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Abstract

In this paper, we clarify conditions for consistency of a log-likelihood-based information crite-
rion in multivariate linear regression models with a normality assumption. Although a normality is
assumed to the distribution of the candidate model, we frame the situation as that the assumption
of normality may be violated. The conditions for consistency are derived from two types of asymp-
totic theory; one is based on a large-sample asymptotic framework in which only the sample size
approaches∞, and the other is based on a high-dimensional asymptotic framework in which the
sample size and the dimension of the vector of response variables simultaneously approach∞. In
both cases, our results are free of the influence of nonnormality in the true distribution.
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1. Introduction

The multivariate linear regression model is one of basic models of multivariate analysis. It is in-

troduced in many multivariate statistics textbooks (see, e.g., Srivastava, 2002, chap. 9; Timm, 2002,

chap. 4), and is still widely used in chemometrics, engineering, econometrics, psychometrics, and

many other fields, for the predication of multiple responses to a set of explanatory variables (see,

e.g., Yoshimotoet al., 2005; Dienet al., 2006; Sax́en & Sundell, 2006; Śarbuet al., 2008). Let

Y = (y1, . . . .yn)′ be ann× p matrix of p response variables, and letX = (x1, . . . ,xn)′ be ann× k

matrix of nonstochastic centralizedk explanatory variables (X ′1n = 0k), wheren is the sample size,

1n is ann-dimensional vector of ones, and0k is ak-dimensional vector of zeros. In order to ensure

the possibility of estimating the model and the existence of an information criterion, we assume that

rank(X) = k (< n − 1) andn − p − k − 2 > 0. Suppose thatj denotes a subset ofω = {1, . . . , k}
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containingk j elements, andX j denotes then×k j matrix consisting of the columns ofX indexed by

the elements ofj, wherekA denotes the number of elements in a setA, i.e.,kA = #(A). For example,

if j = {1,2,4}, thenX j consists of the first, second, and fourth columns ofX. We then consider the

following multivariate linear regression model withk j explanatory variables as the candidate model:

Y ∼ Nn×p(1nµ
′ +X jΘ j ,Σ j ⊗ In), (1)

whereµ is a p-dimensional unknown vector of location parameters,Θ j is ak j × p unknown matrix

of regression coefficients, andΣ j is a p× p unknown covariance matrix. In this paper, we identify

the candidate model by the setj and call the candidate model in (1) the modelj. In particular, we

represent the true subset of explanatory variables by a setj∗ and call the modelj∗ the true model.

Since it is important to specify the factors affecting the response variables in a regression analy-

sis, searching for the optimal subsetj, i.e., variable selection, is essential. A log-likelihood-based

information criterion, which is defined by adding a penalty term that expresses the complexity of

the model to a negative twofold maximum log-likelihood, is widely used for selecting the best sub-

set of explanatory variables. The family of log-likelihood-based information criteria contains many

widely known information criteria, e.g., Akaike’s information criterion (AIC) proposed by Akaike

(1973, 1974), the bias-corrected AIC (AICc) proposed by Bedrick and Tsai (1994), the Bayesian

information criterion (BIC) proposed by Schwarz (1978), the consistent AIC (CAIC) proposed by

Bozdogan (1987), and the Hannan–Quinn information criterion (HQC) proposed by Hannan and

Quinn (1979). We focus on selecting variables by minimizing the log-likelihood-based information

criterion.

An important aspect of selecting variables in this way is whether the chosen information crite-

rion is consistent, i.e., whether the asymptotic probability of selecting the true modelj∗ approaches

1. The consistency properties of various information criteria for multivariate models have been re-

ported, e.g., see Fujikoshi (1983; 1985) and Yanagiharaet al. (2012). The property is determined

by ordinary asymptotic theory, which is based on the following framework:

• Large-sample (LS) asymptotic framework: the sample size approaches∞ under a fixed dimen-

sion p.

Under the LS asymptotic framework, it is a well-known fact that neither the AIC nor the AICc are

consistent, but the BIC, CAIC, and HQC are consistent. Recently, there have been many investi-

gations of statistical methods for high-dimensional data, in whichp is large but still smaller thann

(see, e.g., Fanet al., 2008; Fujikoshi & Sakurai, 2009). It has been found that, for high-dimensional

data, the following asymptotic framework is more suitable than the LS asymptotic framework (see,

e.g., Fujikoshiet al., 2010):

• High-dimensional (HD) asymptotic framework: the sample size and the dimensionp simulta-

neously approach∞ under the condition thatcn,p = p/n→ c0 ∈ [0,1). For simplicity, we will

write “(n, p)→ ∞ simultaneously undercn,p → c0” as “cn,p→ c0”.

In this paper, the asymptotic theories based on the LS and HD asymptotic frameworks are named
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the LS and HD asymptotic theories, respectively. If an information criterion has the consistency

property under the HD asymptotic framework, we will conclude that the information criterion is

superior to one without the consistency property, for the purpose of selecting the true model from

among the candidate models with high-dimensional response variables. Yanagiharaet al. (2012)

evaluated the consistency of various information criteria under the HD asymptotic framework, and

pointed out that the AIC and AICc become consistent, but the BIC and CAIC sometimes become

inconsistent.

Unfortunately, the results in previous works were obtained under the assumption that the distribu-

tion of the true model is a normal distribution. Although the normal distribution is assumed for the

candidate model (1), we are not able to determine whether this is actually correct. Hence, a natural

assumption for the generating mechanism ofY , i.e., the true model, is

Y = 1nµ
′
∗ +X j∗Θ∗ + EΣ1/2

∗ , (2)

whereE = (ε1, . . . , εn)′ is ann× p matrix of error variables that are assumed to be

ε1, . . . , εn ∼ i.i.d. ε = (ε1, . . . , εp)′, E[ε] = 0p, Cov[ε] = Ip.

Henceforth, for simplicity, we representX j∗ andk j∗ asX∗ andk∗, respectively.

The purpose of this paper is to determine which conditions are necessary so that, when the as-

sumption of normality is violated, a log-likelihood-based information criterion satisfies the consis-

tency property. As stated above, the consistency of an information criterion is assessed by the LS

and HD asymptotic theories. It is common knowledge that the maximum log-likelihood of the model

in (1) consists of the determinants of the maximum likelihood estimators (MLE) of the covariance

matrixΣ j . Hence, under the HD asymptotic framework, it is difficult to prove the convergence of

the difference between the two negative twofold maximum log-likelihoods, because the dimension

of the MLE ofΣ j increases with an increase in the sample size. Yanagiharaet al. (2012) avoided

this difficulty by using a property of a random matrix distributed according to the Wishart distri-

bution (see Fujikoshiet al., 2010, th. 3.2.4, p. 57). However, we cannot use this property because

the normality of the true model is not assumed. Hence, it is necessary to consider a different idea,

from Yanagiharaet al. (2012), for assessing the consistency. In this paper, the moments of a specific

random matrix and the distribution of the maximum eigenvalue of the estimator of the covariance

matrix are used for assessing consistency. Under both the LS and HD asymptotic frameworks, the

results we obtained indicate that the conditions for consistency are not influenced by nonnormality

in the true distribution.

This paper is organized as follows: In Section 2, we present the necessary notation and assump-

tions for an information criterion and a model. In Section 3, we prepare several lemmas for assessing

the consistency of an information criterion. In Sections 4, we obtain a necessary and sufficient con-

dition to satisfy consistency under the LS asymptotic framework. In Section 5, we derive a sufficient

condition to satisfy consistency under the HD asymptotic framework. In Section 6, we verify the ad-

equacy of our claim by conducting numerical experiments. In Section 7, we discuss our conclusions.

Technical details are provided in the Appendix.
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2. Notation and Assumptions

In this section, we present the necessary notation and assumptions for assessing the consistency of

an information criterion for the modelj (1). First, we describe several classes ofj that express sub-

sets ofX in the candidate model. LetJ be a set of candidate models denoted byJ = { j1, . . . , jK},
whereK is the number of candidate models . We then separateJ into two sets; one is the set of

overspecified models for which the explanatory variables contain all the explanatory variables of the

true modelj∗ (2), i.e.,J+ = { j ∈ J| j∗ ⊆ j}, and the other is the set of underspecified models (those

that are not the overspecified models), i.e.,J− = Jc
+ ∩ J , whereAc denotes the compliment of the

setA. In particular, we express the minimum overspecified model includingj ∈ J− as j+, i.e.,

j+ = j ∪ j∗. (3)

Estimations for the unknown parametersµ, Θ j , andΣ j in the candidate model (1) are carried out

by the maximum likelihood estimation, i.e., they are estimated by

µ̂ =
1
n
Y ′1n, Θ̂ j = (X ′

jX j)
−1X ′

jY , Σ̂ j =
1
n
Y ′(In − Jn − P j)Y ,

whereP j andJn are the projection matrices to the subspace spanned by the columns ofX j and1n,

respectively, i.e.,P j = X j(X ′
jX j)−1X ′

j andJn = 1n1′n/n. In order to deal uniformly with all the

log-likelihood-based information criteria, we consider the family of criteria for which the value of

the modelj can be expressed as

ICm( j) = n log |Σ̂ j | + np(log 2π + 1)+m( j), (4)

wherem( j) is a positive penalty term that expresses the complexity of the model (1). An information

criterion included in this family is specified by an individual penalty termm( j). This family contains

the AIC, AICc, BIC, CAIC, and HQC as special cases:

m( j) =



2p{k j + (p+ 3)/2} (AIC)

2np{k j + (p+ 3)/2}/(n− k j − p− 2) (AICc)

p{k j + (p+ 3)/2} logn (BIC)

p{k j + (p+ 3)/2}(1+ logn) (CAIC)

2p{k j + (p+ 3)/2} log logn (HQC)

. (5)

Although we will consider primarily the above five criteria, the family also includes information cri-

teria for which the penalty terms are random variables, e.g., the modified AIC (MAIC) proposed by

Fujikoshi and Satoh (1997), Takeuchi’s information criterion (TIC) proposed by Takeuchi (1976),

the extended information criterion (EIC) proposed by Ishiguroet al. (1997), the cross-validation

(CV) criterion proposed by Stone (1974; 1977), and other bias-corrected AICs, such as those pro-

posed by Fujikoshiet al. (2005), Yanagihara (2006), and Yanagiharaet al. (2011). The best subset

of ω, which is chosen by minimizing ICm( j), is written as

ĵm = arg min
j∈J

ICm( j).
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Let a p× p noncentrality matrix be denoted by

Σ−1/2
∗ Θ′∗X

′
∗(In − P j)X∗Θ∗Σ

−1/2
∗ = Γ jΓ

′
j , (6)

whereΓ j is a p × γ j (γ j ≤ min{p, k j∗∩ jc}) matrix, and it has full column rank whenp is large, i.e.,

p ≥ k∗. Sincek j∗∩ jc ≤ k j+ − k j holds for largep, γ j ≤ k j+ − k j is satisfied for largep. It should be

noted thatΓ jΓ
′
j = Op,p holds if and only if j ∈ J+, whereOn,p is ann× p matrix of zeros. More-

over, let∥a∥ denote the Euclidean norm of the vectora. Then, in order to assess the consistency of

ICm, the following assumptions are needed:

A1. The true model is included in the set of candidate models, i.e.,j∗ ∈ J .

A2. E[∥ε∥4] exists and has the orderO(p2) asp→ ∞.

A3. limn→∞ n−1Γ jΓ
′
j = Ω j,0 exists and is positive semidefinite.

A4. limn→∞ n−1X ′X = R0 exists and is positive definite.

A5.
∑n

i=1 ∥xi∥4 = o(n2) asn→ ∞.

A6. limcn,p→c0(np)−1Γ′jΓ j =∆ j,0 exists and is positive definite.

For which orders ofΓ jΓ
′
j andΓ′jΓ j are adequate, see Yanagiharaet al. (2012). ForR in assumption

A4, we write the limiting value ofn−1X ′
jXℓ asR j,ℓ,0 for j, ℓ ∈ J . It is clear thatR j,ℓ,0 is a submatrix

of R0, andR j,ℓ,0 also exists ifR0 exists.

If assumption A2 is satisfied, the multivariate kurtosis proposed by Mardia (1970) exists as

κ(1)
4 = E[∥ε∥4] − p(p+ 2) =

p∑
a,b

κaabb+ p(p+ 2), (7)

where the notation
∑p

a1,a2,... means
∑p

a1=1

∑p
a2=1 · · · , andκabcd is the fourth-order multivariate cumu-

lant ofε, defined by

κabcd= E[εaεbεcεd] − δabδcd − δacδbd − δadδbc.

Hereδab is the Kronecker delta, i.e.,δaa = 1 andδab = 0 for a , b. It is well known thatκ(1)
4 = 0

whenε ∼ Np(0p, Ip). In general, the order ofκ(1)
4 is such that

κ(1)
4 = O(p1+s) asp→ ∞, s ∈ [0,1]. (8)

The positive constants is changed by the distribution ofε. For example, ifε1, . . . , εp are indepen-

dent random variables that are not distributed according to normal distributions, thens = 0. If ε is

distributed according to an elliptical distribution other than the normal distribution (see, e.g., Fang

et al., 1990), thens = 1. Hence, there is an additional assumption that can be regarded as a special

case of assumption A2:

A2′. ε1, . . . , εp are identically and independently distributed according to some distribution with

E[ε41] < ∞.
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When the indicated assumptions hold, the following lemmas are satisfied (the proofs are given in

Appendices A and B:

Lemma 1 LetQ j be an n× k j matrix defined by

Q′j = (X ′
jX j)

−1/2X j = (q j,1, . . . , q j,n), q j,i = (q j,i1, . . . , q j,ik j )
′. (9)

Suppose that assumptions A4 and A5 are satisfied. Then, we have

n∑
i=1

∣∣∣q j,iaq j,ibq j,icq j,id

∣∣∣ = o(1) as n→ ∞,

where a,b, c,d are arbitrary positive integers not larger than kj .

Lemma 2 LetZ j be a kj × p matrix defined by

Z j = Q′jE, (10)

where Q j is given by (9). Suppose that assumptions A2, A4, and A5 are satisfied. Then,

Z j
d→ Nk j×p(Ok j ,p, Ik j p) as n→ ∞ holds.

To ensure the asymptotic normality ofZ j , Wakakiet al. (2002) assumed lim supn→∞ ∥xi∥4/n < ∞,

which is stronger than assumption A5.

3. Preliminaries

In this section, we present some lemmas that we will use to derive the conditions for consistency

of the penalty termm( j) in ICm( j) in (4). We first present two lemmas from basic probability theory

(the proofs of these are given in Appendices C and D). In the next two lemmas, we do not specify

the asymptotic framework because they are applicable to any asymptotic framework.

Lemma 3 Let hj,ℓ be some positive constant that depends on the models j, ℓ ∈ J . Then, we have

(i) j, ℓ ∈ J , j , ℓ,
1

h j,ℓ
{ICm( j) − ICm(ℓ)} ≥ T j,ℓ

p
→ τ j,ℓ > 0⇒ P(ICm( j) < ICm(ℓ)) → 0 and

P(ICm( j) > ICm(ℓ))→ 1,

(ii ) ∀ℓ ∈ J\{ j}, 1
hℓ, j
{ICm(ℓ) − ICm( j)} ≥ Tℓ, j

p
→ τℓ, j > 0⇒ P( ĵm = j)→ 1,

(iii ) ∃ℓ0 ∈ J\{ j} s.t.
1

h j,ℓ0
{ICm( j) − ICm(ℓ0)} ≥ T j,ℓ0

p
→ τ j,ℓ0 > 0⇒ P( ĵm = j)→ 0.

Lemma 4 Let A and B be events. Then, the following equations are satisfied:

(i) P(B)→ 0⇒ P(A∩ B)→ 0,

(ii ) P(B)→ 1⇒ lim P(A∩ B) = lim P(A).
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Let D( j, ℓ) ( j, ℓ ∈ J) be the difference between two negative twofold maximum log-likelihoods

divided byn, such that

D( j, ℓ) = log
(
|Σ̂ j |/|Σ̂ℓ |

)
. (11)

Notice that

ICm( j) − ICm(ℓ) = nD( j, ℓ) +m( j) −m(ℓ). (12)

From Lemma 3, we see that, to obtain the conditions ofm( j) such that ICm( j) is consistent, we only

have to show the convergence in probability ofD( j, j∗) or a lower bound ofD( j, j∗) divided by some

constant.

Let (A)ab be the (a,b)th element of a matrixA. Then, the following lemmas help us to prove the

convergence in probability ofD( j, j∗) or a lower bound ofD( j, j∗) divided by some constant (the

proofs of these lemmas are given in Appendices E, F, and G):

Lemma 5 For any n× n symmetric matrixA, let ϕ1(A), ϕ2(A), andϕ3(A) denote moments:

ϕ1(A) = E
[
tr
(E′AE)] , ϕ2(A) = E

[
tr
{
(E′AE)2

}]
, ϕ3(A) = E

[
tr(E′AE)2

]
.

Then, specific forms ofϕ1(A), ϕ2(A), andϕ3(A) are given as

ϕ1(A) = ptr(A), ϕ2(A) = κ(1)
4

n∑
a=1

{(A)aa}2 + p(p+ 1)tr(A2) + ptr(A)2,

ϕ3(A) = κ(1)
4

n∑
a=1

{(A)aa}2 + p2tr(A)2 + 2ptr(A)2,

whereκ(1)
4 is given by(7).

Lemma 6 For any n× n symmetric idempotent matrixA, we have

n∑
a=1

{(A)aa}2 = O(tr(A)) as tr(A)→ ∞.

Lemma 7 LetU andW be n× p and n× n random matrices, respectively, defined by

U = (u1, . . . ,un)′ = (In − Jn)E, W = U (U ′U )−1U ′, (13)

and letα = (α1, . . . , αn)′ andβ = (β1, . . . , βn)′ be n-dimensional vectors satisfying

∥α∥ = ∥β∥ = 1, 1′nα = 1′nβ = 0,
n∑

a=1

α2
aβ

2
a = o(1) as cn,p→ c0. (14)

Then, we derive

α′Wβ
p
→ c0α

′β as cn,p→ c0.

Next, we show the decomposition ofΣ̂ j when j ∈ J−. Notice that

Σ−1/2
∗ Σ̂ jΣ

−1/2
∗ =

1
n

{
Γ jΓ

′
j +Σ

−1/2
∗ Θ′∗X

′
∗(In − P j)E

+E′(In − P j)X∗Θ∗Σ
−1/2
∗ + E′(In − Jn − P j)E

}
,

(15)
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whereΓ j is given by (6). Forj ∈ J−, we define ann× p matrixA j as

A j = (In − P j)X∗Θ∗Σ
−1/2
∗ . (16)

It is easy to see from the definition of the noncentrality matrix in (6) thatA′jA j = Γ jΓ
′
j . By using

the singular value decomposition,A j can be rewritten as

A j =H jL
1/2
j G′j , (17)

whereH j andG j aren× γ j andp× γ j matrices satisfyingH ′
jH j = Iγ j andG′jG j = Iγ j , respec-

tively, andL j is aγ j × γ j diagonal matrix whose diagonal elements are squared singular values of

A j . LetC j be aγ j × γ j orthogonal matrix that diagonalizesΓ′jΓ j toL j , and hence

Γ′jΓ j = C jL jC
′
j . (18)

By usingA j , equation (15) can be rewritten as

nΣ−1/2
∗ Σ̂ jΣ

−1/2
∗ =

(
L1/2

j G′j +H
′
jE
)′ (

L1/2
j G′j +H

′
jE
)
+ E′(In − Jn − P j −H jH

′
j )E. (19)

Before concluding this section, we present the following lemma onIn−Jn−P j −H jH
′
j (the proof

is given in Appendix H):

Lemma 8 Letλmax(A) denote the maximum eigenvalue ofA, and letS j ( j ∈ J−) be a p×p matrix

defined by

S j =
1
n
E′(In − Jn − P j −H jH

′
j )E. (20)

Then, we have

(i) The n× n matrixIn − Jn − P j −H jH
′
j is idempotent, andP j+ (P j −H jH

′
j ) = P j +H jH

′
j

holds, where j+ is given by(3).

(ii ) If assumption A2 holds,λmax(S j) = Op(p1/2) as cn,p → c0 and lim inf cn,p→c0
λmax(S j) = 1 are

satisfied.

(iii ) If assumption A2′ holds instead of assumption A2, the order ofλmax(S j) is changed to Op(1)

from Op(p1/2).

4. Conditions for Consistency under the LS Asymptotic Framework

In this section, we derive the conditions such that ICm is consistent under the LS asymptotic

framework, i.e., the ordinary asymptotic framework in which onlyn approaches∞. Let vec(A)

denote an operator that transforms a matrix to a vector by stacking the first to the last columns ofA,

i.e., vec(A) = (a′1, . . . ,a
′
m)′ whenA = (a1, . . . ,am) (see, e.g., Harville, 1997, chap. 16.2). Suppose

that assumptions A2 and A3 are satisfied. It follows from Lemmas 5 and 6 that

8
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tr
{
Cov[vec(Σ−1/2

∗ Θ′∗X
′
∗(In − P j)E)]

}
= ϕ1(Γ jΓ

′
j) = tr(Γ jΓ

′
j)p = O(n),

tr
{
Cov[vec(E′(In − Jn − P j)E)]

}
= ϕ2(In − Jn − P j) − p(In − Jn − P j)

2

= κ(1)
4

n∑
a=1

{
(In − Jn − P j)aa

}2
+ p(p+ 1)(n− k j − 1) = O(n),

asn→ ∞. These equations imply that

1
n
Σ−1/2
∗ Θ′∗X

′
∗(In − P j)E = Op(n−1/2)

1
n
E′(In − Jn − P j)E = Ip +Op(n−1/2)

asn→ ∞.

Using the above results and equation (15) yields

Σ−1/2
∗ Σ̂ jΣ

−1/2
∗

p
→
 Ip (∀ j ∈ J+)

Ip +Ω j,0 (∀ j ∈ J−)
asn→ ∞. (21)

The lower equation in (21) directly implies, for allj ∈ J−,

D( j, j∗)
p
→ log |Ip +Ω j,0| asn→ ∞, (22)

whereD( j, j∗) is given by (11) andΩ j,0 is a limiting value ofΓ jΓ
′
j/n, which is defined in assump-

tion A3. Here,Γ jΓ
′
j is the noncentrality matrix given by (6). On the other hand, for allj ∈ J+\{ j∗},

we have

D( j, j∗) = − log
∣∣∣Ip + E′(P j − P j∗ )E{E′(Ip − Jn − P j)E}−1

∣∣∣
= −1

n
tr(Z′jZ j −Z′j∗Z j∗) + op(n−1) asn→ ∞, (23)

whereZ j is given by (10). Recall thatZ j = Op(1) under assumption A2. From this result and

equation (23), we derive, for allj ∈ J+\{ j∗},

nD( j, j∗) = Op(1) asn→ ∞. (24)

Thus, Lemma 3 and equations (12), (22), and (24) lead us to the following theorem for the condition

that ICm is consistent:

Theorem 1 Suppose that assumptions A1-A3 hold. A variable selection using ICm is consistent

when n→ ∞ under a fixed p if the following conditions are satisfied simultaneously:

C1-1. ∀ j ∈ J+\{ j∗}, limn→∞{m( j) −m( j∗)} = ∞.

C1-2. ∀ j ∈ J−, limn→∞{m( j) −m( j∗)}/n = 0.

If one of the above two conditions is not satisfied, a variable selection using ICm is not consistent

when n→ ∞ under a fixed p.
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The conditions in Theorem 1 are the same as the conditions in Yanagiharaet al. (2012) which were

obtained under the assumption of normality. Hence, we can see that the conditions for consistency

are free of the influence of nonnormality in the true distribution. Moreover, Theorem 1 points out

a well-known fact that, whenn → ∞, the AIC and the AICc are not consistent in the selection of

variables, but BIC, CAIC, and HQC are.

Although ICm does not have the consistency property whenm( j) = O(1) asn → ∞, the asymp-

totic probability of selecting the modelj can be evaluated. Suppose that the following condition

holds:

C1-3. m( j) = O(1) asn → ∞ for all j ∈ J−, and limn→∞{m( j) − m(ℓ)} = m0p(k j − kℓ) for all

j, ℓ ∈ J+.

Notice that the probability that a modelj is selected by ICm is

P( ĵm = j) = P(∩ℓ∈J\{ j}{ICm(ℓ) > ICm( j)})
= P({∩ℓ∈J−\{ j}{ICm(ℓ) > ICm( j)}} ∩ {∩ℓ∈J+\{ j}{ICm(ℓ) > ICm( j)}}). (25)

The same way as was used in the calculation of (22) yieldsD(ℓ2, ℓ1)
p
→ log |Ip +Ωℓ2,0| asn→ ∞

for all ℓ1 ∈ J+\{ j} andℓ2 ∈ J−\{ j}. It follows from this result and the condition C1-3 that

1
n
{ICm(ℓ2) − ICm(ℓ1)}

p
→ log |Ip +Ωℓ2,0| > 0. (26)

Equation (26) and Lemma 3 (iii) imply that limn→∞ P( ĵm = j) = 0 holds for all j ∈ J−, and they

also imply that

lim
n→∞

P(ICm(ℓ2) > ICm(ℓ1)) = 1.

Using the above equation and Lemma 4 (ii), we have

lim
n→∞

P(∩ℓ∈J−\{ j}{ICm(ℓ) > ICm( j)}) = 1, (∀ j ∈ J+).

Thus, from equation (25) and Lemma 4 (ii), we can see that

lim
n→∞

P( ĵm = j) =

 0 ( j ∈ J−)
lim
n→∞

P(∩ℓ∈J+\{ j}{ICm(ℓ) > ICm( j)}) ( j ∈ J+)
. (27)

On the other hand, by using equation (23), we have, for allj, ℓ ∈ J+,

nD( j, ℓ) = n {D( j, j∗) −D( j∗, ℓ)} = −tr(Z′jZ j −Z′ℓZℓ) + op(1) asn→ ∞.

This equation and limn→∞{m( j) −m(ℓ)} = m0p(k j − kℓ) for all j, ℓ ∈ J+ imply that

ICm( j) − ICm(ℓ)
p
→ −tr(Z′jZ j −Z′ℓZℓ) +m0p(k j − kℓ) asn→ ∞. (28)

Notice that tr(Z′jZ j) = vec(Z j)′vec(Z j) andCov[vec(Z j), vec(Zℓ)] = Ip⊗R−1/2
j, j,0 R j,ℓ,0R

−1/2
ℓ,ℓ,0 , where

R j,ℓ,0 is the submatrix ofR0, which is defined in assumption A4. Moreover, it follows from Lemma

2 that vec(Z j)
d→ Nk j p(0k j p,Ikj p) asn→ ∞. Substituting equation (28) into equation (27) yields the

following corollary:
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Corollary 1 Suppose that assumptions A1-A5 hold. When condition C1-3 holds, the asymptotic

probability of selecting the model j by ICm is

lim
n→∞

P( ĵm = j) =

 0 ( j ∈ J−)
P(∩ℓ∈J+\{ j}(z′ℓzℓ − z′jz j) < m0p(kℓ − k j)) ( j ∈ J+)

,

wherez j ∼ Nk j p(0k j p, Ik j p) and Cov[z j , zℓ] = Ip ⊗R−1/2
j, j,0 R j,ℓ,0R

−1/2
ℓ,ℓ,0 .

From Yanagiharaet al. (2013), we see that them( j)’s in the MAIC, TIC, EIC, CV criterion, and

other bias-corrected AICs areO(1) asn→ ∞ and limn→∞{m( j) −m(ℓ)} = 2p(k j − kℓ), ∀ j, ℓ ∈ J+ if

E[∥ε∥8] < ∞. Therefore, ifE[∥ε∥8] < ∞ holds, the asymptotic probabilities of selecting the model

j by most bias-corrected AICs become the same as those in Corollary 1.

5. Conditions for Consistency under the HD Asymptotic Framework

In this section, we derive the conditions such that ICm is consistent under the HD asymptotic

framework, i.e.,n andp approach∞ simultaneously under the condition thatcn,p→ c0 ∈ [0,1). Un-

der the HD asymptotic framework, increasing the dimension ofΣ̂ j with an increase in the sample

sizen is a serious problem. Of course, convergence in probability ofΣ̂ j in (21) is not ensured. If

ε ∼ Np(0p, Ip) holds,nΣ̂ j is distributed according to the central or noncentral Wishart distribution

with n− k j − 1 degrees of freedom. From Fujikoshiet al. (2010), th. 3.2.4, p. 57, we can see that∣∣∣∣∣ V1

V1 + V2

∣∣∣∣∣ = ∣∣∣∣∣ B1

B1 +B2

∣∣∣∣∣ , (29)

whereV1 andV2 are mutually independent andB1 andB2 are also mutually independent random

matrices, which are defined by

V1 ∼Wp(n, Ip), V2 ∼Wp(q, Ip;M ′M ), B1 ∼Wq(n− p+ q, Iq), B2 ∼Wq(p, Iq;MM ′).

By applying this formula toΣ̂ j , we can evaluate the asymptotic behavior ofD( j, j∗) by using two

random matrices whose dimensions do not increase with an increase in the sample size. By using

this idea, Yanagiharaet al. (2012) derived the condition for consistency under the HD asymptotic

framework. However, needless to say, we cannot use this idea in this paper, because the true distri-

bution is not a normal distribution. Hence, it is necessary to use a different idea. We will employ

the property of the convergence in probability ofW in Lemma 7, and the distribution ofλmax(S j)

in Lemma 8 to evaluate the asymptotic behavior, whereW is given by (13).

Let us give another expression ofQ j asQ j = (b j,1, . . . , b j,k j ), whereb j,a = (q j,1a, . . . ,q j,na)′ and

Q j is given by (9). Then, it is clear thatb′j,ab j,b = δab, becauseQ′jQ j = Ik j holds. Moreover,

Q′j1n = 0k j holds becauseX j is centralized. From these equations and Lemma 1, it can be deter-

mined thatb j,1, . . . , b j,k j satisfy the conditions in (14) when assumptions A4 and A5 hold. Therefore,

if assumptions A4 and A5 hold, we can derive

b′j,aWb j,b
p
→ c0δab ascn,p→ c0.

11
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Sinceb′j,aWb j,b is the (a, b)th element ofQ′jWQ j , the following equation is satisfied if assumptions

A4 and A5 hold:

Q′jWQ j
p
→ c0Ik j ascn,p→ c0. (30)

Notice thatP jE = P jU holds for all j ∈ J becauseX j is centralized, whereU is given by (13).

Then, by using equation (30) and the property of the determination (see, e.g., Harville, 1997, chap.

18, cor. 18.1.2), the following equation is satisfied for allj ∈ J+\{ j∗}:

D( j, j∗) = log
|E′(In − Jn − P j)E|
|E′(In − Jn − P j∗)E|

= log
|U ′(In − P j)U |
|U ′(In − P j∗)U |

= log
|Ip − (U ′U )−1U ′P jU |
|Ip − (U ′U )−1U ′P j∗U |

= log
|Ik j −Q′jWQ j |
|Ik∗ −Q′j∗WQ j∗ |

p
→ (k j − k∗) log(1− c0) ascn,p → c0. (31)

It follows from equation (19) that for allj ∈ J−

D( j, j∗) = log
|E′(In − Jn − P j −H jH

′
j )E + (L1/2

j G′j +H
′
jE)′(L1/2

j G′j +H
′
jE)|

|E′(In − Jn − P j∗)E|

= log
|Ip + S

−1
j (L1/2

j G′j +H
′
jE)′(L1/2

j G′j +H
′
jE)/n||U ′(In − P j −H jH

′
j )U |

|U ′(In − P j∗)U |

= log
|Iγ j + (L1/2

j G′j +H
′
jE)S−1

j (L1/2
j G′j +H

′
jE)′/n||U ′(In − P j −H jH

′
j )U |

|U ′(In − P j∗)U |
≥ log

∣∣∣∣λmax(S j)Iγ j +C j(L
1/2
j G′j +H

′
jE)(L1/2

j G′j +H
′
jE)′C′j/n

∣∣∣∣
+ log

|U ′(In − P j −H jH
′
j )U |

|U ′(In − P j∗)U |
− γ j logλmax(S j)

= D1( j, j∗) +D2( j, j∗) +D3( j, j∗), (32)

whereH j , L j , andG j are given in (17);C j is given by (18); andS j is given by (20).

We first evaluate the asymptotic behavior ofD1( j, j∗) in (32). Recall thatC jL jC
′
j = Γ′jΓ j =

O(np) ascn,p → c0. It is easy to see thatE[C jH
′
jEE

′H jC
′
j ] = pIγ j . Furthermore, it follows from

Lemmas 5 and 6 that

tr
{
Cov[C jH

′
jEE′H jC

′
j ]
}
= ϕ2(H jH

′
j ) − p2γ j

= κ(1)
4

n∑
a=1

{(H jH
′
j )aa}2 + pγ j(γ j + 1) = O(p1+s) ascn,p→ c0,

whereκ(1)
4 is given by (7), ands is some positive constant given by (8). These equations imply that

C jH
′
jEE

′H jC
′
j = pIγ j + Op(p(1+s)/2) = Op(p) ascn,p → c0. Moreover, from Ḧolder’s inequality,

we have

tr(C jL
1/2
j G′jE′H jC

′
j )

2 = vec(G jL
1/2
j C′j )

′vec(E′H jC
′
j )

≤
∥∥∥∥vec(G jL

1/2
j C′j )

∥∥∥∥2 ∥∥∥vec(E′H jC
′
j )
∥∥∥2

= tr(Γ′jΓ j)tr(C jH
′
jEE′H jC

′
j ) = Op(np2) ascn,p→ c0.

12
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This implies thatC jL
1/2
j G′jE

′H jC
′
j = Op(n1/2p) ascn,p → c0. Additionally, it follows from equa-

tion (ii) in Lemma 8 thatλmax(S j)Iγ j = Op(p1/2) ascn,p → c0 if assumption A2 holds. By using

these equations, we derive∣∣∣∣∣∣1p
{
λmax(S j)Iγ j +

1
n
C j(L

1/2
j G′j +H

′
jE)(L1/2

j G′j +H
′
jE)′C′j

}∣∣∣∣∣∣ p
→ |∆ j,0| ascn,p→ c0,

where∆ j,0 is a limiting value ofΓ′jΓ j/(np), which is defined in assumption A6. Notice that

D1( j, j∗) = log
[
pγ j

∣∣∣∣{λmax(S j)Iγ j +C j(L
1/2
j G′j +H

′
jE)(L1/2

j G′j +H
′
jE)′C′j/n

}
/p
∣∣∣∣] .

It follows from the above results and the positive definiteness of∆ j,0 that

1
log p

D1( j, j∗)
p
→ γ j ascn,p → c0. (33)

Next, we evaluate the asymptotic behavior ofD2( j, j∗) in (32). From equation (30) and the result

(In −P j −H jH
′
j )(In −P j) = In −P j −H jH

′
j , obtained from equation (i) in Lemma 8, we can see

that

D2( j, j∗) ≤ log
|U ′(In − P j)U |
|U ′(In − P j∗)U |

= log
|Ik j −Q′jWQ j |
|Ik j∗ −Q′j∗WQ j∗ |

p
→ (k j − k∗) log(1− c0) ascn,p→ c0.

It follows from equation (i) in Lemma 8 that (In − P j+ )(In − P j −H jH
′
j ) = In − P j+ , where j+ is

given by (3). Thus, we also have

D2( j, j∗) ≥ log
|U ′(In − P j+)U |
|U ′(In − P j∗)U |

= log
|Ik j+
−Q′j+WQ j+ |

|Ik j∗ −Q′j∗WQ j∗ |
p
→ (k j+ − k∗) log(1− c0) ascn,p → c0.

The above upper and lower bounds ofD2( j, j∗) imply that

1
log p

D2( j, j∗)
p
→ 0 ascn,p → c0. (34)

Finally, we evaluate the asymptotic behavior ofD3( j, j∗) in (32). The asymptotic behavior of

this term depends on whether we assume A2 or A2′. Let I (x > a) be an indicator function, i.e.,

I (x > a) = 1 if x > a andI (x > a) = 0 if x ≤ a. Notice that

D3( j, j∗) = −
1
2
γ j log p− γ j log

λmax(S j)√
p

≥ −1
2
γ j log p− γ j log

{
λmax(S j)√

p
I (λmax(S j) ≥

√
p)

}
= D3( j, j∗).

It follows from equation (ii) in Lemma 8 thatλmax(S j)I (λmax(S j) ≥ p1/2)/p1/2 is Op(1) ascn,p→ c0

and is larger than or equal to 1 when assumption A2 holds. This implies that

13
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1
log p

D3( j, j∗)
p
→ −1

2
γ j ascn,p→ c0. (35)

On the other hand, if assumption A2′ holds instead of assumption A2, it follows from equation (iii)

in Lemma 8 that logλmax(S j) = Op(1) ascn,p→ c0. This implies that

1
log p

D3( j, j∗)
p
→ 0 ascn,p → c0. (36)

Combining (32), (34), (33), (35), and (36) yields

1
log p

D( j, j∗) ≥
 {D1( j, j∗) +D2( j, j∗) +D3( j, j∗)}/ log p

p
→ γ j/2 (when A2 holds)

{D1( j, j∗) +D2( j, j∗) +D3( j, j∗)} / log p
p
→ γ j (when A2′ holds)

, (37)

ascn,p → c0. From the results (31) and (37), equation (12), and equation (ii) in Lemma 3, the

following theorem is derived:

Theorem 2 Suppose that assumptions A1, A2, and A4–A6 hold. A variable selection using ICm is

consistent when(n, p)→ ∞ under cn,p → c0 if the following conditions are satisfied simultaneously:

C2-1. ∀ j ∈ J+\{ j∗}, limcn,p→c0{m( j) −m( j∗)}/p > −c−1
0 (k j − k∗) log(1− c0).

C2-2. ∀ j ∈ J−, limcn,p→c0{m( j) −m( j∗)}/(n log p) > −γ j/2.

If assumption A2′ is satisfied instead of A2, condition C2-2 is relaxed as

C2-2′. ∀ j ∈ J−, limcn,p→c0{m( j) −m( j∗)}/(n log p) > −γ j .

It should be kept in mind that limc→0 c−1 log(1− c) = −1, andc−1 log(1− c) is a monotonically

decreasing function in 0≤ c < 1. From Theorem 2, we can see that the conditions for satisfying

consistency are free of the influence of nonnormality in the true distribution. In particular, when

assumption A2′ is satisfied instead of assumption A2, the sufficient condition for consistency is the

same as that in Yanagiharaet al. (2012), which was obtained under the assumption that the normality

assumption is correct.

Although a sufficient condition for consistency has been derived, we still do not know which crite-

ria satisfy the sufficient condition. Therefore, we clarify the condition for the consistency of specific

criteria in (5). First, we consider the AIC and AICc. Notice thatm( j) − m( j∗) in the AICc can be

expanded as

m( j) −m( j∗) =
(k j − k∗)(2− cn,p)p

(1− cn,p)2
+O(pn−1) ascn,p→ c0. (38)

Hence, the differences between the penalty terms of the AICs and the AICcs converge as

lim
cn,p→c0

1
n log p

{m( j) −m( j∗)} = 0.

This indicates that condition C2-2 holds for the AIC and AICc. Furthermore, it follows from equality

(38) that
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lim
cn,p→c0

1
p
{m( j) −m( j∗)} =

 2(k j − k∗) (AIC)

(k j − k∗){(1− c0)−1 + (1− c0)−2} (AICc)
.

Notice that, in 0 ≤ c < 1, c−1 log(1 − c) + 2 is a monotonically decreasing function, and

c−1 log(1−c)+ (1−c)−1+ (1−c)−2 is a monotonically increasing function. Hence, whenj ∈ J\{ j∗},
the penalty terms in the AICc always satisfy the condition C2-1, and those in the AIC satisfy the

condition C2-1 ifc0 ∈ [0, ca), whereca (≈ 0.797) is a constant satisfying

log(1− ca) + 2ca = 0. (39)

Next, we consider the BIC and CAIC. Whenj ∈ J+\{ j∗}, the difference between the penalty terms

of the BIC and the CAIC is

lim
cn,p→c0

1
p logn

{m( j) −m( j∗)} = k j − k∗ > 0.

Thus, condition C2-1 holds. Moreover, it is easy to obtain

1
n log p

{m( j) −m( j∗)} =
 cn,p(k j − k∗)

(
− logcn,p

log p + 1
)

(BIC)

cn,p(k j − k∗)
( 1−logcn,p

log p + 1
)

(CAIC).

Since limc→0 c logc = 0 holds, we derive

lim
cn,p→c0

1
n log p

{m( j) −m( j∗)} = c0(k j − k∗).

LetS− be a set defined by

S− = { j ∈ J−|k∗ − k j > 0}. (40)

When j ∈ Sc
− ∩ J−, condition C2-2 is satisfied becausec0(k j − k∗) ≥ 0 holds. Whenj ∈ S−,

condition C2-2 is satisfied ifc0 < γ j/{2(k∗ − k j)} holds for all j ∈ S−. Finally, the case of HQC is

considered. Whenj ∈ J+\{ j∗}, the difference between the penalty terms of the HQCs is

lim
cn,p→c0

1
p log logn

{m( j) −m( j∗)} = 2(k j − k∗) > 0.

Moreover, it is easy to derive

1
n log p

{m( j) −m( j∗)} = 2(k j − k∗)cn,p

{
log logp

log p
+

log(1− logcn,p/ log p)

log p

}
.

This implies that

lim
cn,p→c0

1
n log p

{m( j) −m( j∗)} = 0.

Thus, conditions C2-1 and C2-2 hold. From the above results and Theorem 2, the consistency

properties of specific criteria are clarified in the following corollary:

Corollary 2 Suppose that assumptions A1, A2, and A4–A6 are satisfied.

(i) A variable selection using the AIC is consistent if c0 ∈ [0, ca) holds, and it is not consistent if

c0 ∈ (ca,1) holds, where ca is given by(39).
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(ii ) Variable selections using the AICc and HQC are consistent.

(iii ) Variable selections using the BIC and CAIC are consistent if c0 ∈ [0, cb) holds, where cb =

min{1,min j∈S− γ j/{2(k∗−k j)}} andS− is given by(40). If assumption A2′ is satisfied instead of

A2, the condition c0 ∈ [0, cb) is relaxed as c0 ∈ [0, c′b), where c′b = min{1,min j∈S− γ j/(k∗−k j)}.

Corollary 2 shows that, whencn,p → c0, the AIC, AICc, and HQC are consistent in model selection

if c0 ∈ [0, ca) for the AIC, and ifc0 ∈ [0,1) for the AICc and HQC. Therefore, the ranges of values

for (n, p) that satisfy consistency are wider for the AICc and HQC than that for the AIC. Moreover,

Corollary 2 indicates that the BIC and the CAIC are not always consistent in variable selection when

cn,p→ c0. Sincec0 < 1 andk j+−k j > k∗−k j for all j ∈ S−, γ j > c0(k∗−k j) is satisfied ifγ j = k j+−k j

holds. In contrast, ifc0 = 0, thenγ j > c0(k∗ − k j) is satisfied. Therefore, we can see that variable

selections using the BIC and the CAIC are consistent ascn,p → c0 if γ j = k j+ − k j andc0 ∈ (0,1/2)

hold, orcn,p converges to 0. However, if the previous condition does not hold, we cannot determine

if variable selections using the BIC and the CAIC are consistent ascn,p→ c0.

6. Numerical Study

In this section, we numerically examine the validity of our claim. The probability of selecting the

true model by the AIC, AICc, BIC, CAIC, and HQC in (5) was evaluated by Monte Carlo simula-

tions with 10,000 iterations. The ten candidate modelsjα = {1, . . . , α} (α = 1, . . . , k), with several

different values ofn andp, were prepared for Monte Carlo simulations. We independently generated

z1, . . . , zn from U(−1,1). Usingz1, . . . , zn, we constructed ann× k matrix of explanatory variables

X, where the (a,b)th element was defined byzb−1
a (a = 1, . . . ,n; b = 1, . . . , k). The true model was

determined byΘ∗ = (1, 1,3,−4,5)′1′p, j∗ = {1,2,3, 4,5}, andΣ∗ in which the (i, j)th element was

defined by (0.8)|a−b| (a = 1, . . . , p; b = 1, . . . , p). Thus, jα with α = 1, . . . ,4 was the underspecified

model, andjα with α ≥ 5 was the overspecified model.

Let ν ∼ Np(0p, Ip) andδ ∼ χ2
6 be a mutually independent random vector and variable. Then,ε

was generated from the following three distributions:

• Distribution 1 (multivariate normal distribution):ε = ν,

• Distribution 2 (scale mixture of multivariate normal distribution):ε =
√
δ/6ν,

• Distribution 3 (scale and location mixtures of multivariate normal distribution):ε =

Ψ−1/2{10(
√
δ/6− η)1p +

√
δ/6ν}, whereη = 15

√
π/3/16 andΨ = Ip + 100(1− η2)1p1′p.

It is easy to see that distributions 1 and 2 are symmetric, and distribution 3 is skewed.

In our numerical study,γ j = 1 and max(k∗ − k j) = 4 hold for all j ∈ S−. This implies that when

c0 > 1/8, the inequalityγ j/2 > c0(k∗−k j) was not always satisfied for allj ∈ S−. Thus, it is not clear

whether the probability of selectingj∗ by the BIC and CAIC converged to 1 ascn,p→ c0 ∈ (1/8,1).

Tables 1, 2, and 3 show the probability of selecting the true model by the AIC, AICc, BIC, CAIC,

and HQC when the distributions ofε are 1, 2, and 3, respectively. Forn = ∞ or p = ∞, we list the
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Table 1. Selection Probabilities of the True Model (%) in the Case of Distribution 1

Case 1 Case 2 (c0 = 0.01)

n p AIC AICc BIC CAIC HQC p AIC AICc BIC CAIC HQC

100 2 73.1 80.6 76.7 65.8 85.2 2 73.1 80.6 76.7 65.8 85.2

200 2 78.4 82.4 98.6 97.8 95.6 4 86.0 90.5 95.0 88.1 98.5

500 2 80.0 81.5 99.8 99.9 97.2 10 96.3 97.4 100.0 100.0 100.0

1000 2 80.1 80.9 99.9 100.0 97.6 20 99.4 99.6 100.0 100.0 100.0

∞ 2 80.2 80.2 100.0 100.0 100.0 ∞ 100.0 100.0 100.0 100.0 100.0

Case 3 Case 4 (c0 = 0.1)

n p AIC AICc BIC CAIC HQC p AIC AICc BIC CAIC HQC

100 10 86.4 73.0 5.2 0.3 55.8 10 86.6 73.5 5.4 0.3 55.7

200 10 95.5 98.2 67.8 37.9 98.4 20 98.7 99.8 17.9 0.8 96.4

500 10 96.2 97.4 100.0 100.0 100.0 50 100.0 100.0 99.0 69.8 100.0

1000 10 96.5 97.2 100.0 100.0 100.0100 100.0 100.0 100.0 100.0 100.0

∞ 10 96.8 96.8 100.0 100.0 100.0 ∞ 100.0 100.0 100.0 100.0 100.0

Case 5 Case 6 (c0 = 0.3)

n p AIC AICc BIC CAIC HQC p AIC AICc BIC CAIC HQC

100 30 90.3 0.0 0.0 0.0 11.0 30 90.3 0.0 0.0 0.0 11.0

200 30 99.5 99.6 1.1 0.0 93.5 60 99.9 21.4 0.0 0.0 74.1

500 30 99.8 100.0 99.9 97.1 100.0150 100.0 100.0 0.0 0.0 100.0

1000 30 99.8 99.9 100.0 100.0 100.0300 100.0 100.0 0.0 0.0 100.0

∞ 30 99.9 99.9 100.0 100.0 100.0 ∞ 100.0 100.0 0.0 0.0 100.0

Case 7 (c0 = 0.0) Case 8 (c0 = 0.0)

n p AIC AICc BIC CAIC HQC p AIC AICc BIC CAIC HQC

100 30 90.3 0.0 0.0 0.0 11.0 30 90.3 0.0 0.0 0.0 11.0

200 32 99.6 99.5 0.4 0.0 93.0 40 99.7 97.5 0.0 0.0 88.9

500 35 99.9 100.0 99.8 94.1 100.0 50 100.0 100.0 99.2 70.1 100.0

1000 40 100.0 100.0 100.0 100.0 100.0 60 100.0 100.0 100.0 100.0 100.0

∞ ∞ 100.0 100.0 100.0 100.0 100.0 ∞ 100.0 100.0 100.0 100.0 100.0

theoretical values obtained from Theorems 1 and 2. In particular, by using the result in Yanagihara

et al. (2012), we can obtain the theoretical values of the asymptotic selection probabilities of the

true model by the BIC and CAIC if the distribution ofε is normal, even for Case 6. The symbol

“—” indicates that the theoretical value is not clear. From the tables, we can see that in the cases of

the AIC, AICc, and HQC, the greater the dimension and sample size, the greater the probabilities.

Compared with the results obtained from the AIC, AICc, and HQC, the probabilities for the AICc
and HQC tended to be higher than those for the AIC whenn was not small. In the cases of the BIC

and CAIC, the greater the dimension and sample size were, the higher the selection probabilities be-

came, with the exception of Case 6. This was because there is a possibility that variable selections

using the BIC and the CAIC are not consistent in Case 6. Additionally, whenn was small andp

was large, the selection probabilities of the BIC and the CAIC were both very low. However, if the

BIC and the CAIC were consistent in variable selection, these probabilities became high asn andp

increased. Moreover, we could not find notable differences between the simulation results obtained

from normal and nonnormal distributions. This indicates that, for variable selection even under the

HD asymptotic framework, the effect of violation of the normality assumption is not large.
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Table 2. Selection Probabilities of the True Model (%) in the Case of Distribution 2

Case 1 Case 2 (c0 = 0.01)

n p AIC AICc BIC CAIC HQC p AIC AICc BIC CAIC HQC

100 2 73.5 80.7 76.4 65.9 84.4 2 73.5 80.7 76.4 65.9 84.4

200 2 78.2 82.3 98.6 97.8 95.1 4 86.9 91.0 95.1 88.1 98.3

500 2 79.9 81.5 99.8 99.9 97.0 10 96.6 97.7 100.0 99.9 100.0

1000 2 80.0 80.7 99.9 100.0 97.5 20 99.3 99.6 100.0 100.0 100.0

∞ 2 80.2 80.2 100.0 100.0 100.0 ∞ 100.0 100.0 100.0 100.0 100.0

Case 3 Case 4 (c0 = 0.1)

n p AIC AICc BIC CAIC HQC p AIC AICc BIC CAIC HQC

100 10 86.7 75.3 6.8 0.5 59.8 10 86.7 75.3 6.8 0.5 59.8

200 10 95.1 98.2 69.4 40.4 98.5 20 98.7 99.9 23.7 1.9 96.8

500 10 96.2 97.4 100.0 99.9 100.0 50 100.0 100.0 99.2 76.5 100.0

1000 10 96.5 97.1 100.0 100.0 100.0100 100.0 100.0 100.0 100.0 100.0

∞ 10 96.8 96.8 100.0 100.0 100.0 ∞ 100.0 100.0 100.0 100.0 100.0

Case 5 Case 6 (c0 = 0.3)

n p AIC AICc BIC CAIC HQC p AIC AICc BIC CAIC HQC

100 30 92.4 0.0 0.0 0.0 18.4 30 92.4 0.0 0.0 0.0 18.4

200 30 99.5 99.7 2.5 0.0 94.5 60 99.8 40.8 0.0 0.0 86.5

500 30 99.8 100.0 100.0 97.5 100.0150 100.0 100.0 0.0 0.0 100.0

1000 30 99.9 100.0 100.0 100.0 100.0300 100.0 100.0 0.0 0.0 100.0

∞ 30 99.9 99.9 100.0 100.0 100.0 ∞ 100.0 100.0 — — 100.0

Case 7 (c0 = 0.0) Case 8 (c0 = 0.0)

n p AIC AICc BIC CAIC HQC p AIC AICc BIC CAIC HQC

100 30 92.4 0.0 0.0 0.0 18.4 30 92.4 0.0 0.0 0.0 18.4

200 32 99.5 99.7 1.2 0.0 94.8 40 99.6 98.4 0.0 0.0 92.8

500 35 99.9 100.0 99.9 95.3 100.0 50 99.9 100.0 99.2 76.6 100.0

1000 40 100.0 100.0 100.0 100.0 100.0 60 100.0 100.0 100.0 100.0 100.0

∞ ∞ 100.0 100.0 100.0 100.0 100.0 ∞ 100.0 100.0 100.0 100.0 100.0

We simulated several other models and obtained similar results. Since the theoretical difference

between using the AIC and the AICc occurs whencn,p > 0.8, we should list the numerical results

for this case. However, whencn,p is close to 1, the convergence of the selection probabilities was

extremely slow. Thus, we do not show simulation results for dimensions close to the sample size.

7. Conclusion and Discussion

In this paper, we derived the conditions to satisfy the consistency property of a log-likelihood-

based information criterion in (4) for selecting variables in the multivariate linear regression models

with the normality assumption, but for which normality is violated in the true model. The informa-

tion criteria considered in this paper were defined by adding a positive penalty term to the negative

twofold maximum log-likelihood; hence, the family of information criteria that we considered in-

cluded as special cases the AIC, AICc, BIC, CAIC, and HQC. The consistency property was studied

under the LS and HD asymptotic theories. In both cases, the conditions obtained were free from

the influence of nonnormality in the true distribution. Under the LS asymptotic framework, we ob-
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Table 3. Selection Probabilities of the True Model (%) in the Case of Distribution 3

Case 1 Case 2 (c0 = 0.01)

n p AIC AICc BIC CAIC HQC p AIC AICc BIC CAIC HQC

100 2 73.5 80.5 77.0 66.4 85.1 2 73.5 80.5 77.0 66.4 85.1

200 2 78.7 82.7 98.4 97.6 95.3 4 86.6 90.5 94.9 88.9 98.3

500 2 79.5 81.1 99.8 99.9 96.7 10 96.0 97.3 100.0 100.0 100.0

1000 2 79.5 80.4 99.9 100.0 97.8 20 99.4 99.7 100.0 100.0 100.0

∞ 2 80.6 80.6 100.0 100.0 100.0 ∞ 100.0 100.0 100.0 100.0 100.0

Case 3 Case 4 (c0 = 0.1)

n p AIC AICc BIC CAIC HQC p AIC AICc BIC CAIC HQC

100 10 86.3 75.9 6.3 0.5 59.8 10 86.3 75.9 6.3 0.5 59.8

200 10 95.1 98.4 69.3 39.3 98.4 20 98.6 99.9 23.3 1.7 97.1

500 10 96.4 97.5 100.0 100.0 100.0 50 100.0 100.0 99.5 77.9 100.0

1000 10 96.6 97.0 100.0 100.0 100.0100 100.0 100.0 100.0 100.0 100.0

∞ 10 96.8 96.8 100.0 100.0 100.0 ∞ 100.0 100.0 100.0 100.0 100.0

Case 5 Case 6 (c0 = 0.3)

n p AIC AICc BIC CAIC HQC p AIC AICc BIC CAIC HQC

100 30 91.3 0.0 0.0 0.0 16.8 30 91.3 0.0 0.0 0.0 16.8

200 30 99.6 99.8 2.0 0.0 94.8 60 99.8 35.1 0.0 0.0 85.4

500 30 99.9 100.0 99.9 97.5 100.0150 100.0 100.0 0.0 0.0 100.0

1000 30 99.8 99.9 100.0 100.0 100.0300 100.0 100.0 0.0 0.0 100.0

∞ 30 99.9 99.9 100.0 100.0 100.0 ∞ 100.0 100.0 — — 100.0

Case 7 (c0 = 0.0) Case 8 (c0 = 0.0)

n p AIC AICc BIC CAIC HQC p AIC AICc BIC CAIC HQC

100 30 91.3 0.0 0.0 0.0 16.8 30 91.3 0.0 0.0 0.0 16.8

200 32 99.5 99.7 0.9 0.0 94.7 40 99.6 98.6 0.0 0.0 92.9

500 35 99.9 100.0 99.9 95.3 100.0 50 100.0 100.0 99.4 77.2 100.0

1000 40 100.0 100.0 100.0 100.0 100.0 60 100.0 100.0 100.0 100.0 100.0

∞ ∞ 100.0 100.0 100.0 100.0 100.0 ∞ 100.0 100.0 100.0 100.0 100.0

tained the necessary and sufficient condition for consistency, which was equivalent to that derived

under the normality assumption. Under the HD asymptotic framework, the sufficient condition for

consistency was obtained. The condition was slightly stronger than that derived under the normality

assumption. But with a strong assumption for the true distribution, i.e., all the elements ofε are

independent, the condition coincided with that derived under the normality assumption.

Under the HD asymptotic framework, when normality is assumed for the true distribution, we

can assess the asymptotic behavior ofD( j, j∗) by two random matrices whose dimensions do not

increase with an increase in the sample size, after applying the formula in (29) toΣ̂ j , which is the

same method used in Yanagiharaet al. (2012). However, we cannot use this because our setting

assumes that the normality assumption is violated. Hence, we employed the convergence in proba-

bility of W in Lemma 7, and the distribution ofλmax(S j) in Lemma 8, to evaluate the asymptotic

behavior.

If we assume the existence ofE[∥ε∥6], and thatE[∥ε∥6] = O(p3) as p → ∞, equation (i) in

Lemma 8 is changed toλmax(S j) = Op(p1/3). This directly implies that condition C2-2 is re-

laxed to limcn,p→c0{m( j) − m( j∗)}/(n log p) < −2γ j/3. If we assume the existence ofE[∥ε∥2r ],
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and thatE[∥ε∥2r ] = O(pr ) as p → ∞ for all r ≥ 1, condition C2-2 may be relaxed to

limcn,p→c0{m( j) − m( j∗)}/(n log p) < −γ j , which is equivalent to the condition obtained from the

normality assumption.
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Appendix

A. Proof of Lemma 1

Letλmin(A) denote the smallest eigenvalue of a matrixA, and writeX j = (x j,1, . . . ,x j,n)′. Notice

that∥x j,i∥ ≤ ∥xi∥ andλmin(X ′X) ≤ λmin(X ′
jX j) hold becauseX j is a submatrix ofX. Hence, for

any integera not larger thank j , we have

|q j,ia| ≤ ∥q j,i∥ =
∥∥∥x′j,i(X ′

jX j)
−1x j,i

∥∥∥ ≤ ∥x j,i∥
λmin(X ′

jX j)1/2
≤ ∥xi∥
λmin(X ′X)1/2

.

The above equation implies that

n∑
i=1

∣∣∣q j,iaq j,ibq j,icq j,id

∣∣∣ ≤ n∑
i=1

|q j,ia||q j,ib||q j,ic||q j,id | ≤
∑n

i=1 ∥xi∥4
λmin(X ′X)2

. (A.1)

Moreover, assumption A3 indicatesλmin(X ′X) = O(n). Hence, by combining this equation, equa-

tion (A.1), and assumption A4, we have proved Lemma 1.

B. Proof of Lemma 2

In order to prove Lemma 2, we have only to show that Lindeberg’s condition (see, e.g., Serfling,

2001, th. B, p. 30) is satisfied. Letν j,i = (Ip ⊗ q j,i)εi , whereq j,i is given by (9). It is clear that

ν j,1, . . . ,ν j,n are independent, andE[ν j,i ] = 0pkj , Cov[ν j,i ] = Ip ⊗ q j,iq
′
j,i , andE[∥ν j,i∥2] = pq′j,iq j,i .

Besides these, vec(Q′jE) =
∑n

i=1 ν j,i and
∑n

i=1 Cov[ν j,i ] = Ipkj hold, whereQ j is given by (9). Then,

for all ϵ > 0, we derive
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E
[
∥ν j,i∥2I (∥ν j,i∥ > ϵ)

]2 ≤ E
[
∥ν j,i∥4

]
E
[
I (∥ν j,i∥ > ϵ)2

]
= E
[
∥ν j,i∥4

]
P(∥ν j,i∥ > ϵ) ≤

1
ϵ4

E
[
∥ν j,i∥4

]2
.

Since assumption A2 holds,E[∥ν j,i∥4] exists and becomes (q′j,iq j,i)2{κ(1)
4 + p(p + 2)}. Moreover, it

follows from Lemma 1 that
∑n

i=1(q′j,iq j,i)2 = o(1) asn→ ∞ holds, because we assume assumptions

A4 and A5. Hence, we have

n∑
i=1

E
[
∥ν j,i∥2I (∥ν j,i∥ > ϵ)

]
≤ 1
ϵ2
{κ(1)

4 + p(p+ 2)}
n∑

i=1

(q′j,iq j,i)
2→ 0 asn→ ∞.

This means that Lindeberg’s condition, i.e., limn→∞
∑n

i=1 E[∥ν j,i∥2I (∥ν j,i∥ > ϵ)] = 0, is satisfied.

C. Proof of Lemma 3

First, we show the proof of equation (i) in Lemma 3. IfT j,ℓ
p
→ τ j,ℓ > 0 holds, then

P(|T j,ℓ − τ j,ℓ | > ϵ)→ 0, ∀ϵ > 0. (C.1)

Recall that{ICm( j) − ICm(ℓ)}/h j,ℓ ≥ T j,ℓ holds. Thus, the following equation is satisfied:

P(|T j,ℓ − τ j,ℓ | > τ j,ℓ) = P({T j,ℓ > 2τ j,ℓ} ∪ {T j,ℓ < 0})
≥ P(T j,ℓ < 0) ≥ P(ICm( j) − ICm(ℓ) < 0).

(C.2)

Since equation (C.1) holds for allϵ > 0, the first probability in (C.2) converges to 0. This indi-

cates thatP(ICm( j) < ICm(ℓ)) → 0. Furthermore, it is common knowledge that equation (C.1) is

equivalent to

P(|T j,ℓ − τ j,ℓ | ≤ ϵ)→ 1, ∀ϵ > 0. (C.3)

By the same method as in the calculation of (C.2), we derive

P(|T j,ℓ − τ j,ℓ | ≤ τ j,ℓ/2) ≤ P(|T j,ℓ − τ j,ℓ | < τ j,ℓ) = P({T j,ℓ > 0} ∩ {T j,ℓ < 2τ j,ℓ})
≤ P(T j,ℓ > 0) ≤ P(ICm( j) − ICm(ℓ) > 0).

(C.4)

Since equation (C.3) holds for allϵ > 0, the first probability in (C.4) converges to 1. This indicates

thatP(ICm( j) > ICm(ℓ))→ 1.

Next, we show the proof of equations (ii) and (iii). From basic probability theory, we obtain

P( ĵm = j) = 1− P( ĵm , j) = 1− P(∪ℓ∈J\{ j}{ICm(ℓ) < ICm( j)})
≥ 1−

∑
ℓ∈J\{ j}

P(ICm(ℓ) < ICm( j)). (C.5)

SinceTℓ, j
p
→ τℓ, j > 0 holds for allℓ ∈ J\{ j}, we can see from Lemma 3 (i) thatP(ICm(ℓ) <

ICm( j)) → 0 for all ℓ ∈ J\{ j}. By using this result and equation (C.5), we prove equation (ii).

Suppose that∃ℓ0 ∈ J\{ j} s.t. T j,ℓ0

p
→ τ j,ℓ0 > 0. Then, by using the same method as that by which
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we calculated (C.1), (C.2), and (C.5), we obtain

P( ĵm = j) = P(∩ℓ∈J\{ j}{ICm( j) < ICm(ℓ)}) ≤ P(ICm( j) < ICm(ℓ0))

≤ P(T j,ℓ0 < 0) ≤ P(|T j,ℓ0 − τ j,ℓ0 | > τ j,ℓ0)→ 0.

Consequently, equation (iii) is proved.

D. Proof of Lemma 4

First, we prove equation (i) in Lemma 4. Notice thatP(A∩B) ≤ min{P(A),P(B)}. It follows from

this equation and the assumptionP(B)→ 0 that min{P(A),P(B)} → 0. Hence, equation (i) is proved.

Next, we show equation (ii) in Lemma 4. SinceP(B) → 1 holds,P(Bc) → 0 holds. It follows from

this result and equation (i) thatP(A∩ Bc)→ 0. Notice thatA = A∩ (B∪ Bc) = (A∩ B) ∪ (A∩ Bc),

andA∩ B andA∩ Bc are mutually exclusive events. Hence, we have

P(A) = P((A∩ B) ∪ (A∩ Bc)) = P(A∩ B) + P(A∩ Bc).

Recall thatP(A∩ Bc)→ 0. Therefore, equation (ii) in Lemma 4 is proved.

E. Proof of Lemma 5

It is easy to obtain thatE[E′AE] = tr(A)Ip. Recall thatε1, . . . , εn are identically and indepen-

dently distributed,E[εaε
′
a] = Ip, andE[∥εa∥4] = κ(1)

4 + p(p+ 2), whereκ(1)
4 is given by (7). These

equations imply that

E
[
tr
{
(E′AE)2

}]
=

n∑
a,b,c,d

(A)ad(A)bcE[ε′aεbε
′
cεd]

=

n∑
a=1

{(A)aa}2 E
[
(ε′aεa)2

]
+

n∑
a,b

[
{(A)aa} {(A)bb}E

[
(ε′aεb)2

]
+ {(A)ab}2

{
E[ε′aεaε

′
bεb] + E[(ε′aεb)2]

}]
= κ(1)

4

n∑
a=1

{(A)aa}2 + p(p+ 1)tr(A2) + ptr(A)2,

and

E
[
tr(E′AE)2

]
=

n∑
a,b,c,d

(A)ab(A)cdE[ε′aεbε
′
cεd]

=

n∑
a=1

{(A)aa}2 E
[
(ε′aεa)2

]
+

n∑
a,b

[
{(A)aa} {(A)bb}E

[
ε′aεaε

′
bεb

]
+ 2 {(A)ab}2 E[(ε′aεb)2]

]
= κ(1)

4

n∑
a=1

{(A)aa}2 + p2tr(A)2 + ptr(A2).
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Consequently, Lemma 5 is proved.

F. Proof of Lemma 6

Notice that
n∑

a=1

{(A)aa}2 ≤
n∑

a,b

{(A)ab}2 =
n∑

a=1

(A)aa = tr(A).

Hence, Lemma 6 is proved.

G. Proof of Lemma 7

Letwab be the (a,b)th element ofW , and let ¯ε be the sample mean ofε1, . . . , εn, i.e.,ε̄ =
∑n

i=1 εi ,

whereW is given by (13). It follows fromwab = u′a(U ′U )−1ub andua = εa − ε̄ that the diagonal

elements ofW are identically distributed and the upper (or lower) off-diagonal elements ofW are

also identically distributed, whereU is given by (13). Recall thatW is a symmetric idempotent

matrix andW1n = 0n holds. These imply that

0 ≤ waa ≤ 1, |wab| ≤
√
waawbb ≤ 1 (a = 1, . . . ,n; b = 1, . . . ,n; a , b), (G.1)

and

p = tr(W ) =
n∑

a=1

waa, p = tr(W 2) =
n∑

a=1

w2
aa +

n∑
a,b

w2
ab,

p2 = tr(W )2 =

n∑
a=1

w2
aa +

n∑
a,b

waawbb, 0 = 1′nW1n =

n∑
a=1

waa +

n∑
a,b

wab,

0 = 1′W 21n =

n∑
a=1

w2
aa +

n∑
a,b

(2waawab + w
2
ab) +

n∑
a,b,c

wabwac,

0 = tr(W )1′nW1n =

n∑
a=1

w2
aa +

n∑
a,b

(2waawab + waawbb) +
n∑

a,b,c

waawbc,

0 = (1′nW1n)2 =

n∑
a=1

w2
aa +

n∑
a,b

(waawbb + 2w2
ab + 4waawab)

+ 2
n∑

a,b,c

(waawbc + 2wabwac) +
n∑

a,b,c,d

wabwcd,

(G.2)

where the notation
∑n

a1,a2,··· means
∑n

a1=1
∑n

a2=1,a2,a1
· · · . Sincewaa (a = 1, . . . ,n) are identically dis-

tributed andwab (a = 1, . . . ,n; b = a+ 1, . . . ,n) are also identically distributed, from the equations

in (G.2), we derive fora , b , c , d
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p = nE[waa], p = nE[w2
aa] + n(n− 1)E[w2

ab],

p2 = nE[w2
aa] + n(n− 1)E[waawbb], 0 = nE[waa] + n(n− 1)E[wab],

0 = nE[w2
aa] + n(n− 1)

(
E[2waawab] + E[w2

ab]
)
+ n(n− 1)(n− 2)E[wabwac],

0 = nE[w2
aa] + n(n− 1)(2E[waawab] + E[waawbb]) + n(n− 1)(n− 2)E[waawbc],

0 = nE[w2
aa] + n(n− 1)

(
E[waawbb] + 2E[w2

ab] + 4E[waawab]
)

+ 2n(n− 1)(n− 2)(E[waawbc] + 2E[wabwac])

+ n(n− 1)(n− 2)(n− 3)E[wabwcd].

(G.3)

It follows from equation (G.1) that

w2
ab = Op(1) ascn,p→ c0. (G.4)

Hölder’s inequality implies that

|E[waawab]| ≤ E[|waawab|] ≤
√

E[w2
aa]E[w2

ab]. (G.5)

Combining equations (G.3), (G.4), and (G.5) yields

E[waa] = cn,p, E[wab] = O(n−1), E[w2
aa] = O(1),

E[waawbb] = c2
n,p +O(n−1), E[w2

ab] = O(n−1), E[waawab] = O(n−1/2),

E[waawbc] = O(n−3/2), E[wabwac] = O(n−3/2), E[wabwcd] = O(n−5/2),

(G.6)

ascn,p→ c0, wherea,b, c,d are arbitrary positive integers not larger thann anda , b , c , d.

Notice that

α′Wβ =
n∑

a=1

αaβawaa +

n∑
a,b

αaβbwab,

(α′Wβ)2 =

n∑
a=1

α2
aβ

2
aw

2
aa +

n∑
a,b,c,d

αaαcβbβdwabwcd

+

n∑
a,b

{
αaαbβaβb(waawbb + w

2
ab) + 2

(
α2

aβaβb + αaαbβ
2
a

)
waawab + α

2
aβ

2
bw

2
ab

}
+

n∑
a,b,c

{
2αaαbβaβcwaawbc +

(
α2

aβbβc + 2αaαbβaβc + αbαcβ
2
a

)
wabwac

}
.

It follows from conditionsα andβ in (14) that
n∑

a,b

αaβb = −α′β,
n∑

a=1

α2
aβ

2
a = o(1),

n∑
a,b

αaαbβaβb = (α′β)2,

n∑
a,b

(
α2

aβaβb + αaαbβ
2
a

)
= o(1),

n∑
a,b

α2
aβ

2
b = 1+ o(1),

n∑
a,b,c

αaαbβaβc = O(1),
n∑

a,b,c

(
α2

aβbβc + 2αaαbβaβc + αbαcβ
2
a

)
= O(1),

n∑
a,b,c,d

αaαcβbβd = O(1),
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ascn,p→ c0. Consequently, by using the above results and the expectations in (G.6), we derive

E[α′Wβ] → c0α
′β, E[(α′Wβ)2] → c2

0(α′β)2 ascn,p→ c0.

The above equations directly imply thatVar[α′Wβ] → 0 ascn,p→ c0. Hence, Lemma 7 is proved.

H. Proof of Lemma 8

First, we prove equation (i) in Lemma 8. Notice thatP j(In−P j) = On,n, (In−P j+)(In−P j)X∗ =

On,k∗ , and 1′n(In − P j)X∗ = 0′k∗ , where j+ is given by (3). These imply thatP jA j = On,p,

(In − P j+)A j = On,p, and1′nA j = 0′p, whereA j is given by (16). Hence, we have

P jA j = On,p⇔ P jH jL
1/2
j G′j = On,p⇔ P jH jL

1/2
j G′jG jL

−1/2
j H ′

j = On,n

⇔ P jH jH
′
j = On,n,

(In − P j+)A j = On,p⇔ (In − P j+)H jL
1/2
j G′j = On,p

⇔ (In − P j+)H jL
1/2
j G′jG jL

−1/2
j H ′

j = On,n

⇔ (In − P j+)H jH
′
j = On,n⇔ P j+H jH

′
j =H jH

′
j ,

1′nA j = 0′p⇒ JnA j = 0n,p⇔ JnH jL
1/2
j G′j = 0n,p

⇔ JnH jL
1/2
j G′jG jL

−1/2
j H ′

j = On,n⇔ JnH jH
′
j = On,n,

whereH j , L j , andG j were given in (17). Hence, equation (i) in Lemma 8 is proved.

Next, we prove equation (ii) in Lemma 8. It follows from elementary linear algebra that

λmax(S j) ≥ tr(S j)/p, λmax(S j) ≤
√

tr(S2
j ),

whereS j is given by (20). From Lemma 6 and equation (i) in Lemma 8, we can see that

n∑
a=1

{
(In − Jn − P j −H jH

′
j )aa

}2
= O(n) ascn,p→ c0.

The above result and Lemma 5 imply that

Var[tr(S j)] =
1

n2p2

{
ϕ3(In − Jn − P j −H jH

′
j ) − ϕ1(In − Jn − P j −H jH

′
j )

2
}

= O(n−1ps−1) ascn,p → c0,

E
[
tr(S2

j )
]
=

1
n2
ϕ2(In − Jn − P j −H jH

′
j ) = O(p) ascn,p→ c0,

wheres is some positive constant given by (8). The variance of tr(S j) leads us to the equation

tr(S j)/p
p
→ E[tr(S j)/p] = 1 − (k j + γ j + 1)/n → 1 ascn,p → c0. Moreover, the expectation of

tr(S2
j ) leads us to the equation tr(S2

j )
1/2 = Op(p1/2) ascn,p → c0. Hence, equation (ii) in Lemma 8

is proved.

Finally, we prove equation (iii) in Lemma 8. Suppose that assumption A2′ holds instead of as-

sumption A2. Then, it follows from Bai and Yin (1993) thatλmax(E′E/n)
a.s.→ (1+c1/2

0 )2 ascn,p→ c0.
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Sinceλmax(S j) ≤ λmax(E′E/n) is satisfied without assumption A2′, we have

lim sup
cn,p→c0

λmax(S j) = (1+
√

c0)2.

These indicates that equation (iii) in Lemma 8 is proved.
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