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Abstract

In this paper, we propose new definitions for multivariate skewness and kurtosis when the
covariance matrix has a block diagonal structure. These measures are based on the ones of
Mardia (1970). We give the expectations and the variances for new multivariate sample mea-
sures of skewness and kurtosis. Further, we derive asymptotic distributions of statistics by
new measures under multivariate normality. To evaluate accuracy of these statistics, numer-
ical results are given by the Monte Carlo simulation. We consider the problem estimating for
covariance structure. Pavlenko, Björkström and Tillander (2012) consider a method which
approximate the inverse covariance matrix to block diagonal structure via gLasso. In this
paper, we propose an improvement of Pavlenko, Björkström and Tillander (2012)’s method
by using AIC. Finally, numerical results are shown in order to investigate probability that
the new method select true model for covariance structure.

Key Words and Phrases: Multivariate Skewness; Multivariate Kurtosis; Normality test; Co-
variance structure approximation; Block diagonal matrix; AIC.

1 Introduction

In multivariate statical analysis, normality for sample is assumed in many cases. Hence,
assessing for multivariate normality is an important problem. The graphical method and the
statistical hypothesis testing are considered to this problem by many authors (see, e.g. Henze
(2002); Thode (2002)). From aspects of calculation cost and simplicity, we focus on the testing
theory based on multivariate skewness and kurtosis. There are various definitions of multivariate
skewness and kurtosis (Mardia (1970), Malkovich and Afifi (1973), Srivastava (1984) and so
on.). Mardia (1970, 1974) defined multivariate skewness and kurtosis as a natural extension of
univariate case. To assess multivariate normality, sample measures of multivariate skewness and
kurtosis have been defined and their asymptotic distributions under the multivariate normality
have been given in Mardia (1970). Srivastava (1984) also has considered another definition for
the sample measures by using principal component scores and derived their asymptotic null
distributions. Recently, the sample measure of multivariate kurtosis of the form containing
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Mardia (1970) and Srivastava (1984) has been proposed by Miyagawa et al. (2012). Recently,
Koizumi et al. (2009) proposed an omnibus test statistic MJB by using Mardia’s and Srivastava’s
skewness and kurtosis for assessing multivariate normality. Improvements of MJB test statistic
have been discussed by many authors (see, e.g. Enomoto et al. (2012); Koizumi et al. (2013)).

These theory have been considered when the sample size N is larger than the dimension p.
Since sample covariance matrix S is singular, it cannot be used when the dimension p is larger
than sample size N . In this paper, we propose new measures of multivariate skewness and
kurtosis when the covariance structure is a block diagonal matrix and derive their asymptotic
distributions under the multivariate normality.

Further, we consider to estimate for inverse covariance matrix to a block diagonal structure.
Pavlenko et al. (2012) propose a gLasso estimator of inverse covariance matrix Ξ. Similar
estimates of Ξ were also considered in Rothman et al. (2008) and Rütimann et al. (2009).
By the Pavlenko’s method, Ξ may be estimated as incomplete block diagonal matrix. In this
paper, we give an improvement of Pavlenko’s method by using Akaike’s information criterion
(AIC). AIC is proposed by Akaike (1973, 1974) as an estimator of the risk function based on
Kullback-Leibler information (Kullback and Leibler (1951)). It is used for selecting the optimal
model among the candidate models.

The organization of this paper is as following. In Section 2, we examine the definition of
Mardia’s (1970) multivariate skewness and kurtosis and their asymptotic distributions under the
multivariate normality. In Section 3, we propose new multivariate skewness and kurtosis and
derive their asymptotic distributions under the multivariate normality. In Section 4, we consider
the Pavlenko’s method for the block diagonal approximation and propose an AIC-method which
is an improvement of Pavlenko’s method by using AIC. In Section 5, numerical results are
given by Monte Carlo simulation to evaluate the accuracy of the upper percentage points for
new statistics proposed in Section 3. Further, we investigate correct selection rate (CSR) of
AIC-method proposed in Section 4.

2 Mardia’s multivariate skewness and multivariate kurtosis

First, we discuss measures of multivariate skewness and multivariate kurtosis defined by
Mardia (1970). Let x and y be random p-vectors with the mean vector µ and the covariance
matrix Σ. Then Mardia (1970) has defined population measures of multivariate skewness and
kurtosis as

β1 = E[{(x− µ)′Σ−1(y − µ)}3], (2.1)

β2 = E[{(x− µ)′Σ−1(x− µ)}2], (2.2)

where x and y are independent and identical random vectors. We note that β1 = 0 and β2 =
p(p + 2) hold under multivariate normality. These measures are invariant under a nonsingular
transformation

x = Au+ b, (2.3)

where A is a nonsingular p × p matrix and b is a p-vector. Let x1,x2, . . . ,xN be sample
observation vectors of size N from a multivariate population with the mean vector µ and the
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covariance matrix Σ. And let x and S be the sample mean vector and the sample covariance
matrix based on sample size N as follows:

x =
1

N

N∑
j=1

xj ,

S =
1

N

N∑
j=1

(xj − x) (xj − x)′ ,

respectively. Then the sample measures of multivariate skewness and multivariate kurtosis in
Mardia (1970) are defined as

b1 =
1

N2

N∑
i=1

N∑
j=1

{(xi − x)′S−1(xj − x)}3, (2.4)

b2 =
1

N

N∑
i=1

{(xi − x)′S−1(xi − x)}2. (2.5)

These measures are invariant under a nonsingular transformation in (2.3). Then Mardia (1970)
obtained the following lemma.

Lemma 1. (Mardia (1970)) The expectation of b1 in (2.4) and the expectation and the vari-
ance of b2 in (2.5) under the multivariate normal population Np(µ,Σ) are given by

E[b1] =
1

N
p(p+ 1)(p+ 2) + o(N−1), (2.6)

E[b2] =
N − 1

N + 1
p(p+ 2), (2.7)

Var[b2] =
8

N
p(p+ 2) + o(N−1). (2.8)

Proof. Mardia (1970) rewrite (2.4) as

b1 =

p∑
r=1

p∑
r
′
=1

p∑
s=1

p∑
s
′
=1

p∑
t=1

p∑
t
′
=1

Srr′Sss′Stt′ , (2.9)

where

S−1 = {Sij} and M
(rst)
111 =

1

N

N∑
i=1

(xri − xr)(xsi − xs)(xti − xt).

Let x1,x2, . . . ,xN be a random sample from Np(µ,Σ). Since b1 is invariant under linear trans-
formation, we assume µ = 0 and Σ = Ip. S converges to Σ in probability. Therefore, from (2.9),
we get

b1
P−→
∑
r,s,t

{M (rst)
111 }

2
, (2.10)
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in probability. We have

b1
P−→ {M (1)

3 }
2
+ · · ·+ 3{M (12)

21 }
2
+ · · ·+ 6{M (123)

111 }
2
+ · · · (2.11)

in probability by writing M
(rrr)
111 = M

(r)
3 and M

(rss)
111 = M

(rs)
12 (r ̸= s) in (2.10). Using the

normality of the vector {M (1)
3 , . . . ,M

(12)
21 , . . . ,M

(123)
111 , . . .}, Mardia (1970) derive

E[b1] =
1

N
p(p+ 1)(p+ 2) + o(N−1).

Let x∗
r = (xr1, xr2, . . . , xrN )′ (r = 1, 2, . . . , p). We transform x∗

r to ξ∗r = (ξr1, ξr2, . . . , ξrN )′ by
an orthogonal transformation ξ∗r = Cx∗

r (r = 1, 2, . . . , p), where C is an orthogonal matrix with
the first row as (1/

√
N, 1/

√
N, . . . , 1/

√
N) and the second row as (−a, . . . ,−a, 1/

√
Na), a being

1/
√

N(N − 1). Then we find

E[b2] = (N − 1)2E[y],

where

y = ξ
′
2(

N∑
t=2

ξtξ
′
t)
−1ξ2 with ξ

′
t = (ξ1t, ξ2t, . . . , ξpt)

′ (t = 2, . . . , N).

From Rao (1965, p. 459), we find the probability density function of y. Hence, Mardia (1970)
give

E[b2] =
N − 1

N + 1
p(p+ 2).

Let S = I + S∗ so that to order N−1,E(S∗) = 0. On using

S−1 = (I + S∗)−1 = I − S∗ + S∗2 − · · ·

in (2.5), we obtain that

b2 =
1

N

N∑
i=1

{(xi − x)′(xi − x)}2 − 2

N

N∑
i=1

(xi − x)′(xi − x)(xi − x)′S∗(xi − x) + · · · . (2.12)

Further, we rewrite (2.12) as

b2 =

p∑
i=1

M
(i)
4 +

∑
i̸=j

M
(ij)
22 − 2

p∑
i=1

M
(i)∗
2 M

(i)
4 − 2

∑
i̸=j

M
(j)∗
2 M

(ij)
22 − 2

p∑
i=1

∑
j ̸=k

M
(jk)∗
11 M

(ijk)
211 . . . ,

(2.13)

where

M
(j1,...,js)
i1,...,is

=
1

N

N∑
i=1

{
s∏

r=1

(xjri − xjr)
ir}, M

(i)∗
2 = S∗

ii, M
(ij)∗
11 = S∗

ij

with S∗ = {S∗
ij}. Using the normality of the vector M

(j1,...,js)
i1,...,is

, Mardia (1970) derive

Var[b2] =
8

N
p(p+ 2) + o(N−1).
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In Lemma 1, we note that E[b1], Var[b2] are asymptotic results. By using Lemma 1, Mardia
(1970) derived limiting distributions of b1 and b2 as following:

Theorem 1. (Mardia (1970)) Let b1 and b2 in (2.4) and (2.5) are sample measures of multi-
variate skewness and multivariate kurtosis on the basis of random samples of size N drawn from
Np(µ,Σ). Then, for large N ,

z1 =
N

6
b21 (2.14)

has a χ2-distribution with p(p+ 1)(p+ 2)/6 degrees of freedom and

z2 =
b2 −

N − 1

N + 1
p(p+ 2)√

8

N
p(p+ 2)

(2.15)

is distributed as N(0, 1).

Proof. From (2.6), we find with the help of the well known results on the limiting distributions
of quadratic forms that

N [{M (1)
3 }

2
+ · · ·+ 3{M (12)

21 }
2
+ · · ·+ 6{M (123)

111 }
2
+ · · · ]/6

has a χ2-distribution with p(p + 1)(p + 2)/6 degrees of freedom. On using results given by
(2.7) and (2.8) and the central limit theorem Mardia (1970) derived the asymptotic normality
of z2.

Let b1 and b2 in (2.4) and (2.5) are expressed as follows:

b1 = N

N∑
i=1

N∑
j=1

R3
ij ,

b2 = N

N∑
i=1

R2
ii,

where

Rij = (xi − x)′(NS)−1(xj − x). (2.16)

Then, Mardia (1974) obtained the following lemma about exact expectation and variance by
deriving moments of Rij .

Lemma 2. (Mardia (1974)) The exact expectation of b1 and the exact expectation and the
variance of b2 when the population is Np(µ,Σ) are given by

E[b1] =
p(p+ 2)

(N + 1)(N + 3)
{(N + 1)(p+ 1)− 6}, (2.17)

E[b2] =
N − 1

N + 1
p(p+ 2), (2.18)

Var[b2] =
8p(p+ 2)

(N + 1)2(N + 3)(N + 5)
(N − p− 1)(N − p+ 1). (2.19)
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Proof. Let x1,x2, . . . ,xN be a random sample from Np(µ,Σ). Since b1 and b2 are invariant
under linear transformation, we assume without any loss of generality that µ = 0 and Σ = Ip.
Further, let us write x∗

r = (xr1, xr2, . . . , xrN )
′
(r = 1, 2, . . . , p). We transform x∗

r to ξ∗r =
(ξr1, ξr2, . . . , ξrN )

′
by the Helmert orthogonal transformation so that

ξr,i−1 =

√
i− 1

i

{
−xr,i +

1

i− 1

i−1∑
k=1

xr,k

}
(i = 2, 3, . . . , N),

ξr,N =
√
N xr.

Then, we can rewrite (2.16) as

Rij =

(
−aizi−1 +

N−1∑
k=i

bkzk

)′−ajzj−1 +
N−1∑
k=j

bkzk

 , (2.20)

where

ai =

√
i− 1

i
, bi =

1√
i(i+ 1)

, zi = T−1ξi (i = 1, 2, . . . , N) and NS = TT
′
. (2.21)

And, the moments of zk can be obtained (see, e.g. Khatri (1959); Khatri and Pillai (1967)).
Using the moments of Rij , Mardia (1974) derive (2.17), (2.18) and (2.19).

By using Lemma 2 and Theorem 1, Mardia (1974) gave the following theorem:

Theorem 2. (Mardia (1974)) Let b1 and b2 are sample measures of multivariate skewness
and multivariate kurtosis on the basis of random samples of size N drawn from Np(µ,Σ) Then,
for large N

z∗1 =
NK

6
b1 (2.22)

where K = (p+1)(N+1)(N+3)
N{(N+1)(p+1)−6} has a χ2-distribution with p(p+ 1)(p+ 2)/6 degrees of freedom and

z∗2 =
{(N + 1)b2 − p(p+ 2)(N − 1)}

√
(N + 3)(N + 5)√

8p(p+ 2)(N − 3)(N − p− 1)(N − p+ 1)
(2.23)

is distributed as N(0, 1).

Proof. From (2.14) and E[z∗1 ] = p(p + 1)(p + 2)/6, z∗1 is asymptotically distributed as χ2-
distribution. On using the results given by (2.18) and (2.19) and the central limit theorem
z∗2 ’s asymptotic distribution is standard normal.

3 Multivariate skewness and multivariate kurtosis
when covariance matrix Σ is block diagonal structure

In this section, we propose new measures of multivariate skewness and kurtosis. These
measures can be used even when the dimension p is larger than sample size N . This is called
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high-dimensional framework. Let x = (x(1),x(2), . . . ,x(k))
′
and y = (y(1),y(2), . . . ,y(k))

′
are

random p-vectors with the mean vector µ = (µ(1),µ(2), . . . ,µ(k))
′
and the covariance matrix

Σ = diag(Σ1,Σ2, . . . ,Σk). x
(l), y(l) and µ(l) are pl-vectors (pl < N, l = 1, 2, . . . , k),

∑k
l=1 pl = p,

and Σl is a pl × pl matrix. This covariance structure is called block diagonal structure. Then
we propose new population measures of multivariate skewness and kurtosis which are natural
extensions of Mardia’s (1970) measures as follows:

βh,1 = E

[
k∑

l=1

{(x(l) − µ(l))′Σl
−1(y(l) − µ(l))}3

]
,

βh,2 = E

[
k∑

l=1

{(x(l) − µ(l))′Σl
−1(x(l) − µ(l))}2

]
,

where x(l) and y(l) are independent and identical random vectors. We note that βh,1 = 0 and

βh,2 =
∑k

l=1 pl(pl + 2) hold under the multivariate normality. These measures are invariant
under a nonsingular transformation

x = A∗u+ b, (3.1)

where A∗ = diag(A1, A2, . . . , Ak), Al is a nonsingular pl × pl matrix (l = 1, 2, . . . , k) and b is a
p-vector. Let x1,x2, . . . ,xN be sample observation vectors of size N from a multivariate pop-

ulation with the mean vector µ and the covariance matrix Σ, where xj = (x
(1)
j ,x

(2)
j , . . . ,x

(k)
j )

′

(j = 1, 2, . . . , N). Let x = (x(1),x(2), . . . ,x(k))
′
, S = diag(S1, S2, . . . , Sk) be the sample mean

vector and the sample covariance matrix based on sample size N as follows:

x(l) =
1

N

N∑
j=1

x
(l)
j ,

Sl =
1

N

N∑
j=1

(x
(l)
j − x(l))(x

(l)
j − x(l))′.

Then we propose sample measures of multivariate skewness and kurtosis as

bh,1 =
1

N2

N∑
i=1

N∑
j=1

k∑
l=1

{(x(l)
i − x(l))′S−1

l (x
(l)
j − x(l))}3, (3.2)

bh,2 =
1

N

N∑
i=1

k∑
l=1

{(x(l)
i − x(l))′S−1

l (x
(l)
i − x(l))}2. (3.3)

By using results in Lemma 1 , we obtained the following lemma.

Lemma 3. When pl and k are fixed, the expectation of bh,1 in (3.2) and the expectation and the
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variance of bh,2 in (3.3) when the population is Np(µ,Σ) are given by

E[bh,1] =
1

N

k∑
l=1

pl(pl + 1)(pl + 2) + o(N−1), (3.4)

E[bh,2] =
N − 1

N + 1

k∑
l=1

pl(pl + 2), (3.5)

Var[bh,2] =
8

N

k∑
l=1

pl(pl + 2) + o(N−1). (3.6)

Proof. Let x = (x(1),x(2), . . . ,x(k))
′
be a random vectors from Np(µ,Σ), where µ = (µ(1),µ(2),

. . . ,µ(k))
′
and Σ = diag(Σ1,Σ2, . . . ,Σk). x(l), y(l) and µ(l) are pl-vectors (pl < N, l =

1, 2, . . . , k),
∑k

l=1 pl = p, and Σl is a pl × pl matrix. The probability density function of x
is defined as

f(x) =
1

(2π)
p
2 |Σ|

1
2

exp

[
−1

2
(x− µ)

′
Σ−1(x− µ)

]
. (3.7)

Since (x− µ)
′
Σ−1(x− µ) =

∑k
l=1(x

(l) − µ(l))
′
Σ−1
l (x(l) − µ(l)) and |Σ| =

∏k
l=1 |Σl|, we rewrite

(3.7) as

f(x) =

k∏
l=1

1

(2π)
pl
2 |Σl|

1
2

exp

[
−1

2
(x(l) − µ(l))

′
Σ−1
l (x(l) − µ(l))

]
.

Hence, we find the independence of x(l) and x(l′) (l ̸= l′, l, l′ = 1, 2, . . . , k). By using results in
Lemma 1 and independence of x(l) and x(l′) (l ̸= l′, l, l′ = 1, 2, . . . , k), we obtain (3.4), (3.5) and
(3.6).

By using Lemma 3, we derived the following theorem:

Theorem 3. Let bh,1 and bh,2 in (3.2) and (3.3) are sample measures of multivariate skewness
and multivariate kurtosis on the basis of random samples of size N drawn from Np(µ,Σ) Then,
for large N ,

zh,1 =
N

6
bh,1 (3.8)

has a χ2-distribution with
∑k

l=1 pl(pl + 1)(pl + 2)/6 degrees of freedom and

zh,2 =

bh,2 −
N − 1

N + 1

k∑
l=1

pl(pl + 2)√
8

N

k∑
l=1

pl(pl + 2)

(3.9)

is distributed as N(0, 1).

Proof. From Theorem 1, we derive (3.8). On using the results given by (3.5) and (3.6) and the
central limit theorem we find that (3.9).
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Further, by similar way of Lemma 2 and 3, we obtained the following lemma.

Lemma 4. When pl and k are fixed, the exact expectation of bh,1 in (3.2) and the exact expec-
tation and the exact variance of bh,2 in (3.3) when the population is Np(µ,Σ) are given by

E[bh,1] =

k∑
l=1

pl(pl + 2)

(N + 1)(N + 3)
{(N + 1)(pl + 1)− 6}, (3.10)

E[bh,2] =

k∑
l=1

N − 1

N + 1
pl(pl + 2), (3.11)

Var[bh,2] =
k∑

l=1

8pl(pl + 2)

(N + 1)2(N + 3)(N + 5)
(N − pl − 1)(N − pl + 1). (3.12)

By using Lemma 4, we derived the following theorem:

Theorem 4. Let bh,1 and bh,2 in (3.2) and (3.3) are sample measures of multivariate skewness
and multivariate kurtosis on the basis of random samples of size N drawn from Np(µ,Σ) Then,
for large N ,

z∗h,1 =
N

6

k∑
l=1

(pl + 1)(N + 1)(N + 3)

N{(N + 1)(pl + 1)− 6}
bh,1 (3.13)

has a χ2-distribution with
∑k

l=1 pl(pl + 1)(pl + 2)/6 degrees of freedom and

z∗h,2 =

{(N + 1)bh,2 −
k∑

l=1

pl(pl + 2)(N − 1)}
√

(N + 3)(N + 5)√
8

k∑
l=1

pl(pl + 2)(N − 3)(N − pl − 1)(N − pl + 1)

(3.14)

is distributed as N(0, 1).

Proof. From (3.8) and E[z∗h,1] =
∑k

l=1 pl(pl+1)(pl+2)/6, we derive (3.13). On using the results
given by (3.11) and (3.12) and the central limit theorem we obtain (3.14).

We consider a statistic based on Wilson-Hilferty transformation (Wilson and Hilferty (1931)),
an effective and simple transform of z∗h,1 to normality, where z∗h,1 is defined in Theorem (3.13).
It is well known as normalizing transformation to fast convergence in distribution. Then, we
derive the following theorem:

Theorem 5. Let bh,1 in (3.2) be a sample measure of multivariate skewness on the basis of
random samples of size N drawn from Np(µ,Σ) Then

zwh =

{(
z∗h,1
f

) 1
3

− 1 +
2

9f

}
/

√
2

9f
, f =

1

6

k∑
l=1

pl(pl + 1)(pl + 2) (3.15)

is distributed as N(0, 1) when f → ∞ after N → ∞.

Proof. The statistic (3.13) converge in distribution to χ2-distribution with
∑k

l=1 pl(pl + 1)(pl +
2)/6 degrees of freedom under large N . By evaluating the leading terms of characteristic function
of (3.13) with large dimension p and under large N , we obtain (3.15).
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4 Covariance structure approximation

In this section, we propose a new method of estimation for block diagonal structure. Let
x be a random p-vectors from Np(µ,Σ) and x1,x2, . . . ,xN be sample observation vectors of
size N from Np(µ,Σ). Assume Ξ = diag(Ξ1,Ξ2, . . . ,Ξk) = Σ−1 where Ξl is a pl × pl matrix,

pl < N, l = 1, 2, . . . , k and
∑k

l=1 pl = p. Our purpose is to get a estimator of Ξ.
To ensure that the estimator of Ξ exists and be sparsity we make the following assumptions

about the covariance matrix Σ.
Existence. There exist such a constant ε > 0 that

0 < ε ≤ ϕmin(Σ) ≤ ϕmax(Σ) <
1

ε
,

where ϕmin(Σ) and ϕmax(Σ) are the smallest and the largest eigenvalues of Σ, respectively.
This condition ensures that Ξ exists.

Sparsity. Let A = {(i, j) : ξij ̸= 0, i > j} denote the set of non-zero off-diagonal entries of Ξ.
For the number of A-elements, we assume that

#A <
p(p− 1)

2
,

where #A means the number of set A. This assumption is to ensure sparsity of Ξ.
Then, Pavlenko et al. (2012) proposed a gLasso estimator of Ξ as the minimizer of the

penalized negative log-likelihood

Ξ̂λ = arg min
Ξ>0

{tr(ΞΣ̂)− log|Ξ|+ λ||Ξ−||1},

where Σ̂ is the maximum likelihood estimator of Σ, Ξ− = Ξ − diag(Ξ), ||Ξ−||1 =
∑

i<j |ξi,j | is
ℓ1-norm of Ξ−, λ is a non-negative tuning parameter, and λ is the order

√
log p/N (see Rothman

et al. (2008)). This estimator is similar to the original gLasso introduced in Friedman et al.
(2007) (they used ||Ξ||1 instead of ||Ξ−||1).

Further, following the modification to fast convergence be considered by Pavlenko et al.
(2012). Let K denote the inverse of correlation matrix and Γ denote the diagonal matrix of the
standard deviations. Then, a gLasso estimator of K be defined as

K̃λ = arg min
K>0

{tr(KK̂−1)− log|K|+ λ||K−||1}, (4.1)

where K̂−1 is the estimated correlation matrix. Since K = (κi,j) = ΓΞΓ, the estimator of Ξ be
given by

Ξ̃λ = Γ̂−1K̃λΓ̂
−1, (4.2)

where Γ̂ is a sample estimator of Γ. We call this procedure gLasso-method.
However, these estimators cannot necessarily estimate Ξ to the block diagonal structure.

Then, we propose an AIC-method of making Ξ the block diagonal matrix by using Akaike’s
information criterion (AIC). AIC is defined as

AIC =− 2× (The maximum log-likelihood)

+ 2× (The number of parameters). (4.3)

The model which makes AIC the minimum is considered to be the optimal model. Our method
of estimation for block diagonal structure is following:

10



(A.1) We calculate Ξ̃λby gLasso estimator in (4.1) and (4.2).

(A.2) Candidate models are determined from obtained Ξ̃λ.

(A.3) AICs for all candidate models are calculated by (4.3).

(A.4) We select the optimal model by values of AICs.

Hence, a block diagonal estimation of Ξ be attained.
An example of the proposed AIC-method is given. Parameters are the following:

p = 6, N = 10, λ = 0.29 and population is Np(µ,Σ) where µ = 0,Σ = diag(Σ1,Σ2,Σ3),

Σl =

(
1 ρ
ρ 1

)
(l = 1, 2, 3) and ρ = 0.85. Then

Ξ̃λ =



0.73 −0.35 0 0 0 0.03
−0.35 0.68 0 0 0 0.04

0 0 0.83 −0.26 0 0
0 0 −0.26 0.77 0.11 0
0 0 0 0.11 0.72 −0.40

0.03 0.04 0 0 −0.40 0.60

 .

is calculated by glasso pakage in R. Next, we consider how to decide candidate models. When
we decide candidate models, we need the following rule:

(R.1) (The number of 0 in each block matrix) ≤ 2.

(R.2) If the number of 0 is not contained in block matrix which has not overlapped under (R.1),
the size of this matrix do not make small.

(R.3) If block matrix which satisfy (R.1) has overlapped, we fix one block matrix and make
others small.

Under these rules, we find four candidate models in this case. For example,

0.73 −0.35 0 0 0 0
−0.35 0.68 0 0 0 0

0 0 0.83 0 0 0
0 0 0 0.77 0.11 0
0 0 0 0.11 0.72 −0.40
0 0 0 0 −0.40 0.60


is model(2, 1, 3)(=model(p1, p2, p3)) and there are model(2, 2, 2), model(2, 3, 1) and model(2, 1, 2, 1).
We calculate AIC for each candidate model, respectively. In this case, AIC in (4.3) becomes

AIC = N(p log 2π − log |S−1|+ p) + 2d,

11



where S is the maximum likelihood estimator of Σ, d is the number of free parameters of a
model. S−1 and AIC of the model(2, 1, 3) be calculated as

S−1(2, 1, 3) =



5.64 −5.02 0 0 0 0
−5.02 5.09 0 0 0 0

0 0 1.08 0 0 0
0 0 0 2.01 3.02 −2.10
0 0 0 3.02 9.79 −7.70
0 0 0 −2.10 −7.70 6.56

 ,

AIC(2, 1, 3) = 161.4.

In similar way, AICs of model(2, 2, 2), model(2, 3, 1) and model(2, 1, 2, 1) are calculated as

AIC(2, 2, 2) = 151.2, AIC(2, 3, 1) = 170.5, AIC(2, 1, 2, 1) = 184.5.

Since AIC(2, 2, 2) is the smallest value in this example, model(2, 2, 2) is the optimal model. In
this case, true model is selected.

5 Simulation studies

5.1 Approximation accuracy of new multivariate skewness and kurtosis

In this subsection, we investigate accuracies of upper percentage points of proposed statistics
zh,1, z

∗
h,1, zwh, zh,2 and z∗h,2 based on new multivariate skewness bh,1 in (3.2) and kurtosis in (3.3)

by the Monte Carlo simulation study. For each block, we assume that µ(l) = 0 and Σl = Ipl
(l = 1, 2, . . . , k) without loss of generality from (3.1). Simulation parameters are as follows:

p = 200, 300, 400, 500, 1000, 2000, pl = 5, 10, 20, N = 50, 100, 200, 400, 800.

As a numerical experiment, we carry out 10, 000 and 1, 000 replications for the case of N < 400
and N ≥ 400, respectively. But for the cases of p = 1000, 2000, we carry out 1, 000 replications
for all parameters.

It may be seen from Tables 1-7 that Type I Error probabilities of all statistics converge to
the level of significance α when N is large. These results show that Theorems 3-5 hold. We
note that z∗h,1 and zwh are improvements of zh,1 for all parameters. We turn out that z∗h,2 is an
improvement of zh,2 when N ≤ 400. zh,2 and z∗h,2 are the almost same approximate accuracy
when N = 800. Through this simulation, we recommend z∗h,1 and zw,h for the skewness test.
And when N ≤ 400, we recommend z∗h,2 for the kurtosis test.

5.2 Correct Selection Rate of AIC-method

In this subsection, we investigate correct selection rate (CSR) of AIC-method and gLasso-method
by simulation studies, respectively. CSR of AIC-method calculated by using algorithm (A.1)-
(A.4) in Section 4 is the probability of selecting the true model. CSR of gLasso-method calculated
by (4.1) and (4.2) is the probability of selecting the true model. We decide candidate models
under the condition (R.1)-(R.3) in Section 4. As a numerical experiment, we carry out 100
replications. Simulation parameters are the following: p = 10, N = 10, 20, λ =

√
log p/N . We

consider two cases for the covariance structure of population.
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• (Case 1) x ∼ Np(0,Σ),

Σ = diag(Σ1,Σ2,Σ3,Σ4,Σ5), Σl =

(
1 ρ
ρ 1

)
(l = 1, 2, 3, 4, 5), ρ = 0.9.

• (Case 2) x ∼ Np(0,Σ),

Σ = diag(Σ1,Σ2,Σ3,Σ4), Σs =

1 ρ ρ
ρ 1 ρ
ρ ρ 1

 (s = 1, 3), Σt =

(
1 ρ
ρ 1

)
(t = 2, 4), ρ = 0.9.

Table 8 give CSR for the Case 1 by AIC-method and gLasso-method. Table 9 give CSR for the
Case 2 by AIC-method and gLasso-method. From Tables 8 and 9, we note that our method
improve gLasso-method by using AIC. Even when N is small, CSR of AIC-method is quite
higher than the one of gLasso-method.

6 Conclusion

In this paper, we considered tests for the multivariate normality when p > N . We pro-
posed new definitions for multivariate skewness and kurtosis as natural extensions of Mardia’s
measures, and derived their asymptotic distributions under the multivariate normal popula-
tion. Approximate accuracies of zh,1, z

∗
h,1, zwh, zh,2 and z∗h,2 were evaluated by Monte Carlo

simulation.
And we considered the problem to estimate for the covariance structure. There is gLasso-

method in Pavlenko et al. (2012) for this problem. We proposed an AIC-method which is an
improvement of gLasso-method by using an information criterion AIC. Finally, correct selection
rates of AIC-method were given by simulation.

13



Table 1 The upper percentage points of zh,1, z
∗
h,1, zwh, zh,2 and z∗h,2 for α = 0.1

Skewness Kurtosis

p pl N zh,1 z∗h,1 zwh zh,2 z∗h,2
200 5 50 0.002 0.128 0.133 0.058 0.104

100 0.014 0.120 0.120 0.076 0.099

200 0.040 0.106 0.109 0.087 0.100

400 0.068 0.113 0.111 0.108 0.110

800 0.072 0.090 0.094 0.097 0.099

10 50 0.000 0.125 0.124 0.036 0.100

100 0.004 0.120 0.129 0.065 0.099

200 0.024 0.112 0.118 0.084 0.102

400 0.051 0.101 0.130 0.091 0.101

800 0.079 0.111 0.129 0.104 0.109

20 50 0.000 0.099 0.095 0.010 0.106

100 0.000 0.128 0.124 0.047 0.106

200 0.007 0.123 0.124 0.073 0.101

400 0.040 0.122 0.121 0.096 0.114

800 0.066 0.119 0.117 0.098 0.106

300 5 50 0.000 0.131 0.124 0.060 0.106

100 0.010 0.119 0.117 0.077 0.099

200 0.033 0.111 0.109 0.086 0.100

400 0.038 0.120 0.120 0.091 0.106

800 0.033 0.110 0.120 0.088 0.100

10 50 0.000 0.127 0.129 0.037 0.102

100 0.001 0.128 0.124 0.070 0.102

200 0.017 0.115 0.115 0.080 0.100

400 0.043 0.111 0.108 0.090 0.100

800 0.071 0.107 0.097 0.084 0.089

20 50 0.000 0.100 0.094 0.010 0.107

100 0.000 0.123 0.125 0.046 0.102

200 0.003 0.118 0.127 0.069 0.099

400 0.019 0.113 0.102 0.088 0.101

800 0.054 0.128 0.106 0.095 0.100
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Table 2 The upper percentage points of zh,1, z
∗
h,1, zwh, zh,2 and z∗h,2 for α = 0.1

Skewness Kurtosis

p pl N zh,1 z∗h,1 zwh zh,2 z∗h,2
400 5 50 0.000 0.126 0.127 0.054 0.103

100 0.006 0.124 0.121 0.078 0.103

200 0.025 0.114 0.118 0.086 0.098

400 0.058 0.124 0.102 0.088 0.097

800 0.058 0.083 0.114 0.100 0.101

10 50 0.000 0.130 0.127 0.037 0.102

100 0.001 0.125 0.124 0.073 0.110

200 0.013 0.117 0.114 0.081 0.099

400 0.035 0.111 0.112 0.084 0.093

800 0.063 0.105 0.094 0.084 0.090

20 50 0.000 0.105 0.097 0.009 0.106

100 0.000 0.127 0.128 0.047 0.102

200 0.001 0.123 0.130 0.072 0.103

400 0.016 0.112 0.128 0.086 0.103

800 0.037 0.116 0.114 0.091 0.100

500 5 50 0.000 0.127 0.134 0.055 0.102

100 0.004 0.124 0.117 0.076 0.104

200 0.023 0.114 0.108 0.088 0.101

400 0.044 0.113 0.113 0.100 0.105

800 0.063 0.110 0.103 0.102 0.104

10 50 0.000 0.128 0.119 0.039 0.109

100 0.000 0.128 0.122 0.063 0.098

200 0.010 0.117 0.117 0.086 0.103

400 0.015 0.110 0.109 0.093 0.102

800 0.053 0.098 0.098 0.108 0.113

20 50 0.000 0.098 0.099 0.009 0.103

100 0.000 0.128 0.126 0.044 0.099

200 0.001 0.115 0.124 0.073 0.103

400 0.009 0.115 0.115 0.088 0.098

800 0.051 0.126 0.126 0.098 0.107
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Table 3 The upper percentage points of zh,1, z
∗
h,1, zwh, zh,2 and z∗h,2 for α = 0.05

Skewness Kurtosis

p pl N zh,1 z∗h,1 zwh zh,2 z∗h,2
200 5 50 0.000 0.072 0.072 0.021 0.055

100 0.006 0.063 0.068 0.033 0.050

200 0.018 0.056 0.056 0.043 0.052

400 0.029 0.060 0.054 0.055 0.060

800 0.038 0.047 0.044 0.049 0.051

10 50 0.000 0.070 0.071 0.011 0.053

100 0.001 0.063 0.072 0.026 0.049

200 0.009 0.063 0.063 0.039 0.052

400 0.029 0.058 0.080 0.041 0.045

800 0.040 0.061 0.056 0.056 0.059

20 50 0.000 0.050 0.048 0.002 0.055

100 0.000 0.074 0.071 0.017 0.053

200 0.002 0.068 0.073 0.031 0.052

400 0.016 0.067 0.066 0.044 0.058

800 0.031 0.066 0.058 0.048 0.056

300 5 50 0.000 0.076 0.072 0.023 0.057

100 0.004 0.066 0.065 0.034 0.052

200 0.015 0.060 0.060 0.043 0.052

400 0.017 0.064 0.058 0.043 0.054

800 0.014 0.057 0.058 0.042 0.051

10 50 0.000 0.076 0.075 0.011 0.054

100 0.000 0.073 0.068 0.031 0.054

200 0.007 0.064 0.062 0.036 0.048

400 0.022 0.057 0.055 0.040 0.048

800 0.028 0.056 0.055 0.039 0.044

20 50 0.000 0.053 0.049 0.001 0.054

100 0.000 0.071 0.071 0.017 0.053

200 0.001 0.064 0.071 0.029 0.049

400 0.008 0.060 0.065 0.040 0.051

800 0.027 0.068 0.049 0.050 0.055
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Table 4 The upper percentage points of zh,1, z
∗
h,1, zwh, zh,2 and z∗h,2 for α = 0.05

Skewness Kurtosis

p pl N zh,1 z∗h,1 zwh zh,2 z∗h,2
400 5 50 0.000 0.070 0.073 0.021 0.052

100 0.003 0.068 0.068 0.035 0.054

200 0.011 0.060 0.063 0.040 0.049

400 0.027 0.059 0.051 0.046 0.052

800 0.028 0.036 0.063 0.051 0.052

10 50 0.000 0.075 0.068 0.012 0.052

100 0.000 0.069 0.068 0.030 0.057

200 0.006 0.067 0.063 0.037 0.050

400 0.016 0.056 0.057 0.033 0.041

800 0.025 0.052 0.057 0.042 0.045

20 50 0.000 0.052 0.049 0.001 0.054

100 0.000 0.074 0.073 0.016 0.053

200 0.001 0.070 0.073 0.032 0.051

400 0.004 0.055 0.072 0.042 0.049

800 0.019 0.055 0.050 0.049 0.056

500 5 50 0.000 0.075 0.075 0.019 0.053

100 0.001 0.069 0.063 0.034 0.051

200 0.009 0.062 0.060 0.042 0.051

400 0.019 0.048 0.048 0.049 0.056

800 0.032 0.049 0.049 0.048 0.054

10 50 0.000 0.072 0.068 0.013 0.054

100 0.000 0.068 0.068 0.027 0.052

200 0.004 0.065 0.065 0.040 0.055

400 0.006 0.061 0.061 0.043 0.052

800 0.028 0.051 0.051 0.043 0.049

20 50 0.000 0.049 0.048 0.002 0.053

100 0.000 0.073 0.070 0.014 0.050

200 0.000 0.067 0.069 0.030 0.053

400 0.002 0.058 0.058 0.044 0.050

800 0.018 0.068 0.068 0.050 0.057
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Table 5 The upper percentage points of zh,1, z
∗
h,1, zwh, zh,2 and z∗h,2 for α = 0.01

Skewness Kurtosis

p pl N zh,1 z∗h,1 zwh zh,2 z∗h,2
200 5 50 0.000 0.020 0.018 0.002 0.011

100 0.001 0.015 0.018 0.006 0.012

200 0.003 0.013 0.013 0.007 0.011

400 0.004 0.008 0.014 0.010 0.011

800 0.008 0.014 0.011 0.009 0.010

10 50 0.000 0.018 0.021 0.001 0.012

100 0.000 0.017 0.020 0.003 0.010

200 0.001 0.014 0.014 0.006 0.012

400 0.008 0.020 0.015 0.007 0.011

800 0.006 0.009 0.015 0.014 0.017

20 50 0.000 0.010 0.010 0.000 0.012

100 0.000 0.019 0.018 0.001 0.012

200 0.000 0.016 0.018 0.004 0.010

400 0.002 0.016 0.015 0.010 0.010

800 0.005 0.014 0.012 0.010 0.011

300 5 50 0.000 0.021 0.021 0.002 0.013

100 0.001 0.017 0.017 0.004 0.011

200 0.002 0.014 0.016 0.008 0.012

400 0.003 0.016 0.010 0.008 0.011

800 0.003 0.013 0.016 0.009 0.013

10 50 0.000 0.019 0.020 0.001 0.011

100 0.000 0.019 0.020 0.003 0.013

200 0.001 0.016 0.015 0.006 0.010

400 0.004 0.015 0.014 0.008 0.010

800 0.003 0.007 0.017 0.011 0.012

20 50 0.000 0.010 0.009 0.000 0.013

100 0.000 0.021 0.018 0.002 0.012

200 0.001 0.014 0.019 0.004 0.009

400 0.001 0.013 0.018 0.006 0.010

800 0.007 0.017 0.012 0.009 0.010

18



Table 6 The upper percentage points of zh,1, z
∗
h,1, zwh, zh,2 and z∗h,2 for α = 0.01

Skewness Kurtosis

p pl N zh,1 z∗h,1 zwh zh,2 z∗h,2
400 5 50 0.000 0.020 0.019 0.003 0.013

100 0.000 0.018 0.019 0.005 0.011

200 0.002 0.013 0.016 0.007 0.010

400 0.005 0.012 0.010 0.008 0.009

800 0.007 0.010 0.012 0.008 0.009

10 50 0.000 0.020 0.019 0.001 0.013

100 0.000 0.019 0.018 0.004 0.013

200 0.001 0.019 0.014 0.007 0.010

400 0.003 0.013 0.012 0.006 0.012

800 0.002 0.011 0.010 0.004 0.005

20 50 0.000 0.008 0.010 0.000 0.012

100 0.000 0.020 0.020 0.001 0.011

200 0.000 0.018 0.019 0.004 0.011

400 0.001 0.016 0.020 0.008 0.012

800 0.001 0.010 0.009 0.009 0.010

500 5 50 0.000 0.021 0.019 0.002 0.011

100 0.000 0.019 0.016 0.005 0.010

200 0.002 0.014 0.013 0.008 0.010

400 0.004 0.007 0.007 0.008 0.009

800 0.005 0.009 0.010 0.008 0.009

10 50 0.000 0.019 0.018 0.001 0.013

100 0.000 0.018 0.018 0.003 0.012

200 0.000 0.018 0.018 0.007 0.011

400 0.000 0.012 0.012 0.003 0.008

800 0.006 0.010 0.010 0.004 0.005

20 50 0.000 0.009 0.008 0.000 0.012

100 0.000 0.019 0.019 0.001 0.010

200 0.000 0.018 0.017 0.005 0.012

400 0.000 0.011 0.011 0.006 0.013

800 0.004 0.015 0.015 0.009 0.012

19



Table 7 The upper percentage points of zh,1, z
∗
h,1, zwh, zh,2 and z∗h,2 for pl = 20

Skewness Kurtosis

p α N zh,1 z∗h,1 zwh zh,2 z∗h,2
1000 0.1 50 0.000 0.110 0.110 0.030 0.130

100 0.000 0.134 0.134 0.049 0.110

200 0.000 0.125 0.125 0.068 0.097

400 0.000 0.122 0.121 0.060 0.099

0.05 50 0.000 0.060 0.060 0.000 0.080

100 0.000 0.077 0.075 0.020 0.059

200 0.000 0.065 0.065 0.030 0.048

400 0.000 0.064 0.063 0.035 0.051

0.01 50 0.000 0.020 0.020 0.000 0.030

100 0.000 0.017 0.017 0.000 0.019

200 0.000 0.010 0.010 0.008 0.016

400 0.000 0.012 0.011 0.009 0.011

2000 0.1 50 0.000 0.111 0.111 0.008 0.109

100 0.000 0.149 0.149 0.041 0.106

200 0.000 0.119 0.118 0.076 0.110

400 0.000 0.115 0.115 0.093 0.106

0.05 50 0.000 0.058 0.056 0.001 0.056

100 0.000 0.082 0.082 0.017 0.049

200 0.000 0.070 0.070 0.031 0.055

400 0.000 0.080 0.080 0.040 0.058

0.01 50 0.000 0.012 0.012 0.001 0.012

100 0.000 0.018 0.018 0.001 0.014

200 0.000 0.024 0.023 0.007 0.011

400 0.000 0.020 0.020 0.008 0.011

Table 8 Comparison of CSR (case 1)

N gLasso-method AIC-method

10 0.19 0.87

20 0.56 0.92

Table 9 Comparison of CSR (case 2)

N gLasso-method AIC-method

10 0.31 0.64

20 0.68 0.94
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