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ABSTRACT

In this paper, we consider Akaike information criterion (AIC) for ANOVA model with a simple

ordering (SO) θ1 ≤ θ2 ≤ · · · ≤ θl where θ1, . . . , θl are population means. Under an ordinary

ANOVA model without any order restriction, it is well known that an ordinal AIC, whose

penalty term is 2 × the number of parameters, is an asymptotically unbiased estimator of a risk

function based on the expected K-L divergence. However, in general, under ANOVA model with

the SO, the ordinal AIC has an asymptotic bias which depends on unknown population means.

In order to solve this problem, we calculate the asymptotic bias, and we derive its unbiased

estimator. By using this estimator we provide an asymptotically unbiased AIC for ANOVA

model with the SO, called AICSO. A penalty term of the AICSO is simply defined as a function

of maximum likelihood estimators of population means.

Key Words: Order restriction, Simple ordering, AIC, ANOVA.

1. Introduction

In real data analysis, analysts can consider many statistical models. Nevertheless,

in many cases, we assume that considered models satisfy some regularity conditions.

For example, in the case of deriving a maximum likelihood estimator (MLE), we often

assume that the MLE is a solution of a likelihood equation. If this assumption holds,

in general, the MLE has good properties such as consistency and asymptotic normality.

Furthermore, if additional mild conditions hold, statistics based on the MLE have also

good properties, e.g., Akaike information criterion (AIC) becomes an asymptotically

unbiased estimator of a risk function based on the expected K-L divergence, and a penalty

term of AIC can be simply expressed as 2× the number of parameters. In addition, it can

be shown that the null distribution of a likelihood ratio statistic converges to chi-squared

distribution. Thus, when certain regularity conditions hold, we can get good models (or
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statistics) from the viewpoint of usefulness and estimation accuracy.

On the other hand, when some parameters of the considered model are restricted,

regularity conditions are not satisfied. In particular, when the parameters θ1, . . . , θk are

restricted as θ1 ≤ θ2 ≤ · · · ≤ θk, this restriction is called a simple ordering (SO), and

the SO is very important in applied statistics. The main advantage of considering order

restrictions is that some information can be reflected in the model. As a result, we

can expect that estimation accuracy can be improved. For example, let X1, . . . , Xk be

independent random variables, and let Xi ∼ N(µi, σ
2/ni) where ni > 0. Then, when the

assumption of the SO is true, the MLE of µi for the model with the SO is more efficient

compared with the MLE for the model without any restriction. Specifically, the MLE µ̂i

of µi for the non-restricted model is given by µ̂i = Xi. On the other hand, under the

assumption of the SO, from Robertson et al. (1988) the MLE µ̂i,SO can be obtained as

µ̂i,SO = min
v;i≤v

max
u;u≤i

∑v
j=u njXj∑v
j=u nj

, (i = 1, . . . , k).

For these MLEs, Brunk (1965), Lee (1981) and Kelly (1989) showed that

(a)
∑k

i=1 niE[(µ̂i − µi)
2] >

∑k
i=1 niE[(µ̂i,SO − µi)

2],

(b) E[(µ̂i − µi)
2] > E[(µ̂i,SO − µi)

2], (i = 1, . . . , k),

(c) P(|µ̂i,SO − µi| ≤ t) > P(|µ̂i − µi| ≤ t), (t > 0, i = 1, . . . , k),

respectively. Furthermore, from Hwang and Peddada (1994), the result of (c) was ex-

tended to the case of elliptical distributions. Thus, considering order restrictions yields

good estimators from the viewpoint of estimation accuracy.

However, models with order restrictions are not easy to use. Anraku (1999) considered

AIC for k-clusters ANOVA model with the SO, and showed that a general AIC, whose

penalty term is 2× the number of parameters, is not an asymptotically unbiased estimator

of a risk function. Furthermore, its asymptotic bias depends on unknown parameters.

Moreover, Yokoyama (1995) considered a parallel profile model with a random-effects

covariance structure proposed by Yokoyama and Fujikoshi (1993). Variance parameters

of the random-effects covariance structure are restricted as the SO, and Yokoyama (1995)

investigated the likelihood ratio test for testing the adequacy of this structure. In this

test, they showed that the null distribution of the likelihood ratio test statistic does

not necessarily converge to chi-squared distribution. In addition, they also showed that

the limiting distribution of the test statistic depends on unknown variance parameters.

As can be seen from these two examples, derived results from the model with order

restrictions are not easy to use even if the assumed restriction is very simple such as

the SO. Based on these, in this paper we focus on AIC for ANOVA model with the

SO. Deriving an unbiased estimator of the asymptotic bias which depends on unknown
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parameters, we propose AIC for ANOVA model with the SO, called AICSO.

Finally, we would like to recall that AIC is defined as

AIC = −2l(x̂) + 2p, (1.1)

where x̂ is the MLE of a parameter x, l(·) is a log-likelihood function and p is the number

of independent parameters. Hereafter, in order to avoid confusion, if x̂ is derived based

on the model without any order restriction, we refer to the AIC given by (1.1) as an

ordinal AIC. Similarly, if x̂ is derived based on the model with a order restriction, we

refer to the AIC given by (1.1) as a pseudo AIC (pAIC).

The remainder of the present paper is organized as follows: In Section 2, we derive

MLEs of parameters and a risk function for ANOVA model with the SO. In Section 3,

we define several notations, and we provide one important lemma for calculating the

asymptotic bias. In Section 4, we provide AIC for ANOVA model with the SO, called

AICSO. In Section 5, we introduce different AICSOs for several special cases. In Section

6, we confirm that performance of the AICSO through numerical experiments. In Section

7, we conclude our discussion. Technical details are provided in Appendix.

2. ANOVA model with a simple order restriction

Let Xij be a observation variable on the jth individual in the ith cluster, where i =

1, . . . , k and j = 1, . . . , Ni. Here, let k ≥ 2 and N = N1+ · · · , Nk, and let N −k−6 > 0.

Moreover, assume that X11, . . . , XkNk
are mutually independent random variables. In

this setting, we consider the model

Xij ∼ N(θi, σ
2), (2.1)

where θ1, . . . , θk and σ2 > 0 are unknown parameters. Furthermore, we assume that the

parameters θ1, . . . , θk are restricted as

θ1 ≤ θ2 ≤ · · · ≤ θk. (2.2)

Thus, the restriction (2.2) is the SO. Let Θ be a set defined as Θ = {(θ1, . . . , θk)′ ∈
Rk | θ1 ≤ θ2 ≤ · · · ≤ θk}. Then, the model (2.1) with the restriction (2.2) is equal

to ANOVA model whose mean parameters are restricted on Θ. Here, we put θ =

(θ1, . . . , θk)
′. In addition, let θ∗ = (θ1,∗, . . . , θk,∗)

′ and σ2
∗ denote the true parameters

of θ and σ2, respectively. Finally, for the true parameters θ∗ and σ2
∗, we assume that

θ∗ ∈ Θ and σ2
∗ > 0.
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2.1. Maximum likelihood estimator

In this subsection, we derive MLEs of unknown parameters for the model (2.1) with

the SO. Let N = (N1, . . . , Nk)
′. Suppose that X is an N -dimensional vector which

has all Xij , (i = 1, . . . , k, j = 1, . . . , Ni). In other words, X can be written as X =

(X11, . . . , Xij , . . . , XkNk
)′. Furthermore, for any i with 1 ≤ i ≤ k, define

X̄i =
1

Ni

Ni∑
j=1

Xij , σ̄2 =
1

N

k∑
i=1

Ni∑
j=1

(Xij − X̄i)
2. (2.3)

Hence, X̄i and σ̄2 are the sample mean and variance, respectively. We put X̄ =

(X̄1, . . . , X̄k)
′. Note that under the ordinal ANOVA model without any order restriction,

the MLEs of θ and σ2 are X̄ and σ̄2, respectively. Here, since Xij ’s are mutually in-

dependent, from normality of Xij , a log-likelihood function l(θ, σ2;X) can be expressed

as

l(θ, σ2;X) = −N

2
log(2πσ2)− 1

2σ2

k∑
i=1

Ni∑
j=1

(Xij − θi)
2

= −N

2
log(2πσ2)− 1

2σ2

k∑
i=1

Ni∑
j=1

(Xij − X̄i)
2 − 1

2σ2

k∑
i=1

Ni(X̄i − θi)
2. (2.4)

Here, for any a = (a1, . . . , ap)
′ ∈ Rp and b = (b1, . . . , bp)

′ ∈ Rp
>0, we define

∥a∥b =

√√√√ p∑
i=1

bia2i . (2.5)

Note that (2.5) is a complete norm. Then, for any σ2 > 0, the maximization problem of

l(θ, σ2;X) on Θ is equal to the minimization problem of

H(θ) =
k∑

i=1

Ni(X̄i − θi)
2 = ∥X̄ − θ∥2N , (2.6)

on Θ. Needless to say, this minimization problem is equal to the minimization ofH∗(θ) =√
H(θ) = ∥X̄−θ∥N on Θ. Recall that the norm ∥·∥N is the complete norm, and the set

Θ is the non-empty closed convex set. Therefore, for any X̄ ∈ Rk, there exists a unique

point θ̂ in Θ such that θ̂ minimizes H∗(θ) on Θ, (see, e.g., Rudin, 1986). This implies

that existence and uniqueness for the MLE θ̂ = (θ̂1, . . . , θ̂k)
′ of θ hold. Moreover, from

Robertson et al. (1988), for any i with 1 ≤ i ≤ k, θ̂i is given by

θ̂i = min
v;i≤v

max
u;u≤i

∑v
j=u NjX̄j∑v
j=u Nj

. (2.7)
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On the other hand, it is easily checked that the MLE σ̂2 of σ2 can be obtained by

differentiating the function l(θ̂, σ2;X) with respect to (w.r.t.) σ2 as

σ̂2 =
1

N

k∑
i=1

Ni∑
j=1

(Xij − X̄i)
2 +

1

N

k∑
i=1

Ni(X̄i − θ̂i)
2,

because l(θ̂, σ2;X) is a concave function w.r.t. σ2.

2.2. Risk function and bias

Let X⋆ be a random variable, and let X⋆ ∼ i.i.d. X. Then, a risk function based on

the expected Kullback-Leibler divergence can be defined as

E[E⋆[−2l(θ̂, σ̂2;X⋆)]]

= E

[
N log(2πσ̂2) +

Nσ2
∗

σ̂2
+

∑k
i=1 Ni(θi,∗ − θ̂i)

2

σ̂2

]
≡ R (say). (2.8)

Note that in the case of the ordinal ANOVA model, a risk function R̄ is given by R̄ =

E[E⋆[−2l(X̄, σ̄2;X⋆)]]. Since the maximum log-likelihood l(θ̂, σ̂2;X) can be written as

l(θ̂, σ̂2;X) = −N

2
log(2πσ̂2)− N

2
, (2.9)

if we estimate the risk function R by −2l(θ̂, σ̂2;X), then the bias B, which is the differ-

ence between the expected value of −2l(θ̂, σ̂2;X) and R, can be expressed as

B = E[R− {−2l(θ̂, σ̂2;X)}] = E

[
Nσ2

∗
σ̂2

]
+ E

[∑k
i=1 Ni(θi,∗ − θ̂i)

2

σ̂2

]
−N. (2.10)

Next, we evaluate the bias B. Let S and T be random variables defined by

S =
1

σ2
∗

k∑
i=1

Ni∑
j=1

(Xij − X̄i)
2, T =

1

σ2
∗

k∑
i=1

Ni(X̄i − θ̂i)
2.

Note that S is distributed as χ2
N−k where χ2

N−k is the chi-squared distribution with N−k

degrees of freedom. Furthermore, since X11, . . . , XkNk
are independently distributed as

normal distributions, we obtain S⊥⊥ X̄ where the notation ∗⊥⊥ ⋆ means that ∗ and ⋆ are

mutually independent. In addition, from (2.7), θ̂ is a function of the random vector X̄.

Thus, T is also a function of X̄ and it holds that S⊥⊥T . Using S and T , it holds that

Nσ̂2/σ2
∗ = S + T and we obtain

Nσ2
∗

σ̂2
=

N2

Nσ̂2/σ2
∗
=

N2

S + T
=

N2

S

1

1 + T/S
. (2.11)
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In addition, noting that (1 + x)−1 = 1 − x + c∗x2 where x ≥ 0 and 0 ≤ c∗ ≤ 1, (2.11)

can be expanded as

Nσ2
∗

σ̂2
=

N2

S
− N2T

S2
+ C∗N

2T 2

S3
,

where C∗ is a random variable with 0 ≤ C∗ ≤ 1. Hence, from S ∼ χ2
N−k and S⊥⊥T , we

have

E

[
Nσ2

∗
σ̂2

]
=

N2

N − k − 2
− N2E[T ]

(N − k − 2)(N − k − 4)
+ E

[
C∗N

2T 2

S3

]
= N + k + 2 +O(N−1)− E[T ] +O(N−1)E[T ] + E

[
C∗N

2T 2

S3

]
. (2.12)

Similarly, using (1 + y)−1 = 1− c⋆y where y ≥ 0 and 0 ≤ c⋆ ≤ 1, we get∑k
i=1 Ni(θi,∗ − θ̂i)

2

σ̂2

=
N

σ2
∗

∑k
i=1 Ni(θi,∗ − θ̂i)

2

S + T
=

N

σ2
∗

∑k
i=1 Ni(θi,∗ − θ̂i)

2

S

1

1 + T/S

=
N

σ2
∗

∑k
i=1 Ni(θi,∗ − θ̂i)

2

S
− C⋆NT

σ2
∗

∑k
i=1 Ni(θi,∗ − θ̂i)

2

S2

=
N

σ2
∗

∑k
i=1 Ni(θi,∗ − X̄i + X̄i − θ̂i)

2

S
− C⋆NT

σ2
∗

∑k
i=1 Ni(θi,∗ − θ̂i)

2

S2

=
N

σ2
∗

∑k
i=1 Ni(θi,∗ − X̄i)

2

S
− 2N

σ2
∗

∑k
i=1 Ni(X̄i − θi,∗)(X̄i − θ̂i)

S

+
NT

S
− C⋆NT

σ2
∗

∑k
i=1 Ni(θi,∗ − θ̂i)

2

S2
,

where C⋆ is a random variable with 0 ≤ C⋆ ≤ 1. Here, for any i with 1 ≤ i ≤ k, it holds

that S⊥⊥ X̄i, S⊥⊥ θ̂i, S⊥⊥T and X̄i ∼ N(θi,∗, σ
2
∗/Ni). Therefore, we obtain

E

[∑k
i=1 Ni(θi,∗ − θ̂i)

2

σ̂2

]

=
Nk

N − k − 2
− 2N

N − k − 2
E

[
1

σ2
∗

k∑
i=1

Ni(X̄i − θi,∗)(X̄i − θ̂i)

]

+
NE[T ]

N − k − 2
− E

[
C⋆NT

σ2
∗

∑k
i=1 Ni(θi,∗ − θ̂i)

2

S2

]

= k +O(N−1)− 2N

N − k − 2
E

[
1

σ2
∗

k∑
i=1

Ni(X̄i − θi,∗)(X̄i − θ̂i)

]

+E[T ] +O(N−1)E[T ]− E

[
C⋆NT

σ2
∗

∑k
i=1 Ni(θi,∗ − θ̂i)

2

S2

]
. (2.13)
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Thus, from (2.12) and (2.13), it holds that

E

[
Nσ2

∗
σ̂2

]
+ E

[∑k
i=1 Ni(θi,∗ − θ̂i)

2

σ̂2

]

= N + 2(k + 1)− 2N

N − k − 2
E

[
1

σ2
∗

k∑
i=1

Ni(X̄i − θi,∗)(X̄i − θ̂i)

]
+ J, (2.14)

where J is given by

J = O(N−1) +O(N−1)E[T ] + E

[
C∗N

2T 2

S3

]
− E

[
C⋆NT

σ2
∗

∑k
i=1 Ni(θi,∗ − θ̂i)

2

S2

]
.

Here, from the definition of θ̂, it holds that ∥X̄ − θ̂∥N ≤ ∥X̄ − θ∥N for any θ ∈ Θ.

Moreover, from the assumption, the true value θ∗ satisfies θ∗ ∈ Θ. Thus, it holds that

∥X̄ − θ̂∥N ≤ ∥X̄ − θ∗∥N and

T =
1

σ2
∗

k∑
i=1

Ni(X̄i − θ̂i)
2 =

1

σ2
∗
(∥X̄ − θ̂∥N )2 ≤ 1

σ2
∗
(∥X̄ − θ∗∥N )2

=
1

σ2
∗

k∑
i=1

Ni(X̄i − θi,∗)
2 ≡ K, (say),

where K ∼ χ2
k. Therefore, by using the above inequality, we get 0 ≤ E[T ] ≤ E[K] = k

and E[T ] = O(1). In addition, noting that 0 ≤ C∗ ≤ 1, we have∣∣∣∣E [C∗N
2T 2

S3

]∣∣∣∣ ≤ E

[
N2T 2

S3

]
=

N2E[T 2]

(N − k − 2)(N − k − 4)(N − k − 6)

≤ O(N−1)E[K2] = O(N−1)(2k + k2) = O(N−1).

This implies

E

[
C∗N

2T 2

S3

]
= O(N−1).

Noting that the triangle inequality ∥θ∗−θ̂∥N ≤ ∥θ∗−X̄∥N+∥X̄−θ̂∥N and ∥X̄−θ̂∥N ≤
∥X̄ − θ∗∥N , we obtain ∥θ∗ − θ̂∥N ≤ 2∥θ∗ − X̄∥N . Hence, since 0 ≤ C⋆ ≤ 1 and T ≤ K,

the following inequality holds:∣∣∣∣∣E
[
C⋆NT

σ2
∗

∑k
i=1 Ni(θi,∗ − θ̂i)

2

S2

]∣∣∣∣∣
≤ E

[
NT

σ2
∗

∑k
i=1 Ni(θi,∗ − θ̂i)

2

S2

]

≤ N

(N − k − 2)(N − k − 4)
E

[
T

σ2
∗
(∥θ∗ − θ̂∥N )2

]
≤ O(N−1)E[4K2] = O(N−1).
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This implies

E

[
C⋆NT

σ2
∗

∑k
i=1 Ni(θi,∗ − θ̂i)

2

S2

]
= O(N−1).

Thus, from the definition of J , we obtain J = O(N−1). From (2.10) and (2.14), the bias

B can be expressed as

B = 2(k + 1)− 2N

N − k − 2
E

[
1

σ2
∗

k∑
i=1

Ni(X̄i − θi,∗)(X̄i − θ̂i)

]
+O(N−1). (2.15)

Hence, in order to correct the bias up to the order of N−1, we must calculate the expected

value in (2.15).

3. Notation and main lemma

In this section, we provide the lemma to calculate the expected value in (2.15). First,

we define several notations.

3.1. Notation

Let l be an integer with l ≥ 2 and let n1, . . . , nl be positive numbers. We put n =

(n1, . . . , nl)
′. For any l-dimensional vector x = (x1, . . . , xl)

′ ∈ Rl, and for any i, j with

1 ≤ i ≤ j ≤ l, we write x[i,j] = (xi, . . . , xj)
′. Note that x[i,j] is a (j − i+ 1)-dimensional

vector whose the sth element is xi+s−1 where 1 ≤ s ≤ j − i+1. In particular, x[i,i] = xi

and x[1,l] = x. Let

x̃[i,j] =

j∑
s=i

xs, x̄
(n)
[i,j] =

∑j
s=i nsxs∑j
s=i ns

=

∑j
s=i nsxs

ñ[i,j]
=

n′
[i,j]x[i,j]

ñ[i,j]
.

For simplicity, we often represent x̄
(n)
[i,j] as x̄[i,j]. Note that x̄[i,i] = xi.

Next, let Al be a set defined by

Al = {(a1, . . . , al)′ ∈ Rl | a1 ≤ a2 ≤ · · · ≤ al}
= {(a1, . . . , al)′ ∈ Rl | 1 ≤ t ≤ l − 1, at ≤ at+1},

and let Al
1 and Al

l be sets defined by

Al
1 = {(x1, . . . , xl)

′ ∈ Rl | x1 = x2 = · · · = xl},

and

Al
l = {(x1, . . . , xl)

′ ∈ Rl | x1 < x2 < · · · < xl}
= {(x1, . . . , xl)

′ ∈ Rl | 1 ≤ t ≤ l − 1, xt < xt+1}.
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We define A1 = R1. Moreover, for any integer i with 1 ≤ i ≤ l, we write

W l
i = {(w1, . . . , wi)

′ ∈ Ni | 1 ≤ t ≤ i, wt−1 < wt, w0 = 0, wi = l}.

Hence, for example, in the case of l = 2, the sets W2
1 and W2

2 are given by

W2
1 = {(2)′}, W2

2 = {(1, 2)′},

and in the case of l = 3, the sets W3
1 , W3

2 and W3
3 are given by

W3
1 = {(3)′}, W3

2 = {(1, 3)′, (2, 3)′}, W3
3 = {(1, 2, 3)′}.

Furthermore, in the case of l = 4, the sets W4
1 , W4

2 , W4
3 and W4

4 are given by

W4
1 = {(4)′}, W4

2 = {(1, 4)′, (2, 4)′, (3, 4)′}, W4
3 = {(1, 2, 4)′, (1, 3, 4)′, (2, 3, 4)′},

W4
4 = {(1, 2, 3, 4)′}.

Note that the number of elements of W l
i is l−1Ci−1. Also note that, for any element

w = (w1, . . . , wi)
′ in W l

i , w is an i-dimensional vector and wi = l. From the definitions

of W l
1 and W l

l , W l
1 has the unique element w = (l)′ and W l

l has the unique element

w = (1, . . . , l)′. Furthermore, for any i (i = 1, . . . , l) and for any w ∈ W l
i , we define a

set Al
i(w) as follows. First, in the case of i = 1, W l

1 has the unique element w = (l)′,

and we define

Al
1(w) = {(x1, . . . , xl)

′ ∈ Rl | x1 = x2 = · · · = xl} = Al
1.

On the other hand, in the case of 2 ≤ i ≤ l, for any element w = (w1, . . . , wi)
′ in W l

i , we

define

Al
i(w) = {(a1, . . . , al)′ ∈ Al | 1 ≤ t ≤ i− 1, awt < awt+1 ,

0 ≤ s ≤ i− 1, w0 = 0, a1+ws = aws+1},
= {(x1, . . . , xl)

′ ∈ Rl | 1 ≤ t ≤ i− 1, xwt < xwt+1 ,

0 ≤ s ≤ i− 1, w0 = 0, x1+ws = · · · = xws+1}. (3.1)

Thus, from (3.1), the element x = (x1, . . . , xl)
′ in Al

i(w) satisfies

x1 = · · · = xw1 < x1+w1 = · · · = xw2 < · · · < x1+wi−1 = · · · = xl.

In particular, when i = l, W l
l has the unique element w = (w1, . . . , wl)

′ = (1, . . . , l)′, and

it holds that

Al
l(w) = {(x1, . . . , xl)

′ ∈ Rl | x1 < x2 < · · · < xl} = Al
l.

Here, we provide several examples. When l = 2, A2
1(w) and A2

2(w) can be expressed as

A2
1(w) = A2

1 = {x ∈ R2 | x1 = x2}, A2
2(w) = A2

2 = {x ∈ R2 | x1 < x2}.
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In addition, when l = 3, for each s (s = 1, 2, 3), A3
s(w) can be expressed as

A3
1(w) = A3

1 = {x ∈ R3 | x1 = x2 = x3},
A3

2(w) = {x ∈ R3 | x1 < x2 = x3}, (if w = (1, 3)′ ∈ W3
2 )

A3
2(w) = {x ∈ R3 | x1 = x2 < x3}, (if w = (2, 3)′ ∈ W3

2 )

A3
3(w) = A3

3 = {x ∈ R3 | x1 < x2 < x3}.

Therefore, in general, it holds that

Al =
l∪

i=1

∪
w;w∈Wl

i

Al
i(w), (3.2)

and

(i,w) ̸= (i∗,w∗) ⇒ Al
i(w) ∩ Al

i∗(w
∗) = ∅. (3.3)

Next, for any i and j with 1 ≤ i ≤ j ≤ l, we define a matrix D
(n)
i,j . First, when i = j,

let D
(n)
i,j be a 1 × 1 matrix and let D

(n)
i,j = 0. On the other hand, when i < j, let D

(n)
i,j

be a (j− i)× (j− i+1) matrix and let the sth row of D
(n)
i,j (1 ≤ s ≤ j− i) be defined by(

1

ñ[i,i+s−1]
n′

[i,i+s−1],
−1

ñ[i+s,j]
n′

[i+s,j]

)
. (3.4)

Hence, for example, when l = 4, D
(n)
i,j ’s (1 ≤ i ≤ j ≤ 4) are given by

D
(n)
1,1 = D

(n)
2,2 = D

(n)
3,3 = D

(n)
4,4 = 0,

D
(n)
1,2 = D

(n)
2,3 = D

(n)
3,4 = (1 − 1),

D
(n)
1,3 =

(
1 −n2

n2+n3

−n3

n2+n3
n1

n1+n2

n2

n1+n2
−1

)
, D

(n)
2,4 =

(
1 −n3

n3+n4

−n4

n3+n4
n2

n2+n3

n3

n2+n3
−1

)
,

D
(n)
1,4 =

 1 −n2

n2+n3+n4

−n3

n2+n3+n4

−n4

n2+n3+n4
n1

n1+n2

n2

n1+n2

−n3

n3+n4

−n4

n3+n4
n1

n1+n2+n3

n2

n1+n2+n3

n3

n1+n2+n3
−1

 .

For simplicity, we often represent D
(n)
i,j as Di,j .

Finally, we define a function η
(n)
l . Let η

(n)
l be a function from Rl to Al, and let η

(n)
l (x)

be defined by

η
(n)
l (x) = argmin

y∈Al

∥x− y∥2n,

for any x = (x1, . . . , xl)
′ ∈ Rl. For simplicity, we often represent η

(n)
l as ηl. Note that

ηl(x) is well-defined because (Rl, ∥ ∥n) is a Hilbert space and Al is the non-empty closed

convex set (see, e.g., Rudin, 1986). Also note that ηl(x) is an l-dimensional vector. Let
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ηl(x)[s] be a sth element of ηl(x) (1 ≤ s ≤ l). Then, from Robertson et al. (1988),

ηl(x)[s] can be expressed as

ηl(x)[s] = min
v;v≥s

max
u;u≤s

∑v
j=u njxj∑v
j=u nj

= min
v;v≥s

max
u;u≤s

x̄[u,v]. (3.5)

In addition, we define η1(x) = x.

3.2. Main lemma

The following lemma holds.

Lemma 3.1. Let k be an integer with k ≥ 2, and let n1, . . . , nk be positive numbers.

Let ξ1, . . . , ξk be real numbers, and let τ2 be a positive number. Suppose that x1, . . . , xk

are independent random variables, and xi ∼ N(ξi, τ
2/ni), (i = 1, . . . , k). We put n =

(n1, . . . , nk)
′, ξ = (ξ1, . . . , ξk)

′ and x = (x1, . . . , xk)
′. Then, it holds that

E

[
1

τ2

k∑
i=1

ni(xi − ξi)(xi − η
(n)
k (x)[i])

]

=
k−1∑
i=1

(k − i)P

η
(n)
k (x) ∈

∪
w;w∈Wk

i

Ak
i (w)

 .

Proof. See Appendix.

4. AIC for ANOVA model with the simple ordering

In this section, we derive AIC for ANOVA model (2.1) with the SO. First, we calculate

the expected value in (2.15). From (2.3), X̄1, . . . , X̄k are mutually independent, and for

any i, with 1 ≤ i ≤ k, it holds that X̄i ∼ N(θi,∗, σ
2
∗/Ni). Furthermore, from (2.7) the

MLE θ̂ can be expressed as θ̂ = η
(N)
k (X̄). Hence, from Lemma 3.1, the expected value

in (2.15) can be written as

E

[
1

σ2
∗

k∑
i=1

Ni(X̄i − θi,∗)(X̄i − θ̂i)

]
= E

[
1

σ2
∗

k∑
i=1

Ni(X̄i − θi,∗)(X̄i − η
(N)
k (X̄)[i])

]

=

k−1∑
i=1

(k − i)P

θ̂ ∈
∪

w;w∈Wk
i

Ak
i (w)

 = Q. (say)

Thus, noting that Q = O(1), substituting Q into (2.15) yields

B = 2(k + 1)− 2N

N − k − 2
Q+O(N−1) = 2(k + 1)− 2Q+O(N−1). (4.1)
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Therefore, in order to correct the bias up to the order of N−1, we only have to add

2(k+1)− 2Q to −2l(θ̂, σ̂2;X). However, it is easily checked that Q depends on the true

values θ1,∗, . . . , θk,∗ and σ2
∗. Thus, we must estimate Q. Here, let

M̂ =

k∪
i=1

{θ̂i},

and let
m̂ = #M̂, (4.2)

where the notation #M̂ means that the number of elements of M̂. From the definition

of m̂, m̂ is a discrete random variable, and its possible values are 1 to k. For example,

if θ̂1 = · · · = θ̂k, then m̂ = 1, and if θ̂1 < θ̂2 < · · · < θ̂k, then m̂ = k. Similarly, if

θ̂1 < θ̂2 = · · · = θ̂k, then m̂ = 2. Here, from the definitions of m̂ and Ak
i (w), we have

θ̂ ∈
∪

w;w∈Wk
i

Ak
i (w) ⇔ m̂ = i.

This implies

E[k − m̂] =
k∑

i=1

(k − i)P(m̂ = i) =
k−1∑
i=1

(k − i)P

θ̂ ∈
∪

w;w∈Wk
i

Ak
i (w)

 = Q.

Thus, k − m̂ is an unbiased estimator of Q. Therefore, from (4.1) we obtain

E[2(m̂+ 1)] = E[2(k + 1)− 2(k − m̂)] = 2(k + 1)− 2Q = B +O(N−1).

Hence, adding 2(m̂+ 1) (instead of 2(k + 1)− 2Q) to −2l(θ̂, σ̂2;X), we obtain AIC for

ANOVA model with the SO, called AICSO.

Theorem 4.1. Let l(θ̂, σ̂2;X) be the maximum log-likelihood given by (2.9), and let m̂

be the random variable given by (4.2). Then, the AICSO is defined by

AICSO := −2l(θ̂, σ̂2;X) + 2(m̂+ 1).

In addition, for the risk function R given by (2.8), it holds that

E[AICSO] = R+O(N−1).

Remark 4.1. The AICSO is derived under the order restriction (2.2). However, we can

also derive the AICSO even if we change a part of inequalities in (2.2) to “ = ”. For

example, when k = 4 we can derive the AICSO for the model (2.1) with

θ1 = θ2 ≤ θ3 = θ4. (4.3)
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In this case, putting N∗
1 = N1 +N2, N

∗
2 = N3 +N4, θ1 = θ2 = µ1 and θ3 = θ4 = µ2, and

replacing

X11, . . . , X1N1 , X21, . . . , X2N2 → Y11, . . . , Y1N∗
1
,

X31, . . . , X3N3 , X41, . . . , X4N4 → Y21, . . . , Y2N∗
2
,

the model (2.1) under (4.3) is equal to the model

Yij ∼ N(µi, σ
2), (i = 1, 2, j = 1, . . . , N∗

i )

under the restriction µ1 ≤ µ2. Hence, by using the same argument, we can derive the

AICSO.

Remark 4.2. The AICSO is an asymptotically unbiased estimator of the risk function

R and the order of the bias is N−1. Similarly, for the ordinal ANOVA model without

any order restriction, the ordinal AIC is also an asymptotically unbiased estimator of

the risk function R̄, and the order of the bias is N−1. Thus, the AICSO is as good as

the AIC from the viewpoint of estimation accuracy of risk functions. In addition, the

penalty term of AICSO is 2(m̂+ 1), and from (4.2), m̂ is simply defined as the function

of the MLE. Therefore, also from the viewpoint of usefulness, the AICSO is as good as

AIC.

5. AICSO for several special cases

In this section, we provide the AICSO for several special cases.

5.1. AICSO when the true variance σ2
∗ is known

In this subsection, we assume that the true variance σ2
∗ is known in ANOVA model

(2.1). Then, under this assumption and the SO, the MLEs θ̂1, . . . , θ̂k of θ1, . . . , θk are

given by (2.7) because (2.6) does not depend on the variance parameter. Furthermore, in

this case, the risk function based on the K-L divergence, R1 can be written by replacing

σ̂2 with σ2
∗ in (2.8) as

R1 = E[E⋆[−2l(θ̂, σ2
∗;X

⋆)]]

= E

[
N log(2πσ2

∗) +N +

∑k
i=1 Ni(θi,∗ − θ̂i)

2

σ2
∗

]

= N log(2πσ2
∗) +N + E

[∑k
i=1 Ni(θi,∗ − X̄i + X̄i − θ̂i)

2

σ2
∗

]

= N log(2πσ2
∗) +N + k − 2Q+ E

[∑k
i=1 Ni(X̄i − θ̂i)

2

σ2
∗

]
. (5.1)
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Note that under the ordinal ANOVA model without the SO, when σ2
∗ is known the risk R̄1

is given by R̄1 = E[E⋆[−2l(X̄, σ2
∗;X

⋆)]]. Here, from (2.4), the maximum log-likelihood

l(θ̂, σ2
∗;X) can be expressed as

l(θ̂, σ2
∗;X)

= −N

2
log(2πσ2

∗)−
1

2σ2
∗

k∑
i=1

Ni∑
j=1

(Xij − X̄i)
2 − 1

2σ2
∗

k∑
i=1

Ni(X̄i − θ̂i)
2. (5.2)

Hence, the bias B1 which is the difference between the expected value of −2l(θ̂, σ2
∗;X)

and R1, can be expressed as

B1 = E[R1 − {−2l(θ̂, σ2
∗;X)}] = N + k − 2Q− E

 1

σ2
∗

k∑
i=1

Ni∑
j=1

(Xij − X̄i)
2


= N + k − 2Q− (N − k) = 2k − 2Q.

Recall that the random variable m̂ given by (4.2) satisfies E[k − m̂] = Q. Therefore, we

obtain the following corollary.

Corollary 5.1. Let l(θ̂, σ2
∗;X) be the maximum log-likelihood given by (5.2), and let

m̂ be the random variable given by (4.2). Then, under ANOVA model (2.1) with the SO

and known variance σ2
∗, the AICSO is given by

AICSO = −2l(θ̂, σ2
∗;X) + 2m̂.

Moreover, it holds that
E[AICSO] = R1,

where R1 is the risk function given by (5.1).

Remark 5.1. When the true variance σ2
∗ is known, the AICSO is an “unbiased” estimator

of the risk function R1. In addition, under the ordinal ANOVA model without the SO,

when σ2
∗ is known the ordinal AIC is an “unbiased” estimator of the risk function R̄1.

5.2. AICSO with known variance weights

In this subsection, we consider the following model:

Xij ∼ N(θi, ιiσ
2), (i = 1, . . . , k, j = 1, . . . , Ni), (5.3)

where θ1, . . . , θk and σ2 are unknown parameters, and ι1, . . . , ιk are known positive

weights. Furthermore, also in this model, we assume the SO given by (2.2) for the

parameters θ1, . . . , θk. Here, let

¯̄Xi =
1

Ni

Ni∑
j=1

Xij , ¯̄σ2 =
1

N

k∑
i=1

1

ιi

Ni∑
j=1

(Xij − ¯̄Xi)
2.
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Note that under the ordinal ANOVA model (5.3) without the SO, the MLEs of θi and

σ2 are given by ¯̄Xi and ¯̄σ2, respectively. In this setting, we put ¯̄X = ( ¯̄X1, . . . ,
¯̄Xk)

′.

Next, define ni = Ni/ιi, for any i (1 ≤ i ≤ k). Then, ¯̄Xi is distributed as N(θi, σ
2/ni).

Therefore, putting n = (n1, . . . , nk)
′ and ι = (ι1, . . . , ιk)

′, the log-likelihood function

l(θ, σ2;X, ι) can be written by

l(θ, σ2;X, ι)

= −1

2

k∑
i=1

Ni log ιi −
N

2
log(2πσ2)− 1

2σ2

k∑
i=1

1

ιi

Ni∑
j=1

(Xij − θi)
2

= −1

2

k∑
i=1

Ni log ιi −
N

2
log(2πσ2)− 1

2σ2

k∑
i=1

1

ιi

Ni∑
j=1

(Xij − ¯̄Xi)
2 − 1

2σ2

k∑
i=1

ni(
¯̄Xi − θi)

2

= −1

2

k∑
i=1

Ni log ιi −
N

2
log(2πσ2)− 1

2σ2

k∑
i=1

1

ιi

Ni∑
j=1

(Xij − ¯̄Xi)
2 − 1

2σ2
∥ ¯̄X − θ∥2n.

Thus, by using the same argument as in Subsection 2.1, the MLEs of θi and σ2,
ˆ̂
θi and

ˆ̂σ2, respectively, are give by

ˆ̂
θi = min

v;i≤v
max
u;u≤i

∑v
j=u nj

¯̄Xj∑v
j=u nj

, (i = 1, . . . , k),

ˆ̂σ2 =
1

N

k∑
i=1

1

ιi

Ni∑
j=1

(Xij − ¯̄Xi)
2 +

1

N

k∑
i=1

ni(
¯̄Xi − ˆ̂

θi)
2.

Next, we put
ˆ̂
θ = (

ˆ̂
θ1, . . . ,

ˆ̂
θk)

′ and R2 = E[E⋆[−2l(
ˆ̂
θ, ˆ̂σ2;X⋆, ι)]] where R2 is the risk

function. Furthermore, the maximum log-likelihood l(
ˆ̂
θ, ˆ̂σ2;X, ι) is given by

l(
ˆ̂
θ, ˆ̂σ2;X, ι) = −1

2

k∑
i=1

Ni log ιi −
N

2
log(2π ˆ̂σ2)− N

2
. (5.4)

Moreover, by using the same argument as in Subsection 2.2, the bias B2 = E[R2 −
{−2l(

ˆ̂
θ, ˆ̂σ2;X, ι)}] can be expressed as

B2 = 2(k + 1)− 2N

N − k − 2
E

[
1

σ2
∗

k∑
i=1

ni(
¯̄Xi − θi,∗)(

¯̄Xi − ˆ̂
θi)

]
+O(N−1).

Here, define

M∗ =

k∪
i=1

{ ˆ̂θi}, m∗ = #M∗. (5.5)

Then, we obtain the following corollary.

Corollary 5.2. Let l(
ˆ̂
θ, ˆ̂σ2;X, ι) be the log-likelihood given by (5.4), and let m∗ be

the random variable given by (5.5). Then, under ANOVA model (5.3) with the SO, the
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AICSO is given by

AICSO = −2l(
ˆ̂
θ, ˆ̂σ2;X, ι) + 2(m∗ + 1).

Furthermore, it holds that E[AICSO] = R2 + O(N−1) where R2 is the risk function

defined by R2 = E[E⋆[−2l(
ˆ̂
θ, ˆ̂σ2;X⋆, ι)]].

Remark 5.2. Under ANOVA model (5.3) with the SO, when σ2
∗ is known, the AICSO

can be derived as AICSO = −2l(
ˆ̂
θ, σ2

∗;X, ι) + 2m∗. Furthermore, for the risk function

R3 = E[E⋆[−2l(
ˆ̂
θ, σ2

∗;X
⋆, ι)]], it holds that E[AICSO] = R3.

5.3. Multivariate ANOVA model with the SO

Let V
(i)
j = (V

(i)
j1 , . . . , V

(i)
jp )′ be a p-dimensional random vector on the jth individual

in the ith cluster, where i = 1, . . . , k and j = 1, . . . , Ni. Here, let k ≥ 2, p ≥ 2 and

N = N1+ · · ·+Nk. In this setting, we assume N −k− 6 > 0. Moreover, we assume that

V
(1)
1 , . . . ,V

(k)
Nk

are mutually independent. Then, we consider the following model

V
(i)
j ∼ Np(ω + δia, τ

2Ip + ρaa′), (τ2 > 0, τ2 + ρa′a > 0), (5.6)

where ω = (ω1, . . . , ωp)
′, and δ1, . . . , δk, τ

2 and ρ are unknown parameters. In addition,

Ip is a p×p unit matrix, and a = (a1, . . . , ap)
′ is a known non-zero vector. Here, without

loss of generality, we may assume that δ1 = 0. Moreover, the parameters δ1, . . . , δk are

restricted as
δ1 ≤ δ2 ≤ · · · ≤ δk. (5.7)

In other words, we consider the SO restriction for the parameters δ1, . . . , δk. For example,

under the model (5.6), when a = 1p this model is a parallel profile model considered by

Yokoyama and Fujikoshi (1993), where 1p is a p-dimensional vector of ones.

Next, we decompose the model (5.6). Let h1, . . . ,hp be p-dimensional vectors with

h′
uhu∗ = 0, (u ̸= u∗), h′

uhu = 1 and h1 = (a′a)−1/2a. Define H2 = (h2, . . . ,hp) and

H = (h1,H2). Then, considering H ′V
(i)
j we get

h′
1V

(i)
j ∼ N(h′

1ω + (a′a)1/2δi, τ
2 + ρa′a), (1 ≤ i ≤ k, 1 ≤ j ≤ Ni), (5.8)

and
H ′

2V
(i)
j ∼ Np−1(H

′
2ω, τ2Ip−1), (1 ≤ i ≤ k, 1 ≤ j ≤ Ni). (5.9)

Here, we replace h′
1V

(i)
j with Yij . In addition, we put h′

1ω + (a′a)1/2δi = ϑi and

τ2 + ρa′a = ς2. Then, the model (5.8) is equal to

Yij ∼ N(ϑi, ς
2), (ς2 > 0, 1 ≤ i ≤ k, 1 ≤ j ≤ Ni), (5.10)
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and the parameters ϑ1, . . . , ϑk are restricted as

ϑ1 ≤ ϑ2 ≤ · · · ≤ ϑk.

Furthermore, since H ′
2V

(1)
1 . . . ,H ′

2V
(k)
Nk

are independent and identically distributed,

putting H ′
2ω = (µ1, . . . , µp−1)

′ = µ the model (5.9) can be expressed as

Zst ∼ N(µs, τ
2), (τ2 > 0, 1 ≤ s ≤ p− 1, 1 ≤ t ≤ N). (5.11)

Note that Y11, . . . , YkNk
, Z11, . . . , Z(p−1)N are mutually independent. Also note that the

parameters µ1, . . . , µp−1 are not restricted. Here, let

Ȳi =
1

Ni

Ni∑
j=1

Yij , ς̄2 =
1

N

k∑
i=1

Ni∑
j=1

(Yij − Ȳi)
2, (i = 1, . . . , k),

Z̄s =
1

N

N∑
t=1

Zst, τ̄2 =
1

N(p− 1)

p−1∑
s=1

N∑
t=1

(Zst − Z̄s)
2, (s = 1, . . . , p− 1),

and let Ȳ = (Ȳ1, . . . , Ȳk)
′. Since µs and τ2 are not restricted, it is easily checked that

the MLEs of µs and τ2 are Z̄s and τ̄2, respectively.

Next, we put Y = (Y11, . . . , YkNk
)′, Z = (Z11, . . . , Z(p−1)N )′ and ϑ = (ϑ1, . . . , ϑk)

′.

Then, the log-likelihood function l(ϑ, ς2;Y ) of Y , is given by

l(ϑ, ς2;Y ) = −N

2
log(2πς2)− 1

2ς2

k∑
i=1

Ni∑
j=1

(Yij − ϑi)
2

= −N

2
log(2πς2)− 1

2ς2

k∑
i=1

Ni∑
j=1

(Yij − Ȳi)
2 − 1

2ς2

k∑
i=1

Ni(Ȳi − ϑi)
2.

Similarly, the log-likelihood function l(µ, τ2;Z) of Z is given by

l(µ, τ2;Z) = −N(p− 1)

2
log(2πτ2)− 1

2τ2

p−1∑
s=1

N∑
t=1

(Zst − µs)
2.

By using the same argument as in Subsection 2.1, the MLEs of ϑi and ς2, ϑ̂i and ς̂2 can

be expressed as

ϑ̂i = min
v;i≤v

max
u;u≤i

∑v
j=u Nj Ȳj∑v
j=u Nj

,

ς̂2 =
1

N

k∑
i=1

Ni∑
j=1

(Yij − Ȳi)
2 +

1

N

k∑
i=1

Ni(Ȳi − ϑ̂i)
2,

respectively. Note that the joint log-likelihood of Y and Z, l(ϑ, ς2,µ, τ2;Y ,Z) satisfies

that l(ϑ, ς2,µ, τ2;Y ,Z) = l(ϑ, ς2;Y ) + l(µ, τ2;Z) because Y and Z are independent.

Here, let Y ⋆ and Z⋆ be random vectors satisfying (Y ⋆,Z⋆) ∼ i.d.d. (Y ,Z). Then,
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the risk function R4 can be written as R4 = E[E⋆[−2l(ϑ̂, ς̂2, Z̄, τ̄2;Y ⋆,Z⋆)]] =

E[E⋆[−2l(ϑ̂, ς̂2;Y ⋆)]] + E[E⋆[−2l(Z̄, τ̄2;Z⋆)]], where , ϑ̂ = (ϑ̂1, . . . , ϑ̂k)
′ and

Z̄ = (Z̄1, . . . , Z̄p−1)
′. In order to calculate the bias which is the difference between the

expected value of −2l(ϑ̂, ς̂2, Z̄, τ̄2;Y ,Z) and R4, it is sufficient to calculate

E[E⋆[−2l(ϑ̂, ς̂2;Y ⋆)] + 2l(ϑ̂, ς̂2;Y )],

and

E[E⋆[−2l(Z̄, τ̄2;Z⋆)] + 2l(Z̄, τ̄2;Z)].

Here, it is easily checked that

E[E⋆[−2l(Z̄, τ̄2;Z⋆)] + 2l(Z̄, τ̄2;Z)] = 2p+O(N−1).

On the other hand, define

M† =

k∪
i=1

{ϑ̂i}, m† = #M†. (5.12)

Then, using the same argument as in Section 4, we have

E[E⋆[−2l(ϑ̂, ς̂2;Y ⋆)] + 2l(ϑ̂, ς̂2;Y )] = 2(m† + 1) +O(N−1). (5.13)

Therefore, we obtain the following corollary.

Corollary 5.3. Under the model (5.6) with the order restriction (5.7), the AICSO is

given by

AICSO = −2l(ϑ̂, ς̂2, Z̄, τ̄2;Y ,Z) + 2(m† + 1 + p).

Furthermore, it holds that E[AICSO] = R4 +O(N−1).

Remark 5.3. Under the model (5.6) with the order restriction (5.7), when both τ2∗

and ρ∗ are known (i.e., both ς2∗ and τ2∗ are known), the AICSO can be derived as

AICSO = −2l(ϑ̂, ς2∗ , Z̄, τ2∗ ;Y ,Z) + 2(m† + p − 1). Moreover, for the risk function

R5 = E[E⋆[−2l(ϑ̂, ς2∗ , Z̄, τ2∗ ;Y
⋆,Z⋆)]], it holds that E[AICSO] = R5.

We introduced six models thus far. In other words, the model (2.1) when σ2
∗ is unknown

(Case A), and known (Case B). Moreover, the model (5.3) when σ2
∗ is unknown (Case

C), and known (Case D). Finally, the model (5.10) and (5.11) when both ς2∗ and τ2∗ are

unknown (Case E), and known (Case F). The properties of the AICSO and the ordinal

AIC for these six models are summarized in Table 5.1.
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5.4. Comparison of the AICSO and the pseudo AIC (pAIC) under certain

candidate models

Let k be an integer with k ≥ 2, and let Wk
i be the set defined as in Subsection 3.1

where i is an integer with 1 ≤ i ≤ k. Moreover, for any i (i = 1, . . . , k) and for any

w ∈ Wk
i , we define a set Ck

i (w) as follows. First, in the case of i = 1, Wk
1 has the unique

element w = (k)′, and we define

Ck
1 (w) = {(x1, . . . , xk)

′ ∈ Rk | x1 = x2 = · · · = xk} = Ck
1 .

On the other hand, in the case of 2 ≤ i ≤ k, for any element w = (w1, . . . , wi)
′ in Wk

i ,

we define

Ck
i (w) = {(x1, . . . , xk)

′ ∈ Rk | 1 ≤ t ≤ i− 1, xwt ≤ xwt+1 ,

0 ≤ s ≤ i− 1, w0 = 0, x1+ws = · · · = xws+1}.(5.14)

Thus, from (5.14), the element x = (x1, . . . , xk)
′ in Ck

i (w) satisfies

x1 = · · · = xw1 ≤ x1+w1 = · · · = xw2 ≤ · · · ≤ x1+wi−1 = · · · = xk.

In particular, when i = k, Wk
k has the unique element w = (w1, . . . , wk)

′ = (1, . . . , k)′,

and it holds that

Ck
k (w) = {(x1, . . . , xk)

′ ∈ Rk | x1 ≤ x2 ≤ · · · ≤ xk} = Ck
k .

Here, let Xst be independent random variables where s = 1, . . . , k and t = 1, . . . , Ns.

Then, for any i with 1 ≤ i ≤ k and for any w ∈ Wk
i , we consider ANOVA model

Xst ∼ N(θs, σ
2), (s = 1, . . . , k, t = 1, . . . , Ns),

with θ = (θ1, . . . , θk)
′ ∈ Ck

i (w). For example, when k = 5, i = 3 and w = (w1, w2, w3)
′ =

(1, 3, 5)′ ∈ C5
3 , above model is equal to ANOVA model with θ1 ≤ θ2 = θ3 ≤ θ4 = θ5.

Recall that the number of elements of Wk
i is k−1Ci−1. Hence, it holds that

k∑
i=1

#Wk
i = 2k−1.

This implies that we can consider 2k−1 models. In this subsection, these models are

candidate models.

Next, we consider the AICSO and the pseudo AIC (pAIC) for these candidate models.

Recall that the pAIC is defined as

pAIC = −2l(θ̂) + 2p,
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where l(·) is a maximum log-likelihood, p is the number of independent parameters in the

candidate model, and θ̂ is the MLE which is derived under the order restricted model. In

this setting, we define the minimum AICSO model and the minimum pAIC model. Let

M1, . . . ,M2k−1 be candidate models, and let AICSO(Mq) and pAIC(Mq) be values of

the AICSO and the pAIC in the candidate model Mq, respectively. Then, we define that

the candidate model Mq is the minimum AICSO model if Mq satisfies the following two

conditions:

(m1) For any candidate model Mq∗ , it holds that AICSO(Mq) ≤ AICSO(Mq∗).

(m2) For any candidate model Mq⋆ with AICSO(Mq) = AICSO(Mq⋆), it holds that

#(Mq) ≤ #(Mq⋆) where #(Mj) is the number of independent parameters in the

candidate model Mj , (j = 1, . . . , 2k−1).

Similarly, by replacing AICSO with pAIC in the conditions (m1) and (m2), we also define

the minimum pAIC model. Then, the following theorem holds.

Theorem 5.1. Let k (≥ 2) be an integer, and let M1, . . . ,M2k−1 be candidate models

defined as in Subsection 5.4. Then, the minimum AICSO model is equal to the minimum

pAIC model.

Proof. Let Mq be the minimum AICSO model, and let θ̂
(q)
1 , . . . , θ̂

(q)
k be the MLEs of

θ1, . . . , θk in the model Mq, respectively. First, we consider the case of not θ̂
(q)
1 = · · · =

θ̂
(q)
k . Hence, there exists a number i (2 ≤ i ≤ k) and natural numbers w1, . . . , wi with

w1 < · · · < wi where wi = k such that

θ̂
(q)
wj−1+1 = · · · = θ̂(q)wj

=

∑wj

s=wj−1+1 NsX̄s∑wj

s=wj−1+1 Ns

, (j = 1, . . . , i), (5.15)

and θ̂
(q)
w1 < · · · < θ̂

(q)
wi . Note that w0 = 0. Here, let l(q) be a −2× maximum log-likelihood

in the model Mq. Furthermore, from (5.15) it holds that m̂ = i. Therefore, AICSO(Mq)

can be written as

AICSO(Mq) = l(q) + 2(1 + i).

Moreover, from the definition of the minimum AICSO model, the model Mq is ANOVA

model with

θw0+1 = · · · = θw1 ≤ θw1+1 = · · · = θw2 ≤ · · · ≤ θwi−1+1 = · · · = θwi .

In this model, the number of independent parameters is i+ 1. Thus, pAIC(Mq) is also

l(q) + 2(1 + i). Hence, we get AICSO(Mq) = pAIC(Mq). On the other hand, from the
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definition of Mq it holds that

pAIC(Mq) = AICSO(Mq) = min
1≤u≤2k−1

AICSO(Mu)

≤ min
1≤u≤2k−1, u ̸=q

AICSO(Mu). (5.16)

Furthermore, from the definitions of the AICSO and the pAIC, it is clear that

AICSO(Mu) ≤ pAIC(Mu). Therefore, combining this inequality and (5.16), we obtain

pAIC(Mq) ≤ min
1≤u≤2k−1, u ̸=q

AICSO(Mu) ≤ min
1≤u≤2k−1, u ̸=q

pAIC(Mu).

Hence, for any candidate model Mu, it holds that pAIC(Mq) ≤ pAIC(Mu). In addition,

for any candidate model Mu⋆ with pAIC(Mq) = pAIC(Mu⋆), it holds that #(Mq) ≤
#(Mu⋆). In fact, if pAIC(Mq) = pAIC(Mu⋆) and i⋆ = #(Mu⋆) < #(Mq) = i, it holds

that
AICSO(Mq) = pAIC(Mq) = pAIC(Mu⋆) ≥ AICSO(Mu⋆).

However, since i⋆ = #(Mu⋆) < #(Mq) = i, this implies that Mq is not the minimum

AICSO model. This is a contradiction. Hence, for any candidate model Mu⋆ with

pAIC(Mq) = pAIC(Mu⋆), it holds that #(Mq) ≤ #(Mu⋆). Therefore, the minimum

pAIC model is Mq. Similarly, by using the same argument, we can also prove the case

of θ̂
(q)
1 = · · · = θ̂

(q)
k .

Recall that the AICSO is the asymptotically “unbiased” estimator of the risk function.

Furthermore, in general, the pAIC is the asymptotically “biased” estimator of the risk

function. However, Theorem 5.1 means that the minimum AICSO model based on the

AICSO is equal to the minimum pAIC model based on the pAIC although the AICSO

and pAIC are asymptotically unbiased and biased estimators, respectively. In other

words, when we consider the model selection problem for these candidate models using

the AICSO or the pAIC, we may use the pAIC.

Remark 5.4. Needless to say, for these candidate models, we can also use the AICSO.

Here, we would like to note that, in general, the result of Theorem 5.1 does not hold when

the number of candidate models is smaller than 2k−1. For example, when we consider

the nested candidate models, in general, the minimum AICSO model is not equal to the

minimum pAIC model.

6. Numerical experiments

Let Xij be a random variable distributed as N(θi, σ
2/Ni) where 1 ≤ i ≤ 4, 1 ≤ j ≤ Ni

and N1 = · · · = N4. Moreover, let N = N1 +N2 +N3 +N4. In this section, we consider
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the following four candidate models:

Model 1 : ANOVA model with θ1 = θ2 = θ3 = θ4,

Model 2 : ANOVA model with θ1 ≤ θ2 = θ3 = θ4,

Model 3 : ANOVA model with θ1 ≤ θ2 ≤ θ3 = θ4,

Model 4 : ANOVA model with θ1 ≤ θ2 ≤ θ3 ≤ θ4.

Thus, these four models are nested. From 100,000 monte calro simulation runs, we

compare performance of the AICSO and the pAIC. In the qth simulation, where (1 ≤
q ≤ 100000), let θ̂

(q)
1,AICSO

, . . . , θ̂
(q)
4,AICSO

and σ̂2
(q)

AICSO
be MLEs of the parameters θ1, . . . , θ4

and σ2 for the minimum AICSO model, respectively. Similarly, let θ̂
(q)
1,pAIC, . . . , θ̂

(q)
4,pAIC

and σ̂2
(q)

pAIC be MLEs of the parameters θ1, . . . , θ4 and σ2 for the minimum pAIC model,

respectively. Here, since the risk function of ANOVA model with the SO is given by

(2.8), the estimator

R(θ̂1, . . . , θ̂4, σ̂
2) = N log(2πσ̂2) +

Nσ2
∗

σ̂2
+

∑4
i=1 Ni(θi,∗ − θ̂i)

2

σ̂2
,

is an unbiased estimator of the risk function. Based on this, we evaluate performance of

the AICSO and the pAIC as

PEAICSO =
1

100000

100000∑
q=1

R(θ̂
(q)
1,AICSO

, . . . , θ̂
(q)
4,AICSO

, σ̂2
(q)

AICSO
),

PEpAIC =
1

100000

100000∑
q=1

R(θ̂
(q)
1,pAIC, . . . , θ̂

(q)
4,pAIC, σ̂

2
(q)

pAIC).

Thus, the PEAICSO and the PEpAIC are estimated values of risk functions for the minimum

AICSO model (the model selected by using the AICSO) and the minimum pAIC model

(the model selected by using the pAIC), respectively.

Next, in this simulation, we consider the following true models:

Case 1 : θ1 = θ2 = 2, θ3 = θ4 = 2.8, σ2 = 2,

Case 2 : θ1 = 1.5, θ2 = 1.8, θ3 = 2.1, θ4 = 2.4, σ2 = 2,

Case 3 : θ1 = θ2 = θ3 = θ4 = 2.5, σ2 = 2.

In Case 1, Model 3 and 4 include the true model, and in Case 2, Model 4 includes the

true model. Moreover, in Case 3, Model 1, 2, 3 and 4 include the true model. For these

cases, we set N = 40 and N = 200. The values of the PEAICSO
and the PEpAIC in the

cases 1–3 are given in Table 6.1–6.3, respectively.

From Table 6.1–6.3, we can see that the AICSO is an asymptotically unbiased estimator

of the risk function. Recall that from the definitions of the AICSO and the pAIC, the

value of the AICSO is equal to or smaller than that of the pAIC. We can confirm that this
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inequality holds for all cases. Moreover, for the values of the PEAICSO and the PEpAIC,

from Table 6.1 and 6.2, we can see that the PEAICSO is smaller than the PEpAIC in Case

1 and 2. Thus, compared with the pAIC, model selections using the AICSO are better

from the viewpoint of the risk for the selected model in Case 1 and 2. On the other hand,

in case 3, the model selection using the pAIC is better.

7. Conclusion

In this paper, we derived the AICSO for ANOVA model with the simple order restric-

tion. We showed that the AICSO is the asymptotically unbiased estimator of the risk

function. Furthermore, we also showed that if the true variance is known, the AICSO is

the unbiased estimator. We would like to note that since the penalty term of the AICSO

is simply defined as the function of the MLEs, the AICSO is very useful for analysts.

Thus, from the viewpoint of usefulness and estimation accuracy of the risk function, the

AICSO is as good as the ordinal AIC. Furthermore, Theorem 5.1 shows that under certain

candidate models, the selected models based on minimizing the AICSO and the pAIC

are the same model. In addition, from numerical experiments we could confirm that the

AICSO is an unbiased estimator of the risk function.

Appendix

In this section, we define several notations. Next, we show seven lemmas, Lemma A–G,

and using Lemma F and Lemma G we prove Lemma 3.1.

First, we define the inequality of vectors. Let x = (x1, . . . , xp)
′ and y = (y1, . . . , yp)

′

be p-dimensional vectors, and let 0p be a p-dimensional vector of zeros. Then, define

x ≥ 0p ⇔ ∀i ∈ {1, . . . , p}, xi ≥ 0,

x ≥ y ⇔ x− y ≥ 0p.

Furthermore, for some proposition P , we define an indicator function 1{P} as

1{P} =

{
1 if P is true
0 if P is not true

.

Appendix A: Lemma A and its proof

Lemma A. Let l be an integer with l ≥ 2, and let n1, . . . , nl be elements of R>0. Let

n = (n1, . . . , nl)
′, and let x = (x1, . . . , xl)

′ be a vector of Rl. Then, the following (i), (ii)

and (iii) hold:
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(i) For all integers a, b and c with 1 ≤ a ≤ b < c ≤ l, it holds that

x̄[a,b] ≥ x̄[a,c] ⇔ x̄[a,b] ≥ x̄[b+1,c] ⇔ x̄[a,c] ≥ x̄[b+1,c], (A.1)

and
x̄[a,b] < x̄[a,c] ⇔ x̄[a,b] < x̄[b+1,c] ⇔ x̄[a,c] < x̄[b+1,c]. (A.2)

(ii) Let i be an integer with 2 ≤ i ≤ l, and let w1, . . . , wi be integers with w1 < w2 <

· · · < wi and wi = l. Put w0 = 0. Then, if

x̄[1+w0,w1] < x̄[1+w1,w2] < · · · < x̄[1+wi−1,wi] (A.3)

is true, for all integers s and t with 1 ≤ s < t ≤ i, it holds that

x̄[1+ws−1,ws] < x̄[1+ws−1,wt]. (A.4)

(iii) Let i and j be integers with 1 ≤ i < j ≤ l. Then, it holds that

x̄[i,b] ≥ x̄[b+1,j], (∀b ∈ N with i ≤ b < j) ⇔ D[i,j]x[i,j] ≥ 0j−i. (A.5)

Proof. First, we prove (i). Let a, b and c be integers with 1 ≤ a ≤ b < c ≤ l. In this

setting, we show x̄[a,b] < x̄[a,c] ⇔ x̄[a,b] < x̄[b+1,c]. Let x̄[a,b] < x̄[a,c], i.e., x̄[a,b]−x̄[a,c] < 0.

Then, we get

x̄[a,b] − x̄[a,c] =

∑b
j=a njxj

ñ[a,b]
−
∑c

j=a njxj

ñ[a,c]

=

∑b
j=a njxj

ñ[a,b]
−
∑b

j=a njxj +
∑c

j=b+1 njxj

ñ[a,c]

=
b∑

j=a

njxj

(
1

ñ[a,b]
− 1

ñ[a,c]

)
−
∑c

j=b+1 njxj

ñ[a,c]

=
b∑

j=a

njxj

(
ñ[a,c] − ñ[a,b]

ñ[a,b]ñ[a,c]

)
−
∑c

j=b+1 njxj

ñ[a,c]

=
b∑

j=a

njxj

(
ñ[b+1,c]

ñ[a,b]ñ[a,c]

)
−
∑c

j=b+1 njxj

ñ[a,c]

=
ñ[b+1,c]

ñ[a,c]

(∑b
j=a njxj

ñ[a,b]
−
∑c

j=b+1 njxj

ñ[b+1,c]

)
=

ñ[b+1,c]

ñ[a,c]
(x̄[a,b] − x̄[b+1,c]).

Hence, noting that ñ[b+1,c]/ñ[a,c] is positive, we have

x̄[a,b] − x̄[a,c] < 0 ⇔
ñ[b+1,c]

ñ[a,c]
(x̄[a,b] − x̄[b+1,c]) < 0

⇔ x̄[a,b] − x̄[b+1,c] < 0 ⇔ x̄[a,b] < x̄[b+1,c].
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Therefore, it holds that x̄[a,b] < x̄[a,c] ⇔ x̄[a,b] < x̄[b+1,c]. Moreover, by considering its

contraposition, x̄[a,b] ≥ x̄[a,c] ⇔ x̄[a,b] ≥ x̄[b+1,c] also holds. In addition, noting that

x̄[a,b] ≥ x̄[b+1,c]

⇔ ñ[a,b]ñ[b+1,c]x̄[a,b] ≥ ñ[a,b]ñ[b+1,c]x̄[b+1,c]

⇔ ñ[b+1,c]

b∑
j=a

njxj ≥ ñ[a,b]

c∑
j=b+1

njxj

⇔ ñ[b+1,c]

b∑
j=a

njxj + ñ[b+1,c]

c∑
j=b+1

njxj ≥ ñ[a,b]

c∑
j=b+1

njxj + ñ[b+1,c]

c∑
j=b+1

njxj

⇔ ñ[b+1,c]

c∑
j=a

njxj ≥ ñ[a,c]

c∑
j=b+1

njxj

⇔
∑c

j=a njxj

ñ[a,c]
≥
∑c

j=b+1 njxj

ñ[b+1,c]
⇔ x̄[a,c] ≥ x̄[b+1,c],

we get x̄[a,b] ≥ x̄[b+1,c] ⇔ x̄[a,c] ≥ x̄[b+1,c]. Finally, by considering its contraposition, we

also get x̄[a,b] < x̄[b+1,c] ⇔ x̄[a,c] < x̄[b+1,c]. Thus, it holds that (A.1) and (A.2).

Next, we prove (ii). Assume that (A.3) is true. Let s and t be integers with 1 ≤
s < t ≤ i. When t = 2 and s = 1, from (A.3) it holds that x̄[1+w1−1,w1] < x̄[1+w1,w2].

Moreover, from (A.2) x̄[1+w1−1,w1] < x̄[1+w1,w2] yields x̄[1+w1−1,w1] < x̄[1+w1−1,w2]. Thus,

we get x̄[1+ws−1,ws] < x̄[1+ws−1,wt]. Hence, if t = 2, (ii) is proved. Therefore, we consider

the case of t ≥ 3. Since (A.3) is true, we obtain

x̄[1,w1] < · · · < x̄[1+wt−3,wt−2] < x̄[1+wt−2,wt−1] < x̄[1+wt−1,wt]. (A.6)

Here, using (A.2) and the last inequality of (A.6), x̄[1+wt−2,wt−1] < x̄[1+wt−1,wt], we get

x̄[1+wt−2,wt−1] < x̄[1+wt−2,wt]. (A.7)

Thus, if s = t− 1, (ii) is proved.

Finally, we consider the case of s < t − 1, i.e., there exists q with q ≥ 2, such that

s = t − q. Here, we put v = t − 1. Note that from (A.7) the inequality x̄[1+wv−1,wv ] <

x̄[1+wv−1,wt] holds. In this setting, (ii) is proved as follows:

1. Combining x̄[1+wv−1,wv ] < x̄[1+wv−1,wt] and the inequality x̄[1+wv−2,wv−1] <

x̄[1+wv−1,wv ] in (A.6), we obtain x̄[1+wv−2,wv−1] < x̄[1+wv−1,wt].

2. Again, by using (A.2), we get x̄[1+wv−2,wv−1] < x̄[1+wv−2,wt].

3. Here, if v − 1 = s, (ii) is proved. On the other hand, if s < v − 1, replacing v − 1

with v, and we go back to the step 1.

Therefore, using above method we obtain (ii).
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Finally, we prove (iii). Let i and j be integers with 1 ≤ i < j ≤ l, and let b be an

integer with i ≤ b < j, i.e., i ≤ b ≤ j − 1. We put s = b− i+ 1. Note that 1 ≤ s ≤ j − i.

Recall that from (3.4), the sth row of the matrix Di,j is given(
1

ñ[i,i+s−1]
n′

[i,i+s−1],
−1

ñ[i+s,j]
n′

[i+s,j]

)
.

Therefore, the sth element of the vector Di,jx[i,j] can be expressed as(
1

ñ[i,i+s−1]
n′

[i,i+s−1],
−1

ñ[i+s,j]
n′

[i+s,j]

)
x[i,j]

=

(
1

ñ[i,i+s−1]
n′

[i,i+s−1],
−1

ñ[i+s,j]
n′

[i+s,j]

)
(x′

[i,i+s−1],x
′
[i+s,j])

′

=
n′

[i,i+s−1]x[i,i+s−1]

ñ[i,i+s−1]
−

n′
[i+s,j]x[i+s,j]

ñ[i+s,j]
= x̄[i,i+s−1] − x̄[i+s,j] = x̄[i,b] − x̄[b+1,j].

Hence, if Di,jx[i,j] ≥ 0j−i, then we obtain x̄[i,b] − x̄[b+1,j] ≥ 0, i.e., x̄[i,b] ≥ x̄[b+1,j]. On

the other hand, if x̄[i,b] ≥ x̄[b+1,j], i.e., x̄[i,b]− x̄[b+1,j] ≥ 0 for any integer b with i ≤ b < j,

then, we get Di,jx[i,j] ≥ 0j−i. Thus, (A.5) holds.

Appendix B: Lemma B and its proof

Lemma B. Let l be an integer with l ≥ 2, and let n1, . . . , nl ∈ R>0 and n = (n1, . . . , nl)
′.

Let x = (x1, . . . , xl)
′ ∈ Rl, and let i be an integer with 2 ≤ i ≤ l. In addition, let

w1, . . . , wi ∈ N, and let w1 < w2 < · · · < wi where wi = l. Put w0 = 0. Assume that

ηl(x)[1] = · · · = ηl(x)[w1],

ηl(x)[w1 + 1] = · · · = ηl(x)[w2],

...

ηl(x)[wi−1 + 1] = · · · = ηl(x)[wi],

and
ηl(x)[wj ] = x̄[1+wj−1,wj ], (1 ≤ j ≤ i). (B.1)

Moreover, also assume that

x̄[1,w1] < x̄[1+w1,w2] < · · · < x̄[1+wi−1,wi]. (B.2)

Then, the following two propositions hold:

(i) Let s be an integer with 1 < s ≤ i. If the inequality

D1+wt−1,wtx[1+wt−1,wt] ≥ 0wt−wt−1−1 (B.3)

26



holds for any integer t with s ≤ t ≤ i, then, the following inequality also holds:

D1+ws−2,ws−1x[1+ws−2,ws−1] ≥ 0ws−1−ws−2−1, (B.4)

where we define 00 = 0.

(ii) For any integer t with 1 ≤ t ≤ i, it holds that

D1+wt−1,wtx[1+wt−1,wt] ≥ 0wt−wt−1−1. (B.5)

Proof. First, we prove (i). We would like to recall that, from (3.5) ηl(x)[ws−1] is given

by

ηl(x)[ws−1] = min
v;v≥ws−1

max
u;u≤ws−1

x̄[u,v]. (B.6)

Here, assume that

∃v∗ > ws−1 s.t. v∗ = argmin
v;v≥ws−1

(
max

u;u≤ws−1

x̄[u,v]

)
. (B.7)

Note that the assumption (B.7) is equal to

min
v;v≥ws−1

max
u;u≤ws−1

x̄[u,v] = max
u;u≤ws−1

x̄[u,v∗]. (B.8)

Then, from (B.6) and (B.8) we have

ηl(x)[ws−1] = max
u;u≤ws−1

x̄[u,v∗].

Furthermore, noting that

max
u;u≤ws−1

x̄[u,v∗] ≥ x̄[1+ws−2,v∗]

we also get
ηl(x)[ws−1] ≥ x̄[1+ws−2,v∗]. (B.9)

Incidentally, since v∗ satisfies the inequality v∗ > ws−1, there exists a number t such that

s ≤ t ≤ i and 1 + wt−1 ≤ v∗ ≤ wt. Based on this, we consider the following two cases:

Case 1 : x̄[1+ws−2,wt−1] < x̄[1+wt−1,v∗],

Case 2 : x̄[1+ws−2,wt−1] ≥ x̄[1+wt−1,v∗].

It is clear that Case 1 is the negation of Case 2. Next, we show that both Case 1 and

Case 2 are false. In fact, if Case 1 is true, i.e., the inequality x̄[1+ws−2,wt−1] < x̄[1+wt−1,v∗]

is true, from (A.2) we obtain x̄[1+ws−2,wt−1] < x̄[1+ws−2,v∗]. Thus, using this inequality

and (B.9) we get
ηl(x)[ws−1] > x̄[1+ws−2,wt−1]. (B.10)

Recall that we assume the inequality (B.2). Hence, from (A.4) it holds that

x̄[1+ws−2,ws−1] < x̄[1+ws−2,wt−1]. (B.11)
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Therefore, combining (B.10) and (B.11), we obtain

ηl(x)[ws−1] > x̄[1+ws−2,ws−1]. (B.12)

However, from the assumption (B.1), it holds that ηl(x)[ws−1] = x̄[1+ws−2,ws−1]. This

result and (B.12) contradict. Hence, Case 1 is false. Next, we consider Case 2. Suppose

that x̄[1+ws−2,wt−1] ≥ x̄[1+wt−1,v∗] is true. Then, from (A.1) we have x̄[1+ws−2,v∗] ≥
x̄[1+wt−1,v∗]. Combining this inequality and (B.9), we get

ηl(x)[ws−1] ≥ x̄[1+wt−1,v∗]. (B.13)

Here, when v∗ = wt, from (B.13) it holds that

ηl(x)[ws−1] ≥ x̄[1+wt−1,wt].

On the other hand, when 1 + wt−1 ≤ v∗ < wt, from the assumption (B.3), it holds that

D1+wt−1,wtx[1+wt−1,wt] ≥ 0wt−wt−1−1. Using this inequality and (A.5) we obtain

x̄[1+wt−1,v∗] ≥ x̄[1+v∗,wt].

Again, from (A.1) it holds that x̄[1+wt−1,v∗] ≥ x̄[1+wt−1,wt]. Substituting this inequality

into (B.13) yields ηl(x)[ws−1] ≥ x̄[1+wt−1,wt]. Thus, in both cases it holds that

ηl(x)[ws−1] ≥ x̄[1+wt−1,wt]. (B.14)

Here, recall that from the assumption (B.1), the equality ηl(x)[ws−1] = x̄[1+ws−2,ws−1]

holds. Therefore, combining this equality and (B.14) it holds that

x̄[1+ws−2,ws−1] ≥ x̄[1+wt−1,wt]. (B.15)

Note that from the definitions of s and t, the inequality s−1 ≤ t−1 holds. Thus, (B.15)

and (B.2) contradict. Therefore, Case 2 is false. Hence, both Case 1 and Case 2 are false.

This implies that the assumption (B.7) is not true. Thus, we obtain

argmin
v;v≥ws−1

(
max

u;u≤ws−1

x̄[u,v]

)
= ws−1,

in other words, it holds that

ηl(x)[ws−1] = min
v;v≥ws−1

max
u;u≤ws−1

x̄[u,v] = max
u;u≤ws−1

x̄[u,ws−1]. (B.16)

Therefore, from (B.16) it holds that ηl(x)[ws−1] ≥ x̄[r,ws−1] for any integer r with 1 +

ws−2 < r ≤ ws−1. Again, using ηl(x)[ws−1] = x̄[1+ws−2,ws−1] we get x̄[1+ws−2,ws−1] ≥
x̄[r,ws−1]. Moreover, from (A.1) we have x̄[1+ws−2,r−1] ≥ x̄[r,ws−1]. Here, we replace

r − 1 with b. Then, b is the integer satisfying 1 + ws−2 ≤ b < ws−1 and it holds that
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x̄[1+ws−2,b] ≥ x̄[b+1,ws−1]. Thus, from (A.5), this implies D1+ws−2,ws−1x[1+ws−2,ws−1] ≥
0ws−1−ws−2−1. Consequently, (B.4) is proved, This implies that (i) holds.

Next, we prove (ii). Since we have already proved the first proposition (i), in order to

prove (ii), it is sufficient to prove that

D1+wi−1,wix[1+wi−1,wi] ≥ 0wi−wi−1−1.

Here, we consider ηl(x)[wi]. Recall that from (3.5) ηl(x)[wi] is given by

ηl(x)[wi] = min
v;v≥wi

max
u;u≤wi

x̄[u,v].

Noting that wi = l, we get

ηl(x)[wi] = min
v;v≥wi

max
u;u≤wi

x̄[u,v] = max
u;u≤wi

x̄[u,wi]. (B.17)

Also note that, from (B.1) the equality ηl(x)[wi] = x̄[1+wi−1,wi] holds. Therefore, using

this equality and (B.17) we obtain x̄[1+wi−1,wi] ≥ x̄[r,wi] for any integer r with 1 +

wi−1 < r ≤ wi. Again, by using the same argument as in the proof of (i), we have

D1+wi−1,wix[1+wi−1,wi] ≥ 0wi−wi−1−1. Thus, combining this result and (i), (ii) is proved.

Appendix C: Lemma C and its proof

Lemma C. Let l be an integer with l ≥ 2, and let n1, . . . , nl ∈ R>0, n = (n1, . . . , nl)
′,

ξ1, . . . , ξl ∈ R and τ2 > 0. Let x1, . . . , xl be independent random variables, and for

any integer s with 1 ≤ s ≤ l, let xs ∼ N(ξs, τ
2/ns). Put x = (x1, . . . , xl)

′. Then, the

following four propositions hold:

(i)

Rl =
l∪

i=1

∪
w;w∈Wl

i

η−1
l (Al

i(w)),

η−1
l (Al

i(w)) ∩ η−1
l (Al

i∗(w
∗)) = ∅, ((i,w) ̸= (i∗,w∗)).

(ii) For the set Al
1(w) = Al

1, it holds that

x ∈ η−1
l (Al

1(w)) ⇔ D1,lx[1,l] ≥ 0l−1. (C.1)

Moreover, for any integer i with 2 ≤ i ≤ l and for any element w = (w1, . . . , wi)
′ ∈

W l
i , it holds that

x ∈ η−1
l (Al

i(w)) ⇔ 0 ≤ t ≤ i− 1, D1+wt,wt+1x[1+wt,wt+1] ≥ 0ρt,w ,

0 ≤ s ≤ i− 2, x̄[1+ws,ws+1] < x̄[1+ws+1,ws+2], (C.2)

where w0 = 0 and, ρt,w = wt+1 − wt − 1.
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(iii) For any integer i with 1 ≤ i ≤ l and for any element w = (w1, . . . , wi)
′ ∈ W l

i , it

holds that

x ∈ η−1
l (Al

i(w)) ⇒ 0 ≤ t ≤ i− 1, ηl(x)[1 + wt] = · · · = ηl(x)[wt+1]

= x̄[1+wt,wt+1],

where w0 = 0.

(iv) For any integer i with 1 ≤ i ≤ l, it holds that

∑
w;w∈Wl

i

P
(
x ∈ η−1

l (Al
i(w))

)
= P

ηl(x) ∈
∪

w;w∈Wl
i

Al
i(w)

 .

Proof. First, we prove (i). From the definition of the function ηl(·), we get ηl(Rl) ⊂ Al.

Hence, from (3.2) and (3.3) it is clear that (i) holds. Second, we prove (iv). Here,

note that from (i) it holds that η−1
l (Al

i(w)) ∩ η−1
l (Al

i∗(w
∗)) = ∅. Thus, the events

x ∈ η−1
l (Al

i(w)) and x ∈ η−1
l (Al

i∗(w
∗)) are disjoint. Therefore, from the definition of

the probability we obtain

∑
w;w∈Wl

i

P(x ∈ η−1
l (Al

i(w))) = P

x ∈
∪

w;w∈Wl
i

η−1
l (Al

i(w))

 .

Furthermore, from the inverse image, we also get

x ∈
∪

w;w∈Wl
i

η−1
l (Al

i(w)) ⇔ ηl(x) ∈
∪

w;w∈Wl
i

Al
i(w).

Hence, (iv) is proved

Next, we prove (ii). First, we prove the right-arrow ⇒ in (C.1). x ∈ η−1
l (Al

1(w)), i.e.,

ηl(x) ∈ Al
1(w). Then, from the definition of Al

1(w), we get

ηl(x)[1] = ηl(x)[2] = · · · = ηl(x)[l] ≡ α̂ (say).

This implies that ηl(x) = α̂1l. In addition, from the definition of the function ηl it holds

that

min
y∈Al

∥x− y∥2n = ∥x− ηl(x)∥2n = ∥x− α̂1l∥2n. (C.3)

Moreover, noting that Al
1(w) ⊂ Al we have

min
y∈Al

∥x− y∥2n ≤ min
y∗∈Al

1(w)
∥x− y∗∥2n = min

α∈R1
∥x− α1l∥2n.

Here, note that the norm ∥x − α1l∥2n is a convex function with respect to (w.r.t.) α

on R1. Thus, there exists a unique point αmin which maximizes ∥x − α1l∥2n w.r.t. α.

Therefore, we obtain

min
y∈Al

∥x− y∥2n ≤ ∥x− αmin1l∥2n. (C.4)
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Hence, combining (C.3) and (C.4), the inequality ∥x − α̂1l∥2n ≤ ∥x − αmin1l∥2n holds.

Therefore, from uniqueness of αmin we obtain α̂ = αmin. On the other hand, αmin can

be obtained by differentiating the function ∥x− α1l∥2n w.r.t. α as αmin = x̄[1,l] because

the function ∥x− α1l∥2n is the convex function. Thus, it holds that

ηl(x)[1] = ηl(x)[2] = · · · = ηl(x)[l] = x̄[1,l]. (C.5)

Here, recall that ηl(x)[s] is given by (3.5). Hence, ηl(x)[1] can be written as

ηl(x)[1] = min
v≥1

x̄[1,v]. (C.6)

Moreover, from (C.5) we get ηl(x)[1] = x̄[1,l]. Therefore, combining this equality and

(C.6), it holds that x̄[1,v] ≥ x̄[1,l] for any integer v with 1 ≤ v < l. Thus, from (A.1) we

obtain x̄[1,v] ≥ x̄[v+1,l]. Hence, from (A.5) this implies that D1,lx[1,l] ≥ 0l−1. Conse-

quently, the right-arrow ⇒ in (C.1) is proved.

Next, we prove the left-arrow ⇐ in (C.1). Let D1,lx[1,l] ≥ 0l−1. Then, from (A.5) it

holds that x̄[1,v] ≥ x̄[v+1,l] for any integer v with 1 ≤ v < l. Again, from (A.1) we have

x̄[1,v] ≥ x̄[1,l]. Hence, combining this result and (C.6) we get ηl(x)[1] = x̄[1,l]. On the

other hand, from (3.5), ηl(x)[l] can be expressed as

ηl(x)[l] = max
u≤l

x̄[u,l]. (C.7)

Here, since the inequality x̄[1,v] ≥ x̄[v+1,l] holds, from (A.1) we obtain x̄[1,l] ≥ x̄[v+1,l].

This result and (C.7) yield ηl(x)[l] = x̄[1,l]. Thus, it holds that ηl(x)[1] = ηl(x)[l]. In

addition, from the definition of ηl we have ηl(x)[1] ≤ · · · ≤ ηl(x)[l]. Therefore, combining

this inequality and the equality ηl(x)[1] = ηl(x)[l], we get ηl(x)[1] = · · · = ηl(x)[l]. This

implies that ηl(x) ∈ Al
1(w), i.e., x ∈ η−1

l (Al
1(w)). Hence, the left-arrow ⇐ in (C.1) is

proved. Therefore, (C.1) is proved.

Next, we prove (C.2). First, we show the right-arrow ⇒ in (C.2). Let i be an integer

with 2 ≤ i ≤ l, and let w = (w1, . . . , wi)
′ be an element with w ∈ W l

i . Here, we put

w0 = 0. Furthermore, assume that x ∈ η−1
l (Al

i(w)). Note that wi = l. Then, since

ηl(x) ∈ Al
i(w) the following equalities hold:

ηl(x)[1] = · · · = ηl(x)[w1] ≡ δ̂1,

ηl(x)[w1 + 1] = · · · = ηl(x)[w2] ≡ δ̂2,

...

ηl(x)[wi−1 + 1] = · · · = ηl(x)[wi] ≡ δ̂i, (say).

Moreover, the inequality δ̂1 < · · · < δ̂i also holds. We put δ̂ = (δ̂1, . . . , δ̂i)
′. Then, ηl(x)

can be written by using δ̂ as ηl(x) = (δ̂11
′
w1−w0

, . . . , δ̂i1
′
wi−wi−1

)′. From the definitions
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of ηl and ∥ ∥n, using ηl(x) = (δ̂11
′
w1−w0

, . . . , δ̂i1
′
wi−wi−1

)′ we get

min
y∈Al

∥x− y∥2n = ∥x− ηl(x)∥2n =

i−1∑
s=0

ws+1∑
u=1+ws

nu(xu − δ̂s+1)
2. (C.8)

Define for each δ = (δ1, . . . , δi)
′ ∈ Ri a function

f(δ) =

i−1∑
s=0

ws+1∑
u=1+ws

nu(xu − δs+1)
2.

Therefore, the right hand side in (C.8) can be written as f(δ̂). Incidentally, sinceAl
i(w) ⊂

Al the following inequality holds:

min
y∈Al

∥x− y∥2n ≤ min
y∗∈Al

i(w)
∥x− y∗∥2n = min

δ∈Ai
i

f(δ). (C.9)

Here, there exists a positive number ε such that the ε-neighborhood of δ̂, U(δ̂; ε) satisfies

U(δ̂; ε) ⊂ Ai
i because δ̂ ∈ Ai

i and Ai
i is an open set. By combining this result and (C.9)

we have

min
y∈Al

∥x− y∥2n ≤ min
δ∈Ai

f(δ) ≤ min
δ∗∈U(δ̂;ε)

f(δ∗). (C.10)

Hence, from (C.8) and (C.10) it holds that f(δ̂) ≤ f(δ∗) for any δ∗ ∈ U(δ̂; ε). Thus, the

point δ̂ minimizes the function f(δ). On the other hand, since f(δ) is a convex function

w.r.t. δ on Ri, there exists a unique point δmin = (δ1,min, . . . , δi,min)
′ which minimizes

f(δ). Therefore, noting that f(δ) is convex, we get δ̂ = δmin. Furthermore, the point

δmin can be obtained by differentiating the function f(δ) w.r.t. δ as

ηl(x)[1 + wt] = · · · = ηl(x)[wt+1] = δ̂t+1 = δt+1,min = x̄[1+wt,wt+1], (C.11)

for any integer t with 0 ≤ t ≤ i − 1. Here, since δ̂1 < · · · < δ̂i, for any integer s with

0 ≤ s ≤ i− 2 it holds that

x̄[1+ws,ws+1] < x̄[1+ws+1,ws+2]. (C.12)

Therefore, (C.11) and (C.12) imply that the all assumptions in Lemma B are

satisfied. Thus, from (B.5), for any integer t with 0 ≤ t ≤ i − 1 it holds that

D1+wt,wt+1x[1+wt,wt+1] ≥ 0wt+1−wt−1. Hence, by considering this result and (C.12), the

right-arrow ⇒ in (C.2) is proved.

Next, we prove the left-arrow ⇐ in (C.2). Let i be an integer with 2 ≤ i ≤ l, and let

w = (w1, . . . , wi)
′ be an element with w ∈ W l

i . We put w0 = 0. Assume that

D1+wt,wt+1
x[1+wt,wt+1] ≥ 0wt+1−wt−1 (0 ≤ t ≤ i− 1), (C.13)
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and

x̄[1+ws,ws+1] < x̄[1+ws+1,ws+2] (0 ≤ s ≤ i− 2). (C.14)

Then, from the definitions of ノ ∥ ∥n and ηl(x), it holds that

min
δ∈Al

∥x− δ|2n = ∥x− ηl(x)|2n

=
i−1∑
t=0

∥x[1+wt,wt+1] − ηl(x)[1+wt,wt+1]∥
2
n[1+wt,wt+1]

. (C.15)

In addition, since ηl(x)[1+wt,wt+1] ∈ Awt+1−wt , for any integer t with 0 ≤ t ≤ i − 1, the

inequality holds:

∥x[1+wt,wt+1] − ηl(x)[1+wt,wt+1]∥
2
n[1+wt,wt+1]

≥ min
δ[1+wt,wt+1]∈Awt+1−wt

∥x[1+wt,wt+1] − δ[1+wt,wt+1]∥
2
n[1+wt,wt+1]

. (C.16)

Next, we evaluate the right hand side in (C.16). Here, we replace wt+1−wt, x[1+wt,wt+1]

and n[1+wt,wt+1] with g, y[1,g] = y = (y1, . . . , yg)
′ and N[1,g] = N = (N1, . . . , Ng)

′,

respectively. Then, the right hand side in (C.16) can be rewritten as

min
δ[1+wt,wt+1]∈Awt+1−wt

∥x[1+wt,wt+1] − δ[1+wt,wt+1]∥
2
n[1+wt,wt+1]

= min
δ[1+wt,wt+1]∈Ag

∥y − δ[1+wt,wt+1]∥
2
N = ∥y − η(N)

g (y)∥2N . (C.17)

in the case of g = 1, i.e., wt+1 = wt + 1, since η
(N)
1 (y) = y, it is clear that η

(N)
g (y) =

y = x[1+wt,wt+1] = xt+1 = x̄[1+wt,wt+1]. On the other hand, in the case of g ≥ 2, from

(C.13) and the definition of the matrix Di,j = D
(n)
i,j , we get

D1+wt,wt+1x[1+wt,wt+1] ≥ 0wt+1−wt−1 ⇔ D
(n)
1+wt,wt+1

y[1,g] ≥ 0g−1

⇔ D
(N)
1,g y[1,g] ≥ 0g−1. (C.18)

Moreover, we obtain

D
(N)
1,g y[1,g] ≥ 0g−1 ⇒ y ∈ (η(N)

g )−1(Ag
1), (C.19)

because we have already proved (C.1). Furthermore, from (C.5) we get

y ∈ (η(N)
g )−1(Ag

1) ⇒ η(N)
g (y)[1] = · · · = η(N)

g (y)[g] = ȳ
(N)
[1,g] = x̄[1+wt,wt+1]. (C.20)

Therefore, combining (C.18), (C.19) and (C.20) we obtain

D1+wt,wt+1
x[1+wt,wt+1] ≥ 0wt+1−wt−1

⇒ η(N)
g (y)[1] = · · · = η(N)

g (y)[g] = x̄[1+wt,wt+1].
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Thus, by using this result, (C.15), (C.16) and (C.17) imply that

∥x− ηl(x)∥2n ≥
i−1∑
t=0

∥x[1+wt,wt+1] − x̄[1+wt,wt+1]1wt+1−wt∥2n[1+wt,wt+1]
. (C.21)

Here, we put h = (x̄[1,w1]1
′
w1

, x̄[1+w1,w2]1
′
w2−w1

, . . . , x̄[1+wi−1,wi]1
′
wi−wi−1

)′. From (C.14),

since h ∈ Al we get

∥x− ηl(x)∥2n = min
δ∈Al

∥x− δ∥2n

≤ ∥x− h∥2n

=

i−1∑
t=0

∥x[1+wt,wt+1] − x̄[1+wt,wt+1]1wt+1−wt∥2n[1+wt,wt+1]
. (C.22)

Hence, (C.21) and (C.22) imply that ηl(x) = h. In addition, noting that h ∈ Al
i(w), it

also holds that x ∈ η−1
l (Al

i(w)). Thus, the left-arrow⇐ in (C.2) is proved. Consequently,

(ii) is proved.

Finally, in the proof of (ii), we have already proved (C.5) and (C.11). Thus, (iii) is

proved. Therefore, Lemma C is proved.

Appendix D: Lemma D and its proof

Lemma D. Let v1, . . . , vl be independent random variables, and let vs ∼ N(ξs, τ
2/ns)

where 1 ≤ s ≤ l. Let τ2 > 0, ξ1, . . . , ξl ∈ R, n1, . . . , nl ∈ R>0, n = (n1, . . . , nl)
′ and

v = (v1, . . . , vl)
′. Then, for any i and j with 1 ≤ i ≤ j ≤ l, it holds that

Di,jv[i,j] ⊥⊥ v̄[i,j], (D.1)

and

v̄[i,j] ⊥⊥
j∑

s=i

ns(vs − ξs)(vs − v̄[i,j]). (D.2)

Proof. First, we prove (D.1). when i = j, since Di,j = 0 it is clear that Di,jv[i,j] ⊥⊥ v̄[i,j].

Hence, we prove the case of i < j. Noting that v̄[i,j] can be written as

v̄[i,j] =
n′

[i,j]

ñ[i,j]
v[i,j],

we get (
Di,jv[i,j]

v̄[i,j]

)
=

(
Di,j
n′

[i,j]

ñ[i,j]

)
v[i,j] ∼ Nj−i+1(∗, ⋆).
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Thus, it is sufficient to prove Cov[Di,jv[i,j], v̄[i,j]] = 0j−i. Here, for any s with (1 ≤ s ≤
j − i), the sth row of Di,j is given by (3.4), it holds that(

1

ñ[i,i+s−1]
n′

[i,i+s−1],
−1

ñ[i+s,j]
n′

[i+s,j]

)
1j−i+1 = 0.

Therefore, we obtain

Cov[Di,jv[i,j], v̄[i,j]] = Di,jτ
2diag(n−1

i , . . . , n−1
j )

1

ñ[i,j]
n[i,j]

=
τ2

ñ[i,j]
Di,j1j−i+1 = 0j−i,

where diag(a1, . . . , ap) is a p×p diagonal matrix whose (s, s)th element is as. This implies

Di,jv[i,j] ⊥⊥ v̄[i,j].

Next, we prove (D.2). when i = j, since v̄[i,j] = vi we get

j∑
s=i

ns(vs − ξs)(vs − v̄[i,j]) = 0.

Hence, it is clear that (D.2) holds. Thus, we prove the case of i < j. From the definition

of v̄[i,j], it is easily checked that

j∑
s=i

nsv̄[i,j](vs − v̄[i,j]) = 0.

By using this result, we have

j∑
s=i

ns(vs − ξs)(vs − v̄[i,j]) =

j∑
s=i

ns({vs − ξs − v̄[i,j]}+ v̄[i,j])(vs − v̄[i,j])

=

j∑
s=i

ns(vs − v̄[i,j] − ξs)(vs − v̄[i,j])

=

j∑
s=i

ns(vs − v̄[i,j])
2 −

j∑
s=i

nsξs(vs − v̄[i,j]).

Here, putting

A = diag(n
1/2
i , . . . , n

1/2
j )

{
Ij−i+1 −

1j−i+1

ñ[i,j]
n′

[i,j]

}
,

we get

j∑
s=i

ns(vs − ξs)(vs − v̄[i,j]) = (Av[i,j])
′(Av[i,j])− (

√
niξi, . . . ,

√
njξj)Av[i,j].
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Therefore, it is sufficient to prove Av[i,j] ⊥⊥ v̄[i,j]. by using the same argument, it is

easily checked that ((Av[i,j])
′, v̄[i,j])

′ ∼ Nj−i+2(∗, ⋆). Thus, we prove Cov[Av[i,j], v̄[i,j]] =

0j−i+1. From the definitions of Av[i,j] and v̄[i,j], we obtain

Cov[Av[i,j], v̄[i,j]] =
τ2

ñ[i,j]
A diag(n−1

i , . . . , n−1
j ) n[i,j] =

τ2

ñ[i,j]
A1j−i+1

=
τ2

ñ[i,j]
diag(n

1/2
i , . . . , n

1/2
j )

{
1j−i+1 −

1j−i+1

ñ[i,j]
n′

[i,j]1j−i+1

}
= 0j−i+1.

This implies Av[i,j] ⊥⊥ v̄[i,j]. Therefore, (D.2) holds.

Appendix E: Lemma E and its proof

Lemma E. Let v1, . . . , vl be independent random variables defined as in Lemma D, and

let

Al
l = {(x1, . . . , xl)

′ ∈ Rl | x1 < x2 < · · · < xl}
= {(x1, . . . , xl)

′ ∈ Rl | 1 ≤ t ≤ l − 1, xt < xt+1}.

Then, it holds that

E

[
1{v∈η−1

l (Al
l)}

× 1

τ2

l∑
s=1

nsvs(vs − ξs)

]

= E

[
1{v∈Al

l}
× 1

τ2

l∑
s=1

nsvs(vs − ξs)

]
= lE[1{v∈Al

l}
] = lE[1{v∈η−1

l (Al
l)}

] = lP(v ∈ η−1
l (Al

l)).

Proof. From the definition of the indicator function, it is clear that the fourth equality

holds. Therefore, first, we show the first and third equalities. In other words, we show

v ∈ η−1
l (Al

l) ⇔ v ∈ Al
l.

If v ∈ Al
l, it holds that

min
y∈Al

∥v − y∥2n = 0,

because Al
l ⊂ Al. Hence, noting that ηl(v) = v ∈ Al

l, we get v ∈ η−1
l (Al

l). On the

other hand, recall that for the element w = (w1, . . . , wl)
′ = (1, . . . , l)′ ∈ W l

l , the set Al
l

is equal to the set Al
l(w). Thus, if v ∈ η−1

l (Al
l) = η−1

l (Al
l(w)), from (C.2) of Lemma C

we obtain

v̄[1+0,1] < v̄[1+1,2] < · · · < v̄[1+(l−1),l].

Hence, noting that v̄[s,s] = vs, we get v1 < v2 < · · · < vl. This implies v ∈ Al
l.
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Next we show the second equality. For any s with 1 ≤ s ≤ l, we put

√
ns(vs − ξs)

τ
= zs, bs =

ξs
√
ns

τ
.

These z1, . . . , zl are independently distributed as N(0, 1). Moreover, using zs and bs we

have

1

τ2

l∑
s=1

nsvs(vs − ξs) =
l∑

s=1

zs(zs + bs). (E.1)

Furthermore, for any t with 2 ≤ t ≤ l, putting

√
nt√

nt−1
= at−1,

it holds that

v ∈ Al
l ⇔ 2 ≤ t ≤ l, vt−1 < vt ⇔ 2 ≤ t ≤ l, at−1(zt−1 + bt−1)− bt < zt.

Here, let

El = {(c1, . . . , cl) ∈ Rl | 2 ≤ t ≤ l, at−1(ct−1 + bt−1)− bt < ct}.

Then, for the element z = (z1, . . . , zl)
′, it holds that v ∈ Al

l ⇔ z ∈ El. By using this

result and (E.1), we get

E

[
1{v∈Al

l}
× 1

τ2

l∑
s=1

nsvs(vs − ξs)

]
= E

[
1{z∈El} ×

l∑
s=1

zs(zs + bs)

]

=

∫
· · ·
∫
El

{
l∑

s=1

zs(zs + bs)

}
l∏

s=1

ϕ(zs)dz1 · · · dzl, (E.2)

where ϕ(x) is the probability density function of standard normal distribution. We prove

(E.2) in the order of l = 2, l = 3 and l ≥ 4.

First, when l = 2, (E.2) can be written as∫ ∞

−∞

∫ ∞

a1(z1+b1)−b2

{z1(z1 + b1) + z2(z2 + b2)}ϕ(z1)ϕ(z2)dz1dz2

=

∫ ∞

−∞
z1(z1 + b1)ϕ(z1)

{∫ ∞

a1(z1+b1)−b2

ϕ(z2)dz2

}
dz1

+

∫ ∞

−∞
ϕ(z1)

{∫ ∞

a1(z1+b1)−b2

z2(z2 + b2)ϕ(z2)dz2

}
dz1. (E.3)

Using the integration by parts formula, the first part of the right hand side in (E.3) can
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be expressed as ∫ ∞

−∞
z1(z1 + b1)ϕ(z1)

{∫ ∞

a1(z1+b1)−b2

ϕ(z2)dz2

}
dz1

=

[
−ϕ(z1)(z1 + b1)

{∫ ∞

a1(z1+b1)−b2

ϕ(z2)dz2

}]∞
−∞

+

∫ ∞

−∞

∫ ∞

a1(z1+b1)−b2

ϕ(z1)ϕ(z2)dz1dz2

+

∫ ∞

−∞
ϕ(z1)(z1 + b1){−a1ϕ(a1(z1 + b1)− b2)}dz1

=

∫ ∞

−∞

∫ ∞

a1(z1+b1)−b2

ϕ(z1)ϕ(z2)dz1dz2

−
∫ ∞

−∞
a1(z1 + b1){ϕ(a1(z1 + b1)− b2)}ϕ(z1)dz1.

On the other hand, noting that∫ ∞

a1(z1+b1)−b2

z2(z2 + b2)ϕ(z2)dz2 = [−ϕ(z2)(z2 + b2)]
∞
a1(z1+b1)−b2

+

∫ ∞

a1(z1+b1)−b2

ϕ(z2)dz2

= a1(z1 + b1)ϕ(a1(z1 + b1)− b2)

+

∫ ∞

a1(z1+b1)−b2

ϕ(z2)dz2,

the second part of the right hand side in (E.3) can be written as∫ ∞

−∞
ϕ(z1)

{∫ ∞

a1(z1+b1)−b2

z2(z2 + b2)ϕ(z2)dz2

}
dz1

=

∫ ∞

−∞
a1(z1 + b1){ϕ(a1(z1 + b1)− b2)}ϕ(z1)dz1

+

∫ ∞

−∞

∫ ∞

a1(z1+b1)−b2

ϕ(z1)ϕ(z2)dz1dz2.

Therefore, the right hand side in (E.3) is equal to

2

∫ ∞

−∞

∫ ∞

a1(z1+b1)−b2

ϕ(z1)ϕ(z2)dz1dz2 = 2E[1{z∈E2}] = 2E[1{v∈A2
2}].

Therefore, when l = 2, Lemma E is proved.
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Next, we consider the case of l = 3. In this case, (E.2) can be written as

∫ ∞

−∞

∫ ∞

a1(z1+b1)−b2

∫ ∞

a2(z2+b2)−b3

{
3∑

s=1

zs(zs + bs)

}
3∏

s=1

ϕ(zs)dz1dz2dz3

=

∫ ∞

−∞
z1(z1 + b1)ϕ(z1)

{∫ ∞

a1(z1+b1)−b2

ϕ(z2)

(∫ ∞

a2(z2+b2)−b3

ϕ(z3)dz3

)
dz2

}
dz1

+

∫ ∞

−∞
ϕ(z1)

{∫ ∞

a1(z1+b1)−b2

z2(z2 + b2)ϕ(z2)

(∫ ∞

a2(z2+b2)−b3

ϕ(z3)dz3

)
dz2

}
dz1

+

∫ ∞

−∞

∫ ∞

a1(z1+b1)−b2

ϕ(z1)ϕ(z2)

(∫ ∞

a2(z2+b2)−b3

z3(z3 + b3)ϕ(z3)dz3

)
dz1dz2. (E.4)

Again, using the integration by parts formula, the first part of the right hand side in

(E.4) can be expressed as[
−ϕ(z1)(z1 + b1)

{∫ ∞

a1(z1+b1)−b2

ϕ(z2)

(∫ ∞

a2(z2+b2)−b3

ϕ(z3)dz3

)
dz2

}]∞
−∞

+

∫ ∞

−∞

∫ ∞

a1(z1+b1)−b2

∫ ∞

a2(z2+b2)−b3

ϕ(z1)ϕ(z2)ϕ(z3)dz1dz2dz3

+

∫ ∞

−∞
ϕ(z1)(z1 + b1){−a1ϕ(a1(z1 + b1)− b2)}

∫ ∞

a1a2(z1+b1)−b3

ϕ(z3)dz3dz1

=

∫ ∞

−∞

∫ ∞

a1(z1+b1)−b2

∫ ∞

a2(z2+b2)−b3

ϕ(z1)ϕ(z2)ϕ(z3)dz1dz2dz3

−
∫ ∞

−∞

∫ ∞

a1a2(z1+b1)−b3

a1(z1 + b1)ϕ(z1)ϕ{a1(z1 + b1)− b2}ϕ(z3)dz1dz3.

Moreover, noting that{∫ ∞

a1(z1+b1)−b2

z2(z2 + b2)ϕ(z2)

(∫ ∞

a2(z2+b2)−b3

ϕ(z3)dz3

)
dz2

}

=

[
−ϕ(z2)(z2 + b2)

(∫ ∞

a2(z2+b2)−b3

ϕ(z3)dz3

)]∞
a1(z1+b1)−b2

+

∫ ∞

a1(z1+b1)−b2

∫ ∞

a2(z2+b2)−b3

ϕ(z2)ϕ(z3)dz2dz3

−
∫ ∞

a1(z1+b1)−b2

a2(z2 + b2)ϕ(z2)ϕ{a2(z2 + b2)− b3}dz2

= a1(z1 + b1)ϕ{a1(z1 + b1)− b2}
∫ ∞

a1a2(z1+b1)−b3

ϕ(z3)dz3

+

∫ ∞

a1(z1+b1)−b2

∫ ∞

a2(z2+b2)−b3

ϕ(z2)ϕ(z3)dz2dz3

−
∫ ∞

a1(z1+b1)−b2

a2(z2 + b2)ϕ(z2)ϕ{a2(z2 + b2)− b3}dz2,
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the second term of the right hand side in (E.4) can be written as∫ ∞

−∞

∫ ∞

a1a2(z1+b1)−b3

a1(z1 + b1)ϕ(z1)ϕ{a1(z1 + b1)− b2}ϕ(z3)dz1dz3

+

∫ ∞

−∞

∫ ∞

a1(z1+b1)−b2

∫ ∞

a2(z2+b2)−b3

ϕ(z1)ϕ(z2)ϕ(z3)dz1dz2dz3

−
∫ ∞

−∞

∫ ∞

a1(z1+b1)−b2

ϕ(z1)a2(z2 + b2)ϕ(z2)ϕ{a2(z2 + b2)− b3}dz1dz2.

Similarly, noting that(∫ ∞

a2(z2+b2)−b3

z3(z3 + b3)ϕ(z3)dz3

)

= [−ϕ(z3)(z3 + b3)]
∞
a2(z2+b2)−b3

+

∫ ∞

a2(z2+b2)−b3

ϕ(z3)dz3

= a2(z2 + b2)ϕ{a2(z2 + b2)− b3}+
∫ ∞

a2(z2+b2)−b3

ϕ(z3)dz3,

the third term of the right hand side in (E.4) can be expressed as∫ ∞

−∞

∫ ∞

a1(z1+b1)−b2

ϕ(z1)a2(z2 + b2)ϕ(z2)ϕ{a2(z2 + b2)− b3}dz1dz2

+

∫ ∞

−∞

∫ ∞

a1(z1+b1)−b2

∫ ∞

a2(z2+b2)−b3

ϕ(z1)ϕ(z2)ϕ(z3)dz1dz2dz3.

Therefore, using these results the right hand side in (E.4) is given by

3

∫ ∞

−∞

∫ ∞

a1(z1+b1)−b2

∫ ∞

a2(z2+b2)−b3

ϕ(z1)ϕ(z2)ϕ(z3)dz1dz2dz3 = 3E[1{z∈E3}]

= 3E[1{v∈A3
3}].

Thus, when l = 3, Lemma E is proved.

Finally, we prove the case of l ≥ 4. In this case also we use the same argument as in

the proof of l = 2 and l = 3. For any s with 1 ≤ s ≤ l − 1, let

Fs(x) =

∫ ∞

as(x+bs)−bs+1

Fs+1(zs+1)ϕ(zs+1)dzs+1,
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and let Fl(x) = 1. Then, it holds that

∫
· · ·
∫
El

l∏
s=1

ϕ(zs)dz1 · · · dzl

=

∫ ∞

−∞
F1(z1)ϕ(z1)dz1

=

∫ ∞

−∞

{∫ ∞

a1(z1+b1)−b2

F2(z2)ϕ(z2)dz2

}
ϕ(z1)dz1

=

∫ ∞

−∞

∫ ∞

a1(z1+b1)−b2

{∫ ∞

a2(z2+b2)−b3

F3(z3)ϕ(z3)dz3

}
ϕ(z1)ϕ(z2)dz1dz2

=

∫ ∞

−∞

∫ ∞

a1(z1+b1)−b2

· · ·
∫ ∞

ai−2(zi−2+bi−2)−bi−1

{∫ ∞

ai−1(zi−1+bi−1)−bi

Fi(zi)ϕ(zi)dzi

}
i−1∏
j=1

ϕ(zj)dz1 · · · di−1. (E.5)

Furthermore, for any i with 1 ≤ i ≤ l − 1, it holds that

d

dzi
Fi(zi) = −aiFi+1{ai(zi + bi)− bi+1}ϕ{ai(zi + bi)− bi+1}. (E.6)

Using these results, (E.2) can be expressed as

∫
· · ·
∫
El

{
l∑

s=1

zs(zs + bs)

}
l∏

s=1

ϕ(zs)dz1 · · · dzl = G1 +G2 +G3, (E.7)

where

G1 =

∫ ∞

−∞
z1(z1 + b1)F1(z1)ϕ(z1)dz1,

G2 =
l−1∑
i=2

[∫ ∞

−∞

∫ ∞

a1(z1+b1)−b2

· · ·
∫ ∞

ai−2(zi−2+bi−2)−bi−1{∫ ∞

ai−1(zi−1+bi−1)−bi

zi(zi + bi)Fi(zi)ϕ(zi)dzi

}
i−1∏
j=1

ϕ(zj)dz1 · · · di−1

 ,

G3 =

∫ ∞

−∞

∫ ∞

a1(z1+b1)−b2

· · ·
∫ ∞

al−2(zl−2+bl−2)−bl−1{∫ ∞

al−1(zl−1+bl−1)−bl

zl(zl + bl)ϕ(zl)dzl

}
l−1∏
j=1

ϕ(zj)dz1 · · · dl−1.
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Next, we evaluate G2. From (E.6), the brace { } of G2 can be expanded as{∫ ∞

ai−1(zi−1+bi−1)−bi

zi(zi + bi)Fi(zi)ϕ(zi)dzi

}

= [−ϕ(zi)(zi + bi)Fi(zi)]
∞
ai−1(zi−1+bi−1)−bi

+

∫ ∞

ai−1(zi−1+bi−1)−bi

ϕ(zi)Fi(zi)dzi

−
∫ ∞

ai−1(zi−1+bi−1)−bi

ϕ(zi)(zi + bi)aiFi+1{ai(zi + bi)− bi+1}ϕ{ai(zi + bi)− bi+1}dzi

= ai−1(zi−1 + bi−1)ϕ{ai−1(zi−1 + bi−1)− bi}Fi{ai−1(zi−1 + bi−1)− bi}

+

∫ ∞

ai−1(zi−1+bi−1)−bi

ϕ(zi)Fi(zi)dzi

−
∫ ∞

ai−1(zi−1+bi−1)−bi

ai(zi + bi)Fi+1{ai(zi + bi)− bi+1}ϕ{ai(zi + bi)− bi+1}ϕ(zi)dzi.

Hence, using this expansion and (E.5), the bracket [ ] of G2 can be expressed as[∫ ∞

−∞

∫ ∞

a1(z1+b1)−b2

· · ·
∫ ∞

ai−2(zi−2+bi−2)−bi−1{∫ ∞

ai−1(zi−1+bi−1)−bi

zi(zi + bi)Fi(zi)ϕ(zi)dzi

}
i−1∏
j=1

ϕ(zj)dz1 · · · di−1


=

∫ ∞

−∞

∫ ∞

a1(z1+b1)−b2

· · ·
∫ ∞

ai−2(zi−2+bi−2)−bi−1

ai−1(zi−1 + bi−1)ϕ{ai−1(zi−1 + bi−1)− bi}Fi{ai−1(zi−1 + bi−1)− bi}
i−1∏
j=1

ϕ(zj)dz1 · · · dzi−1

+

∫
· · ·
∫
El

l∏
s=1

ϕ(zs)dz1 · · · dzl

−
∫ ∞

−∞

∫ ∞

a1(z1+b1)−b2

· · ·
∫ ∞

ai−1(zi−1+bi−1)−bi

ai(zi + bi)ϕ{ai(zi + bi)− bi+1}Fi+1{ai(zi + bi)− bi+1}
i∏

j=1

ϕ(zj)dz1 · · · dzi. (E.8)

Here, when i = 2, from (E.5) we define∫ ∞

−∞

∫ ∞

a1(z1+b1)−b2

· · ·
∫ ∞

ai−2(zi−2+bi−2)−bi−1

≡
∫ ∞

−∞
.
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Therefore, from (E.8) we obtain

G2 =

∫ ∞

−∞
a1(z1 + b1)ϕ{a1(z1 + b1)− b2}F2{a1(z1 + b1)− b2}ϕ(z1)dz1

+(l − 2)

∫
· · ·
∫
El

l∏
s=1

ϕ(zs)dz1 · · · dzl

−
∫ ∞

−∞

∫ ∞

a1(z1+b1)−b2

· · ·
∫ ∞

al−2(zl−2+bl−2)−bl−1

al−1(zl−1 + bl−1)ϕ{al−1(zl−1 + bl−1)− bl}
l−1∏
j=1

ϕ(zj)dz1 · · · dzl−1. (E.9)

Next, we evaluate G1 and G3. From (E.5) and (E.6) we get

G1 = [−ϕ(z1)(z1 + b1)F1(z1)]
∞
−∞ +

∫ ∞

−∞
ϕ(z1)F1(z1)dz1

−
∫ ∞

−∞
a1(z1 + b1)ϕ{a1(z1 + b1)− b2}F2{a1(z1 + b1)− b2}ϕ(z1)dz1

=

∫
· · ·
∫
El

l∏
s=1

ϕ(zs)dz1 · · · dzl

−
∫ ∞

−∞
a1(z1 + b1)ϕ{a1(z1 + b1)− b2}F2{a1(z1 + b1)− b2}ϕ(z1)dz1. (E.10)

Similarly, noting that{∫ ∞

al−1(zl−1+bl−1)−bl

zl(zl + bl)ϕ(zl)dzl

}
= [−ϕ(zl)(zl + bl)]

∞
al−1(zl−1+bl−1)−bl

+

∫ ∞

al−1(zl−1+bl−1)−bl

ϕ(zl)dzl

= al−1(zl−1 + bl−1)ϕ{al−1(zl−1 + bl−1)− bl}

+

∫ ∞

al−1(zl−1+bl−1)−bl

ϕ(zl)dzl,

G3 can be written as

G3 =

∫ ∞

−∞

∫ ∞

a1(z1+b1)−b2

· · ·
∫ ∞

al−2(zl−2+bl−2)−bl−1

al−1(zl−1 + bl−1)ϕ{al−1(zl−1 + bl−1)− bl}
l−1∏
j=1

ϕ(zj)dz1 · · · dzl−1

+

∫
· · ·
∫
El

l∏
s=1

ϕ(zs)dz1 · · · dzl. (E.11)
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Hence, substituting (E.9), (E.10) and (E.11) into (E.7) yields∫
· · ·
∫
El

{
l∑

s=1

zs(zs + bs)

}
l∏

s=1

ϕ(zs)dz1 · · · dzl

= l

∫
· · ·
∫
El

l∏
s=1

ϕ(zs)dz1 · · · dzl = lE[1{z∈El}] = lE[1{v∈Al
l}
].

Thus, when l ≥ 4, Lemma E is proved.

Appendix F: Lemma F and its proof

Lemma F. Let n1, n2 and τ2 be positive numbers, and let ξ1 and ξ2 be real numbers.

Let x1 and x2 be independent random variables, and let xs ∼ N(ξs, τ
2/ns), (s = 1, 2).

Put n = (n1, n2)
′ and x = (x1, x2)

′. Then, the following two propositions hold:

(P1) Suppose that i and j are integers with 1 ≤ i ≤ j ≤ 2. Then, it holds that

E

[
1{D(n)

i,j x[i,j]≥0j−i}
1

τ2

j∑
s=i

ns(xs − ξs)(xs − x̄
(n)
[i,j])

]
= (j − i)P(D

(n)
i,j x[i,j] ≥ 0j−i). (F.1)

(P2) For the element w = (2)′ ∈ W2
1 , it holds that

E

[
1

τ2

2∑
s=1

ns(xs − ξs)(xs − η
(n)
2 (x)[s])

]
= P

(
η
(n)
2 (x) ∈ A2

1(w)
)
. (F.2)

Proof. First, we prove (P1). Let i and j be integers with 1 ≤ i ≤ j ≤ 2. Here, when

i = j it holds that

1

τ2

j∑
s=i

ns(xs − ξs)(xs − x̄
(n)
[i,j]) = 0,

because x̄
(n)
[i,j] = xi. Thus, it is clear that (F.1) holds. Hence, it is sufficient to consider

the case of i < j, (i.e., i = 1 and j = 2). In this case, the following equality holds:

E

[
1{D(n)

1,2 x[1,2]≥01}
1

τ2

2∑
s=1

ns(xs − ξs)(xs − x̄
(n)
[1,2])

]
= X − Y, (F.3)

where X and Y are given by

X = E

[
1{D(n)

1,2 x[1,2]≥01}
1

τ2

2∑
s=1

ns(xs − ξs)xs

]
,

Y = E

[
1{D(n)

1,2 x[1,2]≥01}
1

τ2

2∑
s=1

ns(xs − ξs)x̄
(n)
[1,2]

]
.
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Here, we would like to note that

1

τ2

2∑
s=1

ns(xs − ξs)x̄
(n)
[1,2] =

x̄
(n)
[1,2]

τ2
{n1x1 + n2x2 − (n1ξ1 + n2ξ2)}

=
x̄
(n)
[1,2]

τ2
n1x1 + n2x2 − (n1ξ1 + n2ξ2)

n1 + n2
(n1 + n2)

=
x̄
(n)
[1,2]

τ2

(
x̄
(n)
[1,2] −

n1ξ1 + n2ξ2
n1 + n2

)
(n1 + n2).

Thus, from Lemma D, noting that D
(n)
1,2 x[1,2] ⊥⊥ x̄

(n)
[1,2] we get

Y = E

[
1{D(n)

1,2 x[1,2]≥01}
1

τ2

2∑
s=1

ns(xs − ξs)x̄
(n)
[1,2]

]

= E

1{D(n)
1,2 x[1,2]≥01}

x̄
(n)
[1,2]

τ2

(
x̄
(n)
[1,2] −

n1ξ1 + n2ξ2
n1 + n2

)
(n1 + n2)


= E

[
1{D(n)

1,2 x[1,2]≥01}

]
× E

 x̄(n)
[1,2]

τ2

(
x̄
(n)
[1,2] −

n1ξ1 + n2ξ2
n1 + n2

)
(n1 + n2)

 .

In addition, since

x̄
(n)
[1,2] ∼ N

(
n1ξ1 + n2ξ2
n1 + n2

,
τ2

n1 + n2

)
,

it is clear that the second expectation of the last row is one. Hence, we have

Y = E
[
1{D(n)

1,2 x[1,2]≥01}

]
= P(D

(n)
1,2 x[1,2] ≥ 01). (F.4)

Next, we consider X. Recall that, from (C.1), the fact x ∈ η−1
2 (A2

1(w)) ⇔ D
(n)
1,2 x[1,2] ≥

01 holds. Moreover, from (i) of Lemma C, it holds that R2 = η−1
2 (A2

1(w))∪η−1
2 (A2

2(w
∗))

and η−1
2 (A2

1(w)) ∩ η−1
2 (A2

2(w
∗)) = ∅. These imply that

1{D(n)
1,2 x[1,2]≥01}

= 1{x∈η−1
2 (A2

1(w))} = 1− 1{x∈η−1
2 (A2

2(w
∗))} = 1− 1{x∈η−1

2 (A2
2)}

.

Therefore, we obtain

X = E

[
1

τ2

2∑
s=1

ns(xs − ξs)xs

]
− E

[
1{x∈η−1

2 (A2
2)}

1

τ2

2∑
s=1

ns(xs − ξs)xs

]
. (F.5)

Here, it is easily checked that the first expectation of (F.5) is two because

xs ∼ N(ξs, τ
2/ns). On the other hand, from Lemma E the second expectation

can be written as 2E[1{x∈η−1
2 (A2

2)}
]. Thus, using these results we get

X = 2− 2E[1{x∈η−1
2 (A2

2)}
] = 2E[1− 1{x∈η−1

2 (A2
2)}

] = 2E[1{D(n)
1,2 x[1,2]≥01}

]

= 2P(D
(n)
1,2 x[1,2] ≥ 01). (F.6)
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Therefore, substituting (F.4) and (F.6) into (F.3) yields (F.1). Hence, (P1) is proved.

Next, we prove (P2). Recall that from (i) of Lemma C we obtain R2 = η−1
2 (A2

1) ∪
η−1
2 (A2

2) and η−1
2 (A2

1) ∩ η−1
2 (A2

2) = ∅. In addition, from (iii) of Lemma C it holds that

x ∈ η−1
2 (A2

1) ⇒ η2(x)[1] = η2(x)[2] = x̄[1,2],

and

x ∈ η−1
2 (A2

2) ⇒ η2(x)[1] = x1, η2(x)[2] = x2.

Hence, using these results and x ∈ η−1
2 (A2

1) ⇔ D
(n)
1,2 x[1,2] ≥ 01, from (P1) of Lemma F

we get

E

[
1

τ2

2∑
s=1

ns(xs − ξs)(xs − η
(n)
2 (x)[s])

]

= E

[
1{x∈η−1

2 (A2
1)}

1

τ2

2∑
s=1

ns(xs − ξs)(xs − x̄[1,2])

]

= E

[
1{D(n)

1,2 x[1,2]≥01}
1

τ2

2∑
s=1

ns(xs − ξs)(xs − x̄[1,2])

]
= P(D

(n)
1,2 x[1,2] ≥ 01) = P(x ∈ η−1

2 (A2
1)).

Finally, from (iv) of Lemma C, we have P(x ∈ η−1
2 (A2

1)) = P(η
(n)
2 (x) ∈ A2

1). Therefore,

(F.2) holds because A2
1 = A2

1(w) for the element w = (2)′ ∈ W2
1 . Consequently, Lemma

F is proved.

Appendix G: Lemma G and proofs of both Lemma G and Lemma 3.1

Lemma G. Let l be an integer with l ≥ 2. Assume that the following proposition (P)

is true:

(P) Let N1, . . . , Nl and ς2 be positive numbers, and let ζ1, . . . , ζl be real numbers.

Let y1, . . . , yl be independent random variables, and let ys ∼ N(ζs, ς
2/Ns), (s =

1, . . . , l). Put N = (N1, . . . , Nl)
′, ζ = (ζ1, . . . , ζl)

′ and y = (y1, . . . , yl)
′. Then, for

all integers i and j with 1 ≤ i ≤ j ≤ l, it holds that

E

[
1{D(N)

i,j y[i,j]≥0j−i}
1

ς2

j∑
s=i

Ns(ys − ζs)(ys − ȳ
(N)
[i,j] )

]
= (j − i)P(D

(N)
i,j y[i,j] ≥ 0j−i). (G.1)

Then, the following proposition (P∗) is also true:
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(P∗) Let n1, . . . , nl+1 and τ2 be positive numbers, and let ξ1, . . . , ξl+1 be real numbers.

Let x1, . . . , xl+1 be independent random variables, and let xs ∼ N(ξs, τ
2/ns), (s =

1, . . . , l + 1). Put n = (n1, . . . , nl+1)
′, ξ = (ξ1, . . . , ξl+1)

′ and x = (x1, . . . , xl+1)
′.

Then, for all integers i and j with 1 ≤ i ≤ j ≤ l + 1, it holds that

E

[
1{D(n)

i,j x[i,j]≥0j−i}
1

τ2

j∑
s=i

ns(xs − ξs)(xs − x̄
(n)
[i,j])

]
= (j − i)P(D

(n)
i,j x[i,j] ≥ 0j−i), (G.2)

and

E

[
1

τ2

l+1∑
s=1

ns(xs − ξs)(xs − η
(n)
l+1(x)[s])

]

=

l∑
i=1

(l + 1− i)P

ηl+1(x) ∈
∪

w;w∈Wl+1
i

Al+1
i (w)

 . (G.3)

Proof. First, we prove (G.2). Let i and j be integers with 1 ≤ i ≤ j ≤ l + 1. Here,

when 0 ≤ j − i ≤ l − 1, without loss of generality we may replace ni, . . . , nj , ξi, . . . , ξj ,

xi, . . . , xj and τ2 with N1, . . . , Ng, ζ1, . . . , ζg, y1, . . . , yg and ς2, respectively. Note that

g = j − i + 1 and 1 ≤ g ≤ l. We put N = (N1, . . . , Ng)
′ and y = (y1, . . . , yg)

′. Since

xi−1+t = yt ∼ N(ζt, ς
2/Nt) (1 ≤ t ≤ g), from the definitions of the matrix D

(n)
i,j and

x̄
(n)
[i,j], using (G.1) we get

E

[
1{D(n)

i,j x[i,j]≥0j−i}
1

τ2

j∑
s=i

ns(xs − ξs)(xs − x̄
(n)
[i,j])

]

= E

[
1{D(N)

1,g y[1,g]≥0g−1}
1

ς2

g∑
t=1

Nt(yt − ζt)(yt − ȳ
(N)
[1,g])

]
= (g − 1)P(D

(N)
1,g y[1,g] ≥ 0g−1) = (j − i)P(D

(n)
i,j x[i,j] ≥ 0j−i). (G.4)

Hence, when 0 ≤ j − i ≤ l − 1, (G.2) is proved. Therefore, it is sufficient to prove the

case of j − i = l, i.e., i = 1 and j = l + 1. In this case, the following equality holds:

E

[
1{D(n)

1,l+1x[1,l+1]≥0l}
1

τ2

l+1∑
s=1

ns(xs − ξs)(xs − x̄
(n)
[1,l+1])

]
= X − Y, (G.5)

where

X = E

[
1{D(n)

1,l+1x[1,l+1]≥0l}
1

τ2

l+1∑
s=1

ns(xs − ξs)xs

]
,

Y = E

[
1{D(n)

1,l+1x[1,l+1]≥0l}
1

τ2

l+1∑
s=1

ns(xs − ξs)x̄
(n)
[1,l+1]

]
.
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Here, noting that

1

τ2

l+1∑
s=1

ns(xs − ξs)x̄
(n)
[1,l+1] =

ñ[1,l+1]

τ2
(x̄

(n)
[1,l+1] − ξ̄

(n)
[1,l+1])x̄

(n)
[1,l+1],

and x̄
(n)
[1,l+1] ∼ N(ξ̄

(n)
[1,l+1], τ

2/ñ[1,l+1]), from (D.1), Y can be expressed as

Y = E

[
1{D(n)

1,l+1x[1,l+1]≥0l}
1

τ2

l+1∑
s=1

ns(xs − ξs)x̄
(n)
[1,l+1]

]

= E
[
1{D(n)

1,l+1x[1,l+1]≥0l}

]
E

[
ñ[1,l+1]

τ2
(x̄

(n)
[1,l+1] − ξ̄

(n)
[1,l+1])x̄

(n)
[1,l+1]

]
= E

[
1{D(n)

1,l+1x[1,l+1]≥0l}

]
× 1 = P(D

(n)
1,l+1x[1,l+1] ≥ 0l). (G.6)

On the other hand, from (i) of Lemma C and (C.1) we obtain

1{D(n)
1,l+1x[1,l+1]≥0l}

= 1−
l+1∑
u=2

∑
w;w∈Wl+1

u

1{x∈η−1
l+1(A

l+1
u (w))}. (G.7)

Therefore, X can be expressed as

X = E

[
1

τ2

l+1∑
s=1

ns(xs − ξs)xs

]

−
l+1∑
u=2

∑
w;w∈Wl+1

u

E

[
1{x∈η−1

l+1(A
l+1
u (w))}

1

τ2

l+1∑
s=1

ns(xs − ξs)xs

]

= (l + 1)−
l+1∑
u=2

∑
w;w∈Wl+1

u

E

[
1{x∈η−1

l+1(A
l+1
u (w))}

1

τ2

l+1∑
s=1

ns(xs − ξs)xs

]
, (G.8)

where the first term of the last row in (G.8) can be derived by using xs ∼ N(ξs, τ
2/ns).

Next, for any integer u with 2 ≤ u ≤ l + 1 and for any element w = (w1, . . . , wu)
′ with

w ∈ W l+1
u , we calculate

E

[
1{x∈η−1

l+1(A
l+1
u (w))}

1

τ2

l+1∑
s=1

ns(xs − ξs)xs

]
. (G.9)

From (ii) of Lemma C, it holds that

x ∈ η−1
l+1(A

l+1
u (w)) ⇔ 0 ≤ t ≤ u− 1, D1+wt,wt+1x[1+wt,wt+1] ≥ 0wt+1−wt−1,

0 ≤ s ≤ u− 2, x̄[1+ws,ws+1] < x̄[1+ws+1,ws+2], (G.10)
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where w0 = 0 and wu = l + 1. Here, noting that

1

τ2

l+1∑
s=1

ns(xs − ξs)xs

=
1

τ2

u−1∑
q=0

wq+1∑
s=1+wq

ns(xs − ξs)xs

=
1

τ2

u−1∑
q=0

wq+1∑
s=1+wq

ns(xs − ξs){(xs − x̄[1+wq,wq+1]) + x̄[1+wq,wq+1]}

=
1

τ2

u−1∑
q=0

wq+1∑
s=1+wq

ns(xs − ξs)(xs − x̄[1+wq,wq+1])

+
1

τ2

u−1∑
q=0

wq+1∑
s=1+wq

ns(xs − ξs)x̄[1+wq,wq+1]

=
1

τ2

u−1∑
q=0

wq+1∑
s=1+wq

ns(xs − ξs)(xs − x̄[1+wq,wq+1])

+
1

τ2

u−1∑
q=0

ñ[1+wq,wq+1]x̄[1+wq,wq+1](x̄[1+wq,wq+1] − ξ̄[1+wq,wq+1]),

(G.9) can be rewritten as

E

[
1{x∈η−1

l+1(A
l+1
u (w))}

1

τ2

l+1∑
s=1

ns(xs − ξs)xs

]
= G+H, (G.11)

where

G = E

1{x∈η−1
l+1(A

l+1
u (w))}

1

τ2

u−1∑
q=0

wq+1∑
s=1+wq

ns(xs − ξs)(xs − x̄[1+wq,wq+1])

 ,

H = E

[
1{x∈η−1

l+1(A
l+1
u (w))}

1

τ2

u−1∑
q=0

ñ[1+wq,wq+1]x̄[1+wq,wq+1](x̄[1+wq,wq+1] − ξ̄[1+wq,wq+1])

]
.

It is clear that

(x̄[1+w0,w1],D1+w0,w1x[1+w0,w1])
′ ⊥⊥ · · ·⊥⊥(x̄[1+wu−1,wu],D1+wu−1,wux[1+wu−1,wu])

′,
(G.12)

and from (D.1) it holds that x̄[1+wq,wq+1] ⊥⊥D1+wq,wq+1x[1+wq,wq+1]. Thus, using these

and (G.10) we obtain

H = E
[
1{0≤t≤u−1, D1+wt,wt+1

x[1+wt,wt+1]≥0wt+1−wt−1}

]
×E

[
1{x̄[1+w0,w1]<···<x̄[1+wu−1,wu]}

1

τ2

u−1∑
q=0

ñ[1+wq,wq+1]x̄[1+wq,wq+1](x̄[1+wq,wq+1] − ξ̄[1+wq,wq+1])

]
, (G.13)
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Here, note that x̄[1+w0,w1] < · · · < x̄[1+wu−1,wu] is equivalent to

(x̄[1+w0,w1], . . . , x̄[1+wu−1,wu])
′ ∈ Au

u.

Furthermore, x̄[1+w0,w1], . . . , x̄[1+wu−1,wu] are independent random variable, and it holds

that x̄[1+wq,wq+1] ∼ N(ξ̄[1+wq,wq+1], τ
2/ñ[1+wq,wq+1]) for any q with 0 ≤ q ≤ u− 1. Hence,

from Lemma E we get

E
[
1{x̄[1+w0,w1]<···<x̄[1+wu−1,wu]}

1

τ2

u−1∑
q=0

ñ[1+wq,wq+1]x̄[1+wq,wq+1](x̄[1+wq,wq+1] − ξ̄[1+wq,wq+1])

]
= uE

[
1{x̄[1+w0,w1]<···<x̄[1+wu−1,wu]}

]
. (G.14)

From (G.10), substituting (G.14) into (G.13) yields

H = E
[
1{0≤t≤u−1, D1+wt,wt+1

x[1+wt,wt+1]≥0wt+1−wt−1}

]
×uE

[
1{x̄[1+w0,w1]<···<x̄[1+wu−1,wu]}

]
= uE

[
1{0≤t≤u−1, D1+wt,wt+1

x[1+wt,wt+1]≥0wt+1−wt−1} × 1{x̄[1+w0,w1]<···<x̄[1+wu−1,wu]}

]
= uE[1{x∈η−1

l+1(A
l+1
u (w))}]. (G.15)

On the other hand, using (G.10), (G.12) and both (D.1) and (D.2) of Lemma D, we

obtain

G = E
[
1{x̄[1+w0,w1]<···<x̄[1+wu−1,wu]}

]
×E

[
1{0≤t≤u−1, D1+wt,wt+1

x[1+wt,wt+1]≥0wt+1−wt−1}

1

τ2

u−1∑
q=0

wq+1∑
s=1+wq

ns(xs − ξs)(xs − x̄[1+wq,wq+1])

 . (G.16)

Note that D1+w0,w1x[1+w0,w1] ⊥⊥ · · ·⊥⊥D1+wu−1,wux[1+wu−1,wu]. Moreover, for any q and

q∗ with q ̸= q∗, the random vector (or variable) D1+wq∗−1,wq∗x[1+wq∗−1,wq∗ ] and

wq+1∑
s=1+wq

ns(xs − ξs)(xs − x̄[1+wq,wq+1])

50



are also independent. Therefore, (G.16) can be written as

G = E
[
1{x̄[1+w0,w1]<···<x̄[1+wu−1,wu]}

]
×E

[
u−1∑
q=0

{
1{0≤t≤u−1, D1+wt,wt+1

x[1+wt,wt+1]≥0wt+1−wt−1}

1

τ2

wq+1∑
s=1+wq

ns(xs − ξs)(xs − x̄[1+wq,wq+1])




= E
[
1{x̄[1+w0,w1]<···<x̄[1+wu−1,wu]}

]
×E

[
u−1∑
q=0

{
1{0≤t≤u−1, t ̸=q, D1+wt,wt+1

x[1+wt,wt+1]≥0wt+1−wt−1}

}
{
1{D1+wq,wq+1

x[1+wq,wq+1]≥0wq+1−wq−1}

1

τ2

wq+1∑
s=1+wq

ns(xs − ξs)(xs − x̄[1+wq,wq+1])




= E
[
1{x̄[1+w0,w1]<···<x̄[1+wu−1,wu]}

]
×

u−1∑
q=0

E
[
1{0≤t≤u−1, t ̸=q, D1+wt,wt+1

x[1+wt,wt+1]≥0wt+1−wt−1}

]
E
[
1{D1+wq,wq+1

x[1+wq,wq+1]≥0wq+1−wq−1}

1

τ2

wq+1∑
s=1+wq

ns(xs − ξs)(xs − x̄[1+wq,wq+1])

 . (G.17)

In addition, since 0 ≤ wq+1 − wq − 1 ≤ l − 1, from (G.4) we have

E
[
1{D1+wq,wq+1

x[1+wq,wq+1]≥0wq+1−wq−1}

1

τ2

wq+1∑
s=1+wq

ns(xs − ξs)(xs − x̄[1+wq,wq+1])


= (wq+1 − wq − 1)E

[
1{D1+wq,wq+1

x[1+wq,wq+1]≥0wq+1−wq−1}

]
. (G.18)

Thus, substituting (G.18) into (G.17) yields

G = E
[
1{x̄[1+w0,w1]<···<x̄[1+wu−1,wu]}

]
×

u−1∑
q=0

(wq+1 − wq − 1)E
[
1{0≤t≤u−1, D1+wt,wt+1

x[1+wt,wt+1]≥0wt+1−wt−1}

]
= E

[
1{x̄[1+w0,w1]<···<x̄[1+wu−1,wu], 0≤t≤u−1, D1+wt,wt+1

x[1+wt,wt+1]≥0wt+1−wt−1}

]
×(wu − w0 − u)

= (l + 1− u)E[1{x∈η−1
l+1(A

l+1
u (w))}]. (G.19)
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Hence, substituting (G.15) and (G.19) into (G.11), we obtain

E

[
1{x∈η−1

l+1(A
l+1
u (w))}

1

τ2

l+1∑
s=1

ns(xs − ξs)xs

]
= (l + 1)E[1{x∈η−1

l+1(A
l+1
u (w)}]. (G.20)

Consequently, substituting (G.20) into (G.8) yields

X = (l + 1)

1−
l+1∑
u=2

∑
w;w∈Wl+1

u

E[1{x∈η−1
l+1(A

l+1
u (w))}]


= (l + 1)E

1− l+1∑
u=2

∑
w;w∈Wl+1

u

1{x∈η−1
l+1(A

l+1
u (w))}


= (l + 1)E[1{D(n)

1,l+1x[1,l+1]≥0l}
] = (l + 1)P(D

(n)
1,l+1x[1,l+1] ≥ 0l), (G.21)

where the third equality in (G.21) is derived by using (G.7). Finally, substituting (G.6)

and (G.21) into (G.5), we obtain (G.2).

Next, we prove (G.3). From (i), (ii) and (iii) of Lemma C, we get

E

[
1

τ2

l+1∑
s=1

ns(xs − ξs)(xs − η
(n)
l+1(x)[s])

]

= E

 l+1∑
u=1

∑
w;w∈Wl+1

u

{
1{x∈η−1

l+1(A
l+1
u (w))}

1

τ2

l+1∑
s=1

ns(xs − ξs)(xs − η
(n)
l+1(x)[s])

}
= E

[
1{x∈η−1

l+1(A
l+1
1 )}

1

τ2

l+1∑
s=1

ns(xs − ξs)(xs − η
(n)
l+1(x)[s])

]

+E

 l+1∑
u=2

∑
w;w∈Wl+1

u

{
1{x∈η−1

l+1(A
l+1
u (w))}

1

τ2

l+1∑
s=1

ns(xs − ξs)(xs − η
(n)
l+1(x)[s])

}
= E

[
1{D(n)

1,l+1x[1,l+1]≥0l}
1

τ2

l+1∑
s=1

ns(xs − ξs)(xs − x̄[1,l+1])

]

+E

 l+1∑
u=2

∑
w;w∈Wl+1

u

1{x∈η−1
l+1(A

l+1
u (w))}

1

τ2

u−1∑
q=0

wq+1∑
s=1+wq

ns(xs − ξs)(xs − x̄[1+wq,wq+1])




= E

[
1{D(n)

1,l+1x[1,l+1]≥0l}
1

τ2

l+1∑
s=1

ns(xs − ξs)(xs − x̄[1,l+1])

]
+

l+1∑
u=2

∑
w;w∈Wl+1

u

G. (G.22)
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Therefore, from (G.2) and (G.19), (G.22) can be expressed as

E

[
1

τ2

l+1∑
s=1

ns(xs − ξs)(xs − η
(n)
l+1(x)[s])

]

= lP(D
(n)
1,l+1x[1,l+1] ≥ 0l) +

l+1∑
u=2

∑
w;w∈Wl+1

u

(l + 1− u)E[1{x∈η−1
l+1(A

l+1
u (w))}]

= lP(x ∈ η−1
l+1(A

l+1
1 )) +

l∑
u=2

(l + 1− u)
∑

w;w∈Wl+1
u

P(x ∈ η−1
l+1(A

l+1
u (w))).

Here, note that Al+1
1 = Al+1

1 (w) for the element w ∈ W l+1
1 . Thus, from (iv) of Lemma

C, we have

lP(x ∈ η−1
l+1(A

l+1
1 )) +

l∑
u=2

(l + 1− u)
∑

w;w∈Wl+1
u

P(x ∈ η−1
l+1(A

l+1
u (w)))

= lP(ηl+1(x) ∈ Al+1
1 ) +

l∑
u=2

(l + 1− u)P

ηl+1(x) ∈
∪

w;w∈Wl+1
u

Al+1
u (w)


=

l∑
i=1

(l + 1− i)P

ηl+1(x) ∈
∪

w;w∈Wl+1
i

Al+1
i (w)

 .

This implies that (G.3) holds. Hence, Lemma G is proved.

Consequently, combining Lemma F and Lemma G we obtain Lemma 3.1.
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Table 5.1. Some properties of the AICSO and the ordinal AIC in Case A–F

AICSO Ordinal AIC

Restriction SO Non

Risk E[E⋆[−2l(θ̂, σ̂2;X⋆)]] E[E⋆[−2l(X̄, σ̄2;X⋆)]]

Case A Penalty term 2(m+ 1) 2(k + 1)

Bias to the risk Asymptotically unbiased Asymptotically unbiased

Order of the bias O(N−1) O(N−1)

Restriction SO Non

Risk E[E⋆[−2l(θ̂, σ2
∗;X

⋆)]] E[E⋆[−2l(X̄, σ2
∗;X

⋆)]]

Case B Penalty term 2m 2k

Bias to the risk Unbiased Unbiased

Order of the bias 0 0

Restriction SO Non

Risk E[E⋆[−2l(
ˆ̂
θ, ˆ̂σ2;X⋆, ι)]] E[E⋆[−2l( ¯̄X, ¯̄σ2;X⋆, ι)]]

Case C Penalty term 2(m∗ + 1) 2(k + 1)

Bias to the risk Asymptotically unbiased Asymptotically unbiased

Order of the bias O(N−1) O(N−1)

Restriction SO Non

Risk E[E⋆[−2l(
ˆ̂
θ, σ2

∗;X
⋆, ι)]] E[E⋆[−2l( ¯̄X, σ2

∗;X
⋆, ι)]]

Case D Penalty term 2m∗ 2k

Bias to the risk Unbiased Unbiased

Order of the bias 0 0

Restriction SO Non

Risk E[E⋆[−2l(ϑ̂, ς̂2, Z̄, τ̄2;Y ⋆,Z⋆)]] E[E⋆[−2l(Ȳ , ς̄2, Z̄, τ̄2;Y ⋆,Z⋆)]]

Case E Penalty term 2(m† + 1 + p) 2(k + 1 + p)

Bias to the risk Asymptotically unbiased Asymptotically unbiased

Order of the bias O(N−1) O(N−1)

Restriction SO Non

Risk E[E⋆[−2l(ϑ̂, ς2∗ , Z̄, τ2∗ ;Y
⋆,Z⋆)]] E[E⋆[−2l(Ȳ , ς2∗ , Z̄, τ2∗ ;Y

⋆,Z⋆)]]

Case F Penalty term 2(m† + p− 1) 2(k + p− 1)

Bias to the risk Unbiased Unbiased

Order of the bias 0 0

Note: m, m∗ and m† are given by , (4.2) , (5.5) and (5.12), respectively.
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Table 6.1 Some properties of the AICSO and the pAIC in Case 1

N Model 1 Model 2 Model 3 Model 4 PEAICSO PEpAIC

Risk 146.51 146.49 145.30 145.84 146.43 146.73

40 AICSO 146.37 146.10 144.47 144.81

pAIC 146.37 146.40 145.64 147.13

Risk 723.54 719.53 709.82 710.34 710.31 710.42

200 AICSO 723.69 719.66 709.69 710.18

pAIC 723.69 719.69 710.69 712.18

Table 6.2 Some properties of the AICSO and the pAIC in Case 2

N Model 1 Model 2 Model 3 Model 4 PEAICSO PEpAIC

Risk 145.61 145.37 145.39 145.76 146.34 146.42

40 AICSO 145.49 144.92 144.60 144.63

pAIC 145.49 145.16 145.69 146.76

Risk 719.14 713.68 711.20 710.75 711.85 712.04

200 AICSO 719.18 713.62 710.97 710.42

pAIC 719.18 713.63 711.33 711.30

Table 6.3 Some properties of the AICSO and the pAIC in Case 3

N Model 1 Model 2 Model 3 Model 4 PEAICSO PEpAIC

Risk 143.55 144.20 144.62 144.99 144.40 144.16

40 AICSO 143.26 143.73 144.01 144.27

pAIC 143.26 144.72 146.39 148.09

Risk 708.26 708.76 709.08 709.37 708.86 708.67

200 AICSO 708.26 708.75 709.05 709.33

pAIC 708.26 709.74 711.44 713.15
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