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Abstract

In this paper, we clarify conditions for consistency of a log-likelihood-based information crite-
rion in multivariate linear regression models with a normality assumption. Although a normality is
assumed to the distribution of the candidate model, we frame the situation as that the assumption
of normality may be violated. The conditions for consistency are derived from two types of asymp-
totic theory; one is based on a large-sample asymptotic framework in which only the sample size
approacheso, and the other is based on a high-dimensional asymptotic framework in which the
sample size and the dimension of the vector of response variables simultaneously apprdach
both cases, our results are free of the influence of nonnormality in the true distribution.
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1. Introduction

The multivariate linear regression model is one of basic models of multivariate analysis. It is in-
troduced in many multivariate statistics textbooks (see, e.g., Srivastava, 2002, chap. 9; Timm, 2002,
chap. 4), and is still widely used in chemometrics, engineering, econometrics, psychometrics, and
many other fields, for the predication of multiple responses to a set of explanatory variables (see,
e.g., Yoshimotcet al., 2005; Dienet al.,, 2006; Sagn & Sundell, 2006; &buet al, 2008). Let
Y = (y1,....yn)’ be ann x p matrix of p response variables, and &t = (x4, ..., z,)" be annx k
matrix of nonstochastic centraliz&axplanatory variablesX’1, = 0y), wheren is the sample size,

1, is ann-dimensional vector of ones, algd is ak-dimensional vector of zeros. In order to ensure
the possibility of estimating the model and the existence of an information criterion, we assume that
rank(X) = k(< n—-1) andn- p- k-2 > 0. Suppose thaj denotes a subset af = {1,...,k}
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containingk; elements, anX; denotes thex k; matrix consisting of the columns & indexed by
the elements of, whereka denotes the number of elements in a&gte., ks = #(A). For example,

if j =1{1 2,4}, thenX; consists of the first, second, and fourth columnXofWe then consider the
following multivariate linear regression model withexplanatory variables as the candidate model:

Y ~ Noxp(Inp' + X0, 35 © 1), 1)

wherep is a p-dimensional unknown vector of location paramet@s,s ak; x p unknown matrix

of regression cd@cients, andx; is ap x p unknown covariance matrix. In this paper, we identify
the candidate model by the spand call the candidate model in (1) the mogleln particular, we
represent the true subset of explanatory variables by p seid call the modej.. the true model.

Since it is important to specify the factorfecting the response variables in a regression analy-
sis, searching for the optimal subget.e., variable selection, is essential. A log-likelihood-based
information criterion, which is defined by adding a penalty term that expresses the complexity of
the model to a negative twofold maximum log-likelihood, is widely used for selecting the best sub-
set of explanatory variables. The family of log-likelihood-based information criteria contains many
widely known information criteria, e.g., Akaike’s information criterion (AIC) proposed by Akaike
(1973, 1974), the bias-corrected AIC (AlGoroposed by Bedrick and Tsai (1994), the Bayesian
information criterion (BIC) proposed by Schwarz (1978), the consistent AIC (CAIC) proposed by
Bozdogan (1987), and the Hannan—Quinn information criterion (HQC) proposed by Hannan and
Quinn (1979). We focus on selecting variables by minimizing the log-likelihood-based information
criterion.

An important aspect of selecting variables in this way is whether the chosen information crite-
rion is consistent, i.e., whether the asymptotic probability of selecting the true moalgbroaches
1. The consistency properties of various information criteria for multivariate models have been re-
ported, e.g., see Fujikoshi (1983; 1985) and Yanagikail (2012). The property is determined
by ordinary asymptotic theory, which is based on the following framework:

e Large-sample (LS) asymptotic framework: the sample size approachesler a fixed dimen-
sionp.

Under the LS asymptotic framework, it is a well-known fact that neither the AIC nor the Al€
consistent, but the BIC, CAIC, and HQC are consistent. Recently, there have been many investi
gations of statistical methods for high-dimensional data, in whighlarge but still smaller than

(see, e.g., Faet al.,, 2008; Fujikoshi & Sakurai, 2009). It has been found that, for high-dimensional
data, the following asymptotic framework is more suitable than the LS asymptotic framework (see,
e.g., Fujikoshet al., 2010):

e High-dimensional (HD) asymptotic framework: the sample size and the dimepsionulta-
neously approacke under the condition thad,, = p/n — ¢ € [0,1). For simplicity, we will
write “(n, p) — oo simultaneously undes, ; — ¢o” as “cnp — Co”.

In this paper, the asymptotic theories based on the LS and HD asymptotic frameworks are named
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the LS and HD asymptotic theories, respectively. If an information criterion has the consistency
property under the HD asymptotic framework, we will conclude that the information criterion is
superior to one without the consistency property, for the purpose of selecting the true model from
among the candidate models with high-dimensional response variables. Yanagibaré&012)
evaluated the consistency of various information criteria under the HD asymptotic framework, and
pointed out that the AIC and AlCbecome consistent, but the BIC and CAIC sometimes become
inconsistent.

Unfortunately, the results in previous works were obtained under the assumption that the distribu-
tion of the true model is a normal distribution. Although the normal distribution is assumed for the
candidate model (1), we are not able to determine whether this is actually correct. Hence, a natural
assumption for the generating mechanisnYqfi.e., the true model, is

Y =Ll + X0, + EXY2, (2)
where& = (e1,...,&n)’ IS ann x p matrix of error variables that are assumed to be
€1,....en~1.i.d. e = (e1,...,8p), E[e] = 0p, Cauv[e] = I.

Henceforth, for simplicity, we represeif;, andk;, asX. andk,, respectively.

The purpose of this paper is to determine which conditions are necessary so that, when the as-
sumption of normality is violated, a log-likelihood-based information criterion satisfies the consis-
tency property. As stated above, the consistency of an information criterion is assessed by the LS
and HD asymptotic theories. It is common knowledge that the maximum log-likelihood of the model
in (1) consists of the determinants of the maximum likelihood estimators (MLE) of the covariance
matrix 3;. Hence, under the HD asymptotic framework, it iffidult to prove the convergence of
the diference between the two negative twofold maximum log-likelihoods, because the dimension
of the MLE of X; increases with an increase in the sample size. Yanagdiaat(2012) avoided
this difficulty by using a property of a random matrix distributed according to the Wishart distri-
bution (see Fujikoshét al,, 2010, th. 3.2.4, p. 57). However, we cannot use this property because
the normality of the true model is not assumed. Hence, it is necessary to consifferentlidea,
from Yanagiharat al. (2012), for assessing the consistency. In this paper, the moments of a specific
random matrix and the distribution of the maximum eigenvalue of the estimator of the covariance
matrix are used for assessing consistency. Under both the LS and HD asymptotic frameworks, the
results we obtained indicate that the conditions for consistency are not influenced by nonnormality
in the true distribution.

This paper is organized as follows: In Section 2, we present the necessary notation and assump-
tions for an information criterion and a model. In Section 3, we prepare several lemmas for assessing
the consistency of an information criterion. In Sections 4, we obtain a necessaryfacidrsicon-
dition to satisfy consistency under the LS asymptotic framework. In Section 5, we deriffeczest
condition to satisfy consistency under the HD asymptotic framework. In Section 6, we verify the ad-
equacy of our claim by conducting numerical experiments. In Section 7, we discuss our conclusions.
Technical details are provided in the Appendix.
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2. Notation and Assumptions

In this section, we present the necessary notation and assumptions for assessing the consistency of
an information criterion for the modgl(1). First, we describe several classeg tiat express sub-
sets ofX in the candidate model. Lgf be a set of candidate models denotedpy {j1,. .., jk},
whereK is the number of candidate models . We then sepgyaieto two sets; one is the set of
overspecified models for which the explanatory variables contain all the explanatory variables of the
true modelj.. (2),i.e.,.9+ ={j € Jlj. € j}, and the other is the set of underspecified models (those
that are not the overspecified models), i£.,= IS N g, whereA°® denotes the compliment of the
setA. In particular, we express the minimum overspecified model incluging/_ asj,, i.e.,

J+ =]V ©)

Estimations for the unknown parametgss® ;, andX; in the candidate model (1) are carried out
by the maximum likelihood estimation, i.e., they are estimated by

.1, . o1 .1,
uzﬁYln, 0 = (X| X)) X]Y, Z]jzﬁY(In—Jn—Pj)Y,

where P; andJ, are the projection matrices to the subspace spanned by the columXnsaoid1,,
respectively, i.e.Pj = X,-(XJfXj)‘lXJf andJ, = 1,1;,/n. In order to deal uniformly with all the
log-likelihood-based information criteria, we consider the family of criteria for which the value of
the modelj can be expressed as

ICim(j) = nlog|3;| + np(log 27 + 1) + m(j), (4)

wherem(j) is a positive penalty term that expresses the complexity of the model (1). An information
criterion included in this family is specified by an individual penalty tenfy). This family contains
the AIC, AIC,, BIC, CAIC, and HQC as special cases:

2pikj + (p+3)/2} (AIC)
2npikj + (p+3)/2}/(n—kj —p-2) (AIC,)
m(j) = § pkj + (p+3)/2}logn (BIC) . (5)
pik;j + (p + 3)/2)(1 + logn) (CAIC)
2p{kj + (p + 3)/2}log logn (HQC)

Although we will consider primarily the above five criteria, the family also includes information cri-
teria for which the penalty terms are random variables, e.g., the modified AIC (MAIC) proposed by
Fujikoshi and Satoh (1997), Takeuchi's information criterion (TIC) proposed by Takeuchi (1976),
the extended information criterion (EIC) proposed by Ishigetral. (1997), the cross-validation

(CV) criterion proposed by Stone (1974; 1977), and other bias-corrected AICs, such as those pro-
posed by Fujikoshet al. (2005), Yanagihara (2006), and Yanagihatal. (2011). The best subset

of w, which is chosen by minimizing I&j), is written as

im = arg minlC(j).
Jm = arg MiniCu(j)
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Let ap x p noncentrality matrix be denoted by
s V2O X (I, - P)X.0.2 Y2 =TT, 6)

wherel'j is ap x y; (yj < min{p,K;j,njc}) matrix, and it has full column rank whemis large, i.e.,

p > k.. Sincekj.njc < kj, —k; holds for largep, y; < kj, — k; is satisfied for largep. It should be
noted thafl’;I'; = Oy, holds if and only ifj € 7, whereO,; is ann x p matrix of zeros. More-
over, let||al| denote the Euclidean norm of the vectorThen, in order to assess the consistency of
ICr, the following assumptions are needed:

Al. The true model is included in the set of candidate models,ji.€..J.
A2. E[|le||*] exists and has the ord&(p?) asp — .

A3. limpse n‘lI‘jI‘] = Qo exists and is positive semidefinite.

A4, limpL. N 1X’X = Ry exists and is positive definite.

A5, S |lzill* = o(n?) asn — co.

A6. limg e, (n p)*lI‘gl“j = Ajo exists and is positive definite.

For which orders oI‘,-I‘} andI"jI‘j are adequate, see Yanagihatal (2012). ForR in assumption
A4, we write the limiting value ofrlXj’Xg asR;,oforj, £ € J. ItisclearthatR; o is a submatrix
of Ry, andR; . also exists ifRg exists.
If assumption A2 is satisfied, the multivariate kurtosis proposed by Mardia (1970) exists as
. p
k) = Elllel’] - p(p+2) = > Kaato+ P(p+2) @
ab
where the notatiol}, o,.. meansy,? | 3'F .-, andkanca is the fourth-order multivariate cumu-
lant of ¢, defined by

Kabcd = E[€agbeced] — anded — acdbd — Gaddbe.

Heresap is the Kronecker delta, i.6aa = 1 andéap = 0 fora # b. It is well known that{? = 0
whene ~ Np(Op, Ip). In general, the order af" is such that

Kgl) = O(p1+5) asp — o, se|[0,1]. (8)

The positive constargis changed by the distribution ef For example, ik;, . .., g, are indepen-

dent random variables that are not distributed according to normal distributionss hén If ¢ is
distributed according to an elliptical distribution other than the normal distribution (see, e.g., Fang
et al, 1990), thers = 1. Hence, there is an additional assumption that can be regarded as a special
case of assumption A2:

A2'. ¢&1,...,¢&p are identically and independently distributed according to some distribution with
E[s‘l‘] < 0.
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When the indicated assumptions hold, the following lemmas are satisfied (the proofs are given in
Appendices A and B:

Lemmal LetQ@;be annxk; matrix defined by

Q= (X; X)X = (gja.----qin): i = (it - -» ik, - 9)
Suppose that assumptions A4 and A5 are satisfied. Then, we have
n
Z |0jia0ibGiciia| = 0(1) as n— oo,
i=1
where ab, ¢, d are arbitrary positive integers not larger than.k
Lemma 2 LetZ; be ak x p matrix defined by
Zi = Q& (10)
where Q; is given by(9). Suppose that assumptions A2, A4, and A5 are satisfied. Then,
Z; 5 Nep(Ok,p» T p) @S N— o0 holds.

To ensure the asymptotic normality &f, Wakakiet al. (2002) assumed lim syp., llzill*/n < oo,
which is stronger than assumption A5.

3. Preliminaries

In this section, we present some lemmas that we will use to derive the conditions for consistency
of the penalty terrm(j) in IC(j) in (4). We first present two lemmas from basic probability theory
(the proofs of these are given in Appendices C and D). In the next two lemmas, we do not specify
the asymptotic framework because they are applicable to any asymptotic framework.

Lemma 3 Let h;, be some positive constant that depends on the modeés J. Then, we have

O j,teyg,j+t, hi[{lcm(j) —ICn(O)} = TJ',( —p> Tie > 0= P(ICw(j) < ICx(¢)) —» Oand
P(Ck(]) > ICm(6)) — 1,

. 1 . A .
(i) Y& I\ f11CH(O) = 1) = T >0 P(im=1) - 1,

{Cm(J) = ICm(to)} = Tty 2 7jy > 0= P(jm = j) = O.

(i) o€ TV} st —
hJ'fo
Lemma4 Let A and B be events. Then, the following equations are satisfied:
(i) P(B)—» 0= P(AnB)— 0,

(i) P(B) — 1= lim P(An B) = lim P(A).
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Let D(j,?) (j,£ € J) be the diference between two negative twofold maximum log-likelihoods
divided byn, such that
D(j, €) = log (I33;1/1%) . (12)
Notice that
ICm(J) = 1Cm(€) = nD(], £) + m(j) — m(0). 12)

From Lemma 3, we see that, to obtain the conditions@) such that IG(j) is consistent, we only
have to show the convergence in probabilitya(fj, j.) or a lower bound of)(j, j.) divided by some
constant.

Let (A)ap be the &, b)th element of a matrid. Then, the following lemmas help us to prove the
convergence in probability abD(j, j.) or a lower bound ofD(}, j.) divided by some constant (the
proofs of these lemmas are given in Appendices E, F, and G):

Lemma5 For any nx n symmetric matrix4, let ¢1(A), ¢2(A), andgs(A) denote moments:
61(A) = E[tr(E'AE)|, ¢2(A) = E[tr{(€A8P}|. ¢5(A) = E|t(E AE)?|.

Then, specific forms @f;(A), ¢2(A), andps(A) are given as
$1(4) = ptr(A),  $o(A) = k) > ((A)aal” + p(p + D(A?) + ptr(AY,

a=1

93(A) = kP )" ((A)aal” + PUr(A)? + 2ptr(A),

a=1
wherekfll) is given by(7).

Lemma 6 For any nx n symmetric idempotent matri&, we have

n

D 1(A)aal? = O(tr(A)) as tr(4) - co.

a=1

Lemma?7 LetU andW be nx p and nx n random matrices, respectively, defined by
U= (uy,...,u)) = I -J)E W=UUU)U, (13)

and leta = (a1,...,an) andgB = (B4, ...,Bn) be n-dimensional vectors satisfying
n
lel =118l =1, La=1,8=0 > a3=0(1)asGp— co. 14
a=1

Then, we derive
adWg 5 Coa’ 3 as G,p — Co.

Next, we show the decomposition f)‘,fj whenj € J_. Notice that

o 1
V28 m 2 = T + 3720 X (I - P&
" (15)
+8/(In~ P)X.0.5.Y7 + & (I - Jo - P

7
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wherel'; is given by (6). Forj € J_, we define am x p matrix A; as
A = (I, - P)X.0,%"2, (16)

Itis easy to see from the definition of the noncentrality matrix in (6) #ia#1; = I';I'}. By using
the singular value decompositiofil; can be rewritten as

1/2 ~r
Aj = HIL*G;, 7

whereHj andGj aren x yj andp x yj matrices satisfyingd| H; = I,, andG;Gj = I,, respec-
tively, andL; is ay; x y; diagonal matrix whose diagonal elements are squared singular values of
Aj. LetC| be ayj x yj orthogonal matrix that diagonaliz&3T'; to L;, and hence

I'Tj = C|L;C|. (18)
By usingA;, equation (15) can be rewritten as
N 28 m2 = (LG + Hj'a)’ (L{?G) + H{&)+ & (I - Jn - Pj - HiH))E.  (19)

Before concluding this section, we present the following lemméonJ, — P, — H; H; (the proof
is given in Appendix H):

Lemma 8 Letima(A) denote the maximum eigenvaluedifand letS; (j € J-) be a px p matrix
defined by

1
Sj= &I~ Jo - P~ HH)&. (20)

Then, we have

(i) The nxnmatrixIn - J, - P; — HjH| is idempotent, and’;, (P, - H;H}) = P; + H{H;
holds, where j is given by(3).

(i) If assumption A2 holdSimax(Sj) = Op(p*?) as G,p — Co andliminf
satisfied.

Amax(S;) = Lare

Cn.p—cy

(iii) If assumption A2holds instead of assumption A2, the ordengf.(.S;) is changed to (1)
from Oy(p*/?).

4. Conditions for Consistency under the LS Asymptotic Framework

In this section, we derive the conditions such thag, i€ consistent under the LS asymptotic
framework, i.e., the ordinary asymptotic framework in which onlgpproachesc. Let vec(A)
denote an operator that transforms a matrix to a vector by stacking the first to the last colu#ns of
i.e.,vec@) = (ay,...,ay) whenA = (as,...,an) (see, e.g., Harville, 1997, chap. 16.2). Suppose
that assumptions A2 and A3 are satisfied. It follows from Lemmas 5 and 6 that
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tr {Cavlvec(E; 20, X/ (I - P)&)]} = ¢1(I'T}) = tr(T;T})p = O(n),
tr {Covfvec (In — Jn = P)EN} = ¢o(In = Jo — P;) — p(In - Jo — P;)?
n
2
=P > {(In = o= P)aa) + p(p+ 1) -k - 1) = O(n),
a=1

asn — oo. These equations imply that
}E;l/ZQ;X;(In _ P’J)S — Op(n—l/Z)
2 asn — oo.
ﬁ8’(1n —Jn - P)& = I, + Op(nY?)

Using the above results and equation (15) yields
v
V2% Y2 LYl (VJ, €J) asn — . (21)
In+ Q50 ("j€J-)
The lower equation in (21) directly implies, for gl J_,

D(j, j.) > log|T, + ;0 asn — oo, (22)

whereD(], j.) is given by (11) and?;, is a limiting value of[‘jI"j/n, which is defined in assump-
tion A3. HereI';I"; is the noncentrality matrix given by (6). On the other hand, foi @l7,\{j.},
we have

D(j, j.) = —log|I, + & (Pj — P;.)&(& (Ip — Jo — P&}

1
= —Htr(ZJfZ,- - Z; Z;)) + op(n"!) asn — oo, (23)

where Z; is given by (10). Recall thaZ; = Opy(1) under assumption A2. From this result and
equation (23), we derive, for alle T, \{j.},

ND(j, j.) = Op(1) asn — co. (24)

Thus, Lemma 3 and equations (12), (22), and (24) lead us to the following theorem for the condition
that I1G;, is consistent:

Theorem 1 Suppose that assumptions A1-A3 hold. A variable selection usindsl€onsistent
when n— oo under a fixed p if the following conditions are satisfied simultaneously:

C1-1. 7je T\ impse{m(j) — m(j.)} = co.
C1-2. "je g_, limpeim(j) — m(j.)}/n = 0.

If one of the above two conditions is not satisfied, a variable selection usigsi@ot consistent
when n— oo under a fixed p.
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The conditions in Theorem 1 are the same as the conditions in Yanagihalr$2012) which were
obtained under the assumption of normality. Hence, we can see that the conditions for consistency
are free of the influence of nonnormality in the true distribution. Moreover, Theorem 1 points out
a well-known fact that, when — oo, the AIC and the AlG are not consistent in the selection of
variables, but BIC, CAIC, and HQC are.

Although IG,, does not have the consistency property wh#p) = O(1) ash — oo, the asymp-
totic probability of selecting the modeélcan be evaluated. Suppose that the following condition
holds:

C1-3. m(j) = O(1) asn — oo for all j € J-, and lim_{m(j) — m)} = mop(k; — k) for all
. teJ..

Notice that the probability that a modgls selected by IG is

P(jm = J) = P(Oceqii{ICm(6) > ICm(j)})
= P({Neeq \(jiICm(€) > ICm())}} N {Ngeq\(ji{ICm(€) > ICm())}}). (25)

The same way as was used in the calculation of (22) yi€ltf5, £1) 5 log|Ip + €, 0l @SN —
forall £; € g, \{j} andt, € J_\{]j}. It follows from this result and the condition C1-3 that

1
~{ICn(t2) ~ ICn(t)) 5 logiT, + Q0 > O. (26)

Equation (26) and Lemma 3 (iii) imply that lim. P(jm = j) = 0 holds for allj € J_, and they
also imply that
r!im P(ICm(£2) > IC(61)) = L.

Using the above equation and Lemma 4 (ii), we have
lim P(Neg () {ICm(6) > ICm(I)}) = 1. ("] € J2).

Thus, from equation (25) and Lemma 4 (ii), we can see that

lim P(jm = j) ={ O_ . (J: €J-) (27)
n—eo lim P(Neg\iillICm(6) > 1Cm()Y) (i € T)
On the other hand, by using equation (23), we have, foy, &l€ 7,
nD(], £) = n{D(|, j«) = D(j., O)y = ~t((Z[ Z} - Z; Z;) + 0p(1) asn — co.
This equation and lim,..{m(j) — m(£)} = mop(k; — k) for all j, £ € . imply that
IC(j) = ICm(€) & —~tr(Z;Z; — Z;Z,) + mop(k; — k;) asn — co. (28)

Notice that tr& Z;) = vec(Z;)'vec(Z;) andCav[vec(Z)), vec(Z)] = I,® R} {5 RicoR, ¢, where

R, is the submatrix oRy, which is defined in assumption A4. Moreover, it follows from Lemma
d _— . : . .

2 that vecgj) — N, p(Oy p,Ika) asn — oo. Substituting equation (28) into equation (27) yields the

following corollary:
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Corollary 1  Suppose that assumptions A1-A5 hold. When condition C1-3 holds, the asymptotic
probability of selecting the model j by }ds

im P(in=)=1 (e
Moo P(Neeg.\ii(zp2e — zjz)) < mop(ke = Kj))  (j € T%)

-1/2 -1/2
wherezj ~ N p(Ogp, I p) and Co[zj, z/] = I, ® R} |5 RjoR; 5

From Yanagihar&t al. (2013), we see that tha(j)’s in the MAIC, TIC, EIC, CV criterion, and
other bias-corrected AICs a(1) asn — co and limy_.{m(j) — m(O)} = 2p(kj — k), ¥j,€ € T, if
E[lle]l®] < co. Therefore, ifE[|l]|®] < oo holds, the asymptotic probabilities of selecting the model
j by most bias-corrected AICs become the same as those in Corollary 1.

5. Conditions for Consistency under the HD Asymptotic Framework

In this section, we derive the conditions such that, i€ consistent under the HD asymptotic
framework, i.e.n andp approacho simultaneously under the condition tltg}, — ¢ € [0, 1). Un-
der the HD asymptotic framework, increasing the dimensioﬁ]pf/vith an increase in the sample
sizenis a serious problem. Of course, convergence in probabilitﬁépifn (21) is not ensured. If
e ~ Ny(0p, Ip) holds,n3:; is distributed according to the central or noncentral Wishart distribution
with n — k; — 1 degrees of freedom. From Fujikosdtial. (2010), th. 3.2.4, p. 57, we can see that

\ 41
Vi+V;

a B+ B>

: (29)

whereV; andV, are mutually independent arg; and B, are also mutually independent random
matrices, which are defined by

Vi~ Wo(n, Ip), V2 ~ Wy(q, Ip; M’ M), By~ Wo(n— p+q,Io), Bz~ Wq(p, Ig; M M').

By applying this formula tcﬁ]j, we can evaluate the asymptotic behaviogxf, j.) by using two
random matrices whose dimensions do not increase with an increase in the sample size. By using
this idea, Yanagiharat al. (2012) derived the condition for consistency under the HD asymptotic
framework. However, needless to say, we cannot use this idea in this paper, because the true distri-
bution is not a normal distribution. Hence, it is necessary to uséereint idea. We will employ
the property of the convergence in probabilityldf in Lemma 7, and the distribution af,ax(S))
in Lemma 8 to evaluate the asymptotic behavior, wi&fés given by (13).

Let us give another expression @ asQ;j = (bja....,bjx), wherebja = (dj1a, - - -, 0jna)” and
Qj is given by (9). Then, it is clear thah]’abj,b = San, becauseQ’jQ,- = Iy, holds. Moreover,
Q]ln = 0O holds becausg is centralized. From these equations and Lemma 1, it can be deter-
mined thab; s, ..., bjy; satisfy the conditions in (14) when assumptions A4 and A5 hold. Therefore,
if assumptions A4 and A5 hold, we can derive

, p
b]-,aWbJ-,b — Colab aSCnp — Co.

11
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Sinceb],aWb,-,b is the @, b)th element oQ] W Q;, the following equation is satisfied if assumptions
A4 and A5 hold:
QWQ; 5 col ascnp — Co. (30)
Notice thatP;& = P;U holds for allj € J becauseX;; is centralized, wher#/ is given by (13).
Then, by using equation (30) and the property of the determination (see, e.g., Harville, 1997, chap.
18, cor. 18.1.2), the following equation is satisfied forjadl 7, \{].}:

. En-Jn-P)E  [UTn- PYU
D(j, j.) = log — =lo
11 =109 =7 =P e - o, - PO
- UPY - QW

=lo =lo
-0y T PU - P -Q,Wa,

5 (k; - k) log(1 - co) ascnp — Co. (31)
It follows from equation (19) that for alf € J_
PGLi - & (In— Jo — P - HiH)& + (L{*G} + H/&) (LG} + H|8)|
s Jx) = 0 U
b1 =108 & o~ Jn— P8
I, + S;YL*G + HI &) (LG + H{&)/nIU' (I, - P, - HH))U|
J U (Tn - P
L, + (L{?G) + H&)SHL?G) + H{&Y n|U" (I, - P, - HH))U|
[U'(In - P;.)U|
> 109 [Amax(Sj) I, + C; (le/zG’]- + H}G)(le/zG’j + H[E)'C{/n
U'(I, - P, - H{H))U|
U’ (In - P;)U|
= D1(j, j«) + D2(j, j+) + Ds(J, J+)s (32)

+ log

—7i IOg /lmax(Sj)

whereH, L;, andG; are given in (17)C is given by (18); andj is given by (20).

We first evaluate the asymptotic behavior®f(j, j.) in (32). Recall thailC;L;C} = I'\I'j =
O(np) ascnp — Cp. Itis easy to see thﬁ[CJHJ-’SS’HjCj’] = pI,,. Furthermore, it follows from
Lemmas 5 and 6 that

tr{Co[Cy H|EE H{C|]} = ¢o(H H]) - PP

n
=k > ((H H)aal® + pyj(y; + 1) = O(p™*) ascnp — Co
a=1
wherekfll) is given by (7), ands is some positive constant given by (8). These equations imply that
CiH|EE HC; = pl,; + Op(p™9/%) = Oy(p) ascnp — co. Moreover, from Hlder's inequality,
we have

tr(C;Li*G;& HC})* = vec(G| L{*C;) vec& HC))

2

< Hvec(Gijl/zC’]f) ? |[vecE€ H;C))

= tr(TT))tr(C; H; & H|C}) = Op(np’) ascyp — Co.

12
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This implies thaiC; L/*G}& H,C; = Op(n*?p) ascyp — co. Additionally, it follows from equa-
tion (i) in Lemma 8 thatlmad(Sj)I,, = Op(pY/?) ascyp — Co if assumption A2 holds. By using
these equations, we derive

1

1 ’ ’ ’ ’ ’ ’ p
‘5 {Amax(sj)lyj + ﬁCj(L].l/sz + H/E)(L{*G} + H}&E) CJ-} = |Ajol ascnp — Co,

whereAj is a limiting value oflI";/(np), which is defined in assumption A6. Notice that
D}, i) =109 | [[Anad ST, + C)(L}G) + HIENL TG/ + HiEY T/ /|-
It follows from the above results and the positive definitenesA gf that

1 L
mﬂl(l, j«) = vjascnp — Co. (33)

Next, we evaluate the asymptotic behavio?®f(], j.) in (32). From equation (30) and the result
(In-P;- HiH))(In - P}) = I - P; - H;H, obtained from equation (i) in Lemma 8, we can see
that
U (I, - P)U| i, - QIW Q|
U (In- P Ul I, - Q; WQj.|

Da(j. .) < log
5 (kj — k) log(1 - Co) @SCnp — Co.

It follows from equation (i) in Lemma 8 thai{ — P;,)(In - P} - HJ-H]’) = I, - P;,, wherej, is
given by (3). Thus, we also have

U (In- P)U| Mg, —Q; WQj.|

D201 2095 =)o =9, — @ W,

5 (k. - k.)log(1- o) ascnp — Co.
The above upper and lower boundsif(j, j.) imply that
i@(' i.) > 0ascnp — (34)
log p 20)s )« np — Co-

Finally, we evaluate the asymptotic behavior®$(j, j.) in (32). The asymptotic behavior of
this term depends on whether we assume A2 or. A2t I(x > a) be an indicator function, i.e.,
I(x>a)=1if x>aandl(x>a) =0if x < a. Notice that

/lmax(s j)

VP
lmax(sj)

o 1
Ds(j j+) = =5vjlogp-v;jlog

1 .
2 _57’] log p - ¥; lOQ{ [ (Amax(S)) = ‘/ﬁ)} = Ds(J, J+)-

It follows from equation (ii) in Lemma 8 thalmax(Sj)! (Amaxd(Sj) = p*/2)/p*/?is Op(1) ascnp — Co
and is larger than or equal to 1 when assumption A2 holds. This implies that

13
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1 .o.op 1
@323“’ i) = —Eyj ascnp — Co. (35)
On the other hand, if assumption AiZolds instead of assumption A2, it follows from equation (iii)
in Lemma 8 that lo@max(S;) = Op(1) ascyp — Co. This implies that
1

logp

Combining (32), (34), (33), (35), and (36) yields

Dy, j.) © 0 @stnp — Co. (36)

(D1(j, ) + Do) ) + Dy(Js )}/ logp 5 y;/2  (when A2 holds)

1
(D1(j, i) + Da(js j.) + Da(ji j.)} /logp > y;  (when AZ holds)

ooF (37)

D(j, j+) = {
asc,p — Cp. From the results (31) and (37), equation (12), and equation (ii) in Lemma 3, the
following theorem is derived:

Theorem 2 Suppose that assumptions Al, A2, and A4—A6 hold. A variable selection ugijig IC
consistent whe(n, p) — co under G, — G if the following conditions are satisfied simultaneously:

C2-1. "je T \j lime, e, {m(j) — m(j.)}/p > —c5*(k; — k.) log(1 - co).
C2-2. "je g, lim,, ¢{m(j) — m(j.)}/(nlog p) > —y;/2.

If assumption A2is satisfied instead of A2, condition C2-2 is relaxed as
C2-2. Vje g, limg e {m(j) — m(j.)}/(nlog p) > —y;.

It should be kept in mind that lip,gc™log(1 - ¢) = -1, andc™*log(1 — c) is a monotonically
decreasing function in & ¢ < 1. From Theorem 2, we can see that the conditions for satisfying
consistency are free of the influence of nonnormality in the true distribution. In particular, when
assumption A2is satisfied instead of assumption A2, théisient condition for consistency is the
same as that in Yanagihaebal (2012), which was obtained under the assumption that the normality
assumption is correct.

Although a stfficient condition for consistency has been derived, we still do not know which crite-
ria satisfy the sfiicient condition. Therefore, we clarify the condition for the consistency of specific
criteria in (5). First, we consider the AIC and AICNotice thatm(j) — m(j.) in the AIC; can be

expanded as
(kj —k)(2 = Cnp)p
(1- Cn,p)2

Hence, the dferences between the penalty terms of the AICs and thgsAd@nverge as

m(j) - m(j.) = +0O(pn™) ascnp = Co. (38)

. 1
lim
chp—Co NlOg P

{m(j) - m(j.)} = 0.

This indicates that condition C2-2 holds for the AIC and Al€urthermore, it follows from equality
(38) that
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2(kj — k.) (AIC)
(ki —k){(L-co) ™+ (L-co)?} (AIC:)

Notice that, in 0< ¢ < 1, ctlog(1 - c) + 2 is a monotonically decreasing function, and
ctlog(l-c)+(1-c)~t +(1-c)2is a monotonically increasing function. Hence, whien.7\{j.},

the penalty terms in the AlCalways satisfy the condition C2-1, and those in the AIC satisfy the
condition C2-1 ifcy € [0, cg), wherec, (= 0.797) is a constant satisfying

im_ = (m(j) - mi].) ={
Chp—Co P

log(1-cy) + 2¢c, = 0. (39)

Next, we consider the BIC and CAIC. Whgre J.\{].}, the diference between the penalty terms
of the BIC and the CAIC is

CnI|r_r)1CO plogn {m(j) = m(j.)} =kj —k.>0.

Thus, condition C2-1 holds. Moreover, it is easy to obtain

Cp(kj — ko) (5222 + 1) (BIC)
nlogp mi) = mi.) = { Crp(kj — k) (Feg2 + 1) (CAIC).

Since lim_gclogc = 0 holds, we derive

{m(j) — m(j.)} = co(kj — k).

lim
Chp—Co nlog p
LetS_ be a set defined by
={jeJ-k —kj >0} (40)

Whenj € 8¢ n J_, condition C2-2 is satisfied becausgk; — k.) > 0 holds. Whenj € S_,
condition C2-2 is satisfied iy < y;/{2(k. — k;j)} holds for allj € S_. Finally, the case of HQC is
considered. Whef e 7, \{].}, the diference between the penalty terms of the HQCs is

{m(j) - m(j.)} = 2(kj - k) > 0.

lim ————
cp—c ploglogn

Moreover, it is easy to derive

{m(j) - m(j.)} = 2(kj_k*)cn’p{loglogp log(1- |OgCnp/|ogp)}

n Iog p logp logp

This implies that

m —etml) = (i)} =0,

Thus, conditions C2-1 and C2-2 hold. From the above results and Theorem 2, the consistency
properties of specific criteria are clarified in the following corollary:

Corollary 2 Suppose that assumptions Al, A2, and A4—A6 are satisfied.

(i) A variable selection using the AIC is consistentitd0, ¢;) holds, and it is not consistent if
Co € (Cs 1) holds, where gis given by(39).
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(i) Variable selections using the Al@nd HQC are consistent.

(i) Variable selections using the BIC and CAIC are consisteng & ¢0, cy) holds, where g =
min{1, minjes_y;/{2(k.—kj)}} andS_ is given by(40). If assumption AZs satisfied instead of
A2, the conditionge [0, cp) is relaxed as g € [0, ¢;), where ¢ = min{1, minjcs_v;/(K.—kK;j)}.

Corollary 2 shows that, whem, , — Co, the AIC, AIC., and HQC are consistent in model selection

if ¢ € [0, ¢y) for the AIC, and ifcy € [0, 1) for the AIG, and HQC. Therefore, the ranges of values

for (n, p) that satisfy consistency are wider for the Al&d HQC than that for the AIC. Moreover,
Corollary 2 indicates that the BIC and the CAIC are not always consistent in variable selection when
Cnp — Co. Sincecy < 1 andk;, —k; > k.—kjforall j € S_, y; > co(k. —kj) is satisfied ify; = k;, —k;

holds. In contrast, ity = 0, theny; > co(k. — K;) is satisfied. Therefore, we can see that variable
selections using the BIC and the CAIC are consistemhgs— Co if y; = kj, — kj andcp € (0,1/2)

hold, orc, , converges to 0. However, if the previous condition does not hold, we cannot determine
if variable selections using the BIC and the CAIC are consistent gs-> Co.

6. Numerical Study

In this section, we numerically examine the validity of our claim. The probability of selecting the
true model by the AIC, AIG, BIC, CAIC, and HQC in (5) was evaluated by Monte Carlo simula-
tions with 10,000 iterations. The ten candidate moggls {1,...,a} (@ = 1,...,K), with several
different values ofi andp, were prepared for Monte Carlo simulations. We independently generated
Z,...,Z, fromU(-1,1). Usingz,..., 7, we constructed an x k matrix of explanatory variables
X, where the § b)th element was defined &% (a=1,...,n;b = 1,...,K). The true model was
determined by®. = (1,1,3,-4,5)1,, j. = {1,2,3,4,5}, andX. in which the , j)th element was
defined by (B)2 " (a=1,...,p;b=1,...,p). Thus,j, with @ = 1,...,4 was the underspecified
model, andj, with @ > 5 was the overspecified model.

Let ~ Np(Op, Ip) ands ~ x2 be a mutually independent random vector and variable. Then,
was generated from the following three distributions:

e Distribution 1 (multivariate normal distributiony = v,
e Distribution 2 (scale mixture of multivariate normal distribution)= /§/6v,

e Distribution 3 (scale and location mixtures of multivariate normal distributior): =
W-Y2(10(+5/6 - 1)1, + Vo/6v}, wheren = 15y7/3/16 and¥ = I, + 100(1- nz)lpl’p.

It is easy to see that distributions 1 and 2 are symmetric, and distribution 3 is skewed.

In our numerical studyy; = 1 and maxk. — kj) = 4 hold for all j € S_. This implies that when
Co > 1/8, the inequalityyj/2 > cy(k. —k;) was not always satisfied for glle S_. Thus, itis not clear
whether the probability of selecting by the BIC and CAIC converged to 1 agp, — Co € (1/8,1).

Tables 1, 2, and 3 show the probability of selecting the true model by the AIG, BIC, CAIC,
and HQC when the distributions efare 1, 2, and 3, respectively. FoE= o or p = oo, we list the

16



Hirokazu Yanagihara

Table 1. Selection Probabilities of the True Model (%) in the Case of Distribution 1
Case 1l Case 2¢p = 0.01)
n| p| AIC AIC. BIC CAIC HQC| p| AIC AIC. BIC CAIC HQC

100 2| 731 806 76.7 658 85p 2| 731 806 76.7 658 852
200 2| 784 824 986 978 956 4| 860 905 950 881 985
500 2| 80.0 815 998 99.9 972 10| 96.3 97.4 100.0 100.0 100.0
1000| 2| 80.1 80.9 999 1000 97,6 20| 99.4 99.6 100.0 100.0 100.0

o | 2| 80.2 80.2 100.0 100.0 100/0 c | 100.0 100.0 100.0 100.0 100.0

Case 3 Case 4¢p =0.1)
n| p| AIC AIC; BIC CAIC HQC p| AIC AIC. BIC CAIC HQC
100( 10| 86.4 73.0 5.2 0.3 558 10| 86.6 735 5.4 0.3 557
200 10| 955 982 67.8 379 984 20| 98.7 99.8 17.9 08 96.4
500| 10| 96.2 97.4 100.0 100.0 100j050| 100.0 100.0 99.0 69.8 100.0
1000| 10| 96.5 97.2 100.0 100.0 100j0L00| 100.0 100.0 100.0 100.0 100.0
o | 10| 96.8 96.8 100.0 100.0 1000 « | 100.0 100.0 100.0 100.0 100.0
Case 5 Case 6¢ = 0.3)
n| p| AIC AIC; BIC CAIC HQC p| AIC AIC. BIC CAIC HQC
100| 30| 90.3 0.0 0.0 0.0 11.0 30| 90.3 0.0 0.0 0.0 11.0
200 30| 99.5 99.6 1.1 0.0 935 60| 999 214 0.0 0.0 741
500| 30| 99.8 100.0 99.9 97.1 100J0150| 100.0 100.0 0.0 0.0 100.0
1000 30| 99.8 99.9 100.0 100.0 100J0800| 100.0 100.0 0.0 0.0 100.0
% 30| 99.9 99.9 100.0 100.0 100/0 c | 100.0 100.0 0.0 0.0 100.0
Case 7¢ = 0.0) Case 8¢ = 0.0)
n| p| AIC AIC.; BIC CAIC HQC p| AIC AIC. BIC CAIC HQC
100| 30| 90.3 0.0 0.0 0.0 11.0 30| 90.3 0.0 0.0 0.0 11.0
200| 32| 99.6 995 0.4 0.0 93.0 40| 99.7 975 0.0 0.0 88.9
500 35| 99.9 100.0 99.8 94.1 100,0 50| 100.0 100.0 99.2 70.1 100.0
1000| 40 | 100.0 100.0 100.0 100.0 100,060| 100.0 100.0 100.0 100.0 100.0
o | co | 100.0 100.0 100.0 100.0 100/0 c | 100.0 100.0 100.0 100.0 100.0

theoretical values obtained from Theorems 1 and 2. In particular, by using the result in Yanagihara
et al. (2012), we can obtain the theoretical values of the asymptotic selection probabilities of the
true model by the BIC and CAIC if the distribution efis normal, even for Case 6. The symbol
“—"indicates that the theoretical value is not clear. From the tables, we can see that in the cases of
the AIC, AIC., and HQC, the greater the dimension and sample size, the greater the probabilities.
Compared with the results obtained from the AIC, Al@nd HQC, the probabilities for the AIC

and HQC tended to be higher than those for the AIC winaras not small. In the cases of the BIC

and CAIC, the greater the dimension and sample size were, the higher the selection probabilities be-
came, with the exception of Case 6. This was because there is a possibility that variable selections
using the BIC and the CAIC are not consistent in Case 6. Additionally, wheas small andy

was large, the selection probabilities of the BIC and the CAIC were both very low. However, if the
BIC and the CAIC were consistent in variable selection, these probabilities became highdgs
increased. Moreover, we could not find notabledences between the simulation results obtained
from normal and nonnormal distributions. This indicates that, for variable selection even under the
HD asymptotic framework, thefiect of violation of the normality assumption is not large.
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Table 2. Selection Probabilities of the True Model (%) in the Case of Distribution 2
Case 1l Case 2¢p = 0.01)
n| p| AIC AIC. BIC CAIC HQC| p| AIC AIC. BIC CAIC HQC
100 2| 735 807 764 659 844 2| 735 807 764 659 844
200 2| 782 823 986 978 951 4| 869 91.0 951 881 983
500 2| 799 815 99.8 999 970 10| 96.6 97.7 100.0 99.9 100.0
1000 2| 80.0 80.7 99.9 100.0 975 20| 99.3 99.6 100.0 100.0 100.0
o | 2| 80.2 80.2 100.0 100.0 100/0 o | 100.0 100.0 100.0 100.0 100.0
Case 3 Case 4¢p =0.1)
n| p| AIC AIC. BIC CAIC HQC| p| AIC AIC. BIC CAIC HQC
100| 10| 86.7 75.3 6.8 05 59.8 10| 86.7 75.3 6.8 0.5 59.38
200/ 10| 95.1 98.2 694 404 985 20| 98.7 99.9 237 19 96.8
500/ 10| 96.2 97.4 100.0 99.9 100/0 50| 100.0 100.0 99.2 76.5 100.0
1000| 10| 96.5 97.1 100.0 100.0 100/0100| 100.0 100.0 100.0 100.0 100.0
o | 10| 96.8 96.8 100.0 100.0 100/0 o | 100.0 100.0 100.0 100.0 100.0
Case 5 Case 6¢ = 0.3)
n|l p| AIC AIC. BIC CAIC HQC| p| AIC AIC. BIC CAIC HQC
100| 30| 92.4 0.0 0.0 0.0 184 30| 924 0.0 0.0 0.0 184
200 30| 995 99.7 25 0.0 945 60| 99.8 40.8 0.0 0.0 865
500/ 30| 99.8 100.0 100.0 97.5 100{0150| 100.0 100.0 0.0 0.0 100.0
1000| 30| 99.9 100.0 100.0 100.0 100(®B00| 100.0 100.0 0.0 0.0 100.0
0 |30 999 999 100.0 100.0 100/0 e | 100.0 100.0 — — 100.0
Case 7¢ = 0.0) Case 8¢ = 0.0)
n| p| AIC AIC. BIC CAIC HQC| p| AIC AIC. BIC CAIC HQC
100| 30| 92.4 0.0 0.0 0.0 184 30| 924 0.0 0.0 0.0 184
200 32| 995 99.7 1.2 0.0 948 40| 99.6 984 0.0 0.0 928
500 35| 99.9 100.0 999 953 100/050| 99.9 100.0 99.2 76.6 100.0
1000| 40 | 100.0 100.0 100.0 100.0 100,060 |100.0 100.0 100.0 100.0 100.0
o | o |100.0 100.0 100.0 100.0 100(0 o | 100.0 100.0 100.0 100.0 100.0

We simulated several other models and obtained similar results. Since the theor&&cahde
between using the AIC and the Al@ccurs wherc,, > 0.8, we should list the numerical results
for this case. However, whem,; is close to 1, the convergence of the selection probabilities was
extremely slow. Thus, we do not show simulation results for dimensions close to the sample size.

7. Conclusion and Discussion

In this paper, we derived the conditions to satisfy the consistency property of a log-likelihood-
based information criterion in (4) for selecting variables in the multivariate linear regression models
with the normality assumption, but for which normality is violated in the true model. The informa-
tion criteria considered in this paper were defined by adding a positive penalty term to the negative
twofold maximum log-likelihood; hence, the family of information criteria that we considered in-
cluded as special cases the AIC, AJBIC, CAIC, and HQC. The consistency property was studied
under the LS and HD asymptotic theories. In both cases, the conditions obtained were free from
the influence of nonnormality in the true distribution. Under the LS asymptotic framework, we ob-
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Table 3. Selection Probabilities of the True Model (%) in the Case of Distribution 3
Case 1l Case 2¢p = 0.01)
n| p| AIC AIC. BIC CAIC HQC| p| AIC AIC. BIC CAIC HQC

100 2| 735 805 770 664 85 2| 735 805 770 664 851
200 2| 787 827 984 976 958 4| 866 905 949 889 983
500 2| 795 811 998 99.9 96.J 10| 96.0 97.3 100.0 100.0 100.0
1000 2| 795 804 999 1000 97.820| 99.4 99.7 100.0 100.0 100.0

| 2| 806 80.6 100.0 100.0 100/0 c | 100.0 100.0 100.0 100.0 100.0

Case 3 Case 4¢p =0.1)
n| p| AIC AIC; BIC CAIC HQC p| AIC AIC. BIC CAIC HQC
100| 10| 86.3 75.9 6.3 05 598 10| 86.3 75.9 6.3 0.5 59.38
200 10| 951 984 69.3 393 984 20| 986 999 233 1.7 971
500 10| 96.4 97.5 100.0 100.0 100j050| 100.0 100.0 995 77.9 100.0
1000| 10| 96.6 97.0 100.0 100.0 100j0L00| 100.0 100.0 100.0 100.0 100.0
o | 10| 96.8 96.8 100.0 100.0 1000 « | 100.0 100.0 100.0 100.0 100.0
Case 5 Case 6¢ = 0.3)
n| p| AIC AIC; BIC CAIC HQC p| AIC AIC. BIC CAIC HQC
100( 30| 91.3 0.0 0.0 00 16.8 30| 913 0.0 0.0 0.0 16.8
200 30| 99.6 99.8 2.0 0.0 948 60| 99.8 351 0.0 0.0 854
500 30| 99.9 100.0 99.9 97.5 100J0150| 100.0 100.0 0.0 0.0 100.0
1000 30| 99.8 99.9 100.0 100.0 100J0800| 100.0 100.0 0.0 0.0 100.0
% 30| 99.9 99.9 100.0 100.0 100/0 c | 100.0 100.0 — — 100.0
Case 7¢ = 0.0) Case 8¢ = 0.0)
n| p| AIC AIC.; BIC CAIC HQC p| AIC AIC. BIC CAIC HQC
100( 30| 91.3 0.0 0.0 00 16.8 30| 91.3 0.0 0.0 0.0 16.8
200 32| 99.5 99.7 0.9 0.0 947 40| 99.6 98.6 0.0 0.0 929
500 35| 99.9 100.0 999 953 100,050|100.0 100.0 994 77.2 100.0
1000| 40 | 100.0 100.0 100.0 100.0 100,060| 100.0 100.0 100.0 100.0 100.0
o | co | 100.0 100.0 100.0 100.0 100/0 c | 100.0 100.0 100.0 100.0 100.0

tained the necessary anditient condition for consistency, which was equivalent to that derived
under the normality assumption. Under the HD asymptotic framework, tfieisat condition for
consistency was obtained. The condition was slightly stronger than that derived under the normality
assumption. But with a strong assumption for the true distribution, i.e., all the elementasref
independent, the condition coincided with that derived under the normality assumption.

Under the HD asymptotic framework, when normality is assumed for the true distribution, we
can assess the asymptotic behaviofii, j.) by two random matrices whose dimensions do not
increase with an increase in the sample size, after applying the formula in (ﬁg) twehich is the
same method used in Yanagihaaal. (2012). However, we cannot use this because our setting
assumes that the normality assumption is violated. Hence, we employed the convergence in proba-
bility of W in Lemma 7, and the distribution a@f»a(Sj) in Lemma 8, to evaluate the asymptotic
behavior.

If we assume the existence &f||¢||?], and thatE[||e||®] = O(p®) asp — oo, equation (i) in
Lemma 8 is changed tdma(Sj) = Op(p1/3). This directly implies that condition C2-2 is re-
laxed to limy, ., {m(j) — m(j.)}/(nlogp) < -2y;/3. If we assume the existence Bfllell”],
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and thatE[|le]|*] = O(p') asp — o for all r > 1, condition C2-2 may be relaxed to

lime, e {mM(j) — M(j.)}/(nlogp) < —y;j, which is equivalent to the condition obtained from the
normality assumption.

Acknowledgment The author thanks Prof. Hirofumi Wakaki and Prof. Yasunori Fujikoshi, Hi-
roshima University, for their helpful comments on the assumptions necessary to satisfy consistency.
This research was partially supported by the Ministry of Education, Science, Sports, and Culture,
and a Grant-in-Aid for Challenging Exploratory Research, #25540012, 2013-2015.

References

Akaike, H. (1973): Information theory and an extension of the maximum likelihood principndrinternational Sympo-
sium on Information Theorfeds. B. N. Petrov & F. Gxki), pp. 267—281. Akagmiai Kiach, Budapest.

Akaike, H. (1974): A new look at the statistical model identificatitmstitute of Electrical and Electronics Engineers.
Transactions on Automatic Contr8IC-19, 716-723.

Bai, Z. D. and Yin, Y. Q. (1993): Limit of the smallest eigenvalue of a large dimensional sample covariance Tigrix.
Annals of Probability21, 1275-1294.

Bedrick, E. J. and Tsai, C.-L. (1994): Model selection for multivariate regression in small saBipie®trics50, 226—231.

Bozdogan, H. (1987): Model selection and Akaike’s information criterion (AIC): the general theory and its analytical exten-
sions.Psychometrik&2, 345-370.

Dien, S. J. V., lwatani, S.. Usuda, Y. and Matsui, K. (2006): Theoretical analysis of amino acid-proEschmenrichia coli
using a stoixhiometrix model and multivariate linear regressloarnal of Bioscience and Bioengineerih@2 34—40.

Fan, J., Fan, Y. and Lv, J. (2008): High dimensional covariance matrix estimation using a factor Joad®l of Econo-
metrics147, 186-197.

Fang, K. T., Kotz, S. and Ng, K. W. (19908ymmetric Multivariate and Related DistributiorGhapman & HaJICRC,
London.

Fujikoshi, Y. (1983): A criterion for variable selection in multiple discriminant analydisoshima Mathematical Journal
13, 203-214.

Fujikoshi, Y. (1985): Selection of variables in two-group discriminant analysis by error rate and Akaike’s information criteria.
Journal of Multivariate Analysid7, 27-37.

Fujikoshi, Y. and Sakurai, T. (2009): High-dimensional asymptotic expansions for the distributions of canonical correlations.
Journal of Multivariate Analysi400 231-242.

Fujikoshi, Y. and Satoh, K. (1997): Modified AIC af} in multivariate linear regressioBiometrika84, 707-716.

Fujikoshi, Y., Shimizu, R. and Ulyanov, V. V. (2010Ylultivariate StatisticsHigh-Dimensional and Large-Sample Approx-
imations John Wiley & Sons, Inc., Hoboken, New Jersey.

Fujikoshi, Y., Yanagihara, H. and Wakaki, H. (2005): Bias corrections of some criteria for selection multivariate linear
regression models in a general casmerican Journal of Mathematical and Management Scie@6e221-258.

Hannan, E. J. and Quinn, B. G. (1979): The determination of the order of an autoregréssioil of the Royal Statistical
Society SeriesB 41, 190-195.

Harville, D. A. (1997):Matrix Algebra from a Statistician’s Perspectiv@pringer-Verlag, New York.

Ishiguro, M., Sakamoto, Y. and Kitagawa, G. (1997): Bootstrapping log likelihood and EIC, an extension éfnki&s of
the Institute of Statistical Mathematid9, 411-434.

Mardia, K. V. (1970): Measures of multivariate skewness and kurtosis with applicaimmetrika57, 519-530.

Sarbu, C., Onisor, C., Posa, M., Kevresan, S. and Kuhajda, K. (2008): Modeling and prediction (correction) of partition
codficients of bile acids and their derivatives by multivariate regression metfaldsta75651-657.

Saen, R. and Sundell, J. (2006}37Cs in freshwater fish in Finland since 1986 — a statistical analysis with multivariate
linear regression modeldournal of Environmental RadioactiviB, 62—76.

Schwarz, G. (1978): Estimating the dimension of a motleé Annals of Statistid® 461-464.

Serfling, R. J. (2001)Approximation Theorems of Mathematical Statis{feaperback ed.). John Wiley & Sons, Inc.

Srivastava, M. S. (2002Methods of Multivariate Statisticdohn Wiley & Sons, New York.

Stone, M. (1974): Cross-validatory choice and assessment of statistical predidtionmsl of the Royal Statistical Society

20



Hirokazu Yanagihara

SeriesB 36, 111-147.

Stone, M. (1977): An asymptotic equivalence of choice of model by cross-validation and Akaike’s crifetiomal of the
Royal Statistical SocietyseriesB 39, 44—47.

Takeuchi, K. (1976): Distribution of information statistics and criteria for adequacy of mddathiematical Scienc&53
12-18 (in Japanese).

Timm, N. H. (2002):Applied Multivariate AnalysisSpringer-Verlag, New York.

Wakaki, H., Yanagihara, H. and Fujikoshi, Y. (2002): Asymptotic expansions of the null distributions of test statistics for
multivariate linear hypothesis under nonnormalitjroshima Mathematical Journ&2, 17-50.

Yanagihara, H. (2006): Corrected versionAiC for selecting multivariate normal linear regression models in a general
nonnormal caselournal of Multivariate Analysi®7, 1070-1089.

Yanagihara, H., Kamo, K. and Tonda, T. (2011): Second-order bias-corrected AIC in multivariate normal linear models under
nonnormality.The Canadian Journal of Statisti&9, 126-146.

Yanagihara, H., Wakaki, H. and Fujikoshi, Y. (2012): A consistency property of the AIC for multivariate linear models when
the dimension and the sample size are laige 12-08 Statistical Research Groupliroshima University Hiroshima.

Yanagihara, H., Kamo, K., Imori, S. and Yamamura, M. (2013): A study on the bias-correfidehaf the AIC for selecting
variables in normal multivariate linear regression models under model misspecifid@idr-08 Statistical Research
Group, Hiroshima University Hiroshima.

Yoshimoto, A., Yanagihara, H. and Ninomiya, Y. (2005): Finding factdisciing a forest stand growth through multivariate
linear modelingJournal of Japanese Forestry Soci&y, 504-512 (in Japanese).

Appendix
A. Proof of Lemma 1

Let Amin(A) denote the smallest eigenvalue of a mattixand writeX; = (zj1, ..., zjn)’. Notice
that||z;ill < [lzill andAmin(X’ X) < /lmin(Xj’Xj) hold becauseX is a submatrix ofX. Hence, for
any integeia not larger thark;, we have

il llill
/lmin(*Xj/*Xj)l/2 B /1min(*X'*X)l/2 '

10jial < llggill = ||z (X[ X5) 2| <

The above equation implies that

XLy Nl

Amin(X’ X)? (A

n n
Z |dljiaGljibGicTjia| < Z 19;iall9jibl1Gj icllalial <
i=1 i=1
Moreover, assumption A3 indicatag,n(X’X) = O(n). Hence, by combining this equation, equa-
tion (A.1), and assumption A4, we have proved Lemma 1.

B. Proof of Lemma 2

In order to prove Lemma 2, we have only to show that Lindeberg’s condition (see, e.g., Serfling,
2001, th. B, p. 30) is satisfied. Let; = (I, ® gj;i)ei, wheregj; is given by (9). It is clear that
Vj1,...,Vjn are independent, arif{v ;| = Opy, Covfvi] = I, ® qj,iqj’i, andE[||u,-,i||2] = pq},iqj’i.
Besides these, ve@(&) = XL, vji and XL, Cov[vj;] = I hold, whereQ)j is given by (9). Then,
for all e > 0, we derive
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E [l (vl > O] < E[Ivgill] E[1 vyl > ]
= & [l POl > ) < SE [lwlf

Since assumption A2 hold&[||v;;1¥] exists and becomesy{;q;;)%(x{” + p(p + 2)}. Moreover, it
follows from Lemma 1 thaE{‘:l(q;,iq,-,i)2 = 0(1) asn — oo holds, because we assume assumptions
A4 and A5. Hence, we have

n n
1 ,
E [IiilP1 (ljill > €)] < S+ p(p+ 2)) 3 (¢];411)° — 0 asn — co.
i=1 i=1

This means that Lindeberg’s condition, i.e., fioa, >, E[||u,-,i||2I (Ilvjill > €)] = 0, is satisfied.

C. Proof of Lemma 3
First, we show the proof of equation (i) in Lemma 3TIf; 5 Tj¢ > 0 holds, then
P(Tjc—7jcl > € — 0, Ye> 0. (C.1)
Recall tha{ICm(j) — ICm(£)}/hj, = Tj, holds. Thus, the following equation is satisfied:

P(Tjc = Tiel > 7j0) = P({Tje > 215, U (T < O})

(C.2)
> P(T; < 0) > P(ICn(j) — ICm(€) < O).

Since equation (C.1) holds for &l > 0, the first probability in (C.2) converges to 0. This indi-
cates thaP(IC(j) < ICm(£)) — 0. Furthermore, it is common knowledge that equation (C.1) is
equivalent to

P(Tjs—7id <€) -1 e>0. (C.3)

By the same method as in the calculation of (C.2), we derive

P(Tie— Tiel < 7je/2) < P(Tje — tjel < Tje) = PUTje > 0} N {Tje < 27j¢})
< P(Tj¢ > 0) < P(ICm(j) — ICm(¢) > 0).

(C.4)

Since equation (C.3) holds for all> 0, the first probability in (C.4) converges to 1. This indicates
thatP(ICm(j) > ICm(0)) — 1.
Next, we show the proof of equations (ii) and (iii). From basic probability theory, we obtain

P(jm = i) = 1= P(jm # J) = 1= P(Ueq(jl{ICm(¢) < ICm(j)})
>1- Z P(ICm(£) < ICm(j)). (C.5)
eT\(j}

Since T ; 5 7¢j > 0 holds for all¢ € J\{j}, we can see from Lemma 3 (i) th&(ICn({) <
ICm(j)) — O forall ¢ € J\{j}. By using this result and equation (C.5), we prove equation (ii).
Suppose thatty € J\{j} st. Tjy, 5 Tjs > 0. Then, by using the same method as that by which
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we calculated (C.1), (C.2), and (C.5), we obtain
P(jm = 1) = P(Vreq(ji{ICm(J) < ICm(6)}) < P(ICm(j) < ICm(t0))
< P(Tjg <0) < P(Tje — Titol > Tje) — 0.

Consequently, equation (iii) is proved.

D. Proof of Lemma 4

First, we prove equation (i) in Lemma 4. Notice tigA N B) < min{P(A), P(B)}. It follows from
this equation and the assumptiB(B) — 0 that mi{P(A), P(B)} — 0. Hence, equation (i) is proved.
Next, we show equation (ii) in Lemma 4. SinB€B) — 1 holds,P(B°) — 0 holds. It follows from
this result and equation (i) th&(A N B®) — 0. Notice thatA = An (BuU B°) = (An B) U (An BY),
andA n BandAn B are mutually exclusive events. Hence, we have

P(A) = P((AN B) U (AN B%) = P(AN B) + P(An BY).

Recall thatP(A N B®) — 0. Therefore, equation (ii) in Lemma 4 is proved.

E. Proof of Lemmab

It is easy to obtain thaE[E AE] = tr(A)I,. Recall thats,..., e, are identically and indepen-
dently distributedE[eae] = Ip, andE[lleall*] = &Y + p(p + 2), wherex!" is given by (7). These
equations imply that

n

E [tr{(S,AS)Z}] = Z (A)ad(A)pcEleseneced]

ab,cd
= > ((A)aal E|(eha)?| + D [{(A)aal (Ao} E | (e1e0)?]
a=1 azb

+{(A)an}® {Eleheachen] + El(hen)?l}]

=k > {(A)aal® + p(p + 1)tr(A?) + pir(A)?,

a=1

and

n

Z (A)an(A)caElezebeced]
ab,cd

n

{(A)aal E [(e5€a)?|

a=1

+ 3 [((A)aa (Ao} E [greashen] + 2{(A)anl? El(eien)?]]

azb

= Kgl) Z {(A)aa}2 + pztr(A)z + ptr(Az).
a=1

E [tr(& A&)?
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Consequently, Lemma 5 is proved.

F. Proof of Lemma 6

Notice that N N N
DAl < D {(Aabl = D (A)aa = tr(A).
a=1 ab a=1

Hence, Lemma 6 is proved.

G. Proof of Lemma 7

Letw,p be the &, b)th element oW, and lets be the sample meanef, ..., en, i.e.,.e = YL, €,
whereW is given by (13). It follows fromwa, = u4(U’'U)  uy, andu, = €, — € that the diagonal
elements oWV are identically distributed and the upper (or loweffydiagonal elements gV are
also identically distributed, wher® is given by (13). Recall thalV is a symmetric idempotent
matrix andW 1, = 0, holds. These imply that

0<wap<l, |wapl< Vwaawpp<1l (@=1,...,nb=1,...,nja#h), (G.1)

and

n n n
p=tr(W) =) wea P=ti(W?) =) wfy+ ) ul,
a=1 a=1

a+#b

n n n n
p? = tr(W)? = Z wga + Z Waabp, 0=1 W1, = Z Waa + Z Wab,
a=1 a=1

azb azb
n

n n
0=1W?1, = Z wga + Z(Zwaawab + wgb) + Z WabWacs
a=1 azb azb#c ((; 2)

n n n
O = tr(W)l;Wln = Z wga + Z(Zwaawab + waawbb) + Z waawbc,

a=1 azb azb#c

n n
0= (1;,W1n)2 = Z wga + Z(waawbb + 2w§b + dwaaWab)

a=1 azb
n n
+2 Z (WaaWpe + 2wapac) + Z WabWed,
azb#c azb#c#d

where the notatioly ,,... meansyg _y 370 1, ., . SinCewaa(a = 1,...,n) are identically dis-
tributed andwgp (2= 1,...,n;b=a+ 1,...,n) are also identically distributed, from the equations
in (G.2), we derive foe#b#c#d
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P=nNE[wa, P =nEwi] +n(n- 1E[w],
p? = nE[w?,] + n(n - 1)E[waawpp], 0= NE[wag] + n(n — 1)E[wap],
0 = nE[w3,] + n(n - 1) (E[2waawas] + E[w3,]) + n(n = 1)(n - 2)E[waptwac],
0 = NE[w}a] + n(n — 1) (2E[waatwas] + E[waawpe]) + NN = 1) = 2)E[waawnd,  (G.3)
0 = nE[w3,] + n(n - 1) (E[waatwnn) + 2E[w?,] + AE[waawan)] )
+2n(n - 1)(n - 2) (E[waatne] + 2E[waptac])
+n(n—1)(n - 2)(n — 3)E[wapwecd]-
It follows from equation (G.1) that
w2, = Op(1) ascnp — Co. (G.4)

Holder's inequality implies that

|E[waawab]| < E[lwaawapl] < +/E[wZ,] E[wib]. (G.5)

Combining equations (G.3), (G.4), and (G.5) yields

E[waa] = Cn,p, E[wab] = O(n_l)v E[wga] = O(l),
E[waawon] = Cﬁ,p + O(n_l)v E[wgb] = O(n_l)v E[waawap] = O(n—1/2)’ (G.6)
E[waawnc] = O(n_s/z)’ E[wapwac] = O(n_s/z)’ E[wapwed] = O(n—S/z)’

asc,p — Co, Wherea, b, c, d are arbitrary positive integers not larger thraanda # b # c # d.
Notice that

n n
adWp= Z @afaaa + Z @afpbWab,
a=1 a#b
n

n
(a/Wﬁ)z = Z agﬂgwga + Z @aQcBpBdWabWed
a=1

azb#c#d

n
2 2 2 202 2
+ Z {a’aa’hﬁaﬂb(waawbb + wab) +2 (a'algaﬂb + ‘Yaa'bﬂa) Waallah + aaﬂbwab}

azb

+ zn: {Za’aa’bﬂaﬁcwaawbc + (a’gﬁbﬂc + 2aaapBaBc + a’ba’cﬂi) wabwac} .

azb#c

It follows from conditionsae and3 in (14) that

Dby =-a'B, Y aii=01), ) aaanBahy = (B

a+b a=1 a+b

Zn: (0BaBo + aeB3) = o(1), Zn: @282 = 1+ 0(1),

azb azb

Zn] aaBaBe = O(L), Z (ZBuBe + 20aanBaBe + avahl) = O(L),
azb#c azb#c

n

@acfBuBa = O(1),

azbzczd
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asc,p — Co. Consequently, by using the above results and the expectations in (G.6), we derive
Ele’Wp] - coo’ B, E[(’WP)?] — (e’ B)* ascnp — Co.

The above equations directly imply thaarfe’ W 3] — 0 asc,p — Co. Hence, Lemma 7 is proved.

H. Proof of Lemma 8

First, we prove equation (i) in Lemma 8. Notice tt(I,— P;) = Onn, (In—P;,)(In— P)) X, =
Ony,, and (I, - P)X,. = O, wherej, is given by (3). These imply thaP,A; = O,
(In = Pj,)A;j = Onp, and1;A; = 0, whereA; is given by (16). Hence, we have

1/2 ~r 1/2 ~r -1/2 ¢g/
PiAj = Oyp © PH|L{*G) = Onp © PiHL’G|G;L["°Hj = On,

=4 PjHjHJ-' = On,n,

(In— Pj,)A; = Onp & (In— P,)H|L*G} = Oy
& (In- P,)H|L{?GG|L;"*H; = On,
® (In- P, )HjH| = Onn & P H{H| = H{H|,

’ , 1/2
LA = 0y = JoAj = Onp & JoH|L{?G) = Onyp
© JoH|L?G|G|L;"’H} = Onn & JoH Hj = Oq,
whereH;, L;, andG; were given in (17). Hence, equation (i) in Lemma 8 is proved.
Next, we prove equation (ii) in Lemma 8. It follows from elementary linear algebra that

/lmax(sj) = tl’(Sj)/p, /lmax(sj) < \[tr(SjZ),

whereS] is given by (20). From Lemma 6 and equation (i) in Lemma 8, we can see that

n
> (o~ o~ Pi ~ HiH})aa| = O(n) ascnp — Co.

a=1
The above result and Lemma 5 imply that
1 ’
Var[tr(S,—)] = nz_pz {¢3(In —Jn— Pj - HJHJ,) - ¢1(In -Jn- P)J - HjHj)Z}
=O(n*p*1) ascyp — Co,

1
E[tr(S)] = SéalIn ~ o~ Pj - H{Hj) = O(p) ascap — o,

wheres is some positive constant given by (8). The variance d&jir{eads us to the equation
tr(Sj)/p 5 E[tr(S;)/pl = 1 - (kj +¥; + 1)/n — 1 asc,p — Co. Moreover, the expectation of
tr(S?) leads us to the equation §f)"/? = Oy(p*/?) ascp — Co. Hence, equation (ii) in Lemma 8
is proved.

Finally, we prove equation (iii) in Lemma 8. Suppose that assumptiorhARls instead of as-

sumption A2. Then, it follows from Bai and Yin (1993) thifad(& &/n) = (1+cy®)? ascnp — Co.
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SinceAmad{Sj) < Ama{&'E/n) is satisfied without assumption A2ve have

lim supAmax(Sj) = (1 + vCo)>.
Cnp—Co

These indicates that equation (iii) in Lemma 8 is proved.
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