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Abstract

By numerically comparing a variable-selection method using the crude AIC with those using the
bias-corrected AICs, we find out knowledge about what kind of bias correction gives a pogéate e
to variable selection under model misspecification. Actually, since it can be proved theoretically that
all the variable-selection methods considered in this paper asymptotically choose the same model
as the best model, we conduct numerical examinations using small and moderate sample sizes. Our
results show that bias correction under assumption that the mean structure is misspecified has a bet-
ter efect on variable selection than that under the assumption that the distribution of the model is
misspecified.
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1. Introduction

In the analysis of real data, it is important to determine which statistical model best fits the data;
there are many candidate models, and they each estinfigeedi results, which may lead tofidir-
ent points of view. In order to improve the accuracy of predictions, the “best” model can be chosen
as the one that has the smallest risk function when assessing the goodness of fit of the model, using
the Kullback-Leibler (KL) information (Kullback & Leibler, 1951). In practice, an estimator of the
risk function is used, because the risk function involves unknown parameters. The Akaike’s infor-
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mation criterion (AIC; proposed by Akaike, 1973; 1974) is the asymptotic unbiased estimator of the
risk function under the condition that the candidate model is correctly specified. It is defined by the
simple equation-2 x (the maximum log-likelihood} 2 x (the number of parameters in the model)
and is commonly used in actual data analysis.

Since the AIC is the asymptotic unbiased estimator of the risk function, the bias of the AIC to
the risk function may become large when the sample size becomes small and the number of param-
eters used in the candidate model becomes large. In particular, when the candidate models include
the true model, the larger the number of parameters in the candidate model, the more the AIC un-
derestimates the risk function. Then the AICs of those candidate models often do not have notable
differences. In addition, the variance of the AIC may increase as the number of parameters increases
(see e.g., Yanagihara & Ohmoto, 2005). Thus, the model with the most parameters tends to have the
smallest AIC, and so the AIC often selects the model with the most parameters as the best model.
This fault of the AIC is avoided by using the bias-corrected AIC, which is derived by correcting the
bias to the risk function. This has been studied under varidiisrdint conditions and with various
different correction methods (as a general theory correcting the bias of the AIC, see, e.g., Konishi,
1999; Burnham & Anderson, 2002; Konishi & Kitagawa, 2008). Sugiura (1978) and Hurvich &
Tsai (1989) proposed a corrected AIC for linear regression models (multiple regression models) by
fully removing the bias of the AIC to the risk function under the condition that the candidate model
is correctly specified. The bias-corrected AIC then becomes the uniformly minimum-variance un-
biased estimator (UMVUE) for the risk function of the candidate model (see Davigs 2006),
and many authors have verified by numerical experiments that a variable-selection method using the
corrected AIC performs better in selecting the best model than does one that uses the crude AIC.

The basic concept of bias correction is that we expect that an unbiased estimator of the risk func-
tion will allow us to correctly evaluate the risk function, which will further facilitate the selection
of the best model. However, there is no theory that promises that the best model chosen by min-
imizing a bias-corrected AIC has a higher predictive accuracy than that chosen by minimizing the
crude AIC. Generally, a bias-corrected estimator has a larger variance than does one without a bias
correction. An impairment of the mean square error of the bias-corrected AIC with respect to the
risk function, which results from an increase in the variance, may cause a drop in the performance
of the model selection when using a bias-corrected AIC.

In this paper, we compare the AIC and eight bias-corrected AICs to study what kind of bias
correction gives a positiveffect for selecting variables for a multivariate linear regression model
(MLRM) with a normal distributed assumption (called the normal MLRM), under a model misspec-
ification. The performances of the model selection methods using the nine criteria are examined by
numerical experiments. We do not use large samples, because it has been confirmed theoretically
that the variable-selection methods using these nine criteria select the same model as “best” when
n — oo. Our result is that correcting the bias has a greater posifieeteon variable selection when
the mean structure is misspecified than when the distribution of the model is misspecified.

This paper is organized as follows: In Section 2, the normal MLRM and the risk function based
on the KL information are described. In Section 3, the AIC and the bias-corrected AICs for the
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normal MLRM are summarized. In Section 4, we show that variable-selection methods using the
information criteria considered in this paper select the same best modelrwhero. We then

use numerical experiments with small and moderate samples to compare the performance of model
selection methods using the AIC and the bias-corrected AICs. Our conclusions and a discussion are
presented in Section 5. Technical details are provided in the Appendix.

2. Risk Function Based on the KL Information

The normal MLRM is used when we are interested in predicting not just one response variable
but several correlated response variables basd&chonstochastic explanatory variables (for details,
see, e.g., Srivastava, 2002, chap. 9; Timm, 2002, chap. 4)yil.€t., y, be p-dimensional inde-
pendent random vectors of response variables, ang,let. . ., z,n bek,-dimensional vectors of
the full explanatory variables, whereis the sample size. Furthermore, ¥gtbe ak-dimensional
vector of the candidate explanatory variables, which is a subset of the full explanatory vatigables
(i=1,...,n). Then, we consider the following normal MLRM as the candidate model:

M: y ~ Np(E/:I:i, ), (=1,...,n), (1)

whereZ= is ak x p matrix of the unknown regression déeients, and is ap x p unknown covari-
ance matrix.

LetY = (y1,...,yn) be ann x p matrix of response variables, and &t = (x1,...,x,) be an
nx k matrix of candidate explanatory variables. Suppose thatdq, matrix of the full explanatory
variables, X, = (€1, ..., Zun)’, is a column full-rank matrix, i.e., rani{,) = k, < n. Needless
to say, X consists of some columns &, and is also a column full-rank matrix. Moreover, we
assume thaX and X, each always havé, as a column vector that corresponds to an intercept,
wherel, is ann-dimensional vector of ones. The matrix form of the candidate model (1) is given
by

M: Y ~ Nwp(XE, @ In). 2

The following normal MLRM using the full explanatory variables is called the full model:
Mw . Y ~ Nnxp(XwEw, 2(0 ® In). (3)

Although the normal distribution is assumed, we are not able to see whether the assumption is actu-
ally correct. A natural assumption for the generating mechanisi isf

M,: Y =I,+8%Y2 &=(eq,...,en),

s 7 \2 (1) (4)
€1,...,en ~ 1i.d. g, E[e] = 0p, Cov[e] = Ip, E[(e'¢)] =k, + p(p + 2),

whereQ, is a p-dimensional vector of zeros. Hevéﬁ) is called the multivariate kurtosis, which was
proposed by Mardia (1970).

In order to clarify assumptions for deriving the information criteria, we separate the candidate
models into the following two models:
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e Underspecified model: the mean structure does not include that of the true modg&lxile. #
r..

e Overspecified model: the mean structure includes that of the true modeRx%.€., = T..

Here, Px is the projection matrix to the subspace spanned by the columi®,dfe., Px =
X(X’X)*X'’. Furthermore, the candidate model whose mean structure dovetails perfectly with
that of modelM., will be called the true model. Although Fujikoshi and Satoh (1997) used the
same terminology, they divided the candidate models by whether the candidate model included the
true model. This emphasizes that we are separating the candidate models based only on the mean
structure. Hence, our separation does not depend on whether a distribution of the true model is the
normal distribution. Furthermore, we assume that the full mjgls the overspecified model and

the true model is included in a set of the candidate models. For an additional characteristic of the
candidate model, p x p matrix of noncentrality parameters is defined by

1
Q= ﬁ2;1/21“;(1,1 - Px)I.x Y2, (5)

It should be noted tha® is positive semidefinite anf = O, (whereOy,, is ap x p matrix of
zeros) holds if and only iM is the overspecified model.

Let f(yln, 33) be the probability density function M,(n, X). Then, the log-likelihood function
of the candidate modé!l in (2) is derived as

n
(B, 3NY, X) = ) log f(yil= =, %)
i=1

= —% {nplog 2r + nlog S| + (=YY - XE)(Y - XE))}. (6)

By maximizing{(E, X|Y’, X), or equivalently solving the likelihood equatiodq=, XY, X)/0= =
Oy p andot(E, XY, X)/03 = Oy,p, the maximum likelihood estimators (MLE) of the unknown
parameter matriceE andX: in the candidate modé!l are obtained as

E=(X'X) XY, ¥= %Y'(In - Px)Y.
Substituting the MLEs into (6) yields the maximum log-likelihood of the candidate mdcdzs
(E DY, X) = —2{p(|092n+ 1)+ log|S]). @)
Let £(E, X) be the expected negative twofold log-likelihood function:
L(E,X) = B [-20E,2Y, X)] = -2(E, 2T, X) + ntr(X1x,), (8)

whereEj, means the expectation with respecfifounder the true modeVl. in (4). We define the

loss function measured by the KL informationﬁ(é, ﬁ]). Then, a risk function that uses the KL
information to assess the gap between the true model and the candidate model is defined by the
expectation of the loss function, i.e.,
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RaL = By [L(E. Z)]. 9)

In this paper, the candidate model that makes the risk function the smallest is called the principle
best model. The following theorem is satisfied for the principle best model (the proof is given in
Appendix A):

Theorem 1 The principle best model is either the true model or an underspecified model. When
n — oo, the principle best model becomes the true model under the assumption that all the multi-
variate fourth moments af exist and thatim,_,., X/, X,,/n exists and is positive definite.

3. AIC and Bias-corrected AICs in Normal MLRMs

Although the risk functiorRg_ in (9) assesses the goodness of fit of the model, we cannot use

R« directly becausé&y, involves unknown parameters. Hence, in practice, an estimatBg of
is needed to select the best model among the candidates. It is easy to see that a naive estimator of
R« is —2{’(é, f)lY,X). Unfortunately, wherRg_ is estimated by—2€(@), ﬁ)lY,X), the following
constant bias appears:

B = R - E}[-2((8,3|Y, X)]. (10)
Thus, an information criterion for selecting the best model is defined by adding an estiftted
—2¢(0,3]Y, X) as

IC = —2¢(Z,3|Y, X) + B, (11)

whereB is an estimator oB. The information criterion is specified by the individuglbecausd3

changes based on the assumptions of the middahd by the estimation method. In this paper, we
consider the following two assumptions:

(A1) The candidate mod&l in (2) is the overspecified model.

(A2) The distribution of the true modé@ll. in (4), called the true distribution, is the normal distri-
bution, i.e..e ~ Np(0p, Ip).

Nine information criteria used to estimd®_ are enumerated below. The order of the bias of each
information criterion forRk_ is summarized in Table 1.

e AIC: When assumptions Al and A2 are satisfied simultaneously, Akaike (1973; 1974) showed
that B in (10) is asymptotically equal to twice the number of parameters in the candidate model.
Since the number of parametershdfis pk + p(p + 1)/2, Baic = 2pk+ p(p + 1) is used a8. By

using the general formula in (11), the AIC in the modlkis given by

AIC = np(log 27 + 1) + nlog|S| + 2pk+ p(p + 1).

Recall thaBac is derived under the assumption that A1 and A2 are satisfied simultaneously. Hence,
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the bias of the AIC tdRx. becomesO(n~!) when assumptions A1 and A2 are satisfied simultane-
ously. However, the order of the bias change®(b), i.e., AIC has constant bias, when either of the
assumptions Al or A2 are violated.

e Corrected AIC (CAIC): The Bac gives an inaccurate approximationBavhenn is not large or
k andp are relatively large, becauc is an asymptotic approximation & In order to avoid this
problem, when the assumptions A1, A2, and an additional assumptiop+ k + 1 are satisfied si-
multaneously, Bedrick and Tsai (1994) calculated the exact biBs-as(n+k)p/(n—k—-p-1)-np,
and proposed the CAIby replacingBaic in (11) with Beac = n(n + K)p/(n — k- p— 1) — np.
Whenn > p+ k + 1, the CAIC in the modeM is given by

nin+k)p

CAIC = nplog 2r + nlog|$] + - _ A + (PR D(p+ 2K+ Dp

-p-k-1 n-p-k-1

(12)

The CAIC in (12) is an unbiased estimatorR_ under the assumptions Al and A2, and it is con-
gruent with the bias-corrected AIC proposed by Sugiura (1978) and Hurvich and Tsai (1989) when
p = 1. From the equation (12) and the unbiasedness of the CAIC under the assumptions Al and
A2, we can see that the AIC in the overspecified model underestirRatesand the strength of

the underestimation becomes largekascreases. The number of explanatory variables of the best
model selected by the CAIC will be less than or equal to the number selected by the AIC (the proof
is given in Appendix B). Additionally, extending the result of Davigsl. (2006) to the multivariate

case provides that the CAIC is a UMVUE of the risk functRa when the assumptions A1 and A2

are satisfied simultaneously (for a short proof, see Yanag#étaah 2012). However, as in the case

of the AIC, the order of the bias of the CAIC Rx. becomeg(1), i.e., the CAIC has a constant
bias, when either of the assumptions Al or A2 are violated.

e Modified AIC (MAIC ): When the assumption A2 holds but the assumption Al does not hold,
the AIC and CAIC have constant biasesRg_ . Fujikoshi and Satoh (1997) reduced these bi-
ases by using an additional moment estimator for an asymptotic valBdérothe underspecified
model. LetByac = Beaic + 2ktr(L) — tr(L)? — tr(L?), where L is a p x p matrix defined by
L = (n-KX,21/(n-k,) - I,. Here3, is the MLE of X,, in the full modelM,, in (3). We
note that tr{), tr(L)?, and tr(.%) are consistent estimators of@®], tr(Q2)?, and tr§2?), respectively,
when is given by (5). Whem > p + k + 1, by replacingBac in (11) with Byaic, MAIC in the
modelM is given by

MAIC = CAIC + 2ktr(L) — tr(L)? — tr(L?).

The bias of the MAIC tdR¢. become®(n~?) when assumptions Al and A2 are satisfied simultane-
ously, and it become®(n~1) when assumption A2 holds but assumption A1 does not. This implies
that the MAIC reduces the constant biases of the AIC and the CAIC in the underspecified model
to O(n~) when assumption A2 holds. However, the bias chang€X1), i.e., the MAIC also has

1 Although Bedrick and Tsai (1994) used AJ@s the abbreviated symbol, we use CAIC following the notation of Fujikoshi
and Satoh (1997).



Yanagihara, Kamo, Imori and Yamamura

constant bias, when assumption A2 is violated.

e Takeuchi’'s Information Criterion (TIC): The CAIC and MAIC correct the bias of the AIC to
RkL when the assumption A2 is satisfied. However, it is unknown if the true distribution is normal.
The TIC (proposed by Takeuchi, 1976) corrects the bias of the AIC even if the true distribution is
not normal. Let a squared standardized residual oitthemdividual be denoted by

P2 = (yi — E'ai) &7y - E'ai), (13)

and let an estimator of the multivariate kurtosﬁjé in (4) be denoted by

o 1,
&)=t p(p+ 1), (14)
i=1
Furthermore, let
hi=1-2/(X'X) ;. (15)

Then, by definingd in (11) asBric = Bac + 8" + 23, (1 - h)(f2 - p), the TIC in the modeM
is given as follows (for details of the derivation, see Fujikasttdl., 2005):

n
TIC = AIC + & + 22(1 —h)(F2 - p). (16)

i=1
Whenys, ..., y, are independently and identically distributed, the bias of the TIC to the risk func-
tion is O(n~t) under any model misspecification. However, in the case of multivariate linear regres-
sion, they, ..., yn are independent but not identically distributed. This leads to the less well-known
fact that the TIC also has constant bias (as do the AIC and CAIC) when assumption Al is violated.
Although the TIC theoretically reduces the bias caused by violating normality, the TIC cannot re-
duce the bias successfully unless the sample size is huge. Many authors have verified this with
numerical experiments (see, e.g., Fujikoshal, 2005; Yanagihara, 2006). This occurs because
the TIC has an estimator for the multivariate kurtoéjé “Yanagihara (2007) presented numerical
results that showed thaf™" has a huge bias 1 if nis not huge. Hence, the TIC also has a huge
bias toRg_ if nis not huge.

e Extended Information Criterion (EIC): The serious problem with the TIC comes from the mo-
ment estimator o:ffll). This problem can be avoided by using the bootstrap method for an estimation
of the bias; this is the EIC, proposed by Ishigetal. (1997). In order to express tloth bootstrap
resample ofY’, the followingn x n random matrix is prepared:

Dy = (dp1,....dpn), dpi.....dpn ~iid. MN(1;n711,), (17)

where MN,(1;n"11,) denotes then-variate one-trial multinomial distribution with the same cell
probabilities ¥n. Following Freedman (1981), thHath bootstrap resample & is Y, = X=E+
Dy(I, - Px)Y. Let f)b be the MLE ofX evaluated fromf"b, X). From the formula in Konishi
(1999), an estimator of the bias obtained from the bootstrap methodwrigipetitions is given by

7
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Beic = Mt XL, tr{S54(Y - Px ¥4) (Y - Px ¥5)|-np. Then, by using (11), the EIC in the model
M is given as follows (see Fujikosht al., 2005):

D (S - PxYe) (Y - PxYe)).  (18)

~ 1
EIC = nplog 27 + nlog|X| + —
mg

m
=1

Whenys,...,yn are independently and identically distributed, the bias of the EIC to the risk func-
tion is O(n~1) under any model misspecification like the TIC. However, in the case of multivariate
linear regressionys, . . ., y, are independent but not identically distributed. Hence, the bias of EIC is
O(n™1) under the assumption A1, but that change®(b), i.e., the EIC has constant bias (as does the
TIC), when assumption Al is violated (see Yanagihara, 2006). In particulas=HIIC + Op(n‘l/z)

holds when bothm — oo and assumption Al holds (the proof is given in Appendix C). Although

the theoretical bias of the EIC has the same order as that of the TIC, the bias of the EIC tends to
become smaller than that of the TIC (see Yanagihara, 2006) because the EIC does not directly use
P for estimating the bias.

e Adjusted EIC (EIC,): By using a full-model-based resampling, the bias of the EIC in (18) can
be reduced t®(n™t) even if assumption A1 does not hold (see, e.g., Fujikeshl., 2005). We call
this the adjusted EIC (EIQ. Let Y; be thebth bootstrap resample &f based on the full model
M,, given byfb =X, B, + Dy(I,- Px,)Y,and Ietﬁb be the MLE ofX evaluated fromfb, X),
whereZ,, is the MLE ofZ,, in the full modelM,,, and Dy, is given by (17). We define an estimator
of the biasBgc, by replacing¥;, and$, in Beic with Y, andX,. Then, by using (11), the EiCin

the modelM is as follows:

~ 1 _ _ _
EICa = nplog 27 + nlog %) + — Z tr{SpH(Y - PxYp) (Y - PxYh)).

b=1

The bias of the El to the risk function is alway®(nt). In particular, EIG = TIC + Op(n~Y/?)

holds wherm — «o and assumption A1 holds (the proof is given in Appendix C).

e Cross-Validation (CV) Criterion : The information criteria introduced above are based on (11),
but the CV criterion proposed by Stone (1974) is not based on (11) but instead estimated directly
estimates the risk function. L&f_;y be a 6 — 1) x p matrix obtained fron” by deletingy;, let

X iy be a - 1) x k matrix obtained fromX by deletingz;, and letZ;_;; and3_;; be the MLEs

of Z andX , respectively, evaluated fronY{, X)) . Then, the CV criterion for the mod#l is

n
CV = -2 %" log f (uilZ{_yzi, 3y)
i=1

n
= nplog 2 + Y {log ISl + (i - Ef_yzi) S (i - Bf_y=)).- (19)
i=1

From Stone (1977), C\& TIC + Op(n™?) always holds ifys, . . ., yn are independently and identi-
cally distributed. In the case of multivariate linear regression, althgugh. , y, are not identically

8
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distributed, we can prove that C¥ TIC + Op(n™!) always holds (the proof is given in Appendix
D). From this result, the bias of the CV criterion@n—1) under assumption A1, but like the TIC,
it has a constant bias when assumption Al is violated. On the other hand, Yoskinabt(?005)
showed that the CV criterion in (19) can be rewritten as

27n RN P2 (n—1)2
CV = nplog|— | + nlog|X| + log|l- — |+ ——1, 20
P g(n—l) - Zl{ g[ nh] hi(nh—ff)} 20
wherer? andh; are given by (13) and (15), respectively. Equation (19) indicatestregtetitions of
the calculations foE[_j; andX;_;; are needed to derive the CV criterion. However, by using (20),
we only need to calculat& andX to calculate the CV criterion.

e Jackknifed AIC (AIC ;): The CV method which is equivalent to the jackknife method can esti-
mate not only the risk functioRx, but also the bia. We can then derive an estimator®that is
unbiased when assumptions Al and A2 are satisfied simultaneously, and that is asymptotically un-
biased when assumption Al is satisfied but assumption A2 is not. Yanagihara (2006) proposed such
a bias-corrected AIC, called the jackknifed AIC (A)C Although it is also necessary to calculate

E._i and3[_; for a jackknife estimation, by using the same calculation as for the CV criterion, the
AIC; can be obtained from onlﬁ and3. Let BNCJ =cyl, Q(fiz/hi; 1)/hi — np, Wherer? and

h; are given by (13) and (15), respectively, th@(x; 1) is a function with respect ta andc is a

positive constant, as follows:

_ (n+k(n-k-p-2)
(n—k-p-1) XL h*

Then, by using (11), the Algfor the modelM is (see Yanagihara, 2006):

Q(fz/hlv 1)

Qx4 = X(l— )ﬁ()_ﬂ, (21)

AIC; = nplogZyr+nIog|E| +CZ

From Yanagihara (2006), AlC= TIC + Op(n~1) always holds. Hence, like the TIC, the bias of the
AIC;is O(n~1) under the assumption A1, but it has a constant bias when assumption A1 is violated.
On the other hand, when assumptions Al and A2 are satisfied simultaneously, this ArCun-

biased estimator dR¢_. Although the order of the bias of the AJ@& the same as that of the bias

of the TIC and EIC, it has been verified numerically that the bias of the; AKlGhe overspecified

model becomes very small. Yanagihara (2006) showed a theoretical result that the absolute value
of the bias of the AlGbecomes smaller than those of either the TIC or EIC under assumption Al
when we neglect the terms Bfthat areO(n~2).

e Corrected AIC; (CAIC ;): Although the bias of the Algbecomes very small, in theory, it does

not disappear. Thus, Yanagihaghal (2011) proposed a bias-corrected AICAIC;) that cor-

rects the bias while maintaining the desirable characteristic of keeping the bias very small. Let
Beaic, = ¢ X, {1 + &g (1 - hi)}Q(F?/hi; ag) — np, wherer?, hy, andQ(x; ) are given by (13), (15),

and (21), respectively, aret anda; are positive constants such that

9
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Table 1. The order of the bias of each criterion

Bias Correction Normality Nonnormality
Criterion Method Underspecified OverspecifiedJnderspecified Overspecified
Proposed AIC*ll o(1) o(n1) o(1) o(1)
under Normality CAIC*L+2 Exact o(1) 0 0(1) 0(1)
MAIC Moment, Exact o(n1) o(n?) o(1) o(1)
TIC*3#4+5 Moment o(1) oY) o(1) o)
EIC*3+5+6 Bootstrap o(1) o) o(1) o)
Proposed EICA*3+6 Bootstrap o(n1) o(n1) o(n1) o(n1)
without Normality| — Cv** Cross-validation o(1) o(n1) o(1) o(n1)
AIC#4*5*7 | Jackknife, Exac o(1) 0 o(1) o(n1)
CAIC;***7 | Jackknife, Exac o(1) 0 o(1) o(n2)

*1 The number of explanatory variables in the best model selected by the CAIC is less than or equal to that in the best
model selected by the AIC.

*2 This is the UMVUE of the risk function when assumptions A1 and A2 hold.
*3 These are asymptotic equivalent when assumption A1 holds. Tieeatices ar®p(n~/2).
*4 These are asymptotically equivalent. Théefiences ar@p(nfl).

*5 WhenO(n2) term is neglected and assumption A1 holds, the absolute value of the bias of thésAl@aller than
those of the TIC and EIC.

*6 The only diference between these two criteria is the resampling method.

“ When theO(n™2) term is neglected and assumption A1 holds, the variance of the Ji&l€maller than that of the
AIC,.

. (R -k-p-2al (B + )T ("5P) -1
S (n+akn-k-p-r()r(e et T nej

Here,I'(X) is the gamma function. Then, by using (11), the CAI@ the modelM is (see Yanagi-
haraet al,, 2011)

n
CAIC; = nplog 27 + nlog|Z| + ¢ Z{l +ay(1 - h)}Q(F?/h;; ag).

i=1
When assumptions Al and A2 are satisfied simultaneously, like thg KIE€ CAIG is an unbiased
estimator ofR¢_. Although, like the AIG, the CAIG has constant bias when assumption Al is
violated, the CAIG reduces the bias of the Al@o O(n~?) when assumption Al holds. Moreover,
Yanagihareet al. (2011) showed a theoretical result under assumption Al that Ereidiices not
only the bias of AIG but also the variance of AlGvhen we neglect th&(n2) terms.

4. Numerical Comparison

The best models chosen by nine information criteria described in the previous section have the
following characteristic when — oo (the proof is given in Appendix E):

Theorem 2 Suppose that all the multivariate fourth moments aéxist, andlim,_,., X, X, /n
exists and is positive definite. Then the best models selected by the nine information criteria con-

10
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sidered in this paper are asymptotically equivalent. In particular, an underspecified model is never
selected as the best model whemsno.

Yanagiharaet al. (2012) derived asymptotic probabilities of selecting the candidate models by
AIC and CAIC under assumption A2. In addition to Theorem 2, we can prove that the asymptotic
probabilities of selecting the candidate models by nine information criteria become the same as
those derived by Yanagihas al. (2012) even if assumption A2 is violated. Theorem 2 indicates
that numerical comparisons with variable-selection methods using the nine information criteria are
meaningless when the sample size is large. Hence, we conduct numerical comparisons using smaller
sample sizes. The model in Yanagihatal (2011) was used as the basic simulation model for gen-
erating data. The expectations and probabilities in the numerical studies were evaluated by a Monte
Carlo simulation with 10,000 repetitions. TBeg c and I?%E.(;A were obtained by resamplingd00
times, i.e.m = 1000.

We prepared thé, — 1 candidate models; (j = 1,...,k, — 1) with p = 4 andn = 30 or
100. First, we generated],...,z, ~ i.i.d. U(-1,1). Using these,,...,z, we constructed the
n x k, matrix of explanatory variableX,,, whose {, j)th element is defined by(z — 2)/s,}/*

i=1..nmj=1...,k,), and wherez ands, are the sample mean and standard deviation, re-
spectively, ofz, ..., z,. The true model was determined by = X, u.1, and3,, whose {, j)th
element is defined by 8)'"1 (i = 1,...,4;] = 1,...,4), wherel, is a p-dimensional vector of

ones. In this simulation study, we prepared thetsbas

Case1l: u. =(0,1,2,4,0,0,0,0), (K, = 8),
Case 2. u. =(0,1,2,4,0.5,0.5,0,0Y, (K, = 8),
Case3: m. =(0,1,2,4,0,0,0,0,0,0,0,0,0,0,0,0), (k, = 16),
Case4: p, =(0,1,2,4,05,05,0,0,0,0,0,0,0,0,0,0y, (k. = 16),
Case5 p.=(0,1,11-1-1,224,0,0,0,0,0,0,0), (k, = 16),

Case6: p.=(0,1,1,1,-1,-1,224,05,05,0,0,0,0,0), (k, = 16).

The matrix of explanatory variables M; (j = 1,...,k, — 1) consists of the firstj(+ 1) columns of
X,. Thus, the true model.. in the cases 1, 2, 3, 4, 5, and 6 &fg, M5, M3, M5, Mg, and M,
respectively. In a sense, the subindesxpresses the degree of the polynomial regressid;in

Next, in order to generate multivariate nonnormal data, we prepared the data model introduced by
Yuan and Bentler (1997).

Data Model: Letws,...,wq (g = p) be independent random variables wifw;] = 0, E[wj?] =1
and E[wj‘] -3 =y, andw = (wy,...,wq)’. Further, letr be a random variable that is independent
of w, E[r?] = 1 andE[r*] = 8. Then, an error vector is generatededy rC’w, whereC is agx p
matrix defined byC' = (c1, . .., ¢q)’ With full rank p, andC’C = I,,. Then, the multivariate kurtosis
of this model becomes” = By 21, (cjc))? + (8 - )p(p + 2).

Let y+ be a random variable from the chi-square distribution viithegrees of freedom, and €%
be a p + 1) x p matrix defined byCo = (Ip, 1p)'(Ip + 1,1;)"%2. By using the data model, we

11



On the Bias CorrectionfEect of the AIC under Model Misspecification
generate error vectors with the following three distributions:
1. Normal Distribution wj ~ N(0,1),r = 1 andC = I, ({” = 0).

2. Laplace Distribution w; is generated from a Laplace distribution with mean 0 and standard
deviation 1y = /6/y2andC = Co ({" = 45x pA(p+ 1) + p(p + 2)/2).

3. Skew Laplace Distributianw; is generated from a skew Laplace distribution with location
parameter 0, dispersion parameter 1, and skew parameter 1, standardized by/4naad 3
standard deviation/23/4,t = ,/6/x2 andC = Co (x\” ~ 4.88x p?(p+ 1) + p(p + 2)/2).

For details of the skew Laplace distribution, see, e.g., kbl (2001). It is easy to see that data
models 1 and 2 are symmetric distributions, and data model 3 is a skewed distribution. Moreover,
the size of the kurtosisfll’ in each model satisfies the following inequality: modet inodel 2<

model 3.

First, we examine the average biases of the criteria. Figure 1 dRgwand the average of each
criterion in case 1. Since the shape of the figure was almost the same, we omit the results for cases
2 to 6 to save space. The horizontal axis of the figures expresses the number of candidate models,
i.e., the subindex of M;. We see that the biases of the Alénd CAIG were very small under
any distribution. As for the size of the bias, the AIC most underestimated the risk function, and the
CV criterion overestimated the risk function in the most cases. The size of the bias of the TIC was
almost the same as that of the AIC. This is because the estimate of the multivariate klgr)tcﬁsis -
the TIC was close to 0 when the sample size was not large enough. Moreover, as the number of
variables in the model increases, the biases of the AIC and TIC increase.

Tables 2 and 3 show, for case 1 and for each information criterion, the standard deviation
({Var[IC]}¥?) and the root-mean-square error (RMSBJ4I[IC] + (E[IC] - R«.)?}¥?). Since the
tendency was almost the same, to save space, we omit the resulfls,fdds, My, Ms, and Mg,
and in cases 2 to 6. We can see in the tables that the standard deviations of the AIC and CAIC
were the smallest and those of the MAIC and TIC were the second smallest. The standard deviation
of the EIC and EIG were larger than that of the AIC, but smaller than those of the CV ;£46d
CAIC;. The standard deviation of the CV criterion was the largest among all the information criteria
considered. On the other hand, the RMSEs of the AIC and TIC became large when the sample size
was small because their biases became large. The RMSEs of the CV criterion, tha®dCAIG
were also large because their standard deviations became large. In all cases, there was a tendency
for the standard deviation and RMSE to become large whevas large.

To compare the nine information criteria for their performance as a model selector, the following
two properties were considered:

e the probability of selecting the principle best model: the frequency with which the principle best
model is selected as the best model.

e the prediction error (PE) of the best model: the risk function of the best model which is chosen
by the information criterion; PE is defined as follows:
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Figure 1.  Risk function and the average of each criterion (Case 1)

PE= E; [L(ébesb 2’\3besa] s

where£L(E, X)) is given by (8) an@EpestandSpesiare the MLEs off andX, respectively, under
the best model.

A high-performance model selector is considered to be an information criterion with a high prob-
ability of selecting the principle best model and a small prediction error. According to the basic
concept of the model selection based on the risk function minimization, a good model selection
method is one that can choose the best model for improving the predictive accuracy. Hence, the PE
is a more important property than is the probability of selecting the principle best model.
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Table 2. Standard deviation of each criterion (Case 1)
n |Dist.[Model| AC CAIC MAIC TIC EIC EICa CV AIC; CAIC,

1 15.010 15.010 15.033 15.106 15.342 15.179 16.007 15.998 15.899
17.416 17.416 17.476 17.567 17.842 17.813 19.465 19.358 19.010
19.007 19.007 19.007 19.228 19.680 19.680 30.358 28.239 24.748
24.300 24.300 24.359 25.931 30.636 25.933 39.426 39.264 38.073
29.050 29.050 29.123 30.758 35.666 31.824 51.824 50.891 48.977
30.194 30.194 30.194 31.440 35972 35.972 70.243 64.135 59.042
24539 24539 24.626 26.264 31.183 26.330 39.878 39.717 38.532
29.102 29.102 29.199 30.828 35.906 31.930 53.943 52.920 50.881
30.317 30.317 30.317 31.546 36.130 36.130 72.282 65.915 61.491

25.465 25.465 25.460 25.490 25.519 25.501 25.519 25.519 25.518
29.346 29.346 29.343 29.401 29.410 29.403 29.457 29.457 29.449
29.896 29.896 29.896 29.995 29.968 29.968 30.268 30.263 30.171
45.873 45.873 45.892 48.881 50.177 48.966 54.003 54.025 53.871
54,960 54.960 54.964 58.601 60.232 59.079 65.510 65.512 65.312
55.323 55.323 55.323 58.706 60.240 60.240 66.751 66.645 66.355
46.667 46.667 46.682 50.057 51.413 50.127 55.152 55.176 55.033
55.358 55.358 55.358 59.470 61.296 60.043 66.796 66.801 66.601
55.669 55.669 55.669 59.438 61.244 61.244 67.987 67.877 67.623

30| 2

100 2

N W RN®RN®PR[N® RN ® RN W

Table 3. RMSE of each criterion (Case 1)
n [ Dist. [ Model| AIC CAIC MAIC TIC EIC EIChA CV AIC; CAIC,

1 15.486 16.625 15.181 15.772 17.357 16.290 19.905 18.803 18.599
28.397 17.416 17.478 30.642 17.855 19.981 20.531 19.358 19.010
66.895 19.007 19.007 72.312 19.740 19.740 47.359 28.242 24.749
32.159 26.318 28.698 30.994 30.735 32.465 41.417 40.677 39.253
58.144 40.404 40.567 56.425 37.878 44.191 52.376 50.891 48.990
103.424 45.985 45.985 105.162 41.763 41.763 81.197 64.135 59.059
33.300 27.123 29.715 32.153 31.195 33.695 41.371 40.715 39.331
59.137 41.222 41410 57.603 38.675 45.242 54.292 52.935 50.948
104.755 47.094 47.094 106.657 42.810 42.810 81.953 65.943 61.577

25.637 26.089 25462 25.719 26.102 25.552 26.554 26.460 26.449
29.818 29.346 29.344 30.044 29.413 29.471 29.475 29.458 29.450
32.396 29.896 29.896 33.371 29.969 29.969 30.669 30.263 30.171
47.841 47.144 48.692 48.967 50.191 49.714 54.467 54.451 54.270
62.714 60.405 60.411 60.963 60.729 60.356 65.514 65.514 65.316
67.442 61.137 61.137 64.859 60.990 60.990 66.914 66.646 66.358
48.672 47.973 49517 50.139 51.431 50.850 55.661 55.646 55.473
63.288 60.962 60.964 61.888 61.811 61.352 66.804 66.801 66.602
67.982 61.641 61.641 65.645 62.010 62.010 68.174 67.877 67.624

30| 2

100 2

N W RN WRN® R[N RN RN ®

Tables 4 and 5 show the selection probability and PE, respectively. WkeB0, the principle
best models were fierent from the true models in the cases 2, 4, 5, and 6, in which the principle
best models wer#ls, M3, Mg, andMy, respectively. On the other hand, whes: 100, the princi-
ple best model was fierent from the true model only in case 6, in which the principle best model
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Table 4. Probabilities of selecting the principle best model

Case| n [Dist | AC CAIC MAIC TIC EIC EICA CV AIC; CAIC,

1 30 1 |69.07 98.44 99.41 60.20 97.92 99.62 98.66 95.12 96.07
70.19 98.46 99.55 54.35 94.19 99.64 95.02 91.59 92.65
69.68 98.35 99.41 53.84 94.42 99.74 95.18 91.73 92.84
85.11 92.59 93.82 82.51 92.51 94.28 93.63 91.75 91.87
85.50 92.94 94.18 79.39 90.22 96.22 93.01 91.13 91.21
85.04 92.20 93.70 79.09 89.87 96.22 92.79 90.78 90.96

34.70 87.34 93.48 26.83 86.92 95.33 90.71 79.01 80.98
30.82 84.57 9154 21.99 80.84 95.27 88.84 77.52 79.96
30.27 84.07 91.04 2215 80.26 95.07 88.92 77.08 79.19
56.85 50.78 47.78 56.66 50.40 46.13 47.42 51.00 51.03
58.45 52.19 49.07 54.17 46.90 39.82 41.18 44.48 44.73
58.55 52.08 49.58 54.50 47.60 40.46 41.86 45.09 45.01

50.70 98.20 99.04 15.16 97.56 89.4298.40 94.24 96.10
48.98 98.26 99.46 12.22 94.18 89.08 95.22 90.12 92.86
49.86 98.40 99.28 1254 9458 89.78 95.08 90.08 92.54
84.64 9240 93.59 81.22 9221 91.3693.62 91.45 91.57
84.39 92.22 93.25 76.86 89.33 92.68 92.57 90.40 90.57
84.63 92.54 93.82 76.68 89.64 92.9793.14 91.01 91.20

23.10 86.92 92.48 6.04 86.08 63.2089.32 76.76 80.28
20.14 83.68 89.82 3.64 78.44 60.5287.80 73.84 78.14
20.60 83.80 90.28 4.80 80.30 59.9488.42 7548 78.72
55.03 49.49 46.27 52.55 49.38 50.64 46.02 49.64 50.02
57.20 52.13 48.85 50.83 47.24 48.80 41.48 44.49 44.66
57.01 5257 49.51 50.34 47.63 49.27 41.95 45.03 45.32

0.00 13.14 3236 0.00 16.97 9.35 52.99 14.86 16.92
0.01 12.04 2749 0.00 19.93 11.1459.57 24.44 27.32
0.03 11.98 27.77 0.01 18.17 10.4558.67 23.61 26.23
81.26 93.78 96.24 69.55 93.84 96.94 94.02 85.14 90.15
80.96 93.57 96.04 65.05 91.92 97.77 93.62 83.40 89.14
80.31 93.72 96.19 65.35 92.00 97.70 93.28 83.50 89.07

0.00 12.43 4381 0.00 17.70 35.74 29.85 9.50 11.53
0.02 12.39 36.86 0.00 24.16 34.66 32.36 16.43 22.50
0.01 1224 38.17 0.01 24.08 35.10 33.40 17.43 23.29
58.23 80.14 85.79 45.61 80.25 87.91 80.46 65.66 72.51
57.59 79.48 85.09 42.72 78.61 90.24 81.20 65.54 72.78
58.58 79.45 85.18 43.79 78.75 89.62 81.20 66.21 73.27

100

100

100

100

100

100
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was M7. In the tables, bold and italic fonts indicate the highest and second highest probabilities
of selecting the principle best model and the smallest and second smallest prediction errors of the
best models. We see from the tables that , except for the TIC, the bias-corrected AICs resulted in
improved performance for variable selection, compared to the uncorrected AIC. This indicates that
correcting the bias of the AIC isfective for improving the performance of the AIC as a model
selector when the sample size is not large. Although in theory, the TIC reduces the bias of the AIC,
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Table 5. Prediction errors of the best model
Case‘ n ‘Dist.‘ AIC CAIC MAIC TIC EIC EICa CcVv AIC; CAIC,

1 30 1 |310.13 294.30 293.84 314.82 294.49 293.70 294.08 295.59 295.21
330.42 312.82 312.16 339.12 314.07 312.07 314.42 315.81 315.36
331.31 313.57 312.97 340.15 314.77 312.73 315.08 316.52 316.03
861.86 860.29 860.05 862.42 860.29 859.94 860.07 860.45 860.41
875.17 873.53 873.28 876.41 874.00 872.90 873.51 873.87 873.86
875.59 874.04 873.74 876.81 874.45873.24 873.91 874.30 874.22

319.84 300.60 299.14 323.80 300.51 298.56 299.59 302.26 301.78
342.00 318.78 316.75 348.57 319.27 315.47 317.39 320.58 319.98
342.88 319.13 316.92 349.43 319.86 315.52 317.55 321.06 320.31
873.04 872.53 872.50 873.38 872.55 872.38 872.55 872.65 872.62
887.13 886.45 886.38 887.96 887.05 886.71 887.02 887.12 887.08
887.16 886.57 886.50 887.98 887.13 886.75 887.10 887.14 887.14

439.72 294.46 294.06 578.07 294.65 297.77294.27 300.32 295.15
498.77 312.61 312.02 651.61 313.86 316.68 314.05 322.85 315.00
498.99 313.24 312.77 654.32 314.39 317.14 314.67 323.77 315.98
862.26 860.23 860.02 863.88 860.27 860.38859.99 860.47 860.40
876.39 873.94 873.70 879.92 874.49 873.77873.74 874.42 874.28
876.94 874.22 873.91 880.92 874.86 874.07874.01 874.77 874.69

468.43 300.60 299.30 594.48 300.52 305.25299.69 310.28 301.73
523.01 318.88 317.08 662.42 319.95 324.96317.77 330.44 320.72
535.53 319.01 317.05 668.18 319.76 325.20317.64 329.55 320.37
874.65 872.81 872.71 877.19 872.79 872.52 872.79 873.26 872.96
888.63 886.30 886.26 893.32 886.97 886.12 886.78 887.56 887.21
889.36 886.98 886.80 893.87 887.63 886.72 887.39 888.16 887.85

534.94 358.40 354.18 606.00 357.82 354.57354.41 393.43 362.78
599.70 384.29 377.31 676.70 382.62 378.95374.86 420.67 386.40
598.80 382.88 376.24 676.24 381.25 377.87374.05 420.32 385.74
891.83 888.07 887.50 896.26 888.03 887.34 887.92 891.38 888.88
907.82 903.71 903.06 914.29 904.06 902.63 903.73 908.18 905.09
907.98 903.62 902.98 914.20 904.07 902.64 903.87 908.19 905.21

543.46 364.39 364.69 607.88 365.17364.54 366.57 402.97 369.09
615.90 392.18 391.43 686.35 394.43 392.48 392.97 437.17 398.68
618.30 393.04 392.34 688.63 393.99 392.46 393.87 438.28 399.14
896.97 892.20 891.39 901.53 892.17 891.04 892.05 896.66 893.43
912.35 907.04 906.18 918.32 907.23 905.37 906.76 912.26 908.63
912.71 907.56 906.57 918.60 907.70 905.89 907.27 912.64 909.08

100

100

100

100

100

100
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its performance as a model selector was inferior. This is because the TIC only minimally corrects
the bias of the AIC. As stated earlier, the Al@nd CAIG have the smallest biases. Nevertheless,
their performance for variable selection was not the best. This leads us to the conclusion that it is
not necessary to bring the bias close to 0 as much as possible, although bias corre@émive e

The best performance in the sense of high selection probability and small PE was by the MAIC and
EICA. This is because the candidate model that minimizes the loss function is either the true model
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or an underspecified model, as described in the proof of Theorem 1. Hence, this result indicates
that the bias correction in the underspecified model is important for improving the model-selecting
performance of an information criterion. The performance of thexBA@s slightly better than that
of the MAIC; this is because the E}deduces the influence of nonnormality mofeeetively than
does the MAIC. However, when the sample size was small and the number of explanatory vari-
ables was large, i.e., cases 4 to 6, the performance of thg & model selector was reduced.
One reason for this is that the E{@s constructed by resampling the full model. When the sample
size is small and the number of explanatory variables is large, we anticipate that the accuracy of
resampling will be decreased due to a decrease in the asymptotic approximation. The performance
of the CV criterion as a model selector was not bad even though it has a large bias. This is because
the variable-selection method using the CV criterion is conscious of improving for a prediction of a
validation sample. Although the performance was not bad, it was not as good as either the MAIC or
EICa.

In this section, we listed simulation results of the variable selections using nested models. We
also conducted simulations using nonnested models. However, we omit the results because they
were very similar to those for the nested models.

5. Conclusions and Discussion

In this paper, we considered variable-selection methods for normal MLRM models, using the
original AIC and eight bias-corrected AICs. From a theoretical aspect, we derived asymptotic re-
sults b — oo) under the assumption that the true distribution is not always normal, while from
a numerical aspect, we performed a comparative study for small- to medium-sized samples. Our
results are summarized as follows:

¢ Whenn — oo, the best models selected by all the criteria become the same, even though the
biases of the criteria were corrected under the assumption of nonnormality. Moreover, in this
case, an underspecified model will never be selected as the best model.

e Except for the TIC, the performances of the variable-selection methods using the bias-corrected
AIC were better than that using the uncorrected AIC. This suggests that exact correction, boot-
strapping, or cross-validation work better than the moment method for correcting the bias. It will
be that correcting only the top term in an asymptotic expansion of the bias, as do AIC and TIC,
is insuficient in the overspecified models.

e Theoretically, the bias of the CAlbecomes the smallest among all the criterion mentioned
in this paper, but by numerical examination, we verified that the GAd@ot the best model
selector. This indicates that the performance of a criterion is not necessarily improved even if
the bias of the risk function for the overspecified model is reduced to as small as possible.

e The CAIC and MAIC perform well as model selectors, even though they have constant bias
when the true distribution is not normal. The reason for this is that the correction for the bias
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caused by nonnormality cannot be estimated accurately when the sample size is small. Thus,
if we try to estimate this bias when the sample size is small, it will reduce the accuracy of the
estimation.

e \Variable-selection methods using the MAIC or KlQvhich are obtained by correcting the con-
stant bias of the AIC, always perform well. This result leads us to the conclusion that correcting
the bias for the underspecified model has a positifeceon the selection of variables. One
reason for this is that the model that minimizes the loss function is either the true model or the
underspecified model. The EA®as the best performance as the model selector except for when
the sample size is small and there are a large number of explanatory variables in the full model.

In conclusion, we recommend using the MAIC for a small number of samples and thd1&
moderate number of samples. We note that when the number of sampléisstly large, it does
not matter which criterion is used.
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Appendix
A. Proof of Theorem 1

First, we show that the candidate model minimizing the loss function is either the true model or
the underspecified model; we do this in order to prove that the principle best model is either the true
model or the underspecified model. L¥t = (X, a) be anx (k+ 1) matrix of explanatory variables
in the modelMy: Y ~ Nuyp(X1E1, 31 ® Iy), wherea is ann-dimensional vector that is linearly
independent from any combination of the columnsXof Let él and f:l denote the MLEs 0E;
and3Xl;, respectively. From the formula for the inverse matrix (see, e.g., Sietahj 1985, p. 592,
Theorem A.2.3), we have

1

Px, = P _
X xT a'(In - Px)a

(In - Px)aad/(In - Px) = Px + asag,
whereas = (I, - Px)a/Va'(In — Px)a. From the formulas for the determinant and the inverse

matrix (see, e.g., Siotaet al,, 1985, p. 591, Theorem A.1.3, and p. 592, Theorem A.J?fZ),and
371 are rewritten as
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21 = 121 (1 - aiPwas), (A1)
S-Sty N Sl Wy W aga W (W W) s, (A.2)
1- agPWas

whereW = (I, - Px)Y' ;2. Recall thats; is positive definite and: is linearly independent
from any combinations of the columns &F. From the proof in Appendix A.5 of Yanagihara and
Satoh (2010), we can see aiPwas < 1. Suppose that the mod®l is overspecified. Then,
W = (I, - Px)& holds, wheret is given by (4). Moreover, sinces; = Y28/ (I, - Px,)&Y/?
holds whenM is the overspecified model, the loss function unigrcan be simplified as

L(81,31) = nplog 27 + nlog £ + tr {7 E12(n, + £'€)X1?) - np. (A.3)
Substituting (A.1) and (A.2) into (A.3) yields

L(E1,%1) = nplog 2r + nlog %] + nlog(1 - alPy as) + tr {2‘121/2(nlp + S’S)Ei/z} -np
alW(W'W) ™ (W'W + & Px&+nl,) (WW)'Wag
S

N n
1- a’SPWa
a;Py as }

> L(E,3 - ag
> £ ,2)+n{|og(1 asPwas) + 1-alPwas

Notice that log(1- x) + x/(1 — X) > 0 whenx € (0, 1). Hence, the inequalit;C(él, f]l) > L(é, f])
holds. This means that the loss function becomes small when a new explanatory variable is added to
the overspecified model. Since the overspecified model that has the smallest number of explanatory
variables is the true model, the candidate model that minimizes the loss function is either the true
model or the underspecified model.

Next, we show that the candidate model that minimizes the loss function is the true model when
n — oo; we do this in order to prove that the principle best model is asymptotically equivalent to
the true model. When the assumptions in Theorem 1 hold, we oBtain =, + £20%Y2 and
(T, - XE)(T. - XE)/n > 2120312 asn — oo, whereQ is given by (5). The above results
imply that

%L(é, ) 5 plog 27 + 10g .| + log Ty + Q + tr{(Tp + Q)Y + tr{(T, + )20
= plog 27 + log|X.| + log|I, + Q| + p > plog 27 + log|X.| + p, (A.4)

with equality if and only ifM is the overspecified model. Recall that the candidate model mak-
ing the loss function the smallest is either the true model or the underspecified model. This fact
and equation (A.4) indicate that the loss function in the true model is the smallest among the all
candidate models when— 0. Consequently, Theorem 1 is proved.

B. Relationship between the best models selected by the AIC and CAIC

LetM; (j = 1,..., my) be thejth candidate model with amx k; matrix of explanatory variables
X, and let AIG and CAIC be the AIC and CAIC of the modeVl;, respectively, whereny is
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the number of candidate models. Without loss of generality, we assum&lihdeénotes the best
model selected by minimizing the AIC. Lgf be the set of indexes, which is defined fiy= {j €
{2,...,mm}l Kj = kq}, and letg(k) be a function given by(k) = (p+k+1){2pk+p(p+1)}/(n—p—k-1).
Sinceq(Kk) is a monotonically increasing function with respeckto(k;) > g(k:) holds whenj € 7.
Moreover, AIG — AIC, > 0 holds for allj € {2,...,mu}, becauseM; is the best model selected

by the AIC. By using the above two results and the relation between the AIC and CAIC in (12), the
following inequality is derived:

CAIC; - CAIC; = AIC; — AIC; + q(k;) — q(ks) > 0. (j €.9). (B.1)

The result of (B.1) indicates that a model with more tharexplanatory variables will never be
selected as the best model by the CAIC. Therefore, the number of explanatory variables in the best
model selected by the CAIC is less than or equdd;to

C. Asymptotic equivalence of the EIC, EIG,, and TIC for the overspecified model

From Fujikoshiet al. (2005} and Yanagihara (2006), when — oo, Bgic and LS:EK;A can be
expanded as

Beic = 2pk+ p(p + 1) + &Y — np+ Op(nh),
n
Beic, = 2(k+ p+ Lr(G) — tr(G?) - 2tr(G)? + % Z Fo. —np+ Op(n™),
i=1

where! is given by (14),G = ¥,37, andr?, = (yi - B o) Sy - 2 x). When the

model M is overspecified G = I, + Op(n/?), “(1) = &)+ Op(n¥?), andntyl 72, =

p(p +2) + M + Op(n2) hold, where” is given in (4). HenceBeic andBgic, can be rewritten
as follows When the modél is overspecified:

Beic = 2pk+ p(p + 1) + & + Op(n™2),  Beic, = 2pk+ p(p+ 1)+« + Op(n¥3). (C.1)

On the other hand, when the moddl is overspecifiedy.! ;(1 — h))(f> = p) = Op(n™*/?) holds
because? = e/e; + Op(n"?) and 1- hi = O(n"Y) are satisfied. Therc can be expanded as

Bric = 2pk+ p(p + 1) + & — np+ Op(n2). (C.2)
Comparing (C.1) with (C.2) yields EIE TIC + Op(n"Y/2) and EIG, = TIC + Op(n"Y/2), when the
modelM is overspecified anth — co.
D. Asymptotic equivalence of the CV criterion and the TIC

From Yanagihara (2006), the last term in (19) can be expanded as

2 At the bottom of p. 240 of Fujikostet al. (2005),—tr(fx2) is missing in the equatioB[Ba|Y'].
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n n
= N — = ~(1 a _
D -y S (i - Ef_ymi) = np+2pk+ p(p+1)+RP+2 > (1-h)P2+Op(n), (D.1)
i=1 i=1

| 1
Taylor expansion to the equation (20), we obtain

wherer?, &Y, andh; are given by (13), (14), and (15), respectively. Moreover, by applying the

n R R 1 n f2 R 1 n i;z 1
= = 1= -z < -
> log[Sl = nlog[3| + . ; Iog(l hi] nlog|%| - ; A+ Op(), (D.2)

i=1

It follows from hj = 1+ O(n™) and 3}, 72 = npthatn™ 3, f2/h = n"t 3, 72 + Op(n7Y) =

p + Op(n~1). By combining the above result with (D.2), we obtain

n
> log |33 | = nlog|3| - p+ Op(nY). (D.3)
i=1
On the other handhlog{27n/(n- 1)} = p+ O(n™!) holds. Consequently, substituting this result and
the equations (D.1) and (D.3) into (20), and comparing the obtained equation with the definition of
the TIC in (16), yields C\= TIC + Op(n™?).

E. The proof of Theorem 2

Let IC be a general notation to indicate one of the nine information criteria considered in this pa-
per. Notice that all the bias-correction terms in the information criteria, expect for the CV criterion,
areOp(1), and CV= TIC + Op(n~1) holds. Using the same idea as in Appendix A, we have

%IC 5 plog 27 + log|X.| + log|Ip + 2| + p > plog 27 + log|X.| + p, N — o, (E.2)

where2 is given by (5), and with equality if and only M is the overspecified model. The equation

(E.1) indicates that the underspecified models are never selected as the best model-when

Hence, it is stficient to consider the selection of the best model among the overspecified models.
Let ICA denote an information criterion proposed under normality (i.e., the AIC, CAIC, or

MAIC), and let ICT denote an information criterion proposed under nonnormality (i.e., the TIC,

EIC, EICa, CV criterion, AIC;, or CAIC;). Moreover, letV = nV%&E& - nl,) and Z =

(X’ X)Y2X'&, where& is given by (4). Notice thaV/ = Op(1) andZ = Opy(1) hold under

the assumptions in Theorem 2. Hence, whérs the overspecified model, we obtain

nIog|f]| =nlog|X.|+ Vntr(V) — {tr(V?)/2 +tr(Z' Z)} + 0p(1).

On the other hand, from Fujikoskt al. (2005), whenM is the overspecified model, the biBdn

(10) can be expanded &= 2pk + p(p + 1) + £ + O(n~%), wherex{" is given in (4). Recall that
ICT = TIC + 0p(1) and the bias of TIC i®(n~1) whenM is the overspecified model. From a simple
calculation, we can see thB#c is a consistent estimator &whenM is the overspecified model.

By using the above results, whéu is the overspecified model, the ICA and ICT are expressed as
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follows:

ICA = nlog|X.| + Vntr(V) — {tr((V?)/2 +tr(Z’ Z)} + np+ 2pk+ p(p + 1) + 0p(1),

(E.2)
ICT = ICA + &P + 0p(2).

Let M1 andM, be two diferent overspecified models, and let IC#d ICT, be information criteria
for M; (j = 1,2). From (E.2), we obtain

ICA,-ICA, = tr(ZéZz—Zizl)+2p(k1—k2)+op(1), ICT,-ICT, = |CA1—|CA2+Op(1), (E3)

whereZ; is Z in M; andk; is the number of explanatory variableshf. The equations (E.3) indi-

cate that the dierences between two information criteria for the twibedent overspecified models

are asymptotically equivalent. Consequently, all the information criteria choose the same model as
the best one when — .
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