. Moreover, for large m, PCR

is the best method and MPCR is the worst method, and the difference is significant. The results

of MPCR have a large variance when n is nearly equal to p and m is large. A stabilized estimator

is derived by using GPCR-h, and GPCR-h is always the second-best method. We summarize these

results in Table 12. The name of the method in each cell is the method which best minimizes the

PMSE, and the name with ∗ indicates the significantly best method.

When n ≫ p, such as (n, p) = (80, 20) or (n, p) = (60, 10), MPCR is the best method for all

m. The significant differences between the methods disappear when m becomes nearly equal to p.

When n > p, such as (n, p) = (40, 20) or (n, p) = (50, 25), the significantly best method is MPCR

when m is small. On the other hand, when m is large, the order is reversed, and the significantly

best method is PCR. When n ≈ p, such as (n, p) = (30, 25) or (n, p) = (40, 30), the significantly best

method also is MPCR when m is small. MPCR becomes the worst method, and PCR becomes the

best method, when m becomes large. In this table, GPCR-h appeared only one time. However, the

values of the PMSE are as small or smaller than with the other methods. The most stable method

is GPCR-h since the GPCR-h has a significant difference between the best and the worst methods.

When we consider using these methods for actual data, the parameter m is the unknown variable.

Since GPCR-h is the most stable method for all m, we recommend using this method for analyzing

actual data.

4.4. Numerical study 3
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Table 13. The percentages of variables selected correctly in each method when
(n, p) = (50, 25)

m Method PMSE PC-1 PC-2
3 GPCR-h 1.5311 100.0 23.50

MPCR 1.4028 100.0 38.25
13 GPCR-h 1.8275 99.98 67.17

MPCR 1.7541 99.92 79.17
23 GPCR-h 2.0577 99.87 95.78

MPCR 2.1066 99.64 95.96

In the present paper, we select the explanatory variables by minimizing the PMSE when using

the MCV method. In this subsection, we evaluate the true explanatory variables selected by the

MCV method, based on the percentage of those that are selected correctly. We consider two ways

of evaluating the percentage that are selected correctly, 100 × #(T ∩ S)/#(T ) (PC-1) and 100 ×
#(T ∩ S)/#(S) (PC-2), where #(U) means the number of elements in the set U , T is the set of

true explanatory variables, and S is the set of selected variables in each method. As an example,

we show the results when m = 4. We obtain y = x(1)β1 + x(2)β2 + x(3)β3 + x(4)β4 + ε, where

β = (β1, β2, β3, β4,0
′
p−4)

′. Then T = {x(1),x(2),x(3), x(4)}. By performing MPCR, the selected

variables X∗
1 are X∗

1 = (x(1), x(2), x(3), x(5),x(6)). Then S = {x(1), x(2),x(3),x(5),x(6)}. Thus we

obtain PC-1 and PC-2 as 75 and 60. When we perform GPCR-h, the selected variables can be

obtained as (X∗
1 ,X

∗
2 ). We compute these values in each repetition, and calculate the average of the

values across 1, 000 repetitions. The setting of data is the same as in the previous numerical studies.

The results are in Table 13.

Based on these results, the values of PC-1 for each method are nearly equal to 100. This result

means that the true explanatory variables are almost selected in each method. On the other hand,

when m is small, the values of PC-2 become small for each method. This means that, in each method,

there are unnecessary variables in the selected variables. By comparing each method, the values in

PC-1 are nearly equal to each other in several situations. The values of PC-1 from GPCR-h are a

little larger than those from MPCR. In the values of PC-2, those from MPCR are larger than those

from GPCR-h. This is the reason for the differences between the PMSEs.

5. Conclusions

In the ordinary linear model, when the dimension of the explanatory variables becomes large, the

ordinary estimation methods tend to become unstable. Then, the selection of a subset of explanatory

variables is often used to reduce the dimension of the explanatory variables. One method of reducing

the dimension of the explanatory variables is PCA. By using PCA, we shrink the original explanatory
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variables to some synthesis variables, and this method means that we can reduce the dimension of

explanatory variables by using several synthesis variables. Hence, based on PCA, an estimation

method that is referred to as PCR has been proposed. MPCR, which is based on the selecting

variables and PCA, proposed in order to stabilize the result of PCR. In the present paper, we also

propose GPCR and GPCR-h, which are based on MPCR by partitioning the selected variables into

dependent and independent variables for each principal component.

By solving the generalized eigenvalue problem, we can obtain the principal components for MPCR.

In GPCR, we only solve the ordinary eigenvalue problems by using the orthogonal projection matrix

for the fixed space. Then we showed the algorithms for PCR and MPCR with each parameter

optimized by using the CV method. When we use the same optimizing method for GPCR, many

computations are required since GPCR is obtained by optimizing a greater number of parameters

than for MPCR. Hence we modified the CV method and proposed the MCV method. Then we

compared the difference between the results of the MPCR by using the CV and MCV methods.

By conducting numerical studies, we noted this modification worked very well. By using the MCV

method, we improved the algorithms for PCR, MPCR, and GPCR.

After conducting several numerical studies, we noted that the result of GPCR is occasionally

unstable. Hence we proposed GPCR-h based on MPCR and GPCR. We determined that GPCR-h

is better than GPCR, by conducting numerical studies. Furthermore, several methods have advan-

tages or disadvantages that depend on the structure of the data. For obtaining stable results, we

recommend using GPCR-h for actual data analysis.

Appendix

GPCA and GPCR with overlapping partitioning

In this appendix, we propose a more generalized PCR, which is based on partitioning with overlap

and is referred to as MGPCR. In Section 2.2, we partitioned the selected explanatory variables X1

without overlapping. This partitioning is based on the idea that some principal components only

relate to a subset of the explanatory variables. However, there are some principal components which

depend on several groups of explanatory variables, that is, the ith principal components depend on

Xj1 and Xj2 for some i, j1, and j2 (j1 ̸= j2). Hence we consider generalizing the partitioning for the

explanatory variables with overlapping situations.

Let X be partitioned X = (X1, . . . , Xs, Xs+1), where Xs+1 does not overlap but the other Xi

(i = 1, . . . , s) may have overlapping parts. To simplify the discussion, we consider some simple

overlapping in the partition. Let Xi be made up of M0 and Mi for i = 1, . . . , s, M0, . . . , Ms do not

have any overlapping parts, and let q′′i be the dimension of Mi. By using Mi (i = 0, 1, . . . , s), the

partitioning for X can be expressed as (M0, . . . , Ms, Ms+1), where Ms+1 corresponds with Xs+1,
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q′′s+1 is the dimension of Ms+1, and q′′0 + · · · + q′′s+1 = q.

Based on this partitioning of (M0, . . . , Ms+1), we can partition the sample covariance matrix S

as follows:

S =

 S
[3]
00 · · · S

[3]
0(s+1)

...
. . .

...

S
[3]
(s+1)0 · · · S

[3]
(s+1)(s+1)

 ,

where S
[3]
ij is a q′′i × q′′j matrix. Let T11 and T1 be

T11 =

(
S

[3]
00 S

[3]
01

S
[3]
10 S

[3]
11

)
, T1 =

(
S

[3]
00 · · · S

[3]
0(s+1)

S
[3]
10 · · · S

[3]
1(s+1)

)
,

which correspond with the S
[2]
11 and S

[2]
1 , respectively, in the ordinary GPCR method. The 11th

through 1r′′1
th principal components are found by solving the following eigenvalue problem:

T
−1/2
11 T1T

′
1T

−1/2
11 m = θm.

We obtain the eigenvalues θ1 ≥ · · · ≥ θr′′1
and the corresponding eigenvectors m1, . . . , mr′′1

. Then

D1 = (m1, . . . , mr′′1
) is obtained which is a (q′′0 + q′′1) × r′′1 matrix. The k1th through kr′′k

th principal

components are obtained from (M0, Mk) (k = 2, . . . , s). Let Tkj and Tk be

Tkj =

(
S

[3]
00 S

[3]
0j

S
[3]
k0 S

[3]
kj

)
(j = 2, . . . , k), Tk =

(
S

[3]
00 · · · S

[3]
0(s+1)

S
[3]
k0 · · · S

[3]
k(s+1)

)
.

We note that Tkk and Tk correspond with the S
[2]
kk and S

[2]
k , respectively, in the ordinary GPCR

method. Using the same process as in the ordinary GPCR method, the k1th through kr′′k
th principal

components are obtained by maximizing d′ΦkTkT
′
kΦkd under the conditions that d′d = 1 and d ∈

V ⊥, where V =
⟨
U1d1, . . . , U1d1r1

, . . . , Uk−1d(k−1)1 , . . . , Uk−1d(k−1)r(k−1)

⟩
, Uj = T

−1/2
kk TkjT

−1/2
jj ,

and Φk is the projection matrix for V ⊥. The maximization problem comes down to the following

eigenvalue problem:

ΦkT
−1/2
kk TkT

′
kT

−1/2
kk Φkm = θm.

By solving this eigenvalue problems, we obtain the eigenvalues θk1 ≥ · · · ≥ θkr′′
k

and the corresponding

eigenvectors mk1 , . . . , mkr′′
k

. Then Dk = (mk1 , . . . , mkr′′
k

), which is a (q′′0 + q′′k) × r′′k matrix. When

we obtain D1, . . . , Ds by using the same method as above, we obtain the estimation and prediction,

β and y. Let W = (M0, . . . , Ms) and D = (D′
0, D

′
1,...,s)

′, where D0 = (D01, . . . , D0s),

D1,...,s =


D11 Oq′′1×r′′2

· · · Oq′′1×r′′s

Oq′′2×r′′1
D22 · · · Oq′′2×r′′s

...
...

. . .
...

Oq′′s ×r′′1
Oq′′s ×r′′2

· · · Dss

 ,
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and Di = (D0i,Dii)
′ for i = 1 . . . , s. By using these matrices, the estimator and predictor are

obtained by β̂MGPCR = (D′W ′WD)−1D′Wy and ŷMGPCR = WDβ̂MGPCR. In this method, we need

to decide M0, . . . , Ms+1; q′′0 , . . . , q
′′
s+1 and the numbers of principal components r′′1 , . . . , r

′′
s . When

we use the CV or MCV method to decide these parameters, we need more computations than for

the GPCR. In the present paper, we do not compare the MGPCR with other methods since we are

interested in a practical system, and the MGPCR needs more processing time to determine each

parameter.
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