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Abstract

In the present paper, we propose a new variable selection procedure for a high-dimensional

linear model from two perspectives of the true and risk minimizing model selection. The

proposed method consists of two factors: screening and selection. Both parts are based on

the residual sum of squares, which can be easily understood. Our objective is to select a

model consisting of indices of all nonzero regression coefficients, which is known as the true

model when the true mean structure is included in the full model. Moreover, it minimizes the

risk function under a restriction of explanatory variables. Even when the space of the target

model is large, our selection method is consistent under mild conditions, i.e., the selection

probability of the objective model goes to 1. Additionally, we reveal that consistency is

retained when the true mean structure cannot be constructed from all available explanatory

variables. Through simulation studies, we illustrate that our screening and selection methods

are more effective than previous methods in various situations.
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1 Introduction

By enhancing of technique for obtaining data and the speed of processing data, we can

acquire many relevant factors to obtain a response variable of interest. In applied fields,

we often encounter high-dimensional data in which the number of explanatory variable p is

as bigger as the sample size n, although n > p (Bühlmann & Geer, 2011). To determine

the relationship between the response and the explanatory variables, selection of effective

variables is important. The analysis of such high-dimensional data also involves the problem

of selecting the best subset of explanatory variables; thus, the variable selection problem in

a large parameter space is a topic of extensive study.

In model selection research, two classes of criteria are constructed in different perspectives

that include predictive model selection and true model selection. We regard the risk minimiz-

ing model as the best model for predictive model selection, whereas the model constructed

with all nonzero regression parameters is the best model for true model selection. The Akaike

information criterion (AIC) (Akaike, 1973, 1974), Mallows Cp (Mallows, 1973), and cross-

validation (CV) choice (Stone, 1974) are well known criteria that are suitable for prediction

(Shibata, 1981, 1983; Li, 1987; Shao, 1997). On the other hand, the Bayesian information

criterion (BIC) (Schwarz, 1978) is a famous criterion used for selecting the true model since

it has a widely accepted consistency property (Nishii, 1984) such that the true model selec-

tion probability by BIC convergences to 1. For high-dimensional data analysis, other model

selection criteria are useful for true model selection (Chen & Chen, 2008; Wang et al., 2009;

Kim et al., 2012). However, when p is large, these methods are not computationally feasible

since the number of considerable candidate models significantly increases.

A method based on penalized estimation such as least absolute shrinkage and selection

operator (LASSO) (Tibshirani, 1996) is preferred for model selection in high-dimensional

data because it has a consistency property and its computational costs are inexpensive.

However, its consistency depends on strict assumptions such as irrepresentable conditions
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(IRC) (Zhao & Yu, 2006) or sparse Riesz condition (SRC) (Zhang & Huang, 2008). These

assumptions limit the structure of the explanatory variable matrix and the dimension of

true model spaces. Moreover, the consistency of LASSO is sensitive to small variations in

its tuning parameter. Many recent studies have proposed a method by combining solution

paths of penalized estimation and model selection criteria (Zou et al., 2007; Wang et al.,

2009; Wang & Zhu, 2011; Fan & Tang, 2013).

In the present study, we consider the model selection problem in high-dimensional data

by dividing the model selection into two parts. We first attempt to screen extra candidate

models, and then identify the best model by using the selection method. Both methods are

based on the residual sum of squares, and focus on the gap between noncentral and central

chi-square distributions. A crucial objective of this study is to derive the properties that can

be selected for the true or risk minimizing model under mild conditions even when the model

space is large. Furthermore, the method is not lengthy in comparison with selection among

all models.

The remainder of the present paper is organized as follows: In Section 2, we introduce

the notation for various quantities and propose the screening and variable selection method.

In Section 3, we show the consistency properties of our proposed method. Simulation studies

are reported in Section 4, and in Section 5, we conclude our paper. Technical details are

provided in the Appendices.

2 Model Frameworks and Proposed Method

2.1 High-dimensional linear regression model

Let the data consist of a sequence {(yi,xi); i = 1, . . . , n}, where y1, . . . , yn are independent

response variables distributed with normal distribution, x1, . . . ,xn are p-dimensional non-

stochastic vectors referred to as explanatory variables. X = (x1, . . . ,xn)
′ denotes an n × p
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explanatory variable matrix. We can divide the true mean structure of y = (y1, . . . , yn)
′ into

E[y] = µ∗ = P⊥
Xµ∗ + PXµ∗

= P⊥
Xµ∗ +Xβ, (1)

where PA = A(A′A)−1A′, P⊥
A = In−PA for all full rank matrixA, and β = (X ′X)−1X ′µ∗.

Usually, β is regarded as a p-dimensional regression parameter. By supposing the first term

of (1) as zero, i.e.,

(C0) µ∗ = PXµ∗ = Xβ,

we can obtain the following linear regression model:

y = Xβ + σ∗ε,

where ε ∼ N(0n, In), 0n is an n-dimensional vector of zeros, and σ2
∗ is an unknown variance

parameter. Suppose σ2
∗ < ∞. In this paper, we do not need to assume (C0).

Our main purpose is to select the best combination of explanatory variables. We define

the full model as jF = {1, . . . , p} whose element means the order of columns, and the set of

considerable candidate models as Jn. The goodness of fit for the candidate model j (⊂ jF )

is defined by the following risk function based on the predictive mean squared error:

Risk(j) = E[||µ∗ − µ̂j||2] = µ′
∗P

⊥
Xj

µ∗ + pjσ
2
∗,

where µ̂j = PXj
y, Xj is the submatrix of X corresponding to the elements of j, and pj is the

number of elements in model j; e.g., if j = {1, 2, 4}, Xj means the first, second, and fourth

columns ofX, and pj = 3. Let j∗ be the risk minimization model, i.e., j∗ = argmin
j∈Jn

{Risk(j)}.

From the perspective of predictive model selection, we can regard j∗ as the best model. In

contrast, from the perspective of clarifying the mean structure, j0 = {ℓ ∈ jF |βℓ ̸= 0} can be
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regarded as the best model, where β = (β1, . . . , βp)
′. It should be noted that many papers

refer to j0 as the true model by assuming (C0).

In the present paper, we define the high-dimensional framework as

(C1) lim
n→∞

p

n
= c ∈ [0, 1), lim

n→∞

p0
n

= c0 ∈ [0, c],

where pj0 = p0. Then, we allow p and p0 to diverge infinity with n, although p and p0

are less than n. The reason why we consider this situation is to improve the accuracy of

approximations even when n, p, and p0 are close values.

2.2 Proposed method

In this subsection, we give the screening and selection methods. For an element ℓk ∈ jF , we

define a set [−ℓk] = jF \{ℓk}. Furthermore, the residual sum of squares for the model j ∈ Jn

denotes RSS(j) = y′P⊥
Xj

y. Thereby, the nested candidate model set we propose is given as

Ĵn = {ĵ1, . . . , ĵp}, where ĵk = {ℓ1, . . . , ℓk} and ℓ1, . . . , ℓp ∈ jF satisfy

RSS([−ℓ1]) ≥ · · · ≥ RSS([−ℓp]).

Note that ĵp = jF , and RSS([−ℓk]) is regarded as an indicator in order to measure the

significance of the kth element ℓk.

After screening, we consider a selection by using the nested model criterion (NC) defined

as

NC(cn) = ĵm, m = 1 + max
1≤k≤p−1

{kI(Fk > cn)}, Fk =
RSS(ĵk)−RSS(ĵk+1)

RSS(jF )/N

where cn is a positive monotonically increasing sequence, and N = n− p. The NC is derived

for a nested candidate model set. If the condition (C0) holds, and ĵk includes j0, Fk is

distributed as the F distribution with 1 and N degrees of freedom. Hence, a selection by
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using the above criterion is equivalent to the multiple F tests, and cn means a threshold point

of multiple F tests.

3 Properties of the Proposed Method

In this section, we derive three theorems on the screening and selection methods. First, we

consider the consistency of the screening method. Let δ2j = µ′
∗(PX − PXj

)µ∗. In order to

identify j0 among Jn, we assume the next condition:

(C2) lim
n→∞

δ2min/αn = ∞, where δ2min = min
j ̸⊃j0

δ2j , and αn is a positive sequence.

A similar condition in which the denominator is log n instead of αn is considered in Chen &

Chen (2008). When this condition holds, we can show the following screening consistency.

Theorem 1. Under (C1) and (C2) with αn ≥ log p, Ĵn includes j0 with probability

tending to 1, i.e.,

lim
n→∞

Pr(j0 ∈ Ĵn) = 1.

A proof of the theorem 1 is given in Appendix 1. By applying the screening method to Jn,

we can reduce the number of candidate models from 2p to p.

Furthermore, we can select j0 after screening. We assume the following:

(C3) lim
n→∞

δ2F/n < ∞, where δ2F = µ′
∗P

⊥
Xµ∗.

Note that δ2F = 0 if the condition (C0) holds, and δ2F/n = O(1) if all elements of µ∗ are

bounded. Then, the assumption (C3) is established in these situations. If δ2F/n → ∞,

Risk(jF ) = δ2F + pσ2
∗ = δ2F{1 + o(1)} and Risk(j∗) = µ′

∗P
⊥
Xj∗

µ∗ + pj∗σ
2
∗ ≥ δ2F + pj∗σ

2
∗ =

δ2F{1 + o(1)} since pj∗/n ≤ p/n → c ∈ [0, 1) under (C1). Hence, the ratio of Risk(jF ) to
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Risk(j∗) is

1 ≤ Risk(jF )

Risk(j∗)
≤ δ2F{1 + o(1)}

δ2F{1 + o(1)}
→ 1.

It turns out that the violation of (C3) induces jF to be an efficient model without model

selection.

We state the consistency of the NC method.

Theorem 2. Under (C1)-(C3) with αn ≥ log p, for all positive sequence γn satisfying

αn/γn = o(1) and γn/δ
2
min = o(1),

lim
n→∞

Pr{NC(γn) = j0} = 1.

A proof of theorem 2 is given in Appendix 2.

Both screening and selection procedures distinguish j0 by using the gap between noncen-

tral and central chi-square distributions. Such determination by the gap works for selection

of the risk minimization model. We consider the following situation:

(C4) liminf
n→∞

αnλmin(X
′X)

λmax(X ′X)
> 0, where αn is defined in the assumption (C2).

Theorem 3. Under (C1), (C2) and (C4) with αn ≥ 1, for sufficient large n, j0 = j∗.

A proof of the theorem 3 is given in Appendix 3. A similar result is given in Yanagihara et al.

(2013) by assuming that limn→∞ X ′X/n exists and is positive definite. This theorem implies

that the selection of j0 is appropriate regardless of holding the condition (C0). By combining

the theorems 2 and 3, we can select the risk minimizing model by using our method.
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Table 1: Screening frequencies

Frequency

CASE p0 τ δ2min Proposed LASSO SCAD MCP

A 20 0.3 69.331 989 513 934 982
B 20 0.6 60.038 772 0 141 317
C 40 0.3 62.782 994 35 774 908
D 40 0.6 56.496 819 0 172 290

Corollary 1. Under (C1)-(C4) with αn ≥ log p, for all positive sequence γn satisfying

αn/γn = o(1) and γn/δ
2
min = o(1),

lim
n→∞

Pr{NC(γn) = j∗} = 1.

4 Numerical Studies

We conduct two simulations by using “R” (R Core Team, 2013) to demonstrate the perfor-

mance of the screening and selection methods in high-dimensional frameworks. The data is

constructed in n explanatory variables x1, . . . ,xn
i.i.d.∼ Np(0p,Στ ), Στ is given as

(Στ )ij = (Στ )ji = τ |i−j|, 1 ≤ i ≤ j ≤ p,

and τ = 0.3 or 0.6. Let yi be independently distributed as N(x̃′
iβ, 1) where x̃i = (1,x′

i)
′,

β = (β0, β1, . . . , βp)
′, βℓ = sign(Uℓ)I(ℓ ≤ p0), and U0, U1, . . . , Up

i.i.d.∼ U(−1, 1). In this

simulation study, we assume all candidate models to include an intercept. This indicates

that the true model is expressed as j0 = {1, . . . , p0}, and the condition (C0) is established.

We consider the situation n = 100, p = 50, and p0 = 20 or 40, which corresponds to our high-

dimensional framework with c0 > 0. We present four cases as (p0, τ) = (20, 0.3), (20, 0.6),

(40, 0.3), and (40, 0.6) referred to as case A, B, C, and D, respectively. We verified that the

IRC is only established in case A.
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Firstly, we compare the performance of screening procedure with the solution paths of

LASSO and its improvements, SCAD in Fan & Li (2001), and MCP in Zhang (2010). The

solution paths are provided by the “R” package, ‘lars’ and ‘ncvreg’ with a default setting.

Table 1 lists δ2min and frequencies of including the true model by each screening method in

1000 iterations. From table 1, we can see that the theorem 1 holds, and that the performance

of the screening is better than the other methods in all cases. The MCP solution path often

includes the true model in the case of τ = 0.3; however, this value is far behind our screening

method for the case of τ = 0.6. We have made simulations in other settings and can confirm

that our screening method includes the true model with high frequency. Next, we consider

selection of the true model j0 among the nested model set after screening. We iterate 1000

times, which satisfies j0 ∈ Ĵn, in order to compare the performance of the NC with the GIC

introduced in Nishii (1984). The GIC in model j is obtained as

GIC(j) = n log {y′(In − PXj
)y/n}+ pjbn,

where bn is a hyper-parameter. In the GIC selection procedure, we selected the best model

that minimizes the GIC. Both criteria require selection of a hyper-parameter, and the best

value of each parameter depends on the situation, i.e., the magnitude of δmin and pj∗ . In figure

1, frequency transitions created by changing the penalty terms are shown. These frequencies

are calculated by the points bn, cn = k/25, k = 1, . . . , 1000. From figure 1, we can see that

the peaks of the selection probability by the NC are close to that by the GIC. Therefore, we

can choose a hyper-parameter of the NC in a similar manner as that for the GIC procedure.

However, the NC selects the true model with high frequency for a wider range of penalty

than the GIC. In particular, in cases A and C, the NC is almost completely superior to the

GIC. These results likely occurred because the consistency of NC depends on only the value

of δ2min, whereas the GIC selection must consider δ2j for all j ̸⊃ j0 in Ĵn in order to maintain
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Figure 1: Transitions of frequency
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consistency. The above results may imply that we can choose a hyper-parameter of the NC,

robustly.

5 Conclusions

In this paper, we proposed a new variable selection procedure, which is constructed by

screening and selection methods. Both methods are based on the residual sum of squares,

which is essentially statistics, and these methods are fairly simple forms. The three theorems

indicate that the screening and selection methods are suitable for the n > p high-dimensional

situation. Through simulation studies, we can confirm that our proposed method has higher

frequencies in various conditions. Furthermore, we can select a hyper-parameter depending

on the situation, such as that for GIC, and expect that the NC enables a more robust choice

of the hyper-parameter with respect to selecting the best model. The screening method

constructs a nested model set, and we can adjust the best model in stages based on the

knowledge of experts, which is a good point for actual usage. Since the proof of the theorems

is shown by the asymptotic theory of N = n − p, our proposed method works well if the

difference between a sample size n and dimension of full model p is not small.

For theorems 1 and 2, the assumption (C2) is the most important, which assumes the

existence of a gap between j0 and the model j ̸⊃ j0. Even when this assumption is not

established, which may arise in real data analysis, we expect that j∗ includes the higher

priority order of explanatory variables decided by RSS(j) under some assumptions.

Occasionally, we obtained p > n high-dimensional or ultra-high dimensional (p ≫ n) data

in a situation such as gene data analysis. Recently, there have been many attempts to screen

extra candidate models or variables in such high-dimensional cases (Fan & Lv, 2008; Wang,

2009; Wasserman & Roeder, 2009; Ing & Lai, 2011). By combining these methods, we will

be able to apply our procedure to p > n and p ≫ n high-dimensional data and select j0.
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Appendix

Firstly, we derive some inequalities to prove the theorems. Let z, χ2
m and χ2

m(δ
2) be ran-

dom variables distributed as N(0, 1), chi-square distribution with m degrees of freedom, and

noncentral χ2
m with the noncentral parameter δ2, respectively. The following facts have been

documented in previous papers (Shibata, 1981; Yang, 1999):

Fact 1: Pr(|z| ≥ t) ≤ exp(−t2/2),

Fact 2: Pr{χ2
m ≥ (1 + t)m} ≤ exp[−{t− log(1 + t)}m/2], t ≥ 0,

Fact 3: Pr{χ2
m ≤ (1− t)m} ≤

 exp(−tm/4), t ∈ [0, 1),

0 t ∈ [1,∞),

Let C = (1− log 2)/2. By applying the following inequality to fact 2:

t− log (1 + t) ≥ 2Ct, t ∈ [1,∞),

then, we can obtain

Pr{χ2
m ≥ (1 + t)m} ≤ exp(−Ctm), t ∈ [1,∞). (A.1)

By expanding χ2
m(δ

2) to χ2
m + 2δz + δ2, for all s ≥ 0, it follows

Pr{χ2
m(δ

2) ≤ t} = Pr({χ2
m + 2δz + δ2 ≤ t} ∩ {|z| > s})

+ Pr({χ2
m + 2δz + δ2 ≤ t} ∩ {|z| ≤ s})

≤ Pr(|z| > s) + Pr(χ2
m ≤ t− δ2 + 2δs). (A.2)
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Furthermore, by using fact 1 and (A.1),

Pr{χ2
m(δ

2) ≥ m(2 + δ/
√
m+ δ2/m)}

= Pr({χ2
m + 2δz ≥ m(2 + δ/

√
m)} ∩ {|z| >

√
m/2})

+ Pr({χ2
m + 2δz ≥ m(2 + δ/

√
m)} ∩ {|z| ≤

√
m/2})

≤ Pr(|z| >
√
m/2) + Pr(χ2

m ≥ 2m)

= exp(−m/8) + exp(−Cm). (A.3)

A.1 Proof of theorem 1

It is clear that theorem 1 is established when p0 = p. Therefore, we consider p0 < p. Without

loss of generality, we assume σ2
∗ = 1. Let RSS∗(j) = RSS(j)−RSS(jF ). Since

RSS∗([−ℓ1]) ≥ · · · ≥ RSS∗([−ℓp]),

by considering the definition of the screening method, we can show that

Pr(j0 ∈ Ĵn) = Pr(ĵp0 = j0)

= Pr(min
ℓ∈j0

RSS∗([−ℓ]) ≥ max
ℓ ̸∈j0

RSS∗([−ℓ])). (A.4)

Pr(j0 ∈ Ĵn) = 1− Pr{min
ℓ∈j0

RSS∗([−ℓ]) < max
ℓ ̸∈j0

RSS∗([−ℓ])}

= 1− Pr({min
ℓ∈j0

RSS∗([−ℓ]) < max
ℓ ̸∈j0

RSS∗([−ℓ])} ∩ {max
ℓ ̸∈j0

RSS∗([−ℓ]) > δ2min/2})

− Pr({min
ℓ∈j0

RSS∗([−ℓ]) < max
ℓ̸∈j0

RSS∗([−ℓ])} ∩ {max
ℓ ̸∈j0

RSS∗([−ℓ]) ≤ δ2min/2})

≥ 1− Pr{max
ℓ̸∈j0

RSS∗([−ℓ]) > δ2min/2} − Pr{min
ℓ∈j0

RSS∗([−ℓ]) < δ2min/2}. (A.5)
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Note that

RSS∗([−ℓ]) ∼

 χ2
1,

∀ℓ ̸∈ j0,

χ2
1(δ

2
[−ℓ]),

∀ℓ ∈ j0,

where δ2[−ℓ] = µ′
∗(PX − PX[−ℓ]

)µ∗. From Caraux & Gascuel (1992),

Pr{max
ℓ ̸∈j0

RSS∗([−ℓ]) > δ2min/2} ≤ (p− p0)Pr(χ2
1 > δ2min/2),

P r{min
ℓ∈j0

RSS∗([−ℓ]) < δ2min/2} ≤
∑
ℓ∈j0

Pr{χ2
1(δ

2
[−ℓ]) < δ2min/2}.

(A.6)

Since δ2min/2− 1 > 1 for a sufficient large n, from (A.1),

Pr(χ2
1 > δ2min/2) = Pr(χ2

1 > 1 + δ2min/2− 1) ≤ exp{−C(δ2min/2− 1)}. (A.7)

On the contrary, from (A.2) with s = δ[−ℓ]/4, facts 1 and 3, and the result δ2min ≤ δ2[−ℓ], we

can show that

Pr{χ2
1(δ

2
[−ℓ]) < δ2min/2} ≤ Pr(|z| > δ[−ℓ]/4) + Pr(χ2

1 ≤ δ2min/2− δ2[−ℓ] + δminδ[−ℓ]/2)

≤ exp(−δ2[−ℓ]/32). (A.8)

By substituting (A.6), (A.7), and (A.8) into (A.5), we get

Pr(j0 ∈ Ĵn) ≥ 1− (p− p0) exp{−C(δ2min/2− 1)} −
∑
ℓ∈j0

exp(−δ2[−ℓ]/32)

≥ 1− (p− p0) exp{−C(δ2min/2− 1)} − p0 exp(−δ2min/32) → 1.

The last convergence follows from the assumption (C2) with αn ≥ log p.
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A.2 Proof of theorem 2

Without loss of generality, we assume σ2
∗ = 1. The probability of NC(γn) = j0 can be

evaluated as

Pr{NC(γn) = j0} = 1− Pr{NC(γn) ̸= j0}

≥ 1− Pr({NC(γn) ̸= j0} ∩ {j0 ∈ Ĵn})− Pr(j0 ̸∈ Ĵn). (A.9)

From the theorem 1 the last term of (A.9) is o(1). Hence, we show Pr({NC(γn) ̸= j0}∩{j0 ∈

Ĵn}) = o(1). Hereafter, we assume j0 ∈ Ĵn, i.e, ĵk ⊃ j0 for all k ≥ p0. From the definition of

NC, it follows that

Pr{NC(γn) ̸= j0} ≤ Pr(∪p−1
k=p0

{Fk > γn} ∪ {Fp0−1 ≤ γn})

≤
p−1∑
k=p0

Pr(Fk > γn) + Pr(Fp0−1 ≤ γn). (A.10)

First, we attempt to show that Pr(Fk > γn) = o((p− p0)
−1). Note that the numerator of

Fk is distributed χ2
1 for all k ≥ p0. Therefore,

Pr(Fk > γn) = Pr{χ2
1 > γnRSS(jF )/N}

= Pr({χ2
1 > γnRSS(jF )/N} ∩ {RSS(jF )/N ≥ 1/2})

+ Pr({χ2
1 > γnRSS(jF )/N} ∩ {RSS(jF )/N < 1/2})

≤ Pr(χ2
1 > γn/2) + Pr{RSS(jF )/N < 1/2}. (A.11)

From the result that γn/2 ≥ 1 + γn/4 for a sufficient large n and (A.1), we can show that

Pr(χ2
1 > γn/2) ≤ Pr(χ2

1 > 1 + γn/4) ≤ exp(−Cγn/4). (A.12)
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On the other hand, since RSS(jF ) is distributed as χ2
N(δ

2
F ), by applying (A.2) with s =

max{
√
N/4, δF/2} to the following probability, we obtain

Pr{RSS(jF )/N < 1/2} = Pr{χ2
N(δ

2
F ) < N/2}

≤ Pr(|z| > s) + Pr(χ2
N ≤ N/2− δ2F + 2δF s)

≤ Pr(|z| >
√
N/4) + Pr(χ2

N ≤ 3N/4)

≤ exp(−N/32) + exp(−N/16). (A.13)

The last inequality follows from facts 1 and 3. By substituting (A.12) and (A.13) into (A.11),

we obtain

Pr(Fk > γn) ≤ exp(−Cγn/4) + exp(−N/32) + exp(−N/16) = o((p− p0)
−1). (A.14)

Next, we evaluate the probability of {Fp0−1 ≤ γn}. Denote j0− = ĵp0−1, δ
2
0− = µ′

∗(PXj0
−

PXj0−
)µ∗, and C1 = 2 + δF/

√
N + δ2F/N . Therefore,

Pr(Fp0−1 ≤ γn) = Pr{χ2
1(δ

2
0−) ≤ γnRSS(jF )/N}

= Pr({χ2
1(δ

2
0−) ≤ γnRSS(jF )/N} ∩ {RSS(jF )/N > C1})

+ Pr({χ2
1(δ

2
0−) ≤ γnRSS(jF )/N} ∩ {RSS(jF )/N ≤ C1})

≤ Pr{RSS(jF )/N > C1}+ Pr{χ2
1(δ

2
0−) ≤ C1γn}

≤ Pr{χ2
N(δ

2
F ) > C1N}+ Pr{χ2

1(δ
2
0−) ≤ C1γn}. (A.15)

From (A.3),

Pr{χ2
N(δ

2
F ) > C1N} ≤ exp(−N/8) + exp(−CN). (A.16)

Note that C1γn < δ20−/2 for a sufficient large n because C1 is bounded from the assumption
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(C3), and δ20− ≥ δ2min, γn/δ
2
0− = o(1) holds from the assumption of theorem 2. Hence, from

the above results, fact 1, and (A.2) with s = δ0−/4,

Pr{χ2
1(δ

2
0−) ≤ C1γn} ≤ Pr(|z| > δ0−/4) + Pr(χ2

1 ≤ C1γn − δ20−/2)

≤ exp(−δ20−/2). (A.17)

Substituting (A.16) and (A.17) into (A.15), we show that

Pr(Fp0−1 ≤ γn) ≤ exp(−N/8) + exp(−CN) + exp(−δ20−/2) = o(1). (A.18)

By substituting (A.10), (A.14) and (A.18) into (A.9), we see that

Pr{NC(γn) = j0} ≥ 1 + o(1) → 1.

A.3 Proof of theorem 3

For all models j ∈ Jn (pj ≥ p0), since µ′
∗P

⊥
Xj

µ∗ ≥ µ′
∗P

⊥
Xj0

µ∗ = µ′
∗P

⊥
Xµ∗, we see that

Risk(j) ≥ Risk(j0). For all models j ∈ Jn (pj < p0),

Risk(j)−Risk(j0) = µ′
∗(PXj0

− PXj
)µ∗ − (p0 − pj)σ

2
∗.

Note that µ′
∗(PX −PX[−ℓ]

)µ∗ = β′X ′(PX −PX[−ℓ]
)Xβ = β2

ℓw
′
ℓ(PX −PX[−ℓ]

)wℓ ≤ β2
ℓw

′
ℓwℓ,

and λmin(X
′X) ≤ w′

ℓwℓ ≤ λmax(X
′X), where wℓ is the ℓth column of X, i.e., X =

17



(w1, . . . ,wp). Then, we can evaluate µ′
∗(PXj0

− PXj
)µ∗ as follows:

µ′
∗(PXj0

− PXj
)µ∗ ≥

∑
ℓ∈j0∩jc

λmin(X
′X)β2

ℓ

≥
∑

ℓ∈j0∩jc

λmin(X
′X)

λmax(X ′X)
β2
ℓw

′
ℓwℓ

≥ αnλmin(X
′X)

λmax(X ′X)

∑
ℓ∈j0∩jc

µ′
∗(PX − PX[−ℓ]

)µ∗/αn.

The first inequality follows from the result of Chen & Chen (2008). Note that #(j0 ∩ jc) ≥

p − pj. From the conditions (C2) and (C4), µ′
∗(PX − PX[−ℓ]

)µ∗/αn diverges to infinity

and αnλmin(X
′X)/λmax(X

′X) > 0, respectively. These results indicate that Risk(j) −

Risk(j0) ≥ 0 for all j ∈ Jn.
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