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Abstract

In this article, we consider tests for mean vectors when each data
set has a monotone missing data pattern. We obtain the simplified
Hotelling’s T2%-type statistics and their approximate upper percentiles
in the case of data with general k-step monotone missing data patterns.
We also consider multivariate multiple comparisons for mean vectors with
general k-step monotone missing data. Approximate simultaneous confi-
dence intervals for pairwise comparisons among mean vectors and com-
parisons with a control are obtained using Bonferroni’s approximation
procedure. Finally, the accuracy and asymptotic behavior of the approx-
imations are investigated by Monte Carlo simulation.
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1 Introduction

The one-sample and two-sample problems of testing for mean vectors with monotone
missing data are considered in this study. The case in which the missing observations
are of the monotone type has been considered by several authors, including Rao (1956),
Anderson (1957), and Bhargava (1962). The closed form expressions for the maximum
likelihood estimators (MLEs) of the mean vector and the covariance matrix in the case
of k-step monotone missing data under multivariate normality were derived by Jinadasa
and Tracy (1992). Kanda and Fujikoshi (1998) discussed the distribution of the MLEs in
the case of k-step monotone missing data. These results were derived for the one-sample
problem. In the case of a two-step monotone missing data pattern, the usual Hotelling’s
T? statistic and various properties were derived by Chang and Richards (2009) and Seko,
Yamazaki and Seo (2012), among others. Further, for the case of a three-step mono-

tone missing data pattern, Krishnamoorthy and Pannala (1999) derived the Hotelling’s
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T? statistic and F' approximation, and Yagi and Seo (2014) gave a simplified Hotelling’s
T?-type statistic and its approximation to the upper percentiles under the one-sample
problem. In the two-sample problem in a case of a two-step monotone missing data pat-
tern, Seko, Kawasaki and Seo (2011) derived a Hotelling’s T? statistic, the likelihood ratio
test statistic, and their approximate upper percentiles. In addition, Yu, Krishnamoorthy
and Pannala (2006) derived the Hotelling’s T2 statistic and its approximate distribution
using another approach. Seko (2012) discussed tests for mean vectors with two-step mono-
tone missing data for the m-sample problem. In the case of three-step monotone missing
data, Yagi and Seo (2015b) used the concepts of Yagi and Seo (2014) to determine the
approximate upper percentiles of the simplified Hotelling’s T?-type statistic for the two-
sample problem. In this article, for the two-sample and m-sample problems, we propose a
simplified Hotelling’s T%-type statistic and its approximate upper percentile in the case of
general k-step monotone missing data. This result is an extension of Yagi and Seo (2014,

2015D).

The remainder of this article is organized as follows. In Section 2, some preliminary
notations, the MLEs of the mean vectors, and the common covariance matrix for the m-
sample problem are given in the case of k-step monotone missing data. In Section 3, for the
one-sample problem, we discuss the test for the mean vector in the case of k-step monotone
missing data. Further, we give the Hotelling’s T?-type statistic to test the equality of
two mean vectors and their approximate upper percentiles in the case of k-step monotone
missing data. In addition, we discuss the Hotelling’s T?-type statistics when two data sets
have unequal monotone missing data patterns. We also present simultaneous confidence
intervals for multiple comparisons among mean vectors under the two-sample and m-
sample problems. In order to obtain the simultaneous confidence intervals, we derive the
approximate upper percentiles of the T2, -type statistics by Bonferroni’s approximation.

max

Finally, in Section 4, we give the simulation results and state our conclusions.

2 Monotone missing data and MLEs

In this section, we consider the MLEs of the mean vectors and the covariance matrix for

the m-sample problem in the case of k-step monotone missing data. We assume that m
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covariance matrices are equal and unknown. We first present some notations, definitions,
and the setting in this aricle. Then, we derive the MLEs using the derivation of Yagi and
Seo (2015b).

2.1 k-step monotone missing data

Let « be distributed as N,(u, X) and let ; = (x); be the subvector of & containing
the first p; components of . Then, x;(= (x1, 22, ..., xy,)") is distributed as N, (u;, %;),
i=1,2,...,k, withp=p >py>--->pp >0, where pu; = (); = (11, plo, - - ., ptp,)’ and
3; is the p; x p; principal submatrix of ¥(= X;). Suppose we have n; observations on

T, ny observations on &, - - -, ng observations on . If x;; denotes the jth observation

on x;, then the k-step monotone missing data set is of the form

Ly
!/
wlnl
/
T * *
x! * *
2n2
)
* % *
* % *

where “x” indicates a missing observation. We now define Ny = 0 and N; ;1 = Z;Zl ng, i =
1,2,...,k.
Further, for the covariance matrix, let ¥; = 3 and, for 1 <i < j <k, let (3;); be the
principal submatrix of 3; of order p; x p;; we define
Yitr Yigip
Y= ()i, S == (o7 o
#1 = (B, 2 (E;H,z Yit13

and

Y S
Ei=<2f“ 2“’2)),@':1,2,...,/@—1.
(1,2) (4,3)

We use these notations, which are based on Jinadasa and Tracy (1992) and Yagi and Seo

(2015b), throughout this article.



2.2 The MLEs of the mean vectors and the covariance matrix

Using the notations in Subsection 2.1, we consider the MLEs of the mean vectors and

the common covariance matrix for the m-sample problem.

Let zcgl),a:g),..., , be distributed as Npl(ug , %) for i = 1,2,... )k and ¢ =

zn

1,2,...,m, where ,1,() © O ©

where p =p; > py > -+ > pr > 0, Zgzlngz)—mZka. Let

(1’)
=0
’l - f) Zj Y
n;

e
B =) (@) —z)(@] "), i=12... .k
j=1

j=1
Vzm—ZnZ(Z),z—l,Z,...,k:, Mi.m:ZNZ(@,Z:LQ, Jk+1,
/=1 (=1
©_ —© 0 "o 1 o 00
dl _ _l ) dz ;g |:_Z ) n] (E] )l:|7 L= 2737 7k7
NO NG 2

T1:Ip17 T’H—l:( /Ipi+21_1>’ Z:1a2a7k_1

(4,2) “it1

The MLEs of ¥ and ¥ are given in the following theorem.

o= (s .oy ) and X; s the p; X p; covariance matrix,

Theorem 1. Let zc@) =1,2,...,k, j=1,2,... (e) ¢=1,2,...,m be the j-th random

vector of the i-th step from the (-th population distributed as N, (lh ), 3.
MLEs of pt9, ¢ =1,2,...,m are given by

Z?“

where

PN O L R I I R

W~

Then, the



! ] ~pl] ~
o" -1, 0" -0"7

7

= ol i .
Tl :IPU TEi}l = <A[pl]/pj[1pl}_1> , 1= 17277k_17
Yt

then, the MLE of the covariance matrixz is given by

Skd ©® Fr | gO Vim <f) pl’
S YDl L S

=1 i=2
where © 0
N N. ,
H =EY, B =B + ~5*=dld, i=23..
n;
L0 = O, D0~ (L0 O =25k
(0) €
O _ 7® o _ [ Lix L -
Ly =(L;")in1, L;” = (LES)/ ng)) ,i=12... k=1
and

P -GBS FGH. =23k
1

Pi+1
G :I17 Ggpl]: O (=)t R 221,2,,k—1
1 P +1 (ZLZ(Z)> (ZL§1)>
/=1 /=1

The above result of Theorem 1 is an extension of Theorem 1 in Yagi and Seo (2015b).

Further, we note that this result can be applied to the case in which the data sets have

unequal monotone missing data patterns.

3 A simplified Hotelling’s T*-type statistic

In this section, we first consider the one-sample problem of the test for the mean

vector with k-step monotone missing data. We present the simplified Hotelling’s T?-type

statistic and its approximate upper percentiles using the MLEs in the previous section.

As in the case of the one-sample problem, we also consider the tests for the equality of two

mean vectors and the simultaneous confidence intervals for any and all linear compounds

of the mean. Further, we consider the simultaneous confidence intervals for the pairwise

comparisons and the comparisons with a control under the m-sample problem with k-step

monotone missing data.



3.1 Omne-sample problem
In this subsection, we consider the following hypothesis test with a k-step monotone
missing data pattern:

Hy:p = pg vs. Hy: p # pg,

where p is known. Without loss of generality, we can assume that g, = 0. To test the

hypothesis Hj, we consider the simplified Hotelling’s T?-type statistic given by

where 1 = Zle }i, T = C/(;/[ﬁ], and pr = Zle fi- In this article, we use the Hotelling’s
T2-type statistic with T' instead of T'(= 6&7[;7,]) since Cov[fi] is complicated and I' and

T are asymptotically equivalent. Then, we have the following theorem.

Theorem 2. If the data have a k-step monotone pattern of missing observations, then
the covariance matriz of p is given by

k
1
N:—E S !
Covla] N, Tt ZNNZHU Ui

Proof. First, since Cov|p] = E[ptft] — pp’ and f1 = Zle f:, we have

Blid] = EIf, £} + ZE[frfi]Jr?{ZE[flf +2 2 Flf ]

r=2

Further, using the following results,

1
E[f1f,1] = n_lzl + N1N,17

Elf.f)] = NN+1UEU’ r=2.3,...,k
Ng >
E[flf;]:_NN+1 (2/2>U/ 822737"'aka

and

E[f,f.]=0, 2<r<s<k,
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we obtain

Therefore,

since U, X, = (;J,;) O

For a two-step monotone missing data pattern, Yagi and Seo (2015a) gave Cov(i)
as well as Cov(p), and Seko et al. (2012) discussed the usual Hotelling’s T? statistic,
T2 =5 filﬁ, and its null distribution using other definitions.

We note that under H,, the T?-type statistic is asymptotically distributed as a x>
distribution with p degrees of freedom when n;, Ny 11 — oo with ny /Ny, — 6 € (0,1].
However, it has been noted that the x? approximation is not a good approximation to the
upper percentile of the T?-type statistic when the sample is not large. Using the same
concept for three-step monotone missing data used by Yagi and Seo (2014), we propose
the approximate upper percentile of the T 2 statistic since it is difficult to find the exact

upper percentiles of the Tf statistic.

Theorem 3. If the data have a k-step monotone pattern of missing observations, then

the two kinds of approximate upper 100a percentiles of the Tf statistic are given by

t%SLl(a) = (1 - w1>T31,a + wlT]%/’kJrl,av

*
t2 ( ) nip1
Ys-Fl * P1,n] —P1,%)
ny—D1
where
2 p 2 _ Niaps
ni,a p1,m1—p1,00 LN 00 P1,Nk+1—p1,0
ni—p + Niy1— ;1

k 1 k
_ Zi:Q 1iDi .
w1 = k y My = — nipi,
P1Y oM -

and F, 4 o 15 the upper 100c percentile of the I distribution with p and q degrees of freedom.
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Further, we consider the simultaneous confidence intervals for any and all linear com-
pounds of the mean when the data have k-step monotone missing observations. Using
the approximate upper percentiles of ZN? , for any nonnull vector ¢ = (¢, ¢z,...,¢,)’, the

approximate simultaneous confidence intervals for ¢'u are given by
dp € [€fi+ tapi(0){cTec}?], Vee R’ - {0},

where 7, (a) is the value of t3 | (@) or 3 ., (). For three-step monotone missing data,

see Yagi and Seo (2014).

3.2 Two-sample problem

In this section, we test the equality of two mean vectors with k-step monotone missing
data. We give the simplified T?-type statistic and its approximate upper percentiles in
the case of unequal monotone missing data. Further, we consider multiple comparisons
among mean vectors with k-step monotone missing data.

To test the hypothesis Hy : p = u® vs. H; : p® # p® when two data sets
have the same k-step monotone missing data pattern, we adopt the Hotelling’s T?%-type

statistic given by
~ —~ ~ =Pt ~
T3 = (#(1) - IJ(Q))/ I (ﬂ(l) - N(2))

)

where 5" Zz 1fZ , £ =1,2, and ™ is an estimator of Cov[pV — p?], pl¥ =
Zz’:l fﬁ“, ¢ = 1,2. Then, using the result for the one-sample problem in the previous

subsection, we have

( ) 4

2k
=[pl] S [pl] [pl] &Pl [l
r =1__ "1 E E Y. U,
1) (2 1 £) i i
( ( ) {=1 i=2 N Nz(-‘rl
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where f][pl] is the MLE when m = 2 in Theorem 1.

We note that under H,, @2 is asymptotically distributed as a y? distribution with
p degrees of freedom when ngé),N,ﬁl — 0o with %”/N,ﬁﬁl — 09 € (0,1, ¢ = 1,2.
However, as with the one-sample problem, we note that the x? approximation is not a
good approximate upper percentile of the @2 statistic when the sample size is not large.

To obtain an approximation that is accurate even for a small sample, we use the following

theorem.



Theorem 4. Suppose that two data sets have the same k-step monotone missing data

pattern. Then, the two approximate upper 100a percentiles of the @2 statistic are given

by
2 _ 2 2
tYS~L2(a) - (1 - w2)Tul.2,a + wQTMkHAQ,on
k
t2 (OJ) . NopP1 . )
. - Mo — —1l,«@
YS-F2 n; —py — 1 p1,m5—P1 ’
where
k k
_ Zz‘:Q Vi-oPi .
Wy = k y Mg = — Vi.2Di,
P1 Zi:2 Vi-2 P i=1
2 . VioP1 T2 . M 1201
vio,a pi,vi2—pi—Llas LMy 0,00 T p1,Mi41.2—p1—1,a)
vig—pr—1 2 Myj10—p1—1

and F, 4 o is the upper 100c percentile of the F' distribution with p and q degrees of freedom.

— pl\
i
—P3— /
n(2)
I 3
I,

Figure 1: Unequal two-step monotone missing data patterns

Further, we test the equality of two mean vectors when two data sets have unequal
general step monotone missing data patterns. For example, the two data sets II; and II,
are of the forms given in Figure 1. Then, we can apply the results of Theorem 1 if we put
nz(,)l) =0 and ng) = 0. For details, see Yagi and Seo (2015b).

Next, under the two-sample problem, we consider the simultaneous confidence intervals
when each data set has k-step monotone missing observations.

For any nonnull vector ¢ = (¢q,¢o,...,¢,)’, the simultaneous confidence intervals for

c/ (M — p?) with the confidence level (1 — ) are given by

¢(n® — u?) € [ (@Y — @®) £ ta(a){¢T e}, ], Ve e R — {0},
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-1
where #2(a) is the upper 100a percentile of the T2(= (G — ﬁ(g))T[pl] B — 5?y)

W _ G, However, it is not easy to obtain

statistic and o is an estimator of Cov|u
t2(a). Therefore, using the approximate upper percentiles of the T2 statistic, 24, ()
or 12 .o(c), for any nonnull vector ¢ = (c1,c¢a,...,¢,), the approximate simultaneous

confidence intervals for ¢/(u™ — p®) can be obtained by

-~ ~ ~[pl
(D = u®) € [(BY = 5?) £ tappo() (T e}H], ve € R — {0},

where the value of 2, () is t55 () or 135 o(a).

3.3 Simultaneous confidence intervals for multiple comparisons
among mean vectors
Under the m-sample problem, we consider the simultaneous confidence intervals for pair-
wise multiple comparisons among mean vectors when each data set has k-step monotone
missing observations. We also consider and construct the simultaneous confidence inter-
vals for comparisons with a control. Let a:z(f), zcgg), o a:(é)(e) be distributed as IV, (,u,(»z) 3

1 )

fori=1,2,...,kand £ =1,2,...,m. Further, we deﬁne the T2 statistic as

max-p

TI?laX ‘P = max T
1<a<b<m
1 Ipl
where T2 = (a'™ — a® ))’I‘[;;] (5 — ™) and I‘[Cf;} is an estimator of Cov[a® — ™).

Then, for the case of pairwise multiple comparisons, the simultaneous confidence intervals

for ¢/ ('@ — u®), 1 < a < b < m are given by

l 1
() — u®) € [ (A = BY) £ taep(@) [T ¢} ],

1<a<b<m, Vee R’ —{0},

where ¢7,. () is the upper percentile of the 772, statistic.

Similarly, for the case of comparisons with a control, let u(® be a control and define

the T2 statistic as

max-c
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Then, the simultaneous confidence intervals for ¢/(u™ — p®), 2 < b < m are given by

bl 1

C/(M(l) - H(b)) S [C/(ﬁ(l) - ﬁ(b)) + tmaXf( ){C I'yc }7]
2<b<m, Ve e R’ - {0},

where t2__ («) is the upper percentile of the T2, statistic.

and 2 .(a) even under non-missing multi-

However, it is not easy to obtain t7,,. (a) 2 e

variate normality (see Seo and Siotani (1992), Seo, Mano and Fujikoshi (1994)). Therefore,
in this article, we adopt Bonferroni’s approximation, which is one of the solutions to this
problem. Let nl(l) = n,@’ =... = nz(»m), i =1,2,...,k; then, the null distributions of T?

and T} are identical. Their approximate simultaneous confidence intervals for pairwise

comparisons and comparisons with a control are given by

~[pl]

(@ — p®) e [C/@(a) — ) + tpon () {c T ¢ }l]

1<a<b<m, Vee R’ — {0},

and

~I[pl] 1

I = u) € [¢(@" = i)  toon (e {<Th e}

2<b<m, Yee R’ — {0},

respectively, where the value of 3, () is t2¢ ;. (ap) or 24 1

S im (o) and the value of t3 ()

is 12, . (ae) or t2, .. (a.), which are given in the following Theorem 5, and
200 Q
Q= ——, Qe = .
Prmim—1) 7 m—1

~[pl ~[pl alpl
We note that I‘([lpb} and I‘[ﬁj} are estimated by the use of s7 Theorem 1.

Theorem 5. Suppose that m data sets have the same k-step monotone missing data pat-
tern. Then, the two approximate upper 100c percentiles of the T, and T? statistics

max-p max-C

are given by

tEKSLm(OéP) = (1 - wm)Tle.m,ap + me]%/[k+1.m,ap’

YS»Fm(aP) = n;kn —p — (m _ 1>Fpl7n:n_171—(m_1)7ap’
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and

t%{s-Lm(O‘C> - (1 - wm)TVzl»m#Xc + meZ

My 1.m,0c?
*
s rm () = ~mbl u-p1—(m-1)
vs.Frm\“c) — p1,ny,—p1—(m—1),ac»
ny, —p1— (m—1)
m
respectively, where
k k
_ 20 _ @ Yo VimPi . 1
ap_m(m—1)7ac_m—1’wm_ k » Mm = 2 Vimbi
D1 Zi:Q Viom P
T2 V1imP1
Vlm,ox Ulm — pl _ (m _ 1) Pl,l’l-7n*p1*(m*1)7a7
2 M 1.mp1

F

- M .m—p1—(m—1),
Mk+1,m,a Mk+1.m _ pl _ (m _ 1) P1,MEg41.m—P1 (m )0”

and F, 4 o 15 the upper 100c percentile of the I distribution with p and q degrees of freedom.

4 Simulation studies

In this section, we investigate the accuracy and asymptotic behavior of the approxima-
tions for the upper percentiles of Hotelling’s T-type statistic for one-sample, two-sample,
and m-sample problems by Monte Carlo simulation. We provide the simulated upper

percentiles and their approximations for selected parameters.

4.1 One-sample problem

For the one-sample problem, we compute the upper percentiles of the Hotelling’s T-
type statistic with k-step monotone missing data using Monte Carlo simulation (10° runs).
That is, the Tf statistic is computed 10° times based on the normal random vectors gen-
erated from N, (0, I,,). Note that the Hotelling’s T%-type statistics with monotone missing
data are asymptotically invariant under the nonsingular transformation. In particular, we
evaluate the accuracy of the proposed approximations in Theorem 3 for the one-sample
problem.

Tables 1 and 2 give the simulated upper 100« percentiles of the ff statistic with five-
step and ten-step monotone missing data patterns. That is, we provide £2, (= t2,..1(a))

12



for the following cases:

Five-step Case:  (p1, pa, p3, P4, p5) = (15,12,9,6,3),
ny = 25(5)50, 100, 200,400,800, ny =ng = --+ =ns = 5, 10,
a = 0.05,0.01.

Ten-step Case:  (p1, pa, P3, P4, Ps, D6, D7, Pss Po, P10) = (20, 18,16, 14,12, 10, 8, 6, 4, 2),
ny = 25(5)50, 100, 200,400, 800, ny = ng = --- = njy = 5, 10,

a = 0.05,0.01.

These tables also give the approximations to the upper percentiles of the Tf statistic, that
is, 12, (= t2, ,(a)) and 2, ,,(= t3, ,,(a)) in Theorem 3. In addition, we provide the
simulated coverage probabilities for the approximate upper percentiles in Tables 1 and 2,

which are given by

CP(t%SLl(a)) = 1 - Pr{TIQ > t?zsn (Oz)},
CP(t24 () = 1 = Pr{T? > 2 .1 (a)},

CP(x2.) =1 Pr{T? > 2.}

It may be noted from Tables 1 and 2 that the simulated values, t2_ (), are closer to the
upper percentiles of the x? distribution when the sample size n; becomes large. However,
the upper percentiles of the x? distribution, sza, are not good approximations to those
of the Tf statistic for small sample sizes. At the same time, the proposed approximate
upper percentiles t2, | and 2 ., are good even for small sample sizes; in particular, t2

is considerably good for all cases.

4.2 Two-sample problem

To investigate the accuracy of some of the approximations under the two-sample and m-

sample problems, we compute the upper percentiles of the T;?, Tanax.p and T:?lax.c statistics

by Monte Carlo simulation (10° runs). As with the one-sample problem in Subsection

4.1, the T2, i%ax,p, and T2, _ statistics are computed 10° times for each set (a, p;, n\")
O

of parameters based on the normal random vectors ;;’ generated from N, (0, I},).
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The simulation results related to the upper percentiles of the TQQ statistic and their ap-
proximations in the cases of five-step and ten-step monotone missing data are summarized

in Tables 3 and 4. Computations are carried out for the following two cases:

Five-step Case:  (p1, pe, p3, s, p5) = (15,12,9,6, 3),
n{" = n? = 25(5)50, 100, 200, 400, 800,
ny) =ng) =...=n{" =510, £=1,2,

a = 0.05,0.01.

Ten_Step Case: (php?vp37p47p57p6ap7ap8ap9ap10) = (20, 187 167 14a 127 107 87 67 4a 2)a
nY = nl® = 25(5)50, 100, 200, 400, 800,
ny) = ngf) == n%) =5,10, { =1,2,

a = 0.05,0.01.

Tables 3 and 4 give the simulated upper 100a percentiles of the T2 statistic (t2. o)),
the approximate upper 100 percentiles of T2 (£2. (), 124 .o()), and the upper 100a
percentiles of the y* distribution with p degrees of freedom (x? ). In the tables, we denote
12 0(a), 2 o(a), and 2, () as 12,5, 1210, and t2; ., respectively. In addition, we
provide the simulated coverage probabilities for the approximate upper 100a percentiles

given by
CP(t%s L2( )) =1- PI‘{T2 > tYS L2< )}7
CP(tzs F2( )) =1- PI{T2 > tYS F2( )}7

615()(;27,04) =1- Pl"{f; > X?),a}'

It may be noted from Tables 3 and 4 that the simulated values are not close to the

upper percentiles of the y? distribution even when the sample size ngg) is moderately

large. However, the proposed approximations are accurate even for cases in which nﬁ”
is not large. In particular, the values of t2, ,(a) are highly accurate for all cases. In
other words, the simulated coverage probabilities for t2, ,(«) are considerably close to

the nominal level 1 —a. For simulation results in the case of three-step monotone missing
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data, see Yagi and Seo (2015b). Thus, it can be concluded that the approximation
2, 5(a) is highly accurate even for small samples and unbalanced cases when the data
have a k-step monotone pattern of missing observations.

Next, in order to compare the approximate values with the simulated values in the cases
of pairwise comparisons and comparisons with a control, we compute for the following

case:

Five-step Case: m = 6, 10,

(p1, P2, p3, pa, p5) = (15,12,9,6, 3),

n{? = 25(5)50, 100, 200,400,800, £ =1,2,...,m,
n =nl) =...=n¥ =510, t=1,2,...,m,
a =0.05,0.01.

statistic (£2,...(c)),

simu-p

Tables 5 and 6 give the simulated upper 100« percentiles of the T’

max P

the simulated upper 100y, percentiles of the T statistic (?2

simu-Bon(

ap)), the approxi-

mate upper 100q, percentiles of the T2 2 statistic (2 24 wm(p)), and the upper

YS- Lm( )

100cy, percentiles of the x? distribution with p degrees of freedom (Xp,ap)- The values of

t2 ) are simulated values obtained via Monte Carlo simulation. In the tables, we

simu- Bon(
72 2 72 72 2
tblmu Bon( ) tYS Lm(ap> and tYS Fm(ap> as tsmlu -p? tmmu Bon» tYS rm> and

24 »m» Tespectively. In addition, we provide the simulated coverage probabilities given by

denote tsmlup( a),

CP(tis Lm( )) =1- PI'{ max-p > t%s Lm(ap)}7
CP(t\%s Fm( )) =1- Pl"{ max-p > t?{s Fm(ap)}7

CP(XZQ),ap) = 1 - PI'{ max-p > X?),ap}'

As Tables 5 and 6 show, the simulated values for £2, .. () are larger than the simulated

values for %;Zlmup(a). It may be seen from the tables that the approximate values of

2, .(ap) and 12 . (a,) are closer to the simulated values of £2,,, () when the sample

simu-p

size becomes large. The simulation studies show that 2., () is close to 2, () and
is a conservative approximation.

Tables 7 and 8 list the results for the case of comparisons with a control. We pro-
vide 72,,0(0), 1o (@), g pm(0e), g p(ae), and 22, as well as CP(£2,,,(ac)),
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CP(t3, .. (), and @(Xfwc). The accuracy of the approximations is similar to that in
the case of pairwise comparisons. Additional simulation results are given in Yagi and Seo
(2015b).

In conclusion, we developed the approximate upper percentiles of the Hotelling’s 77-
type statistic for tests of mean vectors with k-step monotone missing data under one-
sample and two-sample problems. Further, we presented the approximate simultaneous
confidence intervals for pairwise comparisons among mean vectors and comparisons with a
control using Bonferroni’s approximation. The proposed approximate values can be easily
calculated, and the accuracy of the approximations is considerably higher than that of

the x? approximations in almost all cases.
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Table 1: Simulated and approximate values and coverage probabilities when
(p17p27p37p47p5) = (157 127 97 67 3)

Sample Size Upper Percentile Coverage Probability
ni Ng=n3 =-+="MnNp %;Qimuq t%sALl t%s.Fl CPys.11 CPys.F1 Csz
o =0.05
25 5 90.68 76.01  57.84 915 .825 .295
30 5 63.22 57.08  50.13 927 .885 .429
35 5 52.04 48.76  45.33 .934 911 527
40 ) 46.20 44.02 42.06 .938 .924 .098
45 5 42.46 40.91  39.69 .940 931 .652
50 5 39.74 38.71  37.90 .943 937 .693
100 5 31.03 30.86  30.79 .948 .948 .850
200 5 27.77 27.76  27.75 .950 .950 .908
400 5 26.34 26.34  26.34 .950 .950 931
800 5 25.71 25.66  25.66 .949 .949 .940
25 10 84.33 71.59  45.33 919 743 .336
30 10 59.05 53.73  42.06 .929 .837 470
35 10 49.08 46.13  39.69 934 .881 .564
40 10 43.95 41.90  37.90 .937 .903 .630
45 10 40.66 39.17  36.49 .940 916 .680
50 10 38.35 37.25  35.36 .942 925 716
100 10 30.69 30.43  30.22 .947 .945 .856
200 10 27.72 27.64  27.61 .949 .949 .908
400 10 26.36 26.31  26.31 .949 .949 931
800 10 25.65 25.65  25.65 .950 .950 941
a=0.01
25 5 145.85 115.84  81.06 978 .930 432
30 5 91.99 80.66  68.40 .982 .964 .588
35 5 72.12 66.53  60.75 .985 976 .692
40 5 62.48 58.84  55.65 .986 981 .759
45 5 56.34 53.96  52.01 .987 .984 .806
50 5 52.17 50.57  49.28 .988 .985 .840
100 5 39.19 38.89  38.78 .989 .989 .946
200 5 34.52 34.45  34.44 .990 .990 974
400 5 32.45 32.45  32.45 .990 .990 .983
800 5 31.54 31.50  31.50 .990 .990 .987
25 10 137.95 109.05  60.75 978 872 .480
30 10 85.96 75.57  55.65 .982 937 .633
35 10 67.84 62.58  52.01 .985 962 127
40 10 59.06 55.68  49.28 .986 972 .788
45 10 53.65 51.37  47.17 .987 978 .829
50 10 49.96 48.41  45.48 .988 .981 .858
100 10 38.48 38.27  37.95 990 .989 .949
200 10 34.34 34.28 34.24 .990 .990 974
400 10 32.48 32.41  32.40 .990 .990 .983
800 10 31.50 31.49  31.49 .990 .990 .987

Note. CPys.1=CP(t35,1(a)), CPys.r1 =CP(t3g py(a)), CP2=CP(x2 ), X15,0.05=25.00,
X%5,o.o1 =30.58.
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Table 2: Simulated and approximate values and coverage probabilities when
(p17p27p37p47p57p67p77p87p97p10) = (207 187 167 147 127 107 87 67 47 2)

Sample Size Upper Percentile Coverage Probability
ny Mg =n3=--=njg %;Qimu.l 2611 24 1 CPysi11 CPysp1  CP,e
o =0.05
25 5 333.46  252.88 67.91 918 447 .082
30 5 119.90 107.28 61.48 .929 .697 .209
35 5 83.24 77.62 56.96 934 .805 .323
40 5 68.57 65.16 53.61 .936 .858 418
45 5 60.78 58.28 51.03 .938 .886 .493
50 5 55.71 53.88 48.99 .940 .904 .554
100 5 40.94 40.49 40.01 .946 .942 .795
200 5 35.79 35.71 35.66 .949 .949 .886
400 5 33.52 33.53 33.52 .950 .950 921
800 5 32.48 32.46 32.46 .950 .950 .936
25 10 316.56  248.27 49.96 .924 .355 126
30 10 108.26 103.34 48.12 .943 .609 277
35 10 74.53 74.21 46.61 .949 743 .400
40 10 62.19 62.18 45.35 .950 .812 491
45 10 55.62 55.65 44.29 .950 .853 .561
50 10 51.68 51.55 43.37 .949 .878 612
100 10 39.78 39.54 38.40 .948 937 .815
200 10 35.55 35.39 35.22 .948 .947 .890
400 10 33.47 33.43 33.41 .950 .949 922
800 10 32.46 32.44 32.43 .950 .950 936
a=0.01
25 5 761.78  509.35 90.38 978 .602 141
30 5 194.43 162.55 80.52 .982 .840 .329
35 5 119.24 107.98 73.73 .984 919 AT7
40 5 93.25 87.16 68.77 .985 951 .588
45 5 80.10 76.24 64.99 .986 .965 .667
50 5 72.07 69.48 62.03 .987 973 726
100 5 50.47 49.97 49.29 .989 .988 915
200 5 43.45 43.37 43.29 990 990 .965
400 5 40.40 40.41 40.40 .990 .990 .980
800 5 38.96 38.97 38.97 .990 .990 .986
25 10 744.34  502.77 63.43 979 .488 .202
30 10 179.29 156.96 60.77 .985 762 414
35 10 107.25 103.17 58.61 .988 .875 .565
40 10 84.32 82.97 56.81 .989 .924 .663
45 10 73.04 72.55 55.30 .990 .948 732
50 10 66.36 66.21 54.00 .990 961 779
100 10 48.87 48.66 47.05 .990 .986 927
200 10 43.10 42.93 42.70 .990 .989 967
400 10 40.33 40.28 40.24 .990 .990 981
800 10 38.97 38.94 38.93 .990 .990 .986

Note. CPys.1=CP(t25.1(q)), CPys.m =CP(t235.01(a)), CP2=CP(x2,), X30.0.05=31.41,
Xgo,o.m =37.57.
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Table 3: Simulated and approximate values and coverage probabilities when
(p17p27p37p47p5) = (157 127 97 67 3)

Sample Size Upper Percentile Coverage Probability
n{? nfl=nfl=-.. =nff lomue  Bsi2 Bsr CPysi2 CPyspy CPye
a=0.05
25 5 39.37 38.20 36.09 .942 923 .697
30 5 36.16 35.39 34.23 .944 .933 754
35 5 34.14 33.61 32.91 .945 .939 .790
40 5 32.78 32.38 31.91 .946 941 .815
45 5 31.77 31.46 31.14 .947 944 .835
50 5 30.98 30.76 30.52 .948 .945 .850
100 5 27.83 27.78 27.75 .949 .949 907
200 5 26.39 26.38 26.37 .950 .950 .930
400 5 25.66 25.68 25.68 .950 .950 941
800 5 25.33 25.34 25.34 .950 .950 .945
25 10 37.50 36.76 32.91 .944 .905 .730
30 10 34.77 34.23 31.91 .945 921 778
35 10 33.03 32.66 31.14 .947 931 .810
40 10 31.90 31.58 30.52 .947 .936 .831
45 10 31.07 30.79 30.02 947 .939 .848
50 10 30.44 30.18 29.60 .947 941 .859
100 10 27.67 27.59 27.50 .949 .948 .909
200 10 26.33 26.32 26.31 .950 .950 931
400 10 25.67 25.67 25.67 .950 .950 941
800 10 25.36 25.34 25.34 .950 .950 .945
a=0.01
25 5 51.50 49.73 46.46 .987 981 .844
30 5 46.64 45.48 43.72 .988 .984 .886
35 5 43.50 42.85 41.79 .989 .987 910
40 5 41.57 41.03 40.35 .989 .987 .926
45 5 40.15 39.71 39.23 .989 .988 .938
50 5 38.96 38.69 38.35 .989 .989 .946
100 5 34.48 34.46 34.42 .990 990 974
200 5 32.54 32.49 32.49 .990 .990 .983
400 5 31.54 31.53 31.53 .990 .990 .987
800 5 31.05 31.05 31.05 .990 .990 .989
25 10 48.73 47.66 41.79 .988 973 .869
30 10 44.52 43.82 40.35 .989 .980 .903
35 10 41.93 41.49 39.23 .989 .984 .924
40 10 40.23 39.91 38.35 .989 .986 .936
45 10 39.03 38.75 37.63 .989 .987 .945
50 10 38.09 37.87 37.03 .990 .987 951
100 10 34.26 34.19 34.06 .990 .989 975
200 10 32.42 32.41 32.39 .990 .990 .984
400 10 31.46 31.51 31.51 .990 .990 .987
800 10 31.11 31.05 31.05 .990 990 .988

Note. CPys.1o=CP(t3g15(c)), CPys.po=CP(3g po()), CPy2=CP(x24), XT5.0.05=25.00,
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Table 4: Simulated and approximate values and coverage probabilities when
(p17p27p37p47p57p67p77p87p9>p10) = (207 187 16a 147 127 107 87 67 47 2)

Sample Size Upper Percentile Coverage Probability
ngf) ngg): ”:(f): = n%) i%muQ t%sm t%{SFQ CPysi2 CPyspa  CPye
a=0.05
25 5 53.21 53.05 44.01 .949 .872 .589
30 5 47.92 47.61 42.42 .948 .902 .670
35 5 44.74 44.50 41.19 .948 918 721
40 5 42.78 42.47 40.20 .948 .926 758
45 5 41.34 41.03 39.40 .947 .932 .786
50 5 40.19 39.94 38.72 .948 .936 .805
100 5 35.69 35.56 35.39 .949 .947 .887
200 5 33.56 33.51 33.49 .950 .949 .921
400 5 32.48 32.48 32.47 .950 .950 .936
800 5 31.95 31.95 31.95 .950 .950 .943
25 10 48.81 51.37 39.05 .963 .847 .661
30 10 44.62 46.14 38.43 .960 .884 727
35 10 42.30 43.20 37.91 .956 .904 767
40 10 40.72 41.31 37.46 .955 916 797
45 10 39.58 39.98 37.06 .953 .924 .818
50 10 38.77 39.00 36.72 .952 .929 .832
100 10 35.20 35.14 34.71 .949 .945 .895
200 10 33.41 33.36 33.29 .949 .949 .923
400 10 32.43 32.43 32.42 .950 .950 .937
800 10 31.97 31.94 31.93 .950 .950 .943
a=0.01
25 5 68.70 68.33 54.82 .990 .958 .760
30 5 60.40 60.18 52.59 .990 972 .828
35 5 55.87 55.65 50.87 .990 .979 .868
40 5 53.09 52.74 49.50 .989 .982 .893
45 5 50.88 50.69 48.39 .990 .984 .910
50 5 49.28 49.17 47.46 .990 .986 .923
100 5 43.21 43.14 42.90 .990 .989 .966
200 5 40.43 40.37 40.34 .990 .990 .980
400 5 38.96 38.99 38.98 .990 .990 .986
800 5 38.36 38.28 38.28 .990 .990 .988
25 10 62.84 66.03 47.90 .993 .944 .820
30 10 55.76 58.17 47.06 .993 .965 .870
35 10 52.34 53.87 46.34 .992 973 .899
40 10 50.17 51.16 45.72 .992 978 917
45 10 48.57 49.28 45.18 991 981 .930
50 10 47.40 47.90 44.71 991 .983 .938
100 10 42.55 42.58 41.98 .990 .989 .970
200 10 40.24 40.17 40.07 .990 .990 .981
400 10 38.95 38.92 38.91 .990 .990 .986
800 10 38.36 38.26 38.26 .990 .990 .988

Note. CPys.2=CP(t2515(q)), CPys.ra=CP(t3 (), CP2 =CP(x2,), X30.0.05 =31.41,
Xgmm =37.57.
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Table 5: Simulated and approximate values and coverage probabilities for pairwise
comparisons when m = 6 and (p1, pa, p3, P4, p5) = (15,12,9,6,3)

Sample Size Upper Percentile Coverage Probability
ng[) ’I’Lg): ni(f): = nég) %;2imu~p %vs%mu-Bon t%S»LG t%S-FG CPYS‘LG CPYS‘FG CPX2
a=0.05
25 5 39.86 40.62 40.48 39.78 957 .949 .828
30 5 38.82 39.40 39.40 38.98 957 .952 .855
35 5 38.04 38.56 38.65 38.37 957 .954 .873
40 5 37.52 38.04 38.09 37.89 .957 .954 .886
45 5 37.08 37.65 37.65 37.51 957 .955 .895
50 5 36.76 37.34 37.31 37.20 957 .955 .902
100 5 35.24 35.77 35.73 35.71 .956 .956 931
200 5 34.42 34.87 34.91 34.91 957 .957 .945
400 5 34.04 34.55 34.49 34.49 .956 .956 .950
800 5 33.78 34.21 34.28 34.28 .957 957 .954
25 10 38.92 39.50 39.77 38.37 .959 .943 .852
30 10 38.09 38.73 38.82  37.89 .958 .947 .872
35 10 37.48 38.02 38.16 37.51 .958 .950 .886
40 10 37.03 37.62 37.67 37.20 .958 .952 .896
45 10 36.72 37.18 37.30 36.94 957 .953 .903
50 10 36.44 36.97 37.00 36.72 957 .954 .909
100 10 35.10 35.65 35.62 35.57 957 .956 .934
200 10 34.38 34.83 34.88 34.87 .957 .956 .945
400 10 33.98 34.49 34.48 34.48 957 .957 951
800 10 33.80 34.30 34.28 34.28 957 .957 .954
a=0.01
25 5 46.58 46.98 46.88 45.99 991 .988 .938
30 5 45.25 45.41 45.52 44.98 991 .989 .951
35 5 44.31 44.29 44.57 44.22 991 .990 .959
40 5 43.62 43.92 43.87 43.63 991 .990 .965
45 5 43.06 43.36 43.33 43.15 991 .990 .969
50 5 42.65 43.18 42.90 42.77 991 .990 971
100 5 40.73 41.01 40.94 40.92 991 991 .982
200 5 39.71 40.08 39.93 39.93 991 991 987
400 5 39.23 39.55 39.41 39.41 991 991 .989
800 5 38.89 39.27 39.15  39.15 991 991 .990
25 10 45.36 45.85 45.99 44.22 992 987 .950
30 10 44.30 44.85 44.79 43.63 991 .988 .959
35 10 43.54 43.61 43.96 43.15 991 .989 .965
40 10 42.99 43.30 43.36  42.77 991 .989 .969
45 10 42.65 42.75 42.89 42.44 991 .989 972
50 10 42.21 42.42 42.51 42.17 991 .990 974
100 10 40.61 40.76 40.80 40.74 991 .990 .983
200 10 39.66 39.64 39.89 39.88 991 991 987
400 10 39.14 39.44 39.40 39.40 991 991 .989
800 10 38.92 39.01 39.15  39.15 991 1991 .990

Note. CPys.o=CP(Rs.16(0p)), CPys.ro=CP(s rol0)), CPr2=CP(x,), ap = /15,
X%5,0.05/15 = 34.07, X%5’0.01/15 = 38.89.
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Table 6: Simulated and approximate values and coverage probabilities for pairwise
comparisons when m = 10 and (p1, ps, p3, P4, ps) = (15,12,9,6, 3)

Sample Size Upper Percentile Coverage Probability
n(ll) ny): nge): cee = ng) tfimu,p timuBon tvsiio tvsrio  CPyswio CPysrpio CPye
a=0.05
25 5 41.42 4191 42.14  41.66 .959 .953 .865
30 5 40.74  41.44  41.38 41.08 .958 .954 .883
35 5 40.21  40.74  40.84 40.64 .958 .955 .896
40 5 39.78  40.36 40.43  40.29 958 .956 .905
45 5 39.52  40.26 40.11  40.01 958 .956 911
50 5 39.26  39.94  39.85 39.78 .958 957 917
100 5 38.14  38.82 38.67  38.66 .957 957 .938
200 5 3749 3794 38.04 38.04 .958 .958 .948
400 5 37.21  37.59 37.72  37.72 957 957 .953
800 5 37.06  37.66 37.55  37.55 957 957 .955
25 10 40.72  41.30 41.61  40.64 .960 .949 .884
30 10 40.16  40.75 40.94  40.29 .960 .952 .897
35 10 39.73  40.30 40.47  40.01 .959 .954 .907
40 10 39.42  39.97  40.12  39.78 .959 .955 913
45 10 39.20  39.81 39.84  39.58 .958 .955 918
50 10 38.98  39.63 39.62  39.42 .958 .956 .922
100 10 38.05  38.43 38.58  38.55 957 957 .939
200 10 37.48  38.05 38.02 38.01 957 957 .949
400 10 37.18  37.71 37.711  37.71 957 957 953
800 10 37.06  37.63 37.55  37.55 .957 957 .955
a=0.01
25 5 47.37  47.72 47.75  47.18 991 .989 .957
30 5 46.47  46.93 46.83  46.47 991 .990 .965
35 5 45.87  46.13 46.18  45.94 991 .990 .970
40 5 45.36  45.40 45.69  45.52 991 .990 973
45 5 45.06 4541 45.30  45.18 991 .990 975
50 5 44.75  45.20 44.99  44.90 991 .990 977
100 5 43.34  43.74  43.57 43.55 991 991 .985
200 5 42.60  42.50 42.82 42.82 991 991 .988
400 5 42.18  42.55 42.43 4243 991 991 .989
800 5 42.00  42.48 42.23  42.23 991 991 .990
25 10 46.47  46.82 47.12 4594 .992 .988 .965
30 10 45.77  46.13 46.31  45.52 992 .989 .970
35 10 45.30  45.62 45.74  45.18 991 .990 974
40 10 4491 4517 4531  44.90 991 .990 976
45 10 44.61  44.81 44.98  44.67 991 .990 978
50 10 44.43  44.87 4471 4447 991 .990 .979
100 10 43.24  43.29 43.46  43.42 991 991 .985
200 10 42.59  43.27 42779 4278 991 991 .988
400 10 42.17  42.29 42.42  42.42 991 991 .990
800 10 41.96 42.11 42.23  42.23 991 991 .990

Note. @YS.L10:@(t%S,L10(ap)), @Ys-mo:af’(t%s_pw(ap)), Gf)x? :CAf,(X;%)7 ap = /45,
X%5,O‘05/45 = 37.39, X%5’0‘01/45 = 42.03.
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Table 7: Simulated and approximate values and coverage probabilities for comparisons
with a control when m = 6 and (p1, ps, ps, P4, Ps) = (15,12,9,6, 3)

Sample Size Upper Percentile Coverage Probability
ng.Z) ng): ni(’)e): T ng) %;%mu-c %vs%mu-Bon t%(S»L6 t%(S»FG CPYS'L6 CPYS'F6 CPX2
a=0.05
25 5 35.54 36.06 35.96  35.38 .955 .948 .857
30 5 34.59 35.15 35.06 34.71 .955 951 .878
35 5 33.96 34.47 34.43  34.20 .955 953 .891
40 5 33.54 33.99 33.96 33.80 .955 953 .900
45 5 33.19 33.66 33.60 33.48 .955 .954 .906
50 5 32.89 33.35 33.31  33.22 .955 954 912
100 5 31.60 32.03 31.98 31.97 .955 955 935
200 5 30.86 31.29 31.29 31.29 .955 .955 .946
400 5 30.54 30.89 30.94 30.94 .955 955 951
800 5 30.34 30.74 30.76  30.76 .956 .956 953
25 10 34.72 35.20 35.36  34.20 957 .944 .875
30 10 34.04 34.55 34.57  33.80 .956 .947 .890
35 10 33.52 33.97 34.02 33.48 .956 .949 .900
40 10 33.11 33.62 33.61 33.22 .956 951 .908
45 10 32.82 33.30 33.30  33.00 .956 .952 913
50 10 32.62 33.06 33.05 32.82 .955 953 917
100 10 31.46 31.85 31.89 31.85 .955 955 937
200 10 30.85 31.29 31.26  31.26 .955 .955 .946
400 10 30.53 30.94 30.93 30.93 .955 955 951
800 10 30.37 30.75 30.76  30.76 .955 955 953
a=0.01
25 5 42.34 42.64 42.53  41.78 .990 .989 951
30 5 41.16 41.50 41.37  40.91 991 .989 961
35 5 40.31 40.55 40.55 40.25 991 .990 967
40 5 39.74 39.96 39.95 39.74 991 990 970
45 5 39.35 39.44 39.48 39.33 .990 990 973
50 5 38.91 39.17 39.11  39.00 991 990 976
100 5 37.31 37.42 37.41  37.40 .990 990 .984
200 5 36.43 36.62 36.54  36.53 .990 990 987
400 5 35.93 36.04 36.09 36.09 991 991 .989
800 5 35.63 35.84 35.86 35.86 991 991 .990
25 10 41.37 41.54 41.76  40.25 991 987 .960
30 10 40.45 40.70 40.74  39.74 991 .988 .966
35 10 39.73 39.82 40.03  39.33 991 .989 971
40 10 39.17 39.34 39.50 39.00 991 .989 974
45 10 38.84 39.08 39.10 38.72 991 .990 976
50 10 38.60 38.79 38.77 38.48 991 990 977
100 10 37.13 37.30 3729 37.24 991 .990 .984
200 10 36.34 36.46 36.50  36.49 .990 990 987
400 10 35.95 36.13 36.08  36.08 .990 990 989
800 10 35.65 35.82 35.86  35.86 991 991 .990

Note. (/—]\ISYS'LGZé\i/)(tgs.LG(O[C))u CAIJDYS,FGZGTD(@S‘FG(QC)% asz ZGIS(X?;,QC), ac = a/5,
X35.0.05/5 = 30-58, X350.01/5 = 35.63.
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Table 8: Simulated and approximate values and coverage probabilities for comparisons
with a control when m = 10 and (p1, pe, ps, ps, ps) = (15,12,9,6, 3)

Sample Size Upper Percentile Coverage Probability
ngg) ny): ngf): = ng) %VSQimu»c %;2imu~Bon t%S»LIO t%’SFlO CPYS'Llo CPYS'Flo CPX2
a=0.05
25 5 35.64 36.24 36.29  35.91 957 .953 .894
30 5 35.07 35.71 35.68  35.44 957 .954 .906
35 5 34.65 35.28 35.25  35.09 957 .955 914
40 5 34.33 34.88 34.92  34.81 957 .956 .920
45 5 34.07 34.66 34.66  34.58 957 .956 .925
50 5 33.92 34.54 34.46  34.40 957 .956 927
100 5 32.96 33.52 33.50  33.49 957 .957 .943
200 5 32.43 32.98 33.00  33.00 .958 .958 951
400 5 32.19 32.72 32.74  32.74 957 957 .954
800 5 32.10 32.65 32.60  32.60 957 957 .955
25 10 35.06 35.63 35.86  35.09 .959 .950 .906
30 10 34.59 35.23 35.33  34.81 .959 953 915
35 10 34.32 34.91 34.95  34.58 .958 .953 .920
40 10 34.05 34.67 34.67  34.40 957 .954 .925
45 10 33.84 34.43 34.45  34.24 957 .955 .928
50 10 33.67 34.25 34.27  34.11 957 .956 931
100 10 32.87 33.40 33.43 3341 957 957 .944
200 10 32.44 32.99 32.98  32.97 957 957 .950
400 10 32.23 32.76 32.73  32.73 957 957 .953
800 10 32.07 32.64 32.60  32.60 957 957 .955
a=0.01
25 5 41.78 41.96 42.14  41.66 991 .990 .968
30 5 41.19 41.60 41.38  41.08 991 .990 972
35 5 40.57 40.91 40.84  40.64 991 .990 976
40 5 40.12 40.33 40.43  40.29 991 .990 978
45 5 39.85 39.97 40.11  40.01 991 .990 .980
50 5 39.60 39.88 39.85  39.78 991 .990 .981
100 5 38.45 38.67 38.67  38.66 991 991 .986
200 5 37.78 38.02 38.04  38.04 991 991 .989
400 5 37.45 37.82 37.72  37.72 991 991 .990
800 5 37.34 37.44 37.55  37.55 991 991 .990
25 10 41.07 41.21 41.61  40.64 991 .989 973
30 10 40.48 40.76 40.94  40.29 991 .989 976
35 10 40.12 40.32 40.47  40.01 991 .990 978
40 10 39.82 39.98 40.12  39.78 991 .990 .980
45 10 39.52 39.76 39.84  39.58 991 .990 .981
50 10 39.32 39.43 39.62  39.42 991 .990 .982
100 10 38.36 38.64 38.58  38.55 991 991 987
200 10 37.79 38.04 38.02  38.01 991 991 .989
400 10 37.51 37.69 37.71  37.71 991 991 .990
800 10 37.30 37.62 37.55  37.55 991 991 .990

Note. CAISYS.L102613(1€%S,L10(QC))7 @Ys.mo:(fﬁ)(tis_mo(ac))’ 6{)){2 :aj(xz,ac)7 e = a/9,
X%S,O.US/Q = 32471 X%S,O.Ol/Q = 37.39.
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