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Abstract

In this article, we consider tests for mean vectors when each data
set has a monotone missing data pattern. We obtain the simplified
Hotelling’s T 2-type statistics and their approximate upper percentiles
in the case of data with general k-step monotone missing data patterns.
We also consider multivariate multiple comparisons for mean vectors with
general k-step monotone missing data. Approximate simultaneous confi-
dence intervals for pairwise comparisons among mean vectors and com-
parisons with a control are obtained using Bonferroni’s approximation
procedure. Finally, the accuracy and asymptotic behavior of the approx-
imations are investigated by Monte Carlo simulation.
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1 Introduction

The one-sample and two-sample problems of testing for mean vectors with monotone

missing data are considered in this study. The case in which the missing observations

are of the monotone type has been considered by several authors, including Rao (1956),

Anderson (1957), and Bhargava (1962). The closed form expressions for the maximum

likelihood estimators (MLEs) of the mean vector and the covariance matrix in the case

of k-step monotone missing data under multivariate normality were derived by Jinadasa

and Tracy (1992). Kanda and Fujikoshi (1998) discussed the distribution of the MLEs in

the case of k-step monotone missing data. These results were derived for the one-sample

problem. In the case of a two-step monotone missing data pattern, the usual Hotelling’s

T 2 statistic and various properties were derived by Chang and Richards (2009) and Seko,

Yamazaki and Seo (2012), among others. Further, for the case of a three-step mono-

tone missing data pattern, Krishnamoorthy and Pannala (1999) derived the Hotelling’s
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T 2 statistic and F approximation, and Yagi and Seo (2014) gave a simplified Hotelling’s

T 2-type statistic and its approximation to the upper percentiles under the one-sample

problem. In the two-sample problem in a case of a two-step monotone missing data pat-

tern, Seko, Kawasaki and Seo (2011) derived a Hotelling’s T 2 statistic, the likelihood ratio

test statistic, and their approximate upper percentiles. In addition, Yu, Krishnamoorthy

and Pannala (2006) derived the Hotelling’s T 2 statistic and its approximate distribution

using another approach. Seko (2012) discussed tests for mean vectors with two-step mono-

tone missing data for the m-sample problem. In the case of three-step monotone missing

data, Yagi and Seo (2015b) used the concepts of Yagi and Seo (2014) to determine the

approximate upper percentiles of the simplified Hotelling’s T 2-type statistic for the two-

sample problem. In this article, for the two-sample and m-sample problems, we propose a

simplified Hotelling’s T 2-type statistic and its approximate upper percentile in the case of

general k-step monotone missing data. This result is an extension of Yagi and Seo (2014,

2015b).

The remainder of this article is organized as follows. In Section 2, some preliminary

notations, the MLEs of the mean vectors, and the common covariance matrix for the m-

sample problem are given in the case of k-step monotone missing data. In Section 3, for the

one-sample problem, we discuss the test for the mean vector in the case of k-step monotone

missing data. Further, we give the Hotelling’s T 2-type statistic to test the equality of

two mean vectors and their approximate upper percentiles in the case of k-step monotone

missing data. In addition, we discuss the Hotelling’s T 2-type statistics when two data sets

have unequal monotone missing data patterns. We also present simultaneous confidence

intervals for multiple comparisons among mean vectors under the two-sample and m-

sample problems. In order to obtain the simultaneous confidence intervals, we derive the

approximate upper percentiles of the T 2
max-type statistics by Bonferroni’s approximation.

Finally, in Section 4, we give the simulation results and state our conclusions.

2 Monotone missing data and MLEs

In this section, we consider the MLEs of the mean vectors and the covariance matrix for

the m-sample problem in the case of k-step monotone missing data. We assume that m
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covariance matrices are equal and unknown. We first present some notations, definitions,

and the setting in this aricle. Then, we derive the MLEs using the derivation of Yagi and

Seo (2015b).

2.1 k-step monotone missing data

Let x be distributed as Np(µ,Σ) and let xi = (x)i be the subvector of x containing

the first pi components of x. Then, xi(= (x1, x2, . . . , xpi)
′) is distributed as Npi(µi,Σi),

i = 1, 2, . . . , k, with p = p1 > p2 > · · · > pk > 0, where µi = (µ)i = (µ1, µ2, . . . , µpi)
′ and

Σi is the pi × pi principal submatrix of Σ(= Σ1). Suppose we have n1 observations on

x1, n2 observations on x2, · · · , nk observations on xk. If xij denotes the jth observation

on xi, then the k-step monotone missing data set is of the form

x′
11
...

x′
1n1

x′
21 ∗ · · · ∗
...

...
...

x′
2n2

∗ · · · ∗
·

·
·

x′
k1 ∗ · · · ∗ ∗ · · · ∗
...

...
...

...
...

x′
knk

∗ · · · ∗ ∗ · · · ∗



,

where “∗” indicates a missing observation. We now defineN1 = 0 andNi+1 =
∑i

j=1 nj, i =

1, 2, . . . , k.

Further, for the covariance matrix, let Σ1 = Σ and, for 1 ≤ i < j ≤ k, let (Σi)j be the

principal submatrix of Σi of order pj × pj; we define

Σi+1 = (Σ1)i+1, Σ1 = Σ =

(
Σi+1 Σi+1,2

Σ′
i+1,2 Σi+1,3

)
and

Σi =

(
Σi+1 Σ(i,2)

Σ′
(i,2) Σ(i,3)

)
, i = 1, 2, . . . , k − 1.

We use these notations, which are based on Jinadasa and Tracy (1992) and Yagi and Seo

(2015b), throughout this article.
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2.2 The MLEs of the mean vectors and the covariance matrix

Using the notations in Subsection 2.1, we consider the MLEs of the mean vectors and

the common covariance matrix for the m-sample problem.

Let x
(ℓ)
i1 ,x

(ℓ)
i2 , . . . ,x

(ℓ)

in
(ℓ)
i

be distributed as Npi(µ
(ℓ)
i ,Σi) for i = 1, 2, . . . , k and ℓ =

1, 2, . . . ,m, where µ
(ℓ)
i = (µ

(ℓ)
1 , µ

(ℓ)
2 , . . . , µ

(ℓ)
pi )

′ and Σi is the pi × pi covariance matrix,

where p = p1 > p2 > · · · > pk > 0,
∑m

ℓ=1 n
(ℓ)
1 −m ≥ p ≥ k. Let

x
(ℓ)
i =

1

n
(ℓ)
i

n
(ℓ)
i∑

j=1

x
(ℓ)
ij ,

E
(ℓ)
i =

n
(ℓ)
i∑

j=1

(x
(ℓ)
ij − x

(ℓ)
i )(x

(ℓ)
ij − x

(ℓ)
i )′, i = 1, 2, . . . , k.

Further, we define

N
(ℓ)
1 = 0, N

(ℓ)
i+1 =

i∑
j=1

n
(ℓ)
j , i = 1, 2, . . . , k,

νi·m =
m∑
ℓ=1

n
(ℓ)
i , i = 1, 2, . . . , k, Mi·m =

m∑
ℓ=1

N
(ℓ)
i , i = 1, 2, . . . , k + 1,

d
(ℓ)
1 = x

(ℓ)
1 , d

(ℓ)
i =

n
(ℓ)
i

N
(ℓ)
i+1

[
x
(ℓ)
i − 1

N
(ℓ)
i

i−1∑
j=1

n
(ℓ)
j (x

(ℓ)
j )i

]
, i = 2, 3, . . . , k,

f
(ℓ)
1 = d

(ℓ)
1 , f

(ℓ)
i = U id

(ℓ)
i , i = 2, 3, . . . , k,

U 1 = T 1, U i = U i−1T i, i = 2, 3, . . . , k,

T 1 = Ip1 , T i+1 =

(
Ipi+1

Σ′
(i,2)Σ

−1
i+1

)
, i = 1, 2, . . . , k − 1.

The MLEs of µ(ℓ) and Σ are given in the following theorem.

Theorem 1. Let x
(ℓ)
ij i = 1, 2, . . . , k, j = 1, 2, . . . , n

(ℓ)
i , ℓ = 1, 2, . . . ,m be the j-th random

vector of the i-th step from the ℓ-th population distributed as Npi(µ
(ℓ)
i ,Σi). Then, the

MLEs of µ(ℓ), ℓ = 1, 2, . . . ,m are given by

µ̂(ℓ) =
k∑

i=1

f̂
(ℓ)

i ,

where

f̂
(ℓ)

1 = d
(ℓ)
1 , f̂

(ℓ)

i = Û
[pl]

i d
(ℓ)
i , i = 2, 3, . . . , k,
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Û
[pl]

1 = T 1, Û
[pl]

i = Û
[pl]

i−1T̂
[pl]

i , i = 2, 3, . . . , k,

T 1 = Ip1 , T̂
[pl]

i+1 =

(
Ipi+1

Σ̂
[pl]′

(i,2)Σ̂
[pl]−1

i+1

)
, i = 1, 2, . . . , k − 1;

then, the MLE of the covariance matrix is given by

Σ̂
[pl]

=
1

M2·m

m∑
ℓ=1

H
(ℓ)
1 +

m∑
ℓ=1

k∑
i=2

1

Mi+1·m
F

[pl]
i

[
H

(ℓ)
i − νi·m

Mi·m
L

(ℓ)
i−1,1

]
F

[pl]′

i ,

where

H
(ℓ)
1 = E

(ℓ)
1 , H

(ℓ)
i = E

(ℓ)
i +

N
(ℓ)
i N

(ℓ)
i+1

n
(ℓ)
i

d
(ℓ)
i d

(ℓ)′

i , i = 2, 3, . . . , k,

L
(ℓ)
1 = H

(ℓ)
1 , L

(ℓ)
i = (L

(ℓ)
i−1)i +H

(ℓ)
i , i = 2, 3, . . . , k,

L
(ℓ)
i1 = (L

(ℓ)
i )i+1, L

(ℓ)
i =

(
L

(ℓ)
i1 L

(ℓ)
i2

L
(ℓ)′

i2 L
(ℓ)
i3

)
, i = 1, 2, . . . , k − 1

and

F
[pl]
1 = G1, F

[pl]
i = F

[pl]
i−1G

[pl]
i , i = 2, 3, . . . , k,

G1 = Ip1 , G
[pl]
i+1 =

 Ipi+1( m∑
ℓ=1

L
(ℓ)
i2

)′( m∑
ℓ=1

L
(ℓ)
i1

)−1

 , i = 1, 2, . . . , k − 1.

The above result of Theorem 1 is an extension of Theorem 1 in Yagi and Seo (2015b).

Further, we note that this result can be applied to the case in which the data sets have

unequal monotone missing data patterns.

3 A simplified Hotelling’s T 2-type statistic

In this section, we first consider the one-sample problem of the test for the mean

vector with k-step monotone missing data. We present the simplified Hotelling’s T 2-type

statistic and its approximate upper percentiles using the MLEs in the previous section.

As in the case of the one-sample problem, we also consider the tests for the equality of two

mean vectors and the simultaneous confidence intervals for any and all linear compounds

of the mean. Further, we consider the simultaneous confidence intervals for the pairwise

comparisons and the comparisons with a control under the m-sample problem with k-step

monotone missing data.
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3.1 One-sample problem

In this subsection, we consider the following hypothesis test with a k-step monotone

missing data pattern:

H0 : µ = µ0 vs. H1 : µ ̸= µ0,

where µ0 is known. Without loss of generality, we can assume that µ0 = 0. To test the

hypothesis H0, we consider the simplified Hotelling’s T 2-type statistic given by

T̃ 2
1 = µ̂′ Γ̃

−1
µ̂,

where µ̂ =
∑k

i=1 f̂ i, Γ̃ = Ĉov[µ̃], and µ̃ =
∑k

i=1 f i. In this article, we use the Hotelling’s

T 2-type statistic with Γ̃ instead of Γ̂(= Ĉov[µ̂]) since Cov[µ̂] is complicated and Γ̃ and

Γ̂ are asymptotically equivalent. Then, we have the following theorem.

Theorem 2. If the data have a k-step monotone pattern of missing observations, then

the covariance matrix of µ̃ is given by

Cov[µ̃] =
1

N2

Σ1 −
k∑

i=2

ni

NiNi+1

U iΣiU
′
i.

Proof. First, since Cov[µ̃] = E[µ̃µ̃′]− µµ′ and µ̃ =
∑k

i=1 f i, we have

E[µ̃µ̃′] = E[f 1f
′
1] +

k∑
r=2

E[f rf
′
r] + 2

[ k∑
s=2

E[f 1f
′
s] +

k∑
r=2

k∑
s=3

r<s

E[f rf
′
s]

]
.

Further, using the following results,

E[f 1f
′
1] =

1

n1

Σ1 + µ1µ
′
1,

E[f rf
′
r] =

nr

NrNr+1

U rΣrU
′
r, r = 2, 3, . . . , k,

E[f 1f
′
s] = − ns

NsNs+1

(
Σs

Σ′
s2

)
U ′

s, s = 2, 3, . . . , k,

and

E[f rf
′
s] = O, 2 ≤ r < s ≤ k,
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we obtain

Cov[µ̃] =
1

N2

Σ1 +
k∑

r=2

nr

NrNr+1

[
U rΣr − 2

(
Σr

Σ′
r2

)]
U ′

r.

Therefore,

Cov[µ̃] =
1

N2

Σ1 −
k∑

r=2

nr

NrNr+1

U rΣrU
′
r

since U rΣr =

(
Σr

Σ′
r2

)
.

For a two-step monotone missing data pattern, Yagi and Seo (2015a) gave Cov(µ̂)

as well as Cov(µ̃), and Seko et al. (2012) discussed the usual Hotelling’s T 2 statistic,

T 2
1 = µ̂′ Γ̂

−1
µ̂, and its null distribution using other definitions.

We note that under H0, the T 2-type statistic is asymptotically distributed as a χ2

distribution with p degrees of freedom when n1, Nk+1 → ∞ with n1/Nk+1 → δ ∈ (0, 1].

However, it has been noted that the χ2 approximation is not a good approximation to the

upper percentile of the T 2-type statistic when the sample is not large. Using the same

concept for three-step monotone missing data used by Yagi and Seo (2014), we propose

the approximate upper percentile of the T̃ 2
1 statistic since it is difficult to find the exact

upper percentiles of the T̃ 2
1 statistic.

Theorem 3. If the data have a k-step monotone pattern of missing observations, then

the two kinds of approximate upper 100α percentiles of the T̃ 2
1 statistic are given by

t2YS·L1(α) = (1− ω1)T
2
n1,α

+ ω1T
2
Nk+1,α

,

t2YS·F1(α) =
n∗
1p1

n∗
1 − p1

Fp1,n∗
1−p1,α,

where

T 2
n1,α

=
n1p1

n1 − p1
Fp1,n1−p1,α, T 2

Nk+1,α
=

Nk+1p1
Nk+1 − p1

Fp1,Nk+1−p1,α,

ω1 =

∑k
i=2 nipi

p1
∑k

i=2 ni

, n∗
1 =

1

p1

k∑
i=1

nipi,

and Fp,q,α is the upper 100α percentile of the F distribution with p and q degrees of freedom.
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Further, we consider the simultaneous confidence intervals for any and all linear com-

pounds of the mean when the data have k-step monotone missing observations. Using

the approximate upper percentiles of T̃ 2
1 , for any nonnull vector c = (c1, c2, . . . , cp)

′, the

approximate simultaneous confidence intervals for c′µ are given by

c′µ ∈
[
c′µ̂± tapp·1(α){c′Γ̃c}

1
2

]
, ∀c ∈ Rp − {0},

where t2app·1(α) is the value of t
2
YS·L1(α) or t

2
YS·F1(α). For three-step monotone missing data,

see Yagi and Seo (2014).

3.2 Two-sample problem

In this section, we test the equality of two mean vectors with k-step monotone missing

data. We give the simplified T 2-type statistic and its approximate upper percentiles in

the case of unequal monotone missing data. Further, we consider multiple comparisons

among mean vectors with k-step monotone missing data.

To test the hypothesis H0 : µ(1) = µ(2) vs. H1 : µ(1) ̸= µ(2) when two data sets

have the same k-step monotone missing data pattern, we adopt the Hotelling’s T 2-type

statistic given by

T̃ 2
2 = (µ̂(1) − µ̂(2))′ Γ̃

[pl]−1

(µ̂(1) − µ̂(2)),

where µ̂(ℓ) =
∑k

i=1 f̂
(ℓ)

i , ℓ = 1, 2, and Γ̃
[pl]

is an estimator of Cov[µ̃(1) − µ̃(2)], µ̃(ℓ) =∑k
i=1 f

(ℓ)
i , ℓ = 1, 2. Then, using the result for the one-sample problem in the previous

subsection, we have

Γ̃
[pl]

=
n
(1)
1 + n

(2)
1

n
(1)
1 n

(2)
1

Σ̂
[pl]

1 −
2∑

ℓ=1

k∑
i=2

n
(ℓ)
i

N
(ℓ)
i N

(ℓ)
i+1

Û
[pl]

i Σ̂
[pl]

i Û
[pl]′

i ,

where Σ̂
[pl]

is the MLE when m = 2 in Theorem 1.

We note that under H0, T̃ 2
2 is asymptotically distributed as a χ2 distribution with

p degrees of freedom when n
(ℓ)
1 , N

(ℓ)
k+1 → ∞ with n

(ℓ)
1 /N

(ℓ)
k+1 → δ(ℓ) ∈ (0, 1], ℓ = 1, 2.

However, as with the one-sample problem, we note that the χ2 approximation is not a

good approximate upper percentile of the T̃ 2
2 statistic when the sample size is not large.

To obtain an approximation that is accurate even for a small sample, we use the following

theorem.
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Theorem 4. Suppose that two data sets have the same k-step monotone missing data

pattern. Then, the two approximate upper 100α percentiles of the T̃ 2
2 statistic are given

by

t2YS·L2(α) = (1− ω2)T
2
ν1·2,α + ω2T

2
Mk+1·2,α

,

t2YS·F2(α) =
n∗
2p1

n∗
2 − p1 − 1

Fp1,n∗
2−p1−1,α,

where

ω2 =

∑k
i=2 νi·2pi

p1
∑k

i=2 νi·2
, n∗

2 =
1

p1

k∑
i=1

νi·2pi,

T 2
ν1·2,α =

ν1·2p1
ν1·2 − p1 − 1

Fp1,ν1·2−p1−1,α, T 2
Mk+1·2,α

=
Mk+1·2p1

Mk+1·2 − p1 − 1
Fp1,Mk+1·2−p1−1,α,

and Fp,q,α is the upper 100α percentile of the F distribution with p and q degrees of freedom.

p1

p2

n
(1)
1

n
(1)
2

p3

n
(2)
1

n
(2)
3

Π1 Π2

p1

Figure 1: Unequal two-step monotone missing data patterns

Further, we test the equality of two mean vectors when two data sets have unequal

general step monotone missing data patterns. For example, the two data sets Π1 and Π2

are of the forms given in Figure 1. Then, we can apply the results of Theorem 1 if we put

n
(1)
3 = 0 and n

(2)
2 = 0. For details, see Yagi and Seo (2015b).

Next, under the two-sample problem, we consider the simultaneous confidence intervals

when each data set has k-step monotone missing observations.

For any nonnull vector c = (c1, c2, . . . , cp)
′, the simultaneous confidence intervals for

c′(µ(1) − µ(2)) with the confidence level (1− α) are given by

c′(µ(1) − µ(2)) ∈
[
c′(µ̂(1) − µ̂(2))± t2(α){c′Γ̂

[pl]
c}

1
2 ,
]
, ∀c ∈ Rp − {0},
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where t22(α) is the upper 100α percentile of the T 2
2 (= (µ̂(1) − µ̂(2))′Γ̂

[pl]−1

(µ̂(1) − µ̂(2)))

statistic and Γ̂
[pl]

is an estimator of Cov[µ̂(1) − µ̂(2)]. However, it is not easy to obtain

t22(α). Therefore, using the approximate upper percentiles of the T̃ 2
2 statistic, t2YS·L2(α)

or t2YS·F2(α), for any nonnull vector c = (c1, c2, . . . , cp)
′, the approximate simultaneous

confidence intervals for c′(µ(1) − µ(2)) can be obtained by

c′(µ(1) − µ(2)) ∈
[
c′(µ̂(1) − µ̂(2))± tapp·2(α){c′Γ̃

[pl]
c}

1
2

]
, ∀c ∈ Rp − {0},

where the value of t2app·2(α) is t
2
YS·L2(α) or t

2
YS·F2(α).

3.3 Simultaneous confidence intervals for multiple comparisons
among mean vectors

Under them-sample problem, we consider the simultaneous confidence intervals for pair-

wise multiple comparisons among mean vectors when each data set has k-step monotone

missing observations. We also consider and construct the simultaneous confidence inter-

vals for comparisons with a control. Let x
(ℓ)
i1 ,x

(ℓ)
i2 , . . . , x

(ℓ)

in
(ℓ)
i

be distributed as Npi(µ
(ℓ)
i ,Σi)

for i = 1, 2, . . . , k and ℓ = 1, 2, . . . ,m. Further, we define the T 2
max·p statistic as

T 2
max·p = max

1≤a<b≤m
T 2
ab,

where T 2
ab = (µ̂(a) − µ̂(b))′Γ̂

[pl]−1

ab (µ̂(a) − µ̂(b)) and Γ̂
[pl]

ab is an estimator of Cov[µ̂(a) − µ̂(b)].

Then, for the case of pairwise multiple comparisons, the simultaneous confidence intervals

for c′(µ(a) − µ(b)), 1 ≤ a < b ≤ m are given by

c′(µ(a) − µ(b)) ∈
[
c′(µ̂(a) − µ̂(b))± tmax·p(α){c′Γ̂

[pl]

ab c}
1
2

]
,

1 ≤ a < b ≤ m, ∀c ∈ Rp − {0},

where t2max·p(α) is the upper percentile of the T 2
max·p statistic.

Similarly, for the case of comparisons with a control, let µ(1) be a control and define

the T 2
max·c statistic as

T 2
max·c = max

2≤b≤m
T 2
1b,

where T 2
1b = (µ̂(1) − µ̂(a))′Γ̂

[pl]−1

1b (µ̂(1) − µ̂(b)) and Γ̂
[pl]

1b is an estimator of Cov[µ̂(1) − µ̂(b)].
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Then, the simultaneous confidence intervals for c′(µ(1) − µ(b)), 2 ≤ b ≤ m are given by

c′(µ(1) − µ(b)) ∈
[
c′(µ̂(1) − µ̂(b))± tmax·c(α){c′Γ̂

[pl]

1b c}
1
2

]
,

2 ≤ b ≤ m, ∀c ∈ Rp − {0},

where t2max·c(α) is the upper percentile of the T 2
max·c statistic.

However, it is not easy to obtain t2max·p(α) and t2max·c(α) even under non-missing multi-

variate normality (see Seo and Siotani (1992), Seo, Mano and Fujikoshi (1994)). Therefore,

in this article, we adopt Bonferroni’s approximation, which is one of the solutions to this

problem. Let n
(1)
i = n

(2)
i = · · · = n

(m)
i , i = 1, 2, . . . , k; then, the null distributions of T 2

ab

and T 2
1b are identical. Their approximate simultaneous confidence intervals for pairwise

comparisons and comparisons with a control are given by

c′(µ(a) − µ(b)) ∈
[
c′(µ̂(a) − µ̂(b))± tBon(αp){c′Γ̃

[pl]

ab c}
1
2

]
,

1 ≤ a < b ≤ m, ∀c ∈ Rp − {0},

and

c′(µ(1) − µ(b)) ∈
[
c′(µ̂(1) − µ̂(b))± tBon(αc){c′Γ̃

[pl]

1b c}
1
2

]
,

2 ≤ b ≤ m, ∀c ∈ Rp − {0},

respectively, where the value of t2Bon(αp) is t
2
YS·Lm(αp) or t

2
YS·Fm(αp) and the value of t2Bon(αc)

is t2YS·Lm(αc) or t
2
YS·Fm(αc), which are given in the following Theorem 5, and

αp =
2α

m(m− 1)
, αc =

α

m− 1
.

We note that Γ̃
[pl]

ab and Γ̃
[pl]

1b are estimated by the use of Σ̂
[pl]

in Theorem 1.

Theorem 5. Suppose that m data sets have the same k-step monotone missing data pat-

tern. Then, the two approximate upper 100α percentiles of the T 2
max·p and T 2

max·c statistics

are given by

t2YS·Lm(αp) = (1− ωm)T
2
ν1·m,αp

+ ωmT
2
Mk+1·m,αp

,

t2YS·Fm(αp) =
n∗
mp1

n∗
m − p1 − (m− 1)

Fp1,n∗
m−p1−(m−1),αp ,

11



and

t2YS·Lm(αc) = (1− ωm)T
2
ν1·m,αc

+ ωmT
2
Mk+1·m,αc

,

t2YS·Fm(αc) =
n∗
mp1

n∗
m − p1 − (m− 1)

Fp1,n∗
m−p1−(m−1),αc ,

respectively, where

αp =
2α

m(m− 1)
, αc =

α

m− 1
, ωm =

∑k
i=2 νi·mpi

p1
∑k

i=2 νi·m
, n∗

m =
1

p1

k∑
i=1

νi·mpi,

T 2
ν1·m,α =

ν1·mp1
ν1·m − p1 − (m− 1)

Fp1,ν1·m−p1−(m−1),α,

T 2
Mk+1·m,α =

Mk+1·mp1
Mk+1·m − p1 − (m− 1)

Fp1,Mk+1·m−p1−(m−1),α,

and Fp,q,α is the upper 100α percentile of the F distribution with p and q degrees of freedom.

4 Simulation studies

In this section, we investigate the accuracy and asymptotic behavior of the approxima-

tions for the upper percentiles of Hotelling’s T 2-type statistic for one-sample, two-sample,

and m-sample problems by Monte Carlo simulation. We provide the simulated upper

percentiles and their approximations for selected parameters.

4.1 One-sample problem

For the one-sample problem, we compute the upper percentiles of the Hotelling’s T 2-

type statistic with k-step monotone missing data using Monte Carlo simulation (106 runs).

That is, the T̃ 2
1 statistic is computed 106 times based on the normal random vectors gen-

erated from Np(0, Ip). Note that the Hotelling’s T
2-type statistics with monotone missing

data are asymptotically invariant under the nonsingular transformation. In particular, we

evaluate the accuracy of the proposed approximations in Theorem 3 for the one-sample

problem.

Tables 1 and 2 give the simulated upper 100α percentiles of the T̃ 2
1 statistic with five-

step and ten-step monotone missing data patterns. That is, we provide t̃ 2simu·1(= t̃ 2simu·1(α))

12



for the following cases:

Five-step Case: (p1, p2, p3, p4, p5) = (15, 12, 9, 6, 3),

n1 = 25(5)50, 100, 200, 400, 800, n2 = n3 = · · · = n5 = 5, 10,

α = 0.05, 0.01.

Ten-step Case: (p1, p2, p3, p4, p5, p6, p7, p8, p9, p10) = (20, 18, 16, 14, 12, 10, 8, 6, 4, 2),

n1 = 25(5)50, 100, 200, 400, 800, n2 = n3 = · · · = n10 = 5, 10,

α = 0.05, 0.01.

These tables also give the approximations to the upper percentiles of the T̃ 2
1 statistic, that

is, t2YS·L1(= t2YS·L1(α)) and t2YS·F1(= t2YS·F1(α)) in Theorem 3. In addition, we provide the

simulated coverage probabilities for the approximate upper percentiles in Tables 1 and 2,

which are given by

C̃P(t2YS·L1(α)) = 1− Pr{T̃ 2
1 > t2YS·L1(α)},

C̃P(t2YS·F1(α)) = 1− Pr{T̃ 2
1 > t2YS·F1(α)},

C̃P(χ2
p,α) = 1− Pr{T̃ 2

1 > χ2
p,α}.

It may be noted from Tables 1 and 2 that the simulated values, t̃ 2simu·1(α), are closer to the

upper percentiles of the χ2 distribution when the sample size n1 becomes large. However,

the upper percentiles of the χ2 distribution, χ2
p,α, are not good approximations to those

of the T̃ 2
1 statistic for small sample sizes. At the same time, the proposed approximate

upper percentiles t2YS·L1 and t2YS·F1 are good even for small sample sizes; in particular, t2YS·L1

is considerably good for all cases.

4.2 Two-sample problem

To investigate the accuracy of some of the approximations under the two-sample andm-

sample problems, we compute the upper percentiles of the T̃ 2
2 , T̃

2
max·p and T̃ 2

max·c statistics

by Monte Carlo simulation (106 runs). As with the one-sample problem in Subsection

4.1, the T̃ 2
2 , T̃

2
max·p, and T̃ 2

max·c statistics are computed 106 times for each set (α, pi, n
(ℓ)
i )

of parameters based on the normal random vectors x
(ℓ)
ij generated from Npi(0, Ipi).

13



The simulation results related to the upper percentiles of the T̃ 2
2 statistic and their ap-

proximations in the cases of five-step and ten-step monotone missing data are summarized

in Tables 3 and 4. Computations are carried out for the following two cases:

Five-step Case: (p1, p2, p3, p4, p5) = (15, 12, 9, 6, 3),

n
(1)
1 = n

(2)
1 = 25(5)50, 100, 200, 400, 800,

n
(ℓ)
2 = n

(ℓ)
3 = · · · = n

(ℓ)
5 = 5, 10, ℓ = 1, 2,

α = 0.05, 0.01.

Ten-step Case: (p1, p2, p3, p4, p5, p6, p7, p8, p9, p10) = (20, 18, 16, 14, 12, 10, 8, 6, 4, 2),

n
(1)
1 = n

(2)
1 = 25(5)50, 100, 200, 400, 800,

n
(ℓ)
2 = n

(ℓ)
3 = · · · = n

(ℓ)
10 = 5, 10, ℓ = 1, 2,

α = 0.05, 0.01.

Tables 3 and 4 give the simulated upper 100α percentiles of the T̃ 2
2 statistic (t̃ 2simu·2(α)),

the approximate upper 100α percentiles of T̃ 2
2 (t2YS·L2(α), t

2
YS·F2(α)), and the upper 100α

percentiles of the χ2 distribution with p degrees of freedom (χ2
p,α). In the tables, we denote

t̃ 2simu·2(α), t
2
YS·L2(α), and t2YS·F2(α) as t̃

2
simu·2, t

2
YS·L2, and t2YS·F2, respectively. In addition, we

provide the simulated coverage probabilities for the approximate upper 100α percentiles

given by

C̃P(t2YS·L2(α)) = 1− Pr{T̃ 2
2 > t2YS·L2(α)},

C̃P(t2YS·F2(α)) = 1− Pr{T̃ 2
2 > t2YS·F2(α)},

C̃P(χ2
p,α) = 1− Pr{T̃ 2

2 > χ2
p,α}.

It may be noted from Tables 3 and 4 that the simulated values are not close to the

upper percentiles of the χ2 distribution even when the sample size n
(ℓ)
1 is moderately

large. However, the proposed approximations are accurate even for cases in which n
(ℓ)
1

is not large. In particular, the values of t2YS·L2(α) are highly accurate for all cases. In

other words, the simulated coverage probabilities for t2YS·L2(α) are considerably close to

the nominal level 1−α. For simulation results in the case of three-step monotone missing
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data, see Yagi and Seo (2015b). Thus, it can be concluded that the approximation

t2YS·L2(α) is highly accurate even for small samples and unbalanced cases when the data

have a k-step monotone pattern of missing observations.

Next, in order to compare the approximate values with the simulated values in the cases

of pairwise comparisons and comparisons with a control, we compute for the following

case:

Five-step Case: m = 6, 10,

(p1, p2, p3, p4, p5) = (15, 12, 9, 6, 3),

n
(ℓ)
1 = 25(5)50, 100, 200, 400, 800, ℓ = 1, 2, . . . ,m,

n
(ℓ)
2 = n

(ℓ)
3 = · · · = n

(ℓ)
5 = 5, 10, ℓ = 1, 2, . . . ,m,

α = 0.05, 0.01.

Tables 5 and 6 give the simulated upper 100α percentiles of the T̃ 2
max·p statistic (t̃

2
simu·p(α)),

the simulated upper 100αp percentiles of the T̃ 2
ab statistic (t̃ 2simu·Bon(αp)), the approxi-

mate upper 100αp percentiles of the T̃ 2
ab statistic (t2YS·Lm(αp), t

2
YS·Fm(αp)), and the upper

100αp percentiles of the χ2 distribution with p degrees of freedom (χ2
p,αp

). The values of

t̃ 2simu·Bon(αp) are simulated values obtained via Monte Carlo simulation. In the tables, we

denote t̃ 2simu·p(α), t̃
2
simu·Bon(αp), t

2
YS·Lm(αp), and t2YS·Fm(αp) as t̃ 2simu·p, t̃

2
simu·Bon, t

2
YS·Lm, and

t2YS·Fm, respectively. In addition, we provide the simulated coverage probabilities given by

C̃P(t2YS·Lm(αp)) = 1− Pr{T̃ 2
max·p > t2YS·Lm(αp)},

C̃P(t2YS·Fm(αp)) = 1− Pr{T̃ 2
max·p > t2YS·Fm(αp)},

C̃P(χ2
p,αp

) = 1− Pr{T̃ 2
max·p > χ2

p,αp
}.

As Tables 5 and 6 show, the simulated values for t̃ 2simu·Bon(αp) are larger than the simulated

values for t̃ 2simu·p(α). It may be seen from the tables that the approximate values of

t2YS·Lm(αp) and t2YS·Fm(αp) are closer to the simulated values of t̃ 2simu·p(α) when the sample

size becomes large. The simulation studies show that t2YS·Lm(αp) is close to t̃ 2simu·p(α) and

is a conservative approximation.

Tables 7 and 8 list the results for the case of comparisons with a control. We pro-

vide t̃ 2simu·c(α), t̃
2
simu·Bon(αc), t

2
YS·Lm(αc), t

2
YS·Fm(αc), and χ2

p,αc
as well as C̃P(t2YS·Lm(αc)),
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C̃P(t2YS·Fm(αc)), and C̃P(χ2
p,αc

). The accuracy of the approximations is similar to that in

the case of pairwise comparisons. Additional simulation results are given in Yagi and Seo

(2015b).

In conclusion, we developed the approximate upper percentiles of the Hotelling’s T 2-

type statistic for tests of mean vectors with k-step monotone missing data under one-

sample and two-sample problems. Further, we presented the approximate simultaneous

confidence intervals for pairwise comparisons among mean vectors and comparisons with a

control using Bonferroni’s approximation. The proposed approximate values can be easily

calculated, and the accuracy of the approximations is considerably higher than that of

the χ2 approximations in almost all cases.
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Table 1: Simulated and approximate values and coverage probabilities when
(p1, p2, p3, p4, p5) = (15, 12, 9, 6, 3)

Sample Size Upper Percentile Coverage Probability

n1 n2 = n3 = · · · = n5 t̃ 2simu·1 t2YS·L1 t2YS·F1 C̃PYS·L1 C̃PYS·F1 C̃Pχ2

α = 0.05

25 5 90.68 76.01 57.84 .915 .825 .295
30 5 63.22 57.08 50.13 .927 .885 .429
35 5 52.04 48.76 45.33 .934 .911 .527
40 5 46.20 44.02 42.06 .938 .924 .598
45 5 42.46 40.91 39.69 .940 .931 .652
50 5 39.74 38.71 37.90 .943 .937 .693
100 5 31.03 30.86 30.79 .948 .948 .850
200 5 27.77 27.76 27.75 .950 .950 .908
400 5 26.34 26.34 26.34 .950 .950 .931
800 5 25.71 25.66 25.66 .949 .949 .940

25 10 84.33 71.59 45.33 .919 .743 .336
30 10 59.05 53.73 42.06 .929 .837 .470
35 10 49.08 46.13 39.69 .934 .881 .564
40 10 43.95 41.90 37.90 .937 .903 .630
45 10 40.66 39.17 36.49 .940 .916 .680
50 10 38.35 37.25 35.36 .942 .925 .716
100 10 30.69 30.43 30.22 .947 .945 .856
200 10 27.72 27.64 27.61 .949 .949 .908
400 10 26.36 26.31 26.31 .949 .949 .931
800 10 25.65 25.65 25.65 .950 .950 .941

α = 0.01

25 5 145.85 115.84 81.06 .978 .930 .432
30 5 91.99 80.66 68.40 .982 .964 .588
35 5 72.12 66.53 60.75 .985 .976 .692
40 5 62.48 58.84 55.65 .986 .981 .759
45 5 56.34 53.96 52.01 .987 .984 .806
50 5 52.17 50.57 49.28 .988 .985 .840
100 5 39.19 38.89 38.78 .989 .989 .946
200 5 34.52 34.45 34.44 .990 .990 .974
400 5 32.45 32.45 32.45 .990 .990 .983
800 5 31.54 31.50 31.50 .990 .990 .987

25 10 137.95 109.05 60.75 .978 .872 .480
30 10 85.96 75.57 55.65 .982 .937 .633
35 10 67.84 62.58 52.01 .985 .962 .727
40 10 59.06 55.68 49.28 .986 .972 .788
45 10 53.65 51.37 47.17 .987 .978 .829
50 10 49.96 48.41 45.48 .988 .981 .858
100 10 38.48 38.27 37.95 .990 .989 .949
200 10 34.34 34.28 34.24 .990 .990 .974
400 10 32.48 32.41 32.40 .990 .990 .983
800 10 31.50 31.49 31.49 .990 .990 .987

Note. C̃PYS·L1=C̃P(t2YS·L1(α)), C̃PYS·F1=C̃P(t2YS·F1(α)), C̃Pχ2 =C̃P(χ2
p,α), χ2

15,0.05=25.00,

χ2
15,0.01=30.58.
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Table 2: Simulated and approximate values and coverage probabilities when
(p1, p2, p3, p4, p5, p6, p7, p8, p9, p10) = (20, 18, 16, 14, 12, 10, 8, 6, 4, 2)

Sample Size Upper Percentile Coverage Probability

n1 n2 = n3 = · · · = n10 t̃ 2simu·1 t2YS·L1 t2YS·F1 C̃PYS·L1 C̃PYS·F1 C̃Pχ2

α = 0.05

25 5 333.46 252.88 67.91 .918 .447 .082
30 5 119.90 107.28 61.48 .929 .697 .209
35 5 83.24 77.62 56.96 .934 .805 .323
40 5 68.57 65.16 53.61 .936 .858 .418
45 5 60.78 58.28 51.03 .938 .886 .493
50 5 55.71 53.88 48.99 .940 .904 .554

100 5 40.94 40.49 40.01 .946 .942 .795
200 5 35.79 35.71 35.66 .949 .949 .886
400 5 33.52 33.53 33.52 .950 .950 .921
800 5 32.48 32.46 32.46 .950 .950 .936

25 10 316.56 248.27 49.96 .924 .355 .126
30 10 108.26 103.34 48.12 .943 .609 .277
35 10 74.53 74.21 46.61 .949 .743 .400
40 10 62.19 62.18 45.35 .950 .812 .491
45 10 55.62 55.65 44.29 .950 .853 .561
50 10 51.68 51.55 43.37 .949 .878 .612

100 10 39.78 39.54 38.40 .948 .937 .815
200 10 35.55 35.39 35.22 .948 .947 .890
400 10 33.47 33.43 33.41 .950 .949 .922
800 10 32.46 32.44 32.43 .950 .950 .936

α = 0.01

25 5 761.78 509.35 90.38 .978 .602 .141
30 5 194.43 162.55 80.52 .982 .840 .329
35 5 119.24 107.98 73.73 .984 .919 .477
40 5 93.25 87.16 68.77 .985 .951 .588
45 5 80.10 76.24 64.99 .986 .965 .667
50 5 72.07 69.48 62.03 .987 .973 .726

100 5 50.47 49.97 49.29 .989 .988 .915
200 5 43.45 43.37 43.29 .990 .990 .965
400 5 40.40 40.41 40.40 .990 .990 .980
800 5 38.96 38.97 38.97 .990 .990 .986

25 10 744.34 502.77 63.43 .979 .488 .202
30 10 179.29 156.96 60.77 .985 .762 .414
35 10 107.25 103.17 58.61 .988 .875 .565
40 10 84.32 82.97 56.81 .989 .924 .663
45 10 73.04 72.55 55.30 .990 .948 .732
50 10 66.36 66.21 54.00 .990 .961 .779

100 10 48.87 48.66 47.05 .990 .986 .927
200 10 43.10 42.93 42.70 .990 .989 .967
400 10 40.33 40.28 40.24 .990 .990 .981
800 10 38.97 38.94 38.93 .990 .990 .986

Note. C̃PYS·L1=C̃P(t2YS·L1(α)), C̃PYS·F1=C̃P(t2YS·F1(α)), C̃Pχ2 =C̃P(χ2
p,α), χ2

20,0.05=31.41,

χ2
20,0.01=37.57.
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Table 3: Simulated and approximate values and coverage probabilities when
(p1, p2, p3, p4, p5) = (15, 12, 9, 6, 3)

Sample Size Upper Percentile Coverage Probability

n
(ℓ)
1 n

(ℓ)
2 = n

(ℓ)
3 = · · · = n

(ℓ)
5 t̃ 2simu·2 t2YS·L2 t2YS·F2 C̃PYS·L2 C̃PYS·F2 C̃Pχ2

α = 0.05

25 5 39.37 38.20 36.09 .942 .923 .697
30 5 36.16 35.39 34.23 .944 .933 .754
35 5 34.14 33.61 32.91 .945 .939 .790
40 5 32.78 32.38 31.91 .946 .941 .815
45 5 31.77 31.46 31.14 .947 .944 .835
50 5 30.98 30.76 30.52 .948 .945 .850
100 5 27.83 27.78 27.75 .949 .949 .907
200 5 26.39 26.38 26.37 .950 .950 .930
400 5 25.66 25.68 25.68 .950 .950 .941
800 5 25.33 25.34 25.34 .950 .950 .945

25 10 37.50 36.76 32.91 .944 .905 .730
30 10 34.77 34.23 31.91 .945 .921 .778
35 10 33.03 32.66 31.14 .947 .931 .810
40 10 31.90 31.58 30.52 .947 .936 .831
45 10 31.07 30.79 30.02 .947 .939 .848
50 10 30.44 30.18 29.60 .947 .941 .859
100 10 27.67 27.59 27.50 .949 .948 .909
200 10 26.33 26.32 26.31 .950 .950 .931
400 10 25.67 25.67 25.67 .950 .950 .941
800 10 25.36 25.34 25.34 .950 .950 .945

α = 0.01

25 5 51.50 49.73 46.46 .987 .981 .844
30 5 46.64 45.48 43.72 .988 .984 .886
35 5 43.50 42.85 41.79 .989 .987 .910
40 5 41.57 41.03 40.35 .989 .987 .926
45 5 40.15 39.71 39.23 .989 .988 .938
50 5 38.96 38.69 38.35 .989 .989 .946
100 5 34.48 34.46 34.42 .990 .990 .974
200 5 32.54 32.49 32.49 .990 .990 .983
400 5 31.54 31.53 31.53 .990 .990 .987
800 5 31.05 31.05 31.05 .990 .990 .989

25 10 48.73 47.66 41.79 .988 .973 .869
30 10 44.52 43.82 40.35 .989 .980 .903
35 10 41.93 41.49 39.23 .989 .984 .924
40 10 40.23 39.91 38.35 .989 .986 .936
45 10 39.03 38.75 37.63 .989 .987 .945
50 10 38.09 37.87 37.03 .990 .987 .951
100 10 34.26 34.19 34.06 .990 .989 .975
200 10 32.42 32.41 32.39 .990 .990 .984
400 10 31.46 31.51 31.51 .990 .990 .987
800 10 31.11 31.05 31.05 .990 .990 .988

Note. C̃PYS·L2=C̃P(t2YS·L2(α)), C̃PYS·F2=C̃P(t2YS·F2(α)), C̃Pχ2 =C̃P(χ2
p,α), χ2

15,0.05=25.00,

χ2
15,0.01=30.58.
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Table 4: Simulated and approximate values and coverage probabilities when
(p1, p2, p3, p4, p5, p6, p7, p8, p9, p10) = (20, 18, 16, 14, 12, 10, 8, 6, 4, 2)

Sample Size Upper Percentile Coverage Probability

n
(ℓ)
1 n

(ℓ)
2 = n

(ℓ)
3 = · · · = n

(ℓ)
10 t̃ 2simu·2 t2YS·L2 t2YS·F2 C̃PYS·L2 C̃PYS·F2 C̃Pχ2

α = 0.05

25 5 53.21 53.05 44.01 .949 .872 .589
30 5 47.92 47.61 42.42 .948 .902 .670
35 5 44.74 44.50 41.19 .948 .918 .721
40 5 42.78 42.47 40.20 .948 .926 .758
45 5 41.34 41.03 39.40 .947 .932 .786
50 5 40.19 39.94 38.72 .948 .936 .805
100 5 35.69 35.56 35.39 .949 .947 .887
200 5 33.56 33.51 33.49 .950 .949 .921
400 5 32.48 32.48 32.47 .950 .950 .936
800 5 31.95 31.95 31.95 .950 .950 .943

25 10 48.81 51.37 39.05 .963 .847 .661
30 10 44.62 46.14 38.43 .960 .884 .727
35 10 42.30 43.20 37.91 .956 .904 .767
40 10 40.72 41.31 37.46 .955 .916 .797
45 10 39.58 39.98 37.06 .953 .924 .818
50 10 38.77 39.00 36.72 .952 .929 .832
100 10 35.20 35.14 34.71 .949 .945 .895
200 10 33.41 33.36 33.29 .949 .949 .923
400 10 32.43 32.43 32.42 .950 .950 .937
800 10 31.97 31.94 31.93 .950 .950 .943

α = 0.01

25 5 68.70 68.33 54.82 .990 .958 .760
30 5 60.40 60.18 52.59 .990 .972 .828
35 5 55.87 55.65 50.87 .990 .979 .868
40 5 53.09 52.74 49.50 .989 .982 .893
45 5 50.88 50.69 48.39 .990 .984 .910
50 5 49.28 49.17 47.46 .990 .986 .923
100 5 43.21 43.14 42.90 .990 .989 .966
200 5 40.43 40.37 40.34 .990 .990 .980
400 5 38.96 38.99 38.98 .990 .990 .986
800 5 38.36 38.28 38.28 .990 .990 .988

25 10 62.84 66.03 47.90 .993 .944 .820
30 10 55.76 58.17 47.06 .993 .965 .870
35 10 52.34 53.87 46.34 .992 .973 .899
40 10 50.17 51.16 45.72 .992 .978 .917
45 10 48.57 49.28 45.18 .991 .981 .930
50 10 47.40 47.90 44.71 .991 .983 .938
100 10 42.55 42.58 41.98 .990 .989 .970
200 10 40.24 40.17 40.07 .990 .990 .981
400 10 38.95 38.92 38.91 .990 .990 .986
800 10 38.36 38.26 38.26 .990 .990 .988

Note. C̃PYS·L2=C̃P(t2YS·L2(α)), C̃PYS·F2=C̃P(t2YS·F2(α)), C̃Pχ2 =C̃P(χ2
p,α), χ2

20,0.05=31.41,

χ2
20,0.01=37.57.
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Table 5: Simulated and approximate values and coverage probabilities for pairwise
comparisons when m = 6 and (p1, p2, p3, p4, p5) = (15, 12, 9, 6, 3)

Sample Size Upper Percentile Coverage Probability

n
(ℓ)
1 n

(ℓ)
2 = n

(ℓ)
3 = · · · = n

(ℓ)
5 t̃ 2simu·p t̃ 2simu·Bon t2YS·L6 t2YS·F6 C̃PYS·L6 C̃PYS·F6 C̃Pχ2

α = 0.05

25 5 39.86 40.62 40.48 39.78 .957 .949 .828
30 5 38.82 39.40 39.40 38.98 .957 .952 .855
35 5 38.04 38.56 38.65 38.37 .957 .954 .873
40 5 37.52 38.04 38.09 37.89 .957 .954 .886
45 5 37.08 37.65 37.65 37.51 .957 .955 .895
50 5 36.76 37.34 37.31 37.20 .957 .955 .902
100 5 35.24 35.77 35.73 35.71 .956 .956 .931
200 5 34.42 34.87 34.91 34.91 .957 .957 .945
400 5 34.04 34.55 34.49 34.49 .956 .956 .950
800 5 33.78 34.21 34.28 34.28 .957 .957 .954

25 10 38.92 39.50 39.77 38.37 .959 .943 .852
30 10 38.09 38.73 38.82 37.89 .958 .947 .872
35 10 37.48 38.02 38.16 37.51 .958 .950 .886
40 10 37.03 37.62 37.67 37.20 .958 .952 .896
45 10 36.72 37.18 37.30 36.94 .957 .953 .903
50 10 36.44 36.97 37.00 36.72 .957 .954 .909
100 10 35.10 35.65 35.62 35.57 .957 .956 .934
200 10 34.38 34.83 34.88 34.87 .957 .956 .945
400 10 33.98 34.49 34.48 34.48 .957 .957 .951
800 10 33.80 34.30 34.28 34.28 .957 .957 .954

α = 0.01

25 5 46.58 46.98 46.88 45.99 .991 .988 .938
30 5 45.25 45.41 45.52 44.98 .991 .989 .951
35 5 44.31 44.29 44.57 44.22 .991 .990 .959
40 5 43.62 43.92 43.87 43.63 .991 .990 .965
45 5 43.06 43.36 43.33 43.15 .991 .990 .969
50 5 42.65 43.18 42.90 42.77 .991 .990 .971
100 5 40.73 41.01 40.94 40.92 .991 .991 .982
200 5 39.71 40.08 39.93 39.93 .991 .991 .987
400 5 39.23 39.55 39.41 39.41 .991 .991 .989
800 5 38.89 39.27 39.15 39.15 .991 .991 .990

25 10 45.36 45.85 45.99 44.22 .992 .987 .950
30 10 44.30 44.85 44.79 43.63 .991 .988 .959
35 10 43.54 43.61 43.96 43.15 .991 .989 .965
40 10 42.99 43.30 43.36 42.77 .991 .989 .969
45 10 42.65 42.75 42.89 42.44 .991 .989 .972
50 10 42.21 42.42 42.51 42.17 .991 .990 .974
100 10 40.61 40.76 40.80 40.74 .991 .990 .983
200 10 39.66 39.64 39.89 39.88 .991 .991 .987
400 10 39.14 39.44 39.40 39.40 .991 .991 .989
800 10 38.92 39.01 39.15 39.15 .991 .991 .990

Note. C̃PYS·L6=C̃P(t2YS·L6(αp)), C̃PYS·F6=C̃P(t2YS·F6(αp)), C̃Pχ2 =C̃P(χ2
p,αp

), αp = α/15,

χ2
15,0.05/15 = 34.07, χ2

15,0.01/15 = 38.89.
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Table 6: Simulated and approximate values and coverage probabilities for pairwise
comparisons when m = 10 and (p1, p2, p3, p4, p5) = (15, 12, 9, 6, 3)

Sample Size Upper Percentile Coverage Probability

n
(ℓ)
1 n

(ℓ)
2 = n

(ℓ)
3 = · · · = n

(ℓ)
5 t̃ 2simu·p t̃ 2simu·Bon t2YS·L10 t2YS·F10 C̃PYS·L10 C̃PYS·F10 C̃Pχ2

α = 0.05

25 5 41.42 41.91 42.14 41.66 .959 .953 .865
30 5 40.74 41.44 41.38 41.08 .958 .954 .883
35 5 40.21 40.74 40.84 40.64 .958 .955 .896
40 5 39.78 40.36 40.43 40.29 .958 .956 .905
45 5 39.52 40.26 40.11 40.01 .958 .956 .911
50 5 39.26 39.94 39.85 39.78 .958 .957 .917

100 5 38.14 38.82 38.67 38.66 .957 .957 .938
200 5 37.49 37.94 38.04 38.04 .958 .958 .948
400 5 37.21 37.59 37.72 37.72 .957 .957 .953
800 5 37.06 37.66 37.55 37.55 .957 .957 .955

25 10 40.72 41.30 41.61 40.64 .960 .949 .884
30 10 40.16 40.75 40.94 40.29 .960 .952 .897
35 10 39.73 40.30 40.47 40.01 .959 .954 .907
40 10 39.42 39.97 40.12 39.78 .959 .955 .913
45 10 39.20 39.81 39.84 39.58 .958 .955 .918
50 10 38.98 39.63 39.62 39.42 .958 .956 .922

100 10 38.05 38.43 38.58 38.55 .957 .957 .939
200 10 37.48 38.05 38.02 38.01 .957 .957 .949
400 10 37.18 37.71 37.71 37.71 .957 .957 .953
800 10 37.06 37.63 37.55 37.55 .957 .957 .955

α = 0.01

25 5 47.37 47.72 47.75 47.18 .991 .989 .957
30 5 46.47 46.93 46.83 46.47 .991 .990 .965
35 5 45.87 46.13 46.18 45.94 .991 .990 .970
40 5 45.36 45.40 45.69 45.52 .991 .990 .973
45 5 45.05 45.41 45.30 45.18 .991 .990 .975
50 5 44.75 45.20 44.99 44.90 .991 .990 .977

100 5 43.34 43.74 43.57 43.55 .991 .991 .985
200 5 42.60 42.50 42.82 42.82 .991 .991 .988
400 5 42.18 42.55 42.43 42.43 .991 .991 .989
800 5 42.00 42.48 42.23 42.23 .991 .991 .990

25 10 46.47 46.82 47.12 45.94 .992 .988 .965
30 10 45.77 46.13 46.31 45.52 .992 .989 .970
35 10 45.30 45.62 45.74 45.18 .991 .990 .974
40 10 44.91 45.17 45.31 44.90 .991 .990 .976
45 10 44.61 44.81 44.98 44.67 .991 .990 .978
50 10 44.43 44.87 44.71 44.47 .991 .990 .979

100 10 43.24 43.29 43.46 43.42 .991 .991 .985
200 10 42.59 43.27 42.79 42.78 .991 .991 .988
400 10 42.17 42.29 42.42 42.42 .991 .991 .990
800 10 41.96 42.11 42.23 42.23 .991 .991 .990

Note. C̃PYS·L10=C̃P(t2YS·L10(αp)), C̃PYS·F10=C̃P(t2YS·F10(αp)), C̃Pχ2 =C̃P(χ2
p,αp

), αp = α/45,

χ2
15,0.05/45 = 37.39, χ2

15,0.01/45 = 42.03.
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Table 7: Simulated and approximate values and coverage probabilities for comparisons
with a control when m = 6 and (p1, p2, p3, p4, p5) = (15, 12, 9, 6, 3)

Sample Size Upper Percentile Coverage Probability

n
(ℓ)
1 n

(ℓ)
2 = n

(ℓ)
3 = · · · = n

(ℓ)
5 t̃ 2simu·c t̃ 2simu·Bon t2YS·L6 t2YS·F6 C̃PYS·L6 C̃PYS·F6 C̃Pχ2

α = 0.05

25 5 35.54 36.06 35.96 35.38 .955 .948 .857
30 5 34.59 35.15 35.06 34.71 .955 .951 .878
35 5 33.96 34.47 34.43 34.20 .955 .953 .891
40 5 33.54 33.99 33.96 33.80 .955 .953 .900
45 5 33.19 33.66 33.60 33.48 .955 .954 .906
50 5 32.89 33.35 33.31 33.22 .955 .954 .912
100 5 31.60 32.03 31.98 31.97 .955 .955 .935
200 5 30.86 31.29 31.29 31.29 .955 .955 .946
400 5 30.54 30.89 30.94 30.94 .955 .955 .951
800 5 30.34 30.74 30.76 30.76 .956 .956 .953

25 10 34.72 35.20 35.36 34.20 .957 .944 .875
30 10 34.04 34.55 34.57 33.80 .956 .947 .890
35 10 33.52 33.97 34.02 33.48 .956 .949 .900
40 10 33.11 33.62 33.61 33.22 .956 .951 .908
45 10 32.82 33.30 33.30 33.00 .956 .952 .913
50 10 32.62 33.06 33.05 32.82 .955 .953 .917
100 10 31.46 31.85 31.89 31.85 .955 .955 .937
200 10 30.85 31.29 31.26 31.26 .955 .955 .946
400 10 30.53 30.94 30.93 30.93 .955 .955 .951
800 10 30.37 30.75 30.76 30.76 .955 .955 .953

α = 0.01

25 5 42.34 42.64 42.53 41.78 .990 .989 .951
30 5 41.16 41.50 41.37 40.91 .991 .989 .961
35 5 40.31 40.55 40.55 40.25 .991 .990 .967
40 5 39.74 39.96 39.95 39.74 .991 .990 .970
45 5 39.35 39.44 39.48 39.33 .990 .990 .973
50 5 38.91 39.17 39.11 39.00 .991 .990 .976
100 5 37.31 37.42 37.41 37.40 .990 .990 .984
200 5 36.43 36.62 36.54 36.53 .990 .990 .987
400 5 35.93 36.04 36.09 36.09 .991 .991 .989
800 5 35.63 35.84 35.86 35.86 .991 .991 .990

25 10 41.37 41.54 41.76 40.25 .991 .987 .960
30 10 40.45 40.70 40.74 39.74 .991 .988 .966
35 10 39.73 39.82 40.03 39.33 .991 .989 .971
40 10 39.17 39.34 39.50 39.00 .991 .989 .974
45 10 38.84 39.08 39.10 38.72 .991 .990 .976
50 10 38.60 38.79 38.77 38.48 .991 .990 .977
100 10 37.13 37.30 37.29 37.24 .991 .990 .984
200 10 36.34 36.46 36.50 36.49 .990 .990 .987
400 10 35.95 36.13 36.08 36.08 .990 .990 .989
800 10 35.65 35.82 35.86 35.86 .991 .991 .990

Note. C̃PYS·L6=C̃P(t2YS·L6(αc)), C̃PYS·F6=C̃P(t2YS·F6(αc)), C̃Pχ2 =C̃P(χ2
p,αc

), αc = α/5,

χ2
15,0.05/5 = 30.58, χ2

15,0.01/5 = 35.63.
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Table 8: Simulated and approximate values and coverage probabilities for comparisons
with a control when m = 10 and (p1, p2, p3, p4, p5) = (15, 12, 9, 6, 3)

Sample Size Upper Percentile Coverage Probability

n
(ℓ)
1 n

(ℓ)
2 = n

(ℓ)
3 = · · · = n

(ℓ)
5 t̃ 2simu·c t̃ 2simu·Bon t2YS·L10 t2YS·F10 C̃PYS·L10 C̃PYS·F10 C̃Pχ2

α = 0.05

25 5 35.64 36.24 36.29 35.91 .957 .953 .894
30 5 35.07 35.71 35.68 35.44 .957 .954 .906
35 5 34.65 35.28 35.25 35.09 .957 .955 .914
40 5 34.33 34.88 34.92 34.81 .957 .956 .920
45 5 34.07 34.66 34.66 34.58 .957 .956 .925
50 5 33.92 34.54 34.46 34.40 .957 .956 .927

100 5 32.96 33.52 33.50 33.49 .957 .957 .943
200 5 32.43 32.98 33.00 33.00 .958 .958 .951
400 5 32.19 32.72 32.74 32.74 .957 .957 .954
800 5 32.10 32.65 32.60 32.60 .957 .957 .955

25 10 35.06 35.63 35.86 35.09 .959 .950 .906
30 10 34.59 35.23 35.33 34.81 .959 .953 .915
35 10 34.32 34.91 34.95 34.58 .958 .953 .920
40 10 34.05 34.67 34.67 34.40 .957 .954 .925
45 10 33.84 34.43 34.45 34.24 .957 .955 .928
50 10 33.67 34.25 34.27 34.11 .957 .956 .931

100 10 32.87 33.40 33.43 33.41 .957 .957 .944
200 10 32.44 32.99 32.98 32.97 .957 .957 .950
400 10 32.23 32.76 32.73 32.73 .957 .957 .953
800 10 32.07 32.64 32.60 32.60 .957 .957 .955

α = 0.01

25 5 41.78 41.96 42.14 41.66 .991 .990 .968
30 5 41.19 41.60 41.38 41.08 .991 .990 .972
35 5 40.57 40.91 40.84 40.64 .991 .990 .976
40 5 40.12 40.33 40.43 40.29 .991 .990 .978
45 5 39.85 39.97 40.11 40.01 .991 .990 .980
50 5 39.60 39.88 39.85 39.78 .991 .990 .981

100 5 38.45 38.67 38.67 38.66 .991 .991 .986
200 5 37.78 38.02 38.04 38.04 .991 .991 .989
400 5 37.45 37.82 37.72 37.72 .991 .991 .990
800 5 37.34 37.44 37.55 37.55 .991 .991 .990

25 10 41.07 41.21 41.61 40.64 .991 .989 .973
30 10 40.48 40.76 40.94 40.29 .991 .989 .976
35 10 40.12 40.32 40.47 40.01 .991 .990 .978
40 10 39.82 39.98 40.12 39.78 .991 .990 .980
45 10 39.52 39.76 39.84 39.58 .991 .990 .981
50 10 39.32 39.43 39.62 39.42 .991 .990 .982

100 10 38.36 38.64 38.58 38.55 .991 .991 .987
200 10 37.79 38.04 38.02 38.01 .991 .991 .989
400 10 37.51 37.69 37.71 37.71 .991 .991 .990
800 10 37.30 37.62 37.55 37.55 .991 .991 .990

Note. C̃PYS·L10=C̃P(t2YS·L10(αc)), C̃PYS·F10=C̃P(t2YS·F10(αc)), C̃Pχ2 =C̃P(χ2
p,αc

), αc = α/9,

χ2
15,0.05/9 = 32.47, χ2

15,0.01/9 = 37.39.
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