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Abstract

By numerically comparing a variable-selection method using the crude AIC with those using the
bias-corrected AICs, we find out knowledge about what kind of bias correction gives a positive effect
to variable selection under model misspecification. Actually, since it can be proved theoretically that
all the variable-selection methods considered in this paper asymptotically choose the same model
as the best model, we conduct numerical examinations using small and moderate sample sizes. Our
results show that bias correction under assumption that the mean structure is misspecified has a bet-
ter effect on variable selection than that under the assumption that the distribution of the model is
misspecified.
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1. Introduction

In the analysis of real data, it is important to determine which statistical model best fits the data;

there are many candidate models, and they each estimate different results, which may lead to differ-

ent points of view. In order to improve the accuracy of predictions, the “best” model can be chosen

as the one that has the smallest risk function when assessing the goodness of fit of the model, using

the Kullback-Leibler (KL) information (Kullback & Leibler, 1951). In practice, an estimator of the

risk function is used, because the risk function involves unknown parameters. The Akaike’s infor-

1



On the Bias Correction Effect of the AIC under Model Misspecification

mation criterion (AIC; proposed by Akaike, 1973; 1974) is the asymptotic unbiased estimator of the

risk function under the condition that the candidate model is correctly specified. It is defined by the

simple equation−2× (the maximum log-likelihood)+ 2× (the number of parameters in the model)

and is commonly used in actual data analysis.

Since the AIC is the asymptotic unbiased estimator of the risk function, the bias of the AIC to

the risk function may become large when the sample size becomes small and the number of param-

eters used in the candidate model becomes large. In particular, when the candidate models include

the true model, the larger the number of parameters in the candidate model, the more the AIC un-

derestimates the risk function. Then the AICs of those candidate models often do not have notable

differences. In addition, the variance of the AIC may increase as the number of parameters increases

(see e.g., Yanagihara & Ohmoto, 2005). Thus, the model with the most parameters tends to have the

smallest AIC, and so the AIC often selects the model with the most parameters as the best model.

This fault of the AIC is avoided by using the bias-corrected AIC, which is derived by correcting the

bias to the risk function. This has been studied under various different conditions and with various

different correction methods (as a general theory correcting the bias of the AIC, see, e.g., Konishi,

1999; Burnham & Anderson, 2002; Konishi & Kitagawa, 2008). Sugiura (1978) and Hurvich &

Tsai (1989) proposed a corrected AIC for linear regression models (multiple regression models) by

fully removing the bias of the AIC to the risk function under the condition that the candidate model

is correctly specified. The bias-corrected AIC then becomes the uniformly minimum-variance un-

biased estimator (UMVUE) for the risk function of the candidate model (see Davieset al., 2006),

and many authors have verified by numerical experiments that a variable-selection method using the

corrected AIC performs better in selecting the best model than does one that uses the crude AIC.

The basic concept of bias correction is that we expect that an unbiased estimator of the risk func-

tion will allow us to correctly evaluate the risk function, which will further facilitate the selection

of the best model. However, there is no theory that promises that the best model chosen by min-

imizing a bias-corrected AIC has a higher predictive accuracy than that chosen by minimizing the

crude AIC. Generally, a bias-corrected estimator has a larger variance than does one without a bias

correction. An impairment of the mean square error of the bias-corrected AIC with respect to the

risk function, which results from an increase in the variance, may cause a drop in the performance

of the model selection when using a bias-corrected AIC.

In this paper, we compare the AIC and eight bias-corrected AICs to study what kind of bias

correction gives a positive effect for selecting variables for a multivariate linear regression model

(MLRM) with a normal distributed assumption (called the normal MLRM), under a model misspec-

ification. The performances of the model selection methods using the nine criteria are examined by

numerical experiments. We do not use large samples, because it has been confirmed theoretically

that the variable-selection methods using these nine criteria select the same model as “best” when

n→ ∞. Our result is that correcting the bias has a greater positive effect on variable selection when

the mean structure is misspecified than when the distribution of the model is misspecified.

This paper is organized as follows: In Section 2, the normal MLRM and the risk function based

on the KL information are described. In Section 3, the AIC and the bias-corrected AICs for the
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normal MLRM are summarized. In Section 4, we show that variable-selection methods using the

information criteria considered in this paper select the same best model whenn → ∞. We then

use numerical experiments with small and moderate samples to compare the performance of model

selection methods using the AIC and the bias-corrected AICs. Our conclusions and a discussion are

presented in Section 5. Technical details are provided in the Appendix.

2. Risk Function Based on the KL Information

The normal MLRM is used when we are interested in predicting not just one response variable

but several correlated response variables based onk nonstochastic explanatory variables (for details,

see, e.g., Srivastava, 2002, chap. 9; Timm, 2002, chap. 4). Lety1, . . . ,yn be p-dimensional inde-

pendent random vectors of response variables, and letxω,1, . . . ,xω,n bekω-dimensional vectors of

the full explanatory variables, wheren is the sample size. Furthermore, letxi be ak-dimensional

vector of the candidate explanatory variables, which is a subset of the full explanatory variablesxω,i

(i = 1, . . . , n). Then, we consider the following normal MLRM as the candidate model:

M : yi ∼ Np(Ξ′xi ,Σ), (i = 1, . . . ,n), (1)

whereΞ is ak× p matrix of the unknown regression coefficients, andΣ is a p× p unknown covari-

ance matrix.

Let Y = (y1, . . . ,yn)′ be ann× p matrix of response variables, and letX = (x1, . . . ,xn)′ be an

n×k matrix of candidate explanatory variables. Suppose that ann×kω matrix of the full explanatory

variables,Xω = (xω,1, . . . ,xω,n)′, is a column full-rank matrix, i.e., rank(Xω) = kω < n. Needless

to say,X consists of some columns ofXω and is also a column full-rank matrix. Moreover, we

assume thatX andXω each always have1n as a column vector that corresponds to an intercept,

where1n is ann-dimensional vector of ones. The matrix form of the candidate model (1) is given

by

M : Y ∼ Nn×p(XΞ,Σ ⊗ In). (2)

The following normal MLRM using the full explanatory variables is called the full model:

Mω : Y ∼ Nn×p(XωΞω,Σω ⊗ In). (3)

Although the normal distribution is assumed, we are not able to see whether the assumption is actu-

ally correct. A natural assumption for the generating mechanism ofY is

M∗ : Y = Γ∗ + EΣ1/2
∗ , E = (ε1, . . . , εn)′,

ε1, . . . , εn ∼ i.i.d. ε, E[ε] = 0p, Cov[ε] = Ip, E[(ε′ε)2] = κ(1)
4 + p(p+ 2),

(4)

where0p is ap-dimensional vector of zeros. Here,κ(1)
4 is called the multivariate kurtosis, which was

proposed by Mardia (1970).

In order to clarify assumptions for deriving the information criteria, we separate the candidate

models into the following two models:

3



On the Bias Correction Effect of the AIC under Model Misspecification

• Underspecified model: the mean structure does not include that of the true model, i.e.,PXΓ∗ ,

Γ∗.

• Overspecified model: the mean structure includes that of the true model, i.e.,PXΓ∗ = Γ∗.

Here,PX is the projection matrix to the subspace spanned by the columns ofX, i.e., PX =

X(X ′X)−1X ′. Furthermore, the candidate model whose mean structure dovetails perfectly with

that of modelM∗ will be called the true model. Although Fujikoshi and Satoh (1997) used the

same terminology, they divided the candidate models by whether the candidate model included the

true model. This emphasizes that we are separating the candidate models based only on the mean

structure. Hence, our separation does not depend on whether a distribution of the true model is the

normal distribution. Furthermore, we assume that the full modelMω is the overspecified model and

the true model is included in a set of the candidate models. For an additional characteristic of the

candidate model, ap× p matrix of noncentrality parameters is defined by

Ω =
1
n
Σ−1/2
∗ Γ′∗(In − PX )Γ∗Σ

−1/2
∗ . (5)

It should be noted thatΩ is positive semidefinite andΩ = Op,p (whereOp,p is a p × p matrix of

zeros) holds if and only ifM is the overspecified model.

Let f (y|η,Σ) be the probability density function ofNp(η,Σ). Then, the log-likelihood function

of the candidate modelM in (2) is derived as

ℓ(Ξ,Σ|Y ,X) =
n∑

i=1

log f (yi |Ξ′xi ,Σ)

= −1
2

{
nplog 2π + n log |Σ| + tr(Σ−1(Y −XΞ)′(Y −XΞ))

}
. (6)

By maximizingℓ(Ξ,Σ|Y ,X), or equivalently solving the likelihood equations∂ℓ(Ξ,Σ|Y ,X)/∂Ξ =

Ok,p and∂ℓ(Ξ,Σ|Y ,X)/∂Σ = Op,p, the maximum likelihood estimators (MLE) of the unknown

parameter matricesΞ andΣ in the candidate modelM are obtained as

Ξ̂ = (X ′X)−1X ′Y , Σ̂ =
1
n
Y ′(In − PX )Y .

Substituting the MLEs into (6) yields the maximum log-likelihood of the candidate modelM as

ℓ(Ξ̂, Σ̂|Y ,X) = −n
2

{
p(log 2π + 1)+ log |Σ̂|

}
. (7)

LetL(Ξ,Σ) be the expected negative twofold log-likelihood function:

L(Ξ,Σ) = E∗Y [−2ℓ(Ξ,Σ|Y ,X)] = −2ℓ(Ξ,Σ|Γ∗,X) + ntr(Σ−1Σ∗), (8)

whereE∗Y means the expectation with respect toY under the true modelM∗ in (4). We define the

loss function measured by the KL information asL(Ξ̂, Σ̂). Then, a risk function that uses the KL

information to assess the gap between the true model and the candidate model is defined by the

expectation of the loss function, i.e.,
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RKL = E∗Y [L(Ξ̂, Σ̂)]. (9)

In this paper, the candidate model that makes the risk function the smallest is called the principle

best model. The following theorem is satisfied for the principle best model (the proof is given in

Appendix A):

Theorem 1 The principle best model is either the true model or an underspecified model. When

n → ∞, the principle best model becomes the true model under the assumption that all the multi-

variate fourth moments ofε exist and thatlimn→∞X ′
ωXω/n exists and is positive definite.

3. AIC and Bias-corrected AICs in Normal MLRMs

Although the risk functionRKL in (9) assesses the goodness of fit of the model, we cannot use

RKL directly becauseRKL involves unknown parameters. Hence, in practice, an estimator ofRKL

is needed to select the best model among the candidates. It is easy to see that a naive estimator of

RKL is −2ℓ(Ξ̂, Σ̂|Y ,X). Unfortunately, whenRKL is estimated by−2ℓ(Θ̂, Σ̂|Y ,X), the following

constant bias appears:

B = RKL − E∗Y [−2ℓ(Ξ̂, Σ̂|Y ,X)]. (10)

Thus, an information criterion for selecting the best model is defined by adding an estimatedB to

−2ℓ(Θ̂, Σ̂|Y ,X) as

IC = −2ℓ(Ξ̂, Σ̂|Y ,X) + B̂, (11)

whereB̂ is an estimator ofB. The information criterion is specified by the individualB̂, becausêB

changes based on the assumptions of the modelM and by the estimation method. In this paper, we

consider the following two assumptions:

(A1) The candidate modelM in (2) is the overspecified model.

(A2) The distribution of the true modelM∗ in (4), called the true distribution, is the normal distri-

bution, i.e.,ε ∼ Np(0p, Ip).

Nine information criteria used to estimateRKL are enumerated below. The order of the bias of each

information criterion forRKL is summarized in Table 1.

• AIC : When assumptions A1 and A2 are satisfied simultaneously, Akaike (1973; 1974) showed

that B in (10) is asymptotically equal to twice the number of parameters in the candidate model.

Since the number of parameters ofM is pk+ p(p+ 1)/2, B̂AIC = 2pk+ p(p+ 1) is used aŝB. By

using the general formula in (11), the AIC in the modelM is given by

AIC = np(log 2π + 1)+ n log |Σ̂| + 2pk+ p(p+ 1).

Recall thatB̂AIC is derived under the assumption that A1 and A2 are satisfied simultaneously. Hence,
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the bias of the AIC toRKL becomesO(n−1) when assumptions A1 and A2 are satisfied simultane-

ously. However, the order of the bias changes toO(1), i.e., AIC has constant bias, when either of the

assumptions A1 or A2 are violated.

• Corrected AIC (CAIC ): The B̂AIC gives an inaccurate approximation toB whenn is not large or

k andp are relatively large, becauseB̂AIC is an asymptotic approximation toB. In order to avoid this

problem, when the assumptions A1, A2, and an additional assumptionn > p+ k+ 1 are satisfied si-

multaneously, Bedrick and Tsai (1994) calculated the exact bias asB = n(n+k)p/(n−k− p−1)−np,

and proposed the CAIC1 by replacingB̂AIC in (11) with B̂CAIC = n(n + k)p/(n − k − p − 1) − np.

Whenn > p+ k+ 1, the CAIC in the modelM is given by

CAIC = nplog 2π + n log |Σ̂| + n(n+ k)p
n− p− k− 1

= AIC +
(p+ k+ 1)(p+ 2k+ 1)p

n− p− k− 1
. (12)

The CAIC in (12) is an unbiased estimator ofRKL under the assumptions A1 and A2, and it is con-

gruent with the bias-corrected AIC proposed by Sugiura (1978) and Hurvich and Tsai (1989) when

p = 1. From the equation (12) and the unbiasedness of the CAIC under the assumptions A1 and

A2, we can see that the AIC in the overspecified model underestimatesRKL , and the strength of

the underestimation becomes large ask increases. The number of explanatory variables of the best

model selected by the CAIC will be less than or equal to the number selected by the AIC (the proof

is given in Appendix B). Additionally, extending the result of Davieset al. (2006) to the multivariate

case provides that the CAIC is a UMVUE of the risk functionRKL when the assumptions A1 and A2

are satisfied simultaneously (for a short proof, see Yanagiharaet al., 2012). However, as in the case

of the AIC, the order of the bias of the CAIC toRKL becomesO(1), i.e., the CAIC has a constant

bias, when either of the assumptions A1 or A2 are violated.

• Modified AIC (MAIC ): When the assumption A2 holds but the assumption A1 does not hold,

the AIC and CAIC have constant biases toRKL . Fujikoshi and Satoh (1997) reduced these bi-

ases by using an additional moment estimator for an asymptotic value ofB in the underspecified

model. LetB̂MAIC = B̂CAIC + 2ktr(L) − tr(L)2 − tr(L2), whereL is a p × p matrix defined by

L = (n − k)Σ̂ωΣ̂
−1/(n − kω) − Ip. HereΣ̂ω is the MLE ofΣω in the full modelMω in (3). We

note that tr(L), tr(L)2, and tr(L2) are consistent estimators of tr(Ω), tr(Ω)2, and tr(Ω2), respectively,

whenΩ is given by (5). Whenn > p + k + 1, by replacingB̂AIC in (11) with B̂MAIC , MAIC in the

modelM is given by

MAIC = CAIC + 2ktr(L) − tr(L)2 − tr(L2).

The bias of the MAIC toRKL becomesO(n−2) when assumptions A1 and A2 are satisfied simultane-

ously, and it becomesO(n−1) when assumption A2 holds but assumption A1 does not. This implies

that the MAIC reduces the constant biases of the AIC and the CAIC in the underspecified model

to O(n−1) when assumption A2 holds. However, the bias changes toO(1), i.e., the MAIC also has

1 Although Bedrick and Tsai (1994) used AICc as the abbreviated symbol, we use CAIC following the notation of Fujikoshi
and Satoh (1997).
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constant bias, when assumption A2 is violated.

• Takeuchi’s Information Criterion (TIC ): The CAIC and MAIC correct the bias of the AIC to

RKL when the assumption A2 is satisfied. However, it is unknown if the true distribution is normal.

The TIC (proposed by Takeuchi, 1976) corrects the bias of the AIC even if the true distribution is

not normal. Let a squared standardized residual of theith individual be denoted by

r̂2
i = (yi − Ξ̂′xi)

′Σ̂−1(yi − Ξ̂′xi), (13)

and let an estimator of the multivariate kurtosisκ(1)
4 in (4) be denoted by

κ̂(1)
4 =

1
n

n∑
i=1

r̂4
i − p(p+ 1). (14)

Furthermore, let

hi = 1− x′i (X ′X)−1xi . (15)

Then, by definingB in (11) asB̂TIC = B̂AIC + κ̂
(1)
4 + 2

∑n
i=1(1− hi)(r̂2

i − p), the TIC in the modelM

is given as follows (for details of the derivation, see Fujikoshiet al., 2005):

TIC = AIC + κ̂(1)
4 + 2

n∑
i=1

(1− hi)(r̂
2
i − p). (16)

Wheny1, . . . ,yn are independently and identically distributed, the bias of the TIC to the risk func-

tion is O(n−1) under any model misspecification. However, in the case of multivariate linear regres-

sion, they1, . . . ,yn are independent but not identically distributed. This leads to the less well-known

fact that the TIC also has constant bias (as do the AIC and CAIC) when assumption A1 is violated.

Although the TIC theoretically reduces the bias caused by violating normality, the TIC cannot re-

duce the bias successfully unless the sample size is huge. Many authors have verified this with

numerical experiments (see, e.g., Fujikoshiet al., 2005; Yanagihara, 2006). This occurs because

the TIC has an estimator for the multivariate kurtosis ˆκ(1)
4 . Yanagihara (2007) presented numerical

results that showed that ˆκ(1)
4 has a huge bias toκ(1)

4 if n is not huge. Hence, the TIC also has a huge

bias toRKL if n is not huge.

• Extended Information Criterion (EIC ): The serious problem with the TIC comes from the mo-

ment estimator ofκ(1)
4 . This problem can be avoided by using the bootstrap method for an estimation

of the bias; this is the EIC, proposed by Ishiguroet al. (1997). In order to express thebth bootstrap

resample ofY , the followingn× n random matrix is prepared:

Db = (db,1, . . . ,db,n)′, db,1, . . . ,db,n ∼ i.i.d. MNn(1;n−11n), (17)

where MNn(1;n−11n) denotes then-variate one-trial multinomial distribution with the same cell

probabilities 1/n. Following Freedman (1981), thebth bootstrap resample ofY is Ỹb = XΞ̂ +

Db(In − PX )Y . Let Σ̃b be the MLE ofΣ evaluated from (̃Yb,X). From the formula in Konishi

(1999), an estimator of the bias obtained from the bootstrap method withm repetitions is given by
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B̂EIC = m−1 ∑m
b=1 tr

{
Σ̃−1

b (Y − PX Ỹb)′(Y − PX Ỹb)
}
−np. Then, by using (11), the EIC in the model

M is given as follows (see Fujikoshiet al., 2005):

EIC = nplog 2π + n log |Σ̂| + 1
m

m∑
b=1

tr
{
Σ̃−1

b (Y − PX Ỹb)′(Y − PX Ỹb)
}
. (18)

Wheny1, . . . ,yn are independently and identically distributed, the bias of the EIC to the risk func-

tion is O(n−1) under any model misspecification like the TIC. However, in the case of multivariate

linear regression,y1, . . . ,yn are independent but not identically distributed. Hence, the bias of EIC is

O(n−1) under the assumption A1, but that changes toO(1), i.e., the EIC has constant bias (as does the

TIC), when assumption A1 is violated (see Yanagihara, 2006). In particular, EIC= TIC+Op(n−1/2)

holds when bothm→ ∞ and assumption A1 holds (the proof is given in Appendix C). Although

the theoretical bias of the EIC has the same order as that of the TIC, the bias of the EIC tends to

become smaller than that of the TIC (see Yanagihara, 2006) because the EIC does not directly use

κ̂(1)
4 for estimating the bias.

• Adjusted EIC (EICA): By using a full-model-based resampling, the bias of the EIC in (18) can

be reduced toO(n−1) even if assumption A1 does not hold (see, e.g., Fujikoshiet al., 2005). We call

this the adjusted EIC (EICA). Let Ȳb be thebth bootstrap resample ofY based on the full model

Mω given byȲb =XωΞ̂ω +Db(In−PXω
)Y , and letΣ̄b be the MLE ofΣ evaluated from (̄Yb,X),

whereΞ̂ω is the MLE ofΞω in the full modelMω, andDb is given by (17). We define an estimator

of the biasB̂EICA by replacingỸb andΣ̃b in B̂EIC with Ȳb andΣ̄b. Then, by using (11), the EICA in

the modelM is as follows:

EICA = nplog 2π + n log |Σ̂| + 1
m

m∑
b=1

tr
{
Σ̄−1

b (Y − PX Ȳb)′(Y − PX Ȳb)
}
.

The bias of the EICA to the risk function is alwaysO(n−1). In particular, EICA = TIC + Op(n−1/2)

holds whenm→ ∞ and assumption A1 holds (the proof is given in Appendix C).

• Cross-Validation (CV) Criterion : The information criteria introduced above are based on (11),

but the CV criterion proposed by Stone (1974) is not based on (11) but instead estimated directly

estimates the risk function. LetY(−i) be a (n − 1) × p matrix obtained fromY by deletingyi , let

X(−i) be a (n− 1)× k matrix obtained fromX by deletingxi , and letΞ̂[−i] andΣ̂[−i] be the MLEs

of Ξ andΣ , respectively, evaluated from (Y(−i),X(−i)) . Then, the CV criterion for the modelM is

CV = −2
n∑

i=1

log f (yi |Ξ̂′[−i]xi , Σ̂[−i])

= nplog 2π +
n∑

i=1

{
log |Σ̂[−i] | + (yi − Ξ̂′[−i]xi)

′Σ̂−1
[−i](yi − Ξ̂′[−i]xi)

}
. (19)

From Stone (1977), CV= TIC + Op(n−1) always holds ify1, . . . ,yn are independently and identi-

cally distributed. In the case of multivariate linear regression, althoughy1, . . . ,yn are not identically
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distributed, we can prove that CV= TIC + Op(n−1) always holds (the proof is given in Appendix

D). From this result, the bias of the CV criterion isO(n−1) under assumption A1, but like the TIC,

it has a constant bias when assumption A1 is violated. On the other hand, Yoshimotoet al. (2005)

showed that the CV criterion in (19) can be rewritten as

CV = nplog

(
2πn

n− 1

)
+ n log |Σ̂| +

n∑
i=1

log

1− r̂2
i

nhi

 + (n− 1)r̂2
i

hi(nhi − r̂2
i )

 , (20)

where ˆr2
i andhi are given by (13) and (15), respectively. Equation (19) indicates thatn repetitions of

the calculations for̂Ξ[−i] andΣ̂[−i] are needed to derive the CV criterion. However, by using (20),

we only need to calculatêΞ andΣ̂ to calculate the CV criterion.

• Jackknifed AIC (AIC J): The CV method which is equivalent to the jackknife method can esti-

mate not only the risk functionRKL but also the biasB. We can then derive an estimator ofB that is

unbiased when assumptions A1 and A2 are satisfied simultaneously, and that is asymptotically un-

biased when assumption A1 is satisfied but assumption A2 is not. Yanagihara (2006) proposed such

a bias-corrected AIC, called the jackknifed AIC (AICJ). Although it is also necessary to calculate

Ξ̂[−i] andΣ̂[−i] for a jackknife estimation, by using the same calculation as for the CV criterion, the

AICJ can be obtained from onlŷΞ andΣ̂. Let B̂AICJ = c
∑n

i=1 Q(r̂2
i /hi ; 1)/hi − np, where ˆr2

i and

hi are given by (13) and (15), respectively, thenQ(x; λ) is a function with respect tox andc is a

positive constant, as follows:

Q(x; λ) = x
(
1− x

n

)−λ
, c =

(n+ k)(n− k− p− 2)

(n− k− p− 1)
∑n

i=1 h−1
i

. (21)

Then, by using (11), the AICJ for the modelM is (see Yanagihara, 2006):

AICJ = nplog 2π + n log |Σ̂| + c
n∑

i=1

Q(r̂2
i /hi ; 1)

hi
.

From Yanagihara (2006), AICJ = TIC +Op(n−1) always holds. Hence, like the TIC, the bias of the

AICJ is O(n−1) under the assumption A1, but it has a constant bias when assumption A1 is violated.

On the other hand, when assumptions A1 and A2 are satisfied simultaneously, the AICJ is an un-

biased estimator ofRKL . Although the order of the bias of the AICJ is the same as that of the bias

of the TIC and EIC, it has been verified numerically that the bias of the AICJ in the overspecified

model becomes very small. Yanagihara (2006) showed a theoretical result that the absolute value

of the bias of the AICJ becomes smaller than those of either the TIC or EIC under assumption A1

when we neglect the terms ofB that areO(n−2).

• Corrected AIC J (CAIC J): Although the bias of the AICJ becomes very small, in theory, it does

not disappear. Thus, Yanagiharaet al. (2011) proposed a bias-corrected AICJ (CAICJ) that cor-

rects the bias while maintaining the desirable characteristic of keeping the bias very small. Let

B̂CAICJ = c+
∑n

i=1{1+ a1(1− hi)}Q(r̃2
i /hi ; a0) − np, where ˆr2

i , hi , andQ(x; λ) are given by (13), (15),

and (21), respectively, andc+ anda j are positive constants such that

9
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Table 1. The order of the bias of each criterion

Bias Correction Normality Nonnormality

Criterion Method Underspecified OverspecifiedUnderspecified Overspecified

AIC∗1 O(1) O(n−1) O(1) O(1)
Proposed

under Normality CAIC∗1,∗2 Exact O(1) 0 O(1) O(1)

MAIC Moment, Exact O(n−1) O(n−2) O(1) O(1)

TIC∗3,∗4,∗5 Moment O(1) O(n−1) O(1) O(n−1)

EIC∗3,∗5,∗6 Bootstrap O(1) O(n−1) O(1) O(n−1)

EICA
∗3,∗6 Bootstrap O(n−1) O(n−1) O(n−1) O(n−1)Proposed

without Normality CV∗4 Cross-validation O(1) O(n−1) O(1) O(n−1)

AICJ
∗4,∗5,∗7 Jackknife, Exact O(1) 0 O(1) O(n−1)

CAICJ
∗4,∗7 Jackknife, Exact O(1) 0 O(1) O(n−2)

∗1 The number of explanatory variables in the best model selected by the CAIC is less than or equal to that in the best
model selected by the AIC.

∗2 This is the UMVUE of the risk function when assumptions A1 and A2 hold.
∗3 These are asymptotic equivalent when assumption A1 holds. The differences areOp(n−1/2).

∗4 These are asymptotically equivalent. The differences areOp(n−1).

∗5 WhenO(n−2) term is neglected and assumption A1 holds, the absolute value of the bias of the AICJ is smaller than
those of the TIC and EIC.

∗6 The only difference between these two criteria is the resampling method.
∗7 When theO(n−2) term is neglected and assumption A1 holds, the variance of the CAICJ is smaller than that of the

AICJ.

c+ =
(n+ k)(n− k− p− 2a0)Γ

(
n−k
2 +

1
n

)
Γ
(

n−k−p
2

)
(n+ a1k)(n− k− p− 1)Γ

(
n−k
2

)
Γ
(

n−k−p
2 + 1

n

) , a j =
n+ j − 1

n+ j
.

Here,Γ(x) is the gamma function. Then, by using (11), the CAICJ for the modelM is (see Yanagi-

haraet al., 2011)

CAICJ = nplog 2π + n log |Σ̂| + c+
n∑

i=1

{1+ a1(1− hi)}Q(r̃2
i /hi ; a0).

When assumptions A1 and A2 are satisfied simultaneously, like the AICJ, the CAICJ is an unbiased

estimator ofRKL . Although, like the AICJ, the CAICJ has constant bias when assumption A1 is

violated, the CAICJ reduces the bias of the AICJ to O(n−2) when assumption A1 holds. Moreover,

Yanagiharaet al. (2011) showed a theoretical result under assumption A1 that CAICJ reduces not

only the bias of AICJ but also the variance of AICJ when we neglect theO(n−2) terms.

4. Numerical Comparison

The best models chosen by nine information criteria described in the previous section have the

following characteristic whenn→ ∞ (the proof is given in Appendix E):

Theorem 2 Suppose that all the multivariate fourth moments ofε exist, andlimn→∞X ′
ωXω/n

exists and is positive definite. Then the best models selected by the nine information criteria con-

10
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sidered in this paper are asymptotically equivalent. In particular, an underspecified model is never

selected as the best model when n→ ∞.

Yanagiharaet al. (2012) derived asymptotic probabilities of selecting the candidate models by

AIC and CAIC under assumption A2. In addition to Theorem 2, we can prove that the asymptotic

probabilities of selecting the candidate models by nine information criteria become the same as

those derived by Yanagiharaet al. (2012) even if assumption A2 is violated. Theorem 2 indicates

that numerical comparisons with variable-selection methods using the nine information criteria are

meaningless when the sample size is large. Hence, we conduct numerical comparisons using smaller

sample sizes. The model in Yanagiharaet al. (2011) was used as the basic simulation model for gen-

erating data. The expectations and probabilities in the numerical studies were evaluated by a Monte

Carlo simulation with 10,000 repetitions. TheB̂EIC and B̂EICA were obtained by resampling 1,000

times, i.e.,m= 1000.

We prepared thekω − 1 candidate modelsM j ( j = 1, . . . , kω − 1) with p = 4 andn = 30 or

100. First, we generatedz1, . . . , zn ∼ i.i.d. U(−1, 1). Using thesez1, . . . , zn, we constructed the

n × kω matrix of explanatory variablesXω, whose (i, j)th element is defined by{(zi − z̄)/sz} j−1

(i = 1, . . . ,n; j = 1, . . . , kω), and where ¯z and sz are the sample mean and standard deviation, re-

spectively, ofz1, . . . , zn. The true model was determined byΓ∗ = Xωµ∗1′4 andΣ∗, whose (i, j)th

element is defined by (0.8)|i− j| (i = 1, . . . ,4; j = 1, . . . ,4), where1p is a p-dimensional vector of

ones. In this simulation study, we prepared the sixµ∗ as

Case 1: µ∗ = (0,1,2,4,0,0,0,0)′, (kω = 8),

Case 2: µ∗ = (0,1,2,4,0.5,0.5,0, 0)′, (kω = 8),

Case 3: µ∗ = (0,1,2,4,0,0,0,0,0,0,0,0,0,0,0,0)′, (kω = 16),

Case 4: µ∗ = (0,1,2,4, 0.5,0.5,0,0,0,0,0, 0,0,0,0, 0)′, (kω = 16),

Case 5: µ∗ = (0,1,1,1,−1,−1,2,2,4,0,0,0,0,0,0,0)′, (kω = 16),

Case 6: µ∗ = (0,1,1,1,−1,−1,2,2,4,0.5,0.5,0,0,0, 0,0)′, (kω = 16).

The matrix of explanatory variables inM j ( j = 1, . . . , kω − 1) consists of the first (j + 1) columns of

Xω. Thus, the true modelsM∗ in the cases 1, 2, 3, 4, 5, and 6 areM3, M5, M3, M5, M8, andM10,

respectively. In a sense, the subindexj expresses the degree of the polynomial regression inM j .

Next, in order to generate multivariate nonnormal data, we prepared the data model introduced by

Yuan and Bentler (1997).

Data Model: Let w1, . . . , wq (q ≥ p) be independent random variables withE[w j ] = 0, E[w2
j ] = 1

andE[w4
j ] − 3 = ψ, andw = (w1, . . . , wq)′. Further, letr be a random variable that is independent

of w, E[r2] = 1 andE[r4] = β. Then, an error vector is generated byε = rC′w, whereC is aq× p

matrix defined byC = (c1, . . . , cq)′ with full rank p, andC′C = Ip. Then, the multivariate kurtosis

of this model becomesκ(1)
4 = βψ

∑q
j=1(c′jc j)2 + (β − 1)p(p+ 2).

Let χ f be a random variable from the chi-square distribution withf degrees of freedom, and letC0

be a (p + 1) × p matrix defined byC0 = (Ip, 1p)′(Ip + 1p1′p)−1/2. By using the data model, we

11
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generate error vectors with the following three distributions:

1. Normal Distribution: w j ∼ N(0,1), r = 1 andC = Ip (κ(1)
4 = 0).

2. Laplace Distribution: w j is generated from a Laplace distribution with mean 0 and standard

deviation 1,r =
√

6/χ2
8 andC = C0 (κ(1)

4 = 4.5× p2(p+ 1)−1 + p(p+ 2)/2).

3. Skew Laplace Distribution: w j is generated from a skew Laplace distribution with location

parameter 0, dispersion parameter 1, and skew parameter 1, standardized by mean 3/4 and

standard deviation
√

23/4, r =
√

6/χ2
8 andC = C0 (κ(1)

4 ≈ 4.88× p2(p+ 1)−1 + p(p+ 2)/2).

For details of the skew Laplace distribution, see, e.g., Kotzet al. (2001). It is easy to see that data

models 1 and 2 are symmetric distributions, and data model 3 is a skewed distribution. Moreover,

the size of the kurtosisκ(1)
4 in each model satisfies the following inequality: model 1< model 2<

model 3.

First, we examine the average biases of the criteria. Figure 1 showsRKL and the average of each

criterion in case 1. Since the shape of the figure was almost the same, we omit the results for cases

2 to 6 to save space. The horizontal axis of the figures expresses the number of candidate models,

i.e., the subindexj of M j . We see that the biases of the AICJ and CAICJ were very small under

any distribution. As for the size of the bias, the AIC most underestimated the risk function, and the

CV criterion overestimated the risk function in the most cases. The size of the bias of the TIC was

almost the same as that of the AIC. This is because the estimate of the multivariate kurtosis ˆκ(1)
4 for

the TIC was close to 0 when the sample size was not large enough. Moreover, as the number of

variables in the model increases, the biases of the AIC and TIC increase.

Tables 2 and 3 show, for case 1 and for each information criterion, the standard deviation

({Var[IC] }1/2) and the root-mean-square error (RMSE) ({Var[IC] + (E[IC] − RKL )2}1/2). Since the

tendency was almost the same, to save space, we omit the results forM2, M3, M4, M5, andM6,

and in cases 2 to 6. We can see in the tables that the standard deviations of the AIC and CAIC

were the smallest and those of the MAIC and TIC were the second smallest. The standard deviation

of the EIC and EICA were larger than that of the AIC, but smaller than those of the CV, AICJ, and

CAICJ. The standard deviation of the CV criterion was the largest among all the information criteria

considered. On the other hand, the RMSEs of the AIC and TIC became large when the sample size

was small because their biases became large. The RMSEs of the CV criterion, the AICJ, and CAICJ

were also large because their standard deviations became large. In all cases, there was a tendency

for the standard deviation and RMSE to become large whenκ4 was large.

To compare the nine information criteria for their performance as a model selector, the following

two properties were considered:

• the probability of selecting the principle best model: the frequency with which the principle best

model is selected as the best model.

• the prediction error (PE) of the best model: the risk function of the best model which is chosen

by the information criterion; PE is defined as follows:

12
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Figure 1. Risk function and the average of each criterion (Case 1)

PE= E∗Y [L(Ξ̂best, Σ̂best)],

whereL(Ξ,Σ) is given by (8) and̂ΞbestandΣ̂bestare the MLEs ofΞ andΣ, respectively, under

the best model.

A high-performance model selector is considered to be an information criterion with a high prob-

ability of selecting the principle best model and a small prediction error. According to the basic

concept of the model selection based on the risk function minimization, a good model selection

method is one that can choose the best model for improving the predictive accuracy. Hence, the PE

is a more important property than is the probability of selecting the principle best model.
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Table 2. Standard deviation of each criterion (Case 1)

n Dist. Model AIC CAIC MAIC TIC EIC EICA CV AICJ CAICJ

1 15.010 15.010 15.033 15.106 15.342 15.179 16.007 15.998 15.899

1 3 17.416 17.416 17.476 17.567 17.842 17.813 19.465 19.358 19.010

7 19.007 19.007 19.007 19.228 19.680 19.680 30.358 28.239 24.748

1 24.300 24.300 24.359 25.931 30.636 25.933 39.426 39.264 38.073

30 2 3 29.050 29.050 29.123 30.758 35.666 31.824 51.824 50.891 48.977

7 30.194 30.194 30.194 31.440 35.972 35.972 70.243 64.135 59.042

1 24.539 24.539 24.626 26.264 31.183 26.330 39.878 39.717 38.532

3 3 29.102 29.102 29.199 30.828 35.906 31.930 53.943 52.920 50.881

7 30.317 30.317 30.317 31.546 36.130 36.130 72.282 65.915 61.491

1 25.465 25.465 25.460 25.490 25.519 25.501 25.519 25.519 25.518

1 3 29.346 29.346 29.343 29.401 29.410 29.403 29.457 29.457 29.449

7 29.896 29.896 29.896 29.995 29.968 29.968 30.268 30.263 30.171

1 45.873 45.873 45.892 48.881 50.177 48.966 54.003 54.025 53.871

100 2 3 54.960 54.960 54.964 58.601 60.232 59.079 65.510 65.512 65.312

7 55.323 55.323 55.323 58.706 60.240 60.240 66.751 66.645 66.355

1 46.667 46.667 46.682 50.057 51.413 50.127 55.152 55.176 55.033

3 3 55.358 55.358 55.358 59.470 61.296 60.043 66.796 66.801 66.601

7 55.669 55.669 55.669 59.438 61.244 61.244 67.987 67.877 67.623

Table 3. RMSE of each criterion (Case 1)

n Dist. Model AIC CAIC MAIC TIC EIC EICA CV AICJ CAICJ

1 15.486 16.625 15.181 15.772 17.357 16.290 19.905 18.803 18.599

1 3 28.397 17.416 17.478 30.642 17.855 19.981 20.531 19.358 19.010

7 66.895 19.007 19.007 72.312 19.740 19.740 47.359 28.242 24.749

1 32.159 26.318 28.698 30.994 30.735 32.465 41.417 40.677 39.253

30 2 3 58.144 40.404 40.567 56.425 37.878 44.191 52.376 50.891 48.990

7 103.424 45.985 45.985 105.162 41.763 41.763 81.197 64.135 59.059

1 33.300 27.123 29.715 32.153 31.195 33.695 41.371 40.715 39.331

3 3 59.137 41.222 41.410 57.603 38.675 45.242 54.292 52.935 50.948

7 104.755 47.094 47.094 106.657 42.810 42.810 81.953 65.943 61.577

1 25.637 26.089 25.462 25.719 26.102 25.552 26.554 26.460 26.449

1 3 29.818 29.346 29.344 30.044 29.413 29.471 29.475 29.458 29.450

7 32.396 29.896 29.896 33.371 29.969 29.969 30.669 30.263 30.171

1 47.841 47.144 48.692 48.967 50.191 49.714 54.467 54.451 54.270

100 2 3 62.714 60.405 60.411 60.963 60.729 60.356 65.514 65.514 65.316

7 67.442 61.137 61.137 64.859 60.990 60.990 66.914 66.646 66.358

1 48.672 47.973 49.517 50.139 51.431 50.850 55.661 55.646 55.473

3 3 63.288 60.962 60.964 61.888 61.811 61.352 66.804 66.801 66.602

7 67.982 61.641 61.641 65.645 62.010 62.010 68.174 67.877 67.624

Tables 4 and 5 show the selection probability and PE, respectively. Whenn = 30, the principle

best models were different from the true models in the cases 2, 4, 5, and 6, in which the principle

best models wereM3, M3, M6, andM7, respectively. On the other hand, whenn = 100, the princi-

ple best model was different from the true model only in case 6, in which the principle best model

14



Yanagihara, Kamo, Imori and Yamamura

Table 4. Probabilities of selecting the principle best model

Case n Dist. AIC CAIC MAIC TIC EIC EICA CV AICJ CAICJ

1 30 1 69.07 98.44 99.41 60.20 97.92 99.62 98.66 95.12 96.07

2 70.19 98.46 99.55 54.35 94.19 99.64 95.02 91.59 92.65

3 69.68 98.35 99.41 53.84 94.42 99.74 95.18 91.73 92.84

100 1 85.11 92.59 93.82 82.51 92.51 94.28 93.63 91.75 91.87

2 85.50 92.94 94.18 79.39 90.22 96.22 93.01 91.13 91.21

3 85.04 92.20 93.70 79.09 89.87 96.22 92.79 90.78 90.96

2 30 1 34.70 87.34 93.48 26.83 86.92 95.33 90.71 79.01 80.98

2 30.82 84.57 91.54 21.99 80.84 95.27 88.84 77.52 79.96

3 30.27 84.07 91.04 22.15 80.26 95.07 88.92 77.08 79.19

100 1 56.85 50.78 47.78 56.66 50.40 46.13 47.42 51.00 51.03

2 58.45 52.19 49.07 54.17 46.90 39.82 41.18 44.48 44.73

3 58.55 52.08 49.58 54.50 47.60 40.46 41.86 45.09 45.01

3 30 1 50.70 98.20 99.04 15.16 97.56 89.42 98.40 94.24 96.10

2 48.98 98.26 99.46 12.22 94.18 89.08 95.22 90.12 92.86

3 49.86 98.40 99.28 12.54 94.58 89.78 95.08 90.08 92.54

100 1 84.64 92.40 93.59 81.22 92.21 91.36 93.62 91.45 91.57

2 84.39 92.22 93.25 76.86 89.33 92.68 92.57 90.40 90.57

3 84.63 92.54 93.82 76.68 89.64 92.97 93.14 91.01 91.20

4 30 1 23.10 86.92 92.48 6.04 86.08 63.20 89.32 76.76 80.28

2 20.14 83.68 89.82 3.64 78.44 60.52 87.80 73.84 78.14

3 20.60 83.80 90.28 4.80 80.30 59.94 88.42 75.48 78.72

100 1 55.03 49.49 46.27 52.55 49.38 50.64 46.02 49.64 50.02

2 57.20 52.13 48.85 50.83 47.24 48.80 41.48 44.49 44.66

3 57.01 52.57 49.51 50.34 47.63 49.27 41.95 45.03 45.32

5 30 1 0.00 13.14 32.36 0.00 16.97 9.35 52.99 14.86 16.92

2 0.01 12.04 27.49 0.00 19.93 11.14 59.57 24.44 27.32

3 0.03 11.98 27.77 0.01 18.17 10.45 58.67 23.61 26.23

100 1 81.26 93.78 96.24 69.55 93.84 96.94 94.02 85.14 90.15

2 80.96 93.57 96.04 65.05 91.92 97.77 93.62 83.40 89.14

3 80.31 93.72 96.19 65.35 92.00 97.70 93.28 83.50 89.07

6 30 1 0.00 12.43 43.81 0.00 17.70 35.74 29.85 9.50 11.53

2 0.02 12.39 36.86 0.00 24.16 34.66 32.36 16.43 22.50

3 0.01 12.24 38.17 0.01 24.08 35.10 33.40 17.43 23.29

100 1 58.23 80.14 85.79 45.61 80.25 87.91 80.46 65.66 72.51

2 57.59 79.48 85.09 42.72 78.61 90.24 81.20 65.54 72.78

3 58.58 79.45 85.18 43.79 78.75 89.62 81.20 66.21 73.27

was M7. In the tables, bold and italic fonts indicate the highest and second highest probabilities

of selecting the principle best model and the smallest and second smallest prediction errors of the

best models. We see from the tables that , except for the TIC, the bias-corrected AICs resulted in

improved performance for variable selection, compared to the uncorrected AIC. This indicates that

correcting the bias of the AIC is effective for improving the performance of the AIC as a model

selector when the sample size is not large. Although in theory, the TIC reduces the bias of the AIC,
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Table 5. Prediction errors of the best model

Case n Dist. AIC CAIC MAIC TIC EIC EICA CV AICJ CAICJ

1 30 1 310.13 294.30 293.84 314.82 294.49 293.70 294.08 295.59 295.21

2 330.42 312.82 312.16 339.12 314.07 312.07 314.42 315.81 315.36

3 331.31 313.57 312.97 340.15 314.77 312.73 315.08 316.52 316.03

100 1 861.86 860.29 860.05 862.42 860.29 859.94 860.07 860.45 860.41

2 875.17 873.53 873.28 876.41 874.00 872.90 873.51 873.87 873.86

3 875.59 874.04 873.74 876.81 874.45 873.24 873.91 874.30 874.22

2 30 1 319.84 300.60 299.14 323.80 300.51 298.56 299.59 302.26 301.78

2 342.00 318.78 316.75 348.57 319.27 315.47 317.39 320.58 319.98

3 342.88 319.13 316.92 349.43 319.86 315.52 317.55 321.06 320.31

100 1 873.04 872.53 872.50 873.38 872.55 872.38 872.55 872.65 872.62

2 887.13 886.45 886.38 887.96 887.05 886.71 887.02 887.12 887.08

3 887.16 886.57 886.50 887.98 887.13 886.75 887.10 887.14 887.14

3 30 1 439.72 294.46 294.06 578.07 294.65 297.77294.27 300.32 295.15

2 498.77 312.61 312.02 651.61 313.86 316.68 314.05 322.85 315.00

3 498.99 313.24 312.77 654.32 314.39 317.14 314.67 323.77 315.98

100 1 862.26 860.23 860.02 863.88 860.27 860.38859.99 860.47 860.40

2 876.39 873.94 873.70 879.92 874.49 873.77873.74 874.42 874.28

3 876.94 874.22 873.91 880.92 874.86 874.07874.01 874.77 874.69

4 30 1 468.43 300.60 299.30 594.48 300.52 305.25299.69 310.28 301.73

2 523.01 318.88 317.08 662.42 319.95 324.96317.77 330.44 320.72

3 535.53 319.01 317.05 668.18 319.76 325.20317.64 329.55 320.37

100 1 874.65 872.81 872.71 877.19 872.79 872.52 872.79 873.26 872.96

2 888.63 886.30 886.26 893.32 886.97 886.12 886.78 887.56 887.21

3 889.36 886.98 886.80 893.87 887.63 886.72 887.39 888.16 887.85

5 30 1 534.94 358.40 354.18 606.00 357.82 354.57354.41 393.43 362.78

2 599.70 384.29 377.31 676.70 382.62 378.95374.86 420.67 386.40

3 598.80 382.88 376.24 676.24 381.25 377.87374.05 420.32 385.74

100 1 891.83 888.07 887.50 896.26 888.03 887.34 887.92 891.38 888.88

2 907.82 903.71 903.06 914.29 904.06 902.63 903.73 908.18 905.09

3 907.98 903.62 902.98 914.20 904.07 902.64 903.87 908.19 905.21

6 30 1 543.46 364.39 364.69 607.88 365.17364.54 366.57 402.97 369.09

2 615.90 392.18 391.43 686.35 394.43 392.48 392.97 437.17 398.68

3 618.30 393.04 392.34 688.63 393.99 392.46 393.87 438.28 399.14

100 1 896.97 892.20 891.39 901.53 892.17 891.04 892.05 896.66 893.43

2 912.35 907.04 906.18 918.32 907.23 905.37 906.76 912.26 908.63

3 912.71 907.56 906.57 918.60 907.70 905.89 907.27 912.64 909.08

its performance as a model selector was inferior. This is because the TIC only minimally corrects

the bias of the AIC. As stated earlier, the AICJ and CAICJ have the smallest biases. Nevertheless,

their performance for variable selection was not the best. This leads us to the conclusion that it is

not necessary to bring the bias close to 0 as much as possible, although bias correction is effective.

The best performance in the sense of high selection probability and small PE was by the MAIC and

EICA . This is because the candidate model that minimizes the loss function is either the true model
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or an underspecified model, as described in the proof of Theorem 1. Hence, this result indicates

that the bias correction in the underspecified model is important for improving the model-selecting

performance of an information criterion. The performance of the EICA was slightly better than that

of the MAIC; this is because the EICA reduces the influence of nonnormality more effectively than

does the MAIC. However, when the sample size was small and the number of explanatory vari-

ables was large, i.e., cases 4 to 6, the performance of the EICA as a model selector was reduced.

One reason for this is that the EICA is constructed by resampling the full model. When the sample

size is small and the number of explanatory variables is large, we anticipate that the accuracy of

resampling will be decreased due to a decrease in the asymptotic approximation. The performance

of the CV criterion as a model selector was not bad even though it has a large bias. This is because

the variable-selection method using the CV criterion is conscious of improving for a prediction of a

validation sample. Although the performance was not bad, it was not as good as either the MAIC or

EICA .

In this section, we listed simulation results of the variable selections using nested models. We

also conducted simulations using nonnested models. However, we omit the results because they

were very similar to those for the nested models.

5. Conclusions and Discussion

In this paper, we considered variable-selection methods for normal MLRM models, using the

original AIC and eight bias-corrected AICs. From a theoretical aspect, we derived asymptotic re-

sults (n → ∞) under the assumption that the true distribution is not always normal, while from

a numerical aspect, we performed a comparative study for small- to medium-sized samples. Our

results are summarized as follows:

• Whenn → ∞, the best models selected by all the criteria become the same, even though the

biases of the criteria were corrected under the assumption of nonnormality. Moreover, in this

case, an underspecified model will never be selected as the best model.

• Except for the TIC, the performances of the variable-selection methods using the bias-corrected

AIC were better than that using the uncorrected AIC. This suggests that exact correction, boot-

strapping, or cross-validation work better than the moment method for correcting the bias. It will

be that correcting only the top term in an asymptotic expansion of the bias, as do AIC and TIC,

is insufficient in the overspecified models.

• Theoretically, the bias of the CAICJ becomes the smallest among all the criterion mentioned

in this paper, but by numerical examination, we verified that the CAICJ is not the best model

selector. This indicates that the performance of a criterion is not necessarily improved even if

the bias of the risk function for the overspecified model is reduced to as small as possible.

• The CAIC and MAIC perform well as model selectors, even though they have constant bias

when the true distribution is not normal. The reason for this is that the correction for the bias
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caused by nonnormality cannot be estimated accurately when the sample size is small. Thus,

if we try to estimate this bias when the sample size is small, it will reduce the accuracy of the

estimation.

• Variable-selection methods using the MAIC or EICA , which are obtained by correcting the con-

stant bias of the AIC, always perform well. This result leads us to the conclusion that correcting

the bias for the underspecified model has a positive effect on the selection of variables. One

reason for this is that the model that minimizes the loss function is either the true model or the

underspecified model. The EICA has the best performance as the model selector except for when

the sample size is small and there are a large number of explanatory variables in the full model.

In conclusion, we recommend using the MAIC for a small number of samples and the EICA for a

moderate number of samples. We note that when the number of samples is sufficiently large, it does

not matter which criterion is used.
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Appendix

A. Proof of Theorem 1

First, we show that the candidate model minimizing the loss function is either the true model or

the underspecified model; we do this in order to prove that the principle best model is either the true

model or the underspecified model. LetX1 = (X ,a) be an× (k+1) matrix of explanatory variables

in the modelM1: Y ∼ Nn×p(X1Ξ1,Σ1 ⊗ In), wherea is ann-dimensional vector that is linearly

independent from any combination of the columns ofX. Let Ξ̂1 andΣ̂1 denote the MLEs ofΞ1

andΣ1, respectively. From the formula for the inverse matrix (see, e.g., Siotaniet al., 1985, p. 592,

Theorem A.2.3), we have

PX1 = PX +
1

a′(In − PX )a
(In − PX )aa′(In − PX ) = PX + asa

′
s,

whereas = (In − PX )a/
√
a′(In − PX )a. From the formulas for the determinant and the inverse

matrix (see, e.g., Siotaniet al., 1985, p. 591, Theorem A.1.3, and p. 592, Theorem A.2.2),|Σ̂1| and

Σ̂−1
1 are rewritten as
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|Σ̂1| = |Σ̂|
(
1− a′sPWas

)
, (A.1)

Σ̂−1
1 = Σ̂−1 +

n
1− a′sPWas

Σ−1/2
∗ (W ′W )−1W ′asa

′
sW (W ′W )−1Σ−1/2

∗ , (A.2)

whereW = (In − PX )Y Σ−1/2
∗ . Recall thatΣ̂1 is positive definite anda is linearly independent

from any combinations of the columns ofX. From the proof in Appendix A.5 of Yanagihara and

Satoh (2010), we can see 0< a′sPWas < 1. Suppose that the modelM is overspecified. Then,

W = (In − PX )E holds, whereE is given by (4). Moreover, sincenΣ̂1 = Σ1/2
∗ E′(In − PX1)EΣ1/2

∗

holds whenM is the overspecified model, the loss function underM1 can be simplified as

L(Ξ̂1, Σ̂1) = nplog 2π + n log |Σ̂1| + tr
{
Σ̂−1

1 Σ1/2
∗ (nIp + E′E)Σ1/2

∗
}
− np. (A.3)

Substituting (A.1) and (A.2) into (A.3) yields

L(Ξ̂1, Σ̂1) = nplog 2π + n log |Σ̂| + n log(1− a′sPWas) + tr
{
Σ̂−1Σ1/2

∗ (nIp + E′E)Σ1/2
∗

}
− np

+
n

1− a′sPWas
a′sW (W ′W )−1

(
W ′W + E′PXE + nIp

)
(W ′W )−1W ′as

≥ L(Ξ̂, Σ̂) + n

{
log(1− a′sPWas) +

a′sPWas

1− a′sPWas

}
.

Notice that log(1− x) + x/(1− x) > 0 whenx ∈ (0,1). Hence, the inequalityL(Ξ̂1, Σ̂1) > L(Ξ̂, Σ̂)

holds. This means that the loss function becomes small when a new explanatory variable is added to

the overspecified model. Since the overspecified model that has the smallest number of explanatory

variables is the true model, the candidate model that minimizes the loss function is either the true

model or the underspecified model.

Next, we show that the candidate model that minimizes the loss function is the true model when

n → ∞; we do this in order to prove that the principle best model is asymptotically equivalent to

the true model. When the assumptions in Theorem 1 hold, we obtainΣ̂
p
→ Σ∗ + Σ1/2

∗ ΩΣ1/2
∗ and

(Γ∗ −XΞ̂)′(Γ∗ −XΞ̂)/n
p
→ Σ1/2

∗ ΩΣ1/2
∗ asn → ∞, whereΩ is given by (5). The above results

imply that

1
n
L(Ξ̂, Σ̂)

p
→ p log 2π + log |Σ∗| + log |Ip +Ω| + tr{(Ip +Ω)−1} + tr{(Ip +Ω)−1Ω}

= p log 2π + log |Σ∗| + log |Ip +Ω| + p ≥ p log 2π + log |Σ∗| + p, (A.4)

with equality if and only ifM is the overspecified model. Recall that the candidate model mak-

ing the loss function the smallest is either the true model or the underspecified model. This fact

and equation (A.4) indicate that the loss function in the true model is the smallest among the all

candidate models whenn→ ∞. Consequently, Theorem 1 is proved.

B. Relationship between the best models selected by the AIC and CAIC

Let M j ( j = 1, . . . ,mM) be thejth candidate model with ann× k j matrix of explanatory variables

X j , and let AICj and CAICj be the AIC and CAIC of the modelM j , respectively, wheremM is
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the number of candidate models. Without loss of generality, we assume thatM1 denotes the best

model selected by minimizing the AIC. LetJ be the set of indexes, which is defined byJ = { j ∈
{2, . . . ,mM}| k j ≥ k1}, and letq(k) be a function given byq(k) = (p+k+1){2pk+p(p+1)}/(n−p−k−1).

Sinceq(k) is a monotonically increasing function with respect tok, q(k j) ≥ q(k1) holds whenj ∈ J .

Moreover, AICj − AIC1 > 0 holds for all j ∈ {2, . . . ,mM}, becauseM1 is the best model selected

by the AIC. By using the above two results and the relation between the AIC and CAIC in (12), the

following inequality is derived:

CAIC j − CAIC1 = AIC j − AIC1 + q(k j) − q(k1) > 0, ( j ∈ J). (B.1)

The result of (B.1) indicates that a model with more thank1 explanatory variables will never be

selected as the best model by the CAIC. Therefore, the number of explanatory variables in the best

model selected by the CAIC is less than or equal tok1.

C. Asymptotic equivalence of the EIC, EICA , and TIC for the overspecified model

From Fujikoshiet al. (2005)2 and Yanagihara (2006), whenm → ∞, B̂EIC and B̂EICA can be

expanded as

B̂EIC = 2pk+ p(p+ 1)+ κ̂(1)
4 − np+Op(n−1),

B̂EICA = 2(k+ p+ 1)tr(G) − tr(G2) − 2tr(G)2 +
1
n

n∑
i=1

r̂4
ω,i − np+Op(n−1),

where κ̂(1)
4 is given by (14),G = Σ̂ωΣ̂

−1, and ˆr2
ω,i = (yi − Ξ̂′ωxi)′Σ̂−1(yi − Ξ̂′ωxi). When the

model M is overspecified,G = Ip + Op(n−1/2), κ̂(1)
4 = κ(1)

4 + Op(n−1/2), and n−1 ∑n
i=1 r̂2

ω,i =

p(p+ 2)+ κ(1)
4 + Op(n−1/2) hold, whereκ(1)

4 is given in (4). Hence,̂BEIC andB̂EICA can be rewritten

as follows when the modelM is overspecified:

B̂EIC = 2pk+ p(p+ 1)+ κ(1)
4 +Op(n−1/2), B̂EICA = 2pk+ p(p+ 1)+ κ(1)

4 +Op(n−1/2). (C.1)

On the other hand, when the modelM is overspecified,
∑n

i=1(1 − hi)(r̂2
i − p) = Op(n−1/2) holds

because ˆr2
i = ε′iεi +Op(n−1/2) and 1− hi = O(n−1) are satisfied. Then,̂BTIC can be expanded as

B̂TIC = 2pk+ p(p+ 1)+ κ(1)
4 − np+Op(n−1/2). (C.2)

Comparing (C.1) with (C.2) yields EIC= TIC + Op(n−1/2) and EICA = TIC + Op(n−1/2), when the

modelM is overspecified andm→ ∞.

D. Asymptotic equivalence of the CV criterion and the TIC

From Yanagihara (2006), the last term in (19) can be expanded as

2 At the bottom of p. 240 of Fujikoshiet al. (2005),−tr(Λ̂2) is missing in the equationE[B̂A|Y ].
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n∑
i=1

(yi −Ξ̂′[−i]xi)
′Σ̂−1

[−i](yi − Ξ̂′[−i]xi) = np+2pk+ p(p+1)+ κ̂(1)
4 +2

n∑
i=1

(1−hi)r̂
2
i +Op(n−1), (D.1)

where ˆr2
i , κ̂(1)

4 , andhi are given by (13), (14), and (15), respectively. Moreover, by applying the

Taylor expansion to the equation (20), we obtain

n∑
i=1

log |Σ̂[−i] | = n log |Σ̂| + 1
n

n∑
i=1

log

1− r̂2
i

hi

 = n log |Σ̂| − 1
n

n∑
i=1

r̂2
i

hi
+Op(n−1). (D.2)

It follows from hi = 1 + O(n−1) and
∑n

i=1 r̂2
i = np that n−1 ∑n

i=1 r̂2
i /hi = n−1 ∑n

i=1 r̂2
i + Op(n−1) =

p+Op(n−1). By combining the above result with (D.2), we obtain

n∑
i=1

log |Σ̂[−i] | = n log |Σ̂| − p+Op(n−1). (D.3)

On the other hand,n log{2πn/(n− 1)} = p+O(n−1) holds. Consequently, substituting this result and

the equations (D.1) and (D.3) into (20), and comparing the obtained equation with the definition of

the TIC in (16), yields CV= TIC +Op(n−1).

E. The proof of Theorem 2

Let IC be a general notation to indicate one of the nine information criteria considered in this pa-

per. Notice that all the bias-correction terms in the information criteria, expect for the CV criterion,

areOp(1), and CV= TIC +Op(n−1) holds. Using the same idea as in Appendix A, we have

1
n

IC
p
→ p log 2π + log |Σ∗| + log |Ip +Ω| + p ≥ p log 2π + log |Σ∗| + p, n→ ∞, (E.1)

whereΩ is given by (5), and with equality if and only ifM is the overspecified model. The equation

(E.1) indicates that the underspecified models are never selected as the best model whenn → ∞.

Hence, it is sufficient to consider the selection of the best model among the overspecified models.

Let ICA denote an information criterion proposed under normality (i.e., the AIC, CAIC, or

MAIC), and let ICT denote an information criterion proposed under nonnormality (i.e., the TIC,

EIC, EICA , CV criterion, AICJ, or CAICJ). Moreover, letV = n−1/2(E′E − nIp) and Z =

(X ′X)−1/2X ′E, whereE is given by (4). Notice thatV = Op(1) andZ = Op(1) hold under

the assumptions in Theorem 2. Hence, whenM is the overspecified model, we obtain

n log |Σ̂| = n log |Σ∗| +
√

ntr(V ) − {tr(V 2)/2+ tr(Z′Z)} + op(1).

On the other hand, from Fujikoshiet al. (2005), whenM is the overspecified model, the biasB in

(10) can be expanded asB = 2pk+ p(p+ 1)+ κ(1)
4 + O(n−1), whereκ(1)

4 is given in (4). Recall that

ICT = TIC+op(1) and the bias of TIC isO(n−1) whenM is the overspecified model. From a simple

calculation, we can see thatB̂TIC is a consistent estimator ofB whenM is the overspecified model.

By using the above results, whenM is the overspecified model, the ICA and ICT are expressed as
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follows:

ICA = n log |Σ∗| +
√

ntr(V ) − {tr(V 2)/2+ tr(Z′Z)} + np+ 2pk+ p(p+ 1)+ op(1),

ICT = ICA + κ(1)
4 + op(1).

(E.2)

Let M1 andM2 be two different overspecified models, and let ICAj and ICTj be information criteria

for M j ( j = 1,2). From (E.2), we obtain

ICA1−ICA2 = tr(Z′2Z2−Z′1Z1)+2p(k1−k2)+op(1), ICT1−ICT2 = ICA1−ICA2+op(1), (E.3)

whereZ j isZ in M j andk j is the number of explanatory variables inM j . The equations (E.3) indi-

cate that the differences between two information criteria for the two different overspecified models

are asymptotically equivalent. Consequently, all the information criteria choose the same model as

the best one whenn→ ∞.
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