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ABSTRACT

In this paper, we consider Akaike information criterion (AIC) and Cp criterion for ANOVA model with a

tree ordering (TO) θ1 ≤ θj , (j = 2, . . . , l) where θ1, . . . , θl are population means. In general, under ANOVA

model with the TO, the AIC and the Cp criterion have asymptotic biases which depend on unknown

parameters. In order to solve these problems, we calculate (asymptotic) biases, and we derive its unbiased

estimators. By using these estimators, we provide an asymptotically unbiased AIC and an “unbiased” Cp

criterion for ANOVA model with the TO, called AICTO and TOCp, respectively. Penalty terms of derived

criteria are simply defined as a function of an indicator function and maximum likelihood estimators.

Furthermore, we show that the TOCp is the uniformly minimum-variance unbiased estimator (UMVUE).
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1. Introduction

In real data analysis, ANOVA model is often used for analyzing cluster data. Moreover, a model

whose parameters µ1, . . . , µl are restricted such as a Sinple Ordering (SO) given by µ1 ≤ · · · ≤ µl,

is also important in the field of applied statistics (e.g., Robertson et al., 1988). In addition, Brunk

(1965), Lee (1981), Kelly (1989) and Hwang and Peddada (1994) showed that maximum likelihood

estimators (MLEs) for mean parameters of ANOVA model with the SO are more efficient than those

of ANOVA model without any restriction when the assumption of the SO is true.

On the other hand, in general, the classical asymptotic theory does not hold for the model with

parameter restrictions. For example, Anraku (1999) showed that an ordinal Akaike information

criterion (AIC, Akaike, 1973) for ANOVA model with the SO, whose penalty term is 2× the number

of parameters, is not an asymptotically unbiased estimator of a risk function. In order to solve this

problem, Inatsu (2016) derived an asymptotically unbiased AIC for ANOVA model with the SO,

called AICSO. Furthermore, a penalty term of the AICSO can be simply defined as a function of

MLEs of mean parameters. Nevertheless, there are other important restrictions in applied statistics.

In this paper, we consider ANOVA model with a Tree Ordering (TO) given by µ1 ≤ µj (j =

2, . . . , l). For this model, we derive an asymptotically unbiased AIC, called AICTO. Similarly, we

also derive an ”unbiased” Cp criterion (Mallows, 1973) for this model.

The remainder of the present paper is organized as follows: In Section 2, we define the true model
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and candidate model. Moreover, we derive MLEs of parameters in the candidate model. In Section

3, we provide the AIC for ANOVA model with the TO, called AICTO. In Section 4, we provide the

Cp criterion for ANOVA model with the TO, called TOCp. In addition, we show that the TOCp is

the uniformly minimum-variance unbiased estimator (UMVUE). In Section 5, we confirm estimation

accuracy of the AICTO and the TOCp through numerical experiments. In Section 6, we conclude

our discussion. Technical details are provided in Appendix.

2. ANOVA model with a tree order restriction

In this section, we define the true model, and candidate models with order restrictions. The MLE

for the considered candidate model is given in Subsection 2.3.

2.1. True and candidate models

Let Yij be a observation variable on the jth individual in the ith cluster, where 1 ≤ i ≤ k∗,

j = 1, . . . , Ni for each i, and k∗ ≥ 2. Here, we put N = N1 + · · ·+Nk∗ and Yi = (Yi1, . . . , YiNi)
′ for

each i. Also we put Y = (Y ′
1 , . . . ,Y

′
k∗)′ and N = (N1, . . . , Nk∗)′.

Suppose that Y11, . . . , Yk∗Nk∗ are mutually independent, and Yij is distributed as

Yij ∼ N(µi,∗, σ
2
∗), (2.1)

for any i and j. Here, µi,∗ and σ2
∗ are unknown true values satisfying µi,∗ ∈ R and σ2

∗ > 0,

respectively. In other words, the true model is given by (2.1).

Next, we define a candidate model. Let Q1, . . . , Qk be non-empty disjoint sets satisfying Q1 ∪
· · · ∪ Qk = {1, 2, . . . , k∗}, where 2 ≤ k ≤ k∗. Then, we assume that Y11, . . . , Yk∗Nk∗ are mutually

independent, and distributed as
Yij ∼ N(µi, σ

2), (2.2)

where µ1, . . . , µk∗ and σ2(> 0) are unknown parameters. In addition, for the parameters µ1, . . . , µk∗ ,

we assume that
1 ≤∀ s ≤ k, ∀u1, u2 ∈ Qs, µu1 = µu2 , (2.3)

and
2 ≤∀ t ≤ k, ∀ν ∈ Qt, µq ≤ µν , (2.4)

where q ∈ Q1. Then, a candidate model M is defined as the model (2.2) with (2.3) and (2.4). In

particular, the order restriction (2.4) is called a Tree Ordering (TO). For example, when k∗ = 7,

k = 4, Q1 = {1, 3, 7}, Q2 = {2}, Q3 = {4, 5} and Q4 = {6}, the unknown parameters µ1, . . . , µ7

for the candidate model M are restricted as

µ1 = µ3 = µ7 ≤ µ2, µ1 = µ3 = µ7 ≤ µ4 = µ5, µ1 = µ3 = µ7 ≤ µ6.

2.2. Notation and lemma

In this subsection, we define several notations. After that, we provide the related lemma. Let l

be an integer with l ≥ 2. Then, define

Nl = {x ∈ N | x ≤ l} = {1, . . . , l}.
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Moreover, let x1, . . . , xl be real numbers, and let N1, . . . , Nl be positive numbers. We put x =

(x1, . . . , xl)
′ and N = (N1, . . . , Nl)

′. Furthermore, let A = {a1, . . . , ai} be a non-empty subset of

Nl, where a1 < · · · < ai when i ≥ 2.

Next, define

xA = (xa1
, . . . , xai

)′, x̃A =
∑
s∈A

xs, x̄
(N)
A =

∑
s∈A Nsxs∑
s∈A Ns

=

∑
s∈A Nsxs

ÑA

.

For example, when l = 10 and A = {2, 3, 5, 10}, xA, x̃A and x̄
(N)
A are given by

xA = (x2, x3, x5, x10)
′, x̃A = x2 + x3 + x5 + x10,

x̄
(N)
A =

N2x2 +N3x3 +N5x5 +N10x10

N2 +N3 +N5 +N10
.

In particular, when A has only one element a, i.e., A = {a}, it holds that xA = (xa)
′, x̃A = xa

and x̄
(N)
A = xa. On the other hand, when A = Nl, it holds that xA = x. For simplicity, we often

represent x̄
(N)
A as x̄A. In addition, let A(l) be a set defined as

A(l) = {(x1, . . . , xl)
′ ∈ Rl | ∀j ∈ Nl \ {1}, x1 ≤ xj}

= {(x1, . . . , xl)
′ ∈ Rl | x1 ≤ x2, . . . , x1 ≤ xl}.

Furthermore, for any integer i with 1 ≤ i ≤ l, we consider a family of sets J (l)
i defined by

J (l)
i = {J ⊂ Nl | 1 ∈ J, #J = i},

where #J means the number of elements of the set J . For example, when l = 4, it holds that

J (4)
1 = { {1} }, J (4)

2 = { {1, 2}, {1, 3}, {1, 4} }, J (4)
3 = { {1, 2, 3}, {1, 2, 4}, {1, 3, 4} },

J (4)
4 = { {1, 2, 3, 4} } = { N4 }.

Here, note that J (l)
1 = { {1} } and J (l)

l = { Nl } for any l ≥ 2. Similarly, for any integer i with

1 ≤ i ≤ l and for any set J with J (l)
i , we consider the following set A(l)(J):

A(l)(J) = {(x1, . . . , xl)
′ ∈ Rl | ∀s ∈ J, x1 = xs,

∀t ∈ Nl \ J, x1 < xt}.

Note that when J = Nl, it holds that Nl \ J = ∅. In this case, the proposition

∀t ∈ ∅, x1 < xt

is always true. For example, when l = 4, it holds that

A(4)({1}) = {x = (x1, . . . , x4)
′ ∈ R4 | x1 < x2, x1 < x3, x1 < x4},

A(4)({1, 2}) = {x ∈ R4 | x1 = x2, x1 < x3, x1 < x4},
A(4)({1, 3}) = {x ∈ R4 | x1 = x3, x1 < x2, x1 < x4},
A(4)({1, 4}) = {x ∈ R4 | x1 = x4, x1 < x2, x1 < x3},

A(4)({1, 2, 3}) = {x ∈ R4 | x1 = x2 = x3, x1 < x4},
A(4)({1, 2, 4}) = {x ∈ R4 | x1 = x2 = x4, x1 < x3},
A(4)({1, 3, 4}) = {x ∈ R4 | x1 = x3 = x4, x1 < x2},

A(4)({1, 2, 3, 4}) = {x ∈ R4 | x1 = x2 = x3 = x4}.
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It is clear that these eight sets are disjoint sets and

4∪
i=1

∪
J∈J (4)

i

A(4)(J) = {x ∈ R4 | x1 ≤ x2, x1 ≤ x3, x1 ≤ x4} = A(4).

Similarly, in the case of l ≥ 2, it holds that

l∪
i=1

∪
J∈J (l)

i

A(l)(J) = {x ∈ Rl | x1 ≤ x2, . . . , x1 ≤ xl} = A(l), (2.5)

and A(l)(J) ∩A(l)(J∗) = ∅ when J ̸= J∗.

Next, given an integer s with 1 ≤ s ≤ l and a real number a. Then, for the vector x = (x1, . . . , xl)
′,

let x[s; a] be an l-dimensional vector whose sth element is a and tth element (t ∈ Nl \ {s}) is xt.

For example, if x = (1, 4, 4, 3)′, then x[2;−1] = (1,−1, 4, 3)′ and x[4; 5] = (1, 4, 4, 5)′. Moreover,

for any integer s with 1 ≤ s ≤ l and for any set J = {j1, . . . , js} of J (l)
s , we define a matrix D

(N)
J

where j1 < · · · < js when s ≥ 2. First, in the case of s = 1, the family of sets J (l)
1 has only one set

J = {1}, and we define D
(N)
J = 0. On the other hand, in the case of s ≥ 2, the matrix D

(N)
J is the

s− 1× s matrix whose ith row (1 ≤ i ≤ s− 1) is defined as

1

ÑJ\{ji+1}
NJ [i+ 1;−ÑJ\{ji+1}]

′.

For example, when l = 4, it holds that

D
(N)
{1} = 0, D

(N)
{1,2} = D

(N)
{1,3} = D

(N)
{1,4} = (1 − 1),

D
(N)
{1,2,3} =

(
N1

N1+N3
−1 N3

N1+N3
N1

N1+N2

N2

N1+N2
−1

)
, D

(N)
{1,2,4} =

(
N1

N1+N4
−1 N4

N1+N4
N1

N1+N2

N2

N1+N2
−1

)
,

D
(N)
{1,3,4} =

(
N1

N1+N4
−1 N4

N1+N4
N1

N1+N3

N3

N1+N3
−1

)
,

D
(N)
{1,2,3,4} =

 N1

N1+N3+N4
−1 N3

N1+N3+N4

N4

N1+N3+N4
N1

N1+N2+N4

N2

N1+N2+N4
−1 N4

N1+N2+N4
N1

N1+N2+N3

N2

N1+N2+N3

N3

N1+N2+N3
−1

 .

For simplicity, we often represent D
(N)
J as DJ .

Furthermore, we define a function η
(N)
l from Rl to A(l). For each vector x = (x1, . . . , xl)

′ ∈ Rl,

η
(N)
l (x) is defined as

η
(N)
l (x) = argmin

y=(y1,...,yl)′∈A(l)

l∑
i=1

Ni(xi − yi)
2. (2.6)

In addition, let η
(N)
l (x)[s] be the sth element (1 ≤ s ≤ l) of η

(N)
l (x). Note that well-definedness of

η
(N)
l can be derived by using the Hilbert projection theorem (see, e.g., Rudin, 1986). For simplicity,

we often represent η
(N)
l (x) as ηl(x).

Finally, we provide the following lemma:

Lemma 2.1. The following three propositions hold:
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(1) It holds that

Rl =

l∪
i=1

∪
J∈J (l)

i

η−1
l

(
A(l)(J)

)
,

η−1
l

(
A(l)(J)

)
∩ η−1

l

(
A(l)(J∗)

)
= ∅ (J ̸= J∗).

(2) For any integer i with 1 ≤ i ≤ l and for any set J with J (l)
i , it holds that

η−1
l

(
A(l)(J)

)
= {x = (x1, . . . , xl)

′ ∈ Rl | DJxJ ≥ 0, ∀t ∈ Nl \ J, x̄J < xt}, (2.7)

where the inequality s ≥ 0 means that all elements of the vector s are non-negative.

(3) Let i be an integer with 1 ≤ i ≤ l, and let J be a set with J ∈ J (l)
i . Let x = (x1, . . . , xl)

′ be

an element of Rl. Assume that x satisfies

x ∈ η−1
l

(
A(l)(J)

)
.

Then, it holds that

∀s ∈ J, ηl(x)[s] = x̄J ,
∀t ∈ Nl \ J, ηl(x)[t] = xt.

In particular, for the case of J = Nl, if x satisfies

x ∈ η−1
l (A(l)(J)) = {x ∈ Rl | DJxJ ≥ 0},

then, the following proposition holds:

∀s ∈ J, ηl(x)[s] = x̄J .

The proof of Lemma 2.1 is given in Appendix 1.

2.3. Maximum likelihood estimators for unknown parameters

In this subsection, we derive MLEs for unknown parameters in the candidate model M. First

of all, we rewrite the candidate model. For any integer s with 1 ≤ s ≤ k and for all elements

q
(s)
1 , . . . , q

(s)
v of Qs, let Xs = (Y ′

q
(s)
1

, . . . ,Y ′
q
(s)
v

)′, where v is the number of elements in Qs. We put

X = (X ′
1, . . . ,X

′
k)

′,

µ
q
(s)
1

= · · · = µ
q
(s)
v

≡ θs,

and θ = (θ1, . . . , θk)
′. In addition, define ns = N

q
(s)
1

+ · · ·+N
q
(s)
v

and n = (n1, . . . , nk)
′. Note that

n1 + · · ·+ nk = N1 + · · ·+Nk∗ = N . Then, the candidate model can be rewritten as

Xst ∼ N(θs, σ
2), t = 1, . . . , ns,

with
θ1 ≤ θ2, . . . , θ1 ≤ θk.

Here, a parameter space Θ for the candidate model is defined as follows:

Θ = {(a1, . . . , ak)′ ∈ Rk | ∀u ∈ Nk \ {1}, a1 ≤ au}.
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Next, we consider a log-likelihood for the candidate model. Let

X̄s =
1

ns

ns∑
v=1

Xsv, s = 1, . . . , k,

and let X̄ = (X̄1, . . . , X̄k)
′. Then, since Xst’s are independently distributed as normal distribution,

a log-likelihood function l(θ, σ2;X) is given by

l(θ, σ2;X) = −N

2
log(2πσ2)− 1

2σ2

k∑
s=1

ns∑
t=1

(Xst − θs)
2

= −N

2
log(2πσ2)− 1

2σ2

k∑
s=1

ns∑
t=1

(Xst − X̄s)
2 − 1

2σ2

k∑
s=1

ns(X̄s − θs)
2.

Hence, for any σ2 > 0, a maximizer of l(θ, σ2;X) on Θ is equivalent to a minimizer of

H(θ; X̄) =

k∑
s=1

ns(X̄s − θs)
2

on Θ. In other words, the MLE θ̂ = (θ̂1, . . . , θ̂k)
′ of θ is given by

θ̂ = argmin
θ∈Θ

H(θ; X̄). (2.8)

We would like to note that the MLE θ̂ can be written by using (2.6) as η
(n)
k (X̄) = θ̂. Here, we put

X̄ = x = (x1, . . . , xk)
′. Then, from Lemma 2.1, there exists a unique integer α with 1 ≤ α ≤ k and

a unique set J with J ∈ J (k)
α such that

DJxJ ≥ 0, ∀β ∈ Nk \ J, x̄J < xβ .

For this set J , it holds that

∀w ∈ J, θ̂w = x̄J =

∑
c∈J ncxc∑
c∈J nc

=

∑
c∈J ncX̄c∑
c∈J nc

,

∀β ∈ Nk \ J, θ̂β = xβ = X̄β . (2.9)

Therefore, the MLE µ̂ = (µ̂1, . . . , µ̂k∗)′ of µ = (µ1, . . . , µk∗)′ can be written as

∀j ∈ Qs, µ̂j = θ̂s, (s = 1, . . . , k). (2.10)

On the other hand, the MLE σ̂2 of σ2 can be written as

σ̂2 =
1

N

k∑
s=1

ns∑
t=1

(Xst − X̄s)
2 +

1

N

k∑
s=1

ns(X̄s − θ̂s)
2

=
1

N

k∑
s=1

ns∑
t=1

(Xst − θ̂s)
2 =

1

N

k∗∑
i=1

Ni∑
j=1

(Yij − µ̂i)
2, (2.11)

because the function l(θ̂, σ2;X) is a concave function with respect to (w.r.t.) σ2.
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3. Akaike information criterion for the candidate model

In this section, we derive an asymptotically unbiased AIC for the candidate model M. Here, we

assume the following two conditions:

(C1) The inequality N − k − 6 > 0 holds.

(C2) For the true parameters µ1,∗, . . . , µk∗,∗, it holds that

1 ≤∀ s ≤ k, ∀u1, u2 ∈ Qs, µu1,∗ = µu2,∗

and
∀t ∈ Nk \ {1}, ∀ν ∈ Qt, µq,∗ ≤ µν,∗,

where q ∈ Q1.

Hence, the condition (C2) means that the true model is included in the candidate model. In addition,

for any integer s with 1 ≤ s ≤ k and for any integer u with u ∈ Qs, we put µu,∗ = θs,∗.

Next, we define a risk function. Let Y∗ = (Y ′
1,∗, . . . ,Yk∗,∗)

′ be a random vector, and let Y∗ be

independent and identically distributed as Y . Furthermore, for any integer s with 1 ≤ s ≤ k and

for all elements q
(s)
1 , . . . , q

(s)
v of Qs, we define Xs,∗ = (Y ′

q
(s)
1 ,∗

, . . . ,Y ′
q
(s)
v ,∗

)′. In addition, we put

X∗ = (X ′
1,∗, . . . ,X

′
k,∗)

′. Here, using the log-likelihood l(µ, σ2;Y∗) of Y∗, we define the following

risk function R1:

R1 = E[EY∗ [−2l(µ̂, σ̂2;Y∗)]]

= E

[
N log(2πσ̂2) +

Nσ2
∗

σ̂2
+

∑k∗

i=1 Ni(µi,∗ − µ̂i)
2

σ̂2

]
. (3.1)

Note that −2× the maximum log-likelihood is given by

−2l(µ̂, σ̂2;Y ) = N log(2πσ̂2) +N. (3.2)

By using −2l(µ̂, σ̂2;Y ), we estimate the risk function R1. A bias B1, which is the difference between

the expected value of −2l(µ̂, σ̂2;Y ) and R1, can be expressed as

B1 = E[R1 − {−2l(µ̂, σ̂2;Y )}] = E

[
Nσ2

∗
σ̂2

]
+ E

[∑k∗

i=1 Ni(µi,∗ − µ̂i)
2

σ̂2

]
−N

= E

[
Nσ2

∗
σ̂2

]
+ E

[∑k
s=1 ns(θs,∗ − θ̂s)

2

σ̂2

]
−N.

Next, we evaluate B1. Define

S =
1

σ2
∗

k∑
s=1

ns∑
t=1

(Xst − X̄s)
2, T =

1

σ2
∗

k∑
s=1

ns(X̄s − θ̂s)
2.

Note that S and X̄ are independent, and S is distributed as the chi-squared distribution with

N − k degrees of freedom because Xst’s are independently distributed as normal distribution and

the condition (C2) holds. Furthermore, from (2.9), since θ̂ is a function of X̄, the statistic T is also

a function of X̄. Hence, S and T are also independent. From (2.11), using S and T we can write
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Nσ̂2/σ2
∗ = S+T . Therefore, by using these results and the same technique given by Inatsu (2016),

we obtain

B1 = 2(k + 1)− 2N

N − k − 2
E

[
1

σ2
∗

k∑
s=1

ns(X̄s − θs,∗)(X̄s − θ̂s)

]
+O(N−1). (3.3)

Next, we calculate the expectation in (3.3). Here, the following theorem holds:

Theorem 3.1. Let l be an integer with l ≥ 2. Let n1, . . . , nl and τ2 be positive numbers, and

let ξ1, . . . , ξl be real numbers. Let x1, . . . , xl be independent random variables, and let xs ∼
N(ξs, τ

2/ns), (s = 1, . . . , l). Put n = (n1, . . . , nl)
′, ξ = (ξ1, . . . , ξl)

′ and x = (x1, . . . , xl)
′. Then, it

holds that

E

[
1

τ2

l∑
s=1

ns(xs − ξs)(xs − η
(n)
l (x)[s])

]

=
l∑

i=2

(i− 1)P

ηl(x) ∈
∪

J∈J l
i

A(l)(J)

 .

Details of the proof of Theorem 3.1 are given in Appendix 2 and 3.

Note that X̄1, . . . , X̄k are mutually independent, and X̄s ∼ N(θs,∗, σ
2
∗/ns) for any integer s with

1 ≤ s ≤ k. Also note that from (2.8) the MLE θ̂ is given by θ̂ = η
(n)
k (X̄). Therefore, from Theorem

3.1, the expectation in (3.3) can be expressed as

E

[
1

σ2
∗

k∑
s=1

ns(X̄s − θs,∗)(X̄s − θ̂s)

]
= E

[
1

σ2
∗

k∑
s=1

ns(X̄s − θs,∗)(X̄s − η
(n)
k (X̄)[s])

]

=

k∑
u=2

(u− 1)P

θ̂ ∈
∪

J∈J k
u

A(k)(J)

 = L, (say).

Thus, since L = O(1), we obtain

B1 = 2(k + 1)− 2N

N − k − 2
L+O(N−1) = 2(k + 1)− 2L+O(N−1).

Hence, in order to correct the bias, it is sufficient to add 2(k + 1)− 2L to −2l(µ̂, σ̂2;Y ). However,

it is easily checked that L depends on the true parameters θ1,∗, . . . , θk,∗ and σ2
∗. For this reason, we

must estimate L. Here, we define the following random variable m̂ :

m̂ = 1 +
k∑

a=2

1{θ̂1<θ̂a}. (3.4)

It is clear that m̂ is a discrete random variable and its possible values are 1 to k. Incidentally, from

the definitions of A(k)(J), m̂ and θ̂, it holds that

θ̂ ∈
∪

J∈J k
u

A(k)(J) ⇐⇒ m̂ = k + 1− u ⇐⇒ k − m̂ = u− 1,

for any integer u with 1 ≤ u ≤ k. Therefore, the random variable k − m̂ satisfies

E[k − m̂] =
k∑

u=2

(u− 1)P

θ̂ ∈
∪

J∈J k
u

A(k)(J)

 = L.
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Hence, in order to correct the bias, instead of 2(k + 1)− 2l, we add

2(k + 1)− 2(k − m̂) = 2(m̂+ 1)

to −2l(µ̂, σ̂2;Y ). As a result, we obtain Akaike information criterion for the candidate model M
with the TO, called AICTO.

Theorem 3.2. Let l(µ̂, σ̂2;Y ) be the maximum log-likelihood given by (3.2), and let m̂ be a random

variable given by (3.4). Then, Akaike information criterion for the candidate model M with the

TO, called AICTO is defined as

AICTO := −2l(µ̂, σ̂2;Y ) + 2(m̂+ 1).

Furthermore, for the risk function R1 defined by (3.1), it holds that

E[AICTO] = R1 +O(N−1).

4. Cp criterion for the candidate model

In this section, we derive an unbiased Cp criterion for the candidate model M. Here, we assume

the following condition:

(C1⋆) The inequality N − k∗ − 2 > 0 holds.

Hence, we do not assume that the true model is included in the candidate model. First, we consider

the risk function based on the prediction mean squared error (PMSE). The risk function R2 based

on the PMSE is given by

R2 = E

EY∗

 1

σ2
∗

k∗∑
i=1

Ni∑
j=1

(Yij,∗ − µ̂i)
2

 = N + E

[
1

σ2
∗

k∗∑
i=1

Ni(µi,∗ − µ̂i)
2

]
. (4.1)

Next, we define the following random variables:

Ȳi =
1

Ni

Ni∑
j=1

Yij (i = 1, . . . , k∗), σ̄2 =
1

N

k∗∑
i=1

Ni∑
j=1

(Yij − Ȳi)
2. (4.2)

Note that Ȳ1, . . . , Ȳk∗ and σ̄2 are mutually independent, and Ȳi ∼ N(µi,∗, σ
2
∗/Ni) and Nσ̄2/σ2

∗ ∼
χ2
N−k∗ because Y11, . . . , YkNk

are independently distributed as normal distribution. Then, we esti-

mate the risk function R2 by using

(N − k∗ − 2)
σ̂2

σ̄2
. (4.3)

Here, from (2.11) the MLE σ̂2 can be written as

σ̂2 =
1

N

k∗∑
i=1

Ni∑
j=1

(Yij − Ȳi)
2 +

1

N

k∗∑
i=1

Ni(Ȳi − µ̂i)
2 = σ̄2 +

1

N

k∗∑
i=1

Ni(Ȳi − µ̂i)
2. (4.4)

Therefore, (4.3) can be expressed as

(N − k∗ − 2)
σ̂2

σ̄2
= N − k∗ − 2 +

(
N − k∗ − 2

Nσ̄2/σ2
∗

)
1

σ2
∗

k∗∑
i=1

Ni(Ȳi − µ̂i)
2. (4.5)

9



On the other hand, from (2.9) and (2.10), it can be seen that µ̂1, . . . , µ̂k∗ are functions of X̄1, . . . , X̄k.

Moreover, for any integer s with 1 ≤ s ≤ k, it holds that

X̄s =
1

ns

ns∑
t=1

Xst =
1∑

q∈Qs
Nq

∑
q∈Qs

Nq∑
j=1

Yqj =
1∑

q∈Qs
Nq

∑
q∈Qs

NqȲq. (4.6)

Thus, X̄1, . . . , X̄k are functions of Ȳ1, . . . , Ȳk∗ , and µ̂1, . . . , µ̂k∗ are also functions of Ȳ1, . . . , Ȳk∗ .

Hence, noting that Ȳ1, . . . , Ȳk∗ and σ̄2 are independent, and Nσ̄2/σ2
∗ ∼ χ2

N−k∗ and E[(χ2
N−k∗)−1] =

(N − k∗ − 2)−1, the expectation of (4.5) can be written as

E

[
(N − k∗ − 2)

σ̂2

σ̄2

]
= N − k∗ − 2 + E

[
1

σ2
∗

k∗∑
i=1

Ni{(Ȳi − µi,∗) + (µi,∗ − µ̂i)}2
]

= N − 2 + 2E

[
1

σ2
∗

k∗∑
i=1

Ni(Ȳi − µi,∗)(µi,∗ − µ̂i)

]
+ E

[
1

σ2
∗

k∗∑
i=1

Ni(µi,∗ − µ̂i)
2

]

= N − 2− 2E

[
1

σ2
∗

k∗∑
i=1

Ni(Ȳi − µi,∗)µ̂i

]
+ E

[
1

σ2
∗

k∗∑
i=1

Ni(µi,∗ − µ̂i)
2

]
. (4.7)

Therefore, by using (4.1) and (4.7), the bias B2 which is the difference between the expected value

of (4.3) and R2, is given by

B2 = E

[
R2 − (N − k∗ − 2)

σ̂2

σ̄2

]
= 2 + 2E

[
1

σ2
∗

k∗∑
i=1

Ni(Ȳi − µi,∗)µ̂i

]

= 2 + 2E

 1

σ2
∗

k∑
s=1

∑
q∈Qs

Nq(Ȳq − µq,∗)µ̂q

 . (4.8)

Here, for any integer s with 1 ≤ s ≤ k, we put∑
q∈Qs

Nqµq,∗∑
q∈Qs

Nq
=

∑
q∈Qs

Nqµq,∗

ns
≡ αs,∗. (4.9)

Then, combining (2.10), (4.6) and (4.9), (4.8) can be expressed as

B2 = 2 + 2E

[
1

σ2
∗

k∑
s=1

ns(X̄s − αs,∗)θ̂s

]

= 2− 2E

[
1

σ2
∗

k∑
s=1

ns(X̄s − αs,∗)(X̄s − θ̂s)

]
+ 2E

[
1

σ2
∗

k∑
s=1

ns(X̄s − αs,∗)X̄s

]
.

Hence, noting that X̄s ∼ N(αs,∗, σ
2/ns), we have

B2 = 2(k + 1)− 2E

[
1

σ2
∗

k∑
s=1

ns(X̄s − αs,∗)(X̄s − θ̂s)

]
.

Furthermore, by using the same argument as in Section 3, we get

E

[
1

σ2
∗

k∑
s=1

ns(X̄s − αs,∗)(X̄s − θ̂s)

]
= E[k − m̂],

where m̂ is given by (3.4). Thus, it is clear that

B2 = 2(k + 1)− 2E[k − m̂] = E[2(m̂+ 1)].

10



This implies that in order to correct the bias, it is sufficient to add 2(m̂+1) (instead of B2) to (4.3).

As a result, we obtain the Cp criterion for the candidate model M with the TO, called TOCp.

Theorem 4.1. A Cp criterion for the candidate model M with the TO, called TOCp is defined as

TOCp := (N − k∗ − 2)
σ̂2

σ̄2
+ 2(m̂+ 1),

where σ̂2, σ̄2 and m̂ are given by (2.11), (4.2) and (3.4), respectively. Moreover, for the risk function

R2 given by (4.1), it holds that
E[TOCp] = R2.

Remark 4.1. The TOCp is the unbiased estimator of R2. Furthermore, unbiasedness of the TOCp

holds even if the true model is not included in the candidate model M.

In addition, for unbiasedness of the TOCp, the following theorem holds:

Theorem 4.2. The TOCp is the uniformly minimum-variance unbiased estimator (UMVUE) of

R2.

Proof. As we mentioned before, the random variable m̂ is a function of θ̂1, . . . , θ̂k, and θ̂1, . . . , θ̂k

are functions of X̄1, . . . , X̄k. Furthermore, X̄1, . . . , X̄k are functions of Ȳ1, . . . , Ȳk∗ . Thus, m̂ is a

function of Ȳ1, . . . , Ȳk∗ . On the other hand, since µ̂1, . . . , µ̂k∗ are functions of Ȳ1, . . . , Ȳk∗ , from (4.4),

we can see that both σ̂2 and σ̄2 are functions of Ȳ1, . . . , Ȳk∗ . Therefore, from the definition of the

TOCp, the TOCp is a function of σ̄2 and Ȳ1, . . . , Ȳk∗ . Incidentally, noting that Y11, . . . , Yk∗Nk∗ are

mutually independent, and Yij ∼ N(µi,∗, σ
2
∗) where 1 ≤ i ≤ k∗ and 1 ≤ j ≤ Ni, the joint distribution

function f(y;µ∗, σ
2
∗) can be written as

f(y;µ∗, σ
2
∗)

=
1

(2πσ2
∗)

N/2
exp

− 1

2σ2
∗

k∗∑
i=1

Niȳ
2
i +

Ni∑
j=1

(yij − ȳi)
2

+

k∗∑
i=1

Niµi,∗

σ2
∗

ȳi − C

 ,

where ȳi and C are given by

ȳi =
1

Ni

Ni∑
j=1

yij , C =
1

2σ2
∗

k∗∑
i=1

Niµ
2
i,∗.

Here, define

T0 =
k∗∑
i=1

NiȲ
2
i +

Ni∑
j=1

(Yij − Ȳi)
2

 , Ti = Ȳi, (i = 1, . . . , k∗).

Then, (T0, T1, . . . , Tk∗)′ is a complete sufficient statistic (see, e.g., Lehmann and Casella, 1998).

Moreover, since σ̄2 can be written by using (T0, T1, . . . , Tk∗)′ as

σ̄2 =
1

N

(
T0 −

k∗∑
i=1

NiT
2
i

)
,

σ̄2 is a function of the complete sufficient statistic (T0, T1, . . . , Tk∗)′. Hence, the TOCp which is a

function of σ̄2 and Ȳ1, . . . , Ȳk∗ , is also a function of the complete sufficient statistic. Therefore, since

the TOCp is the unbiased estimator of R2, from Lehmann-Scheffé theorem (see, e.g., Knight, 1999),

the TOCp is the UMVUE of R2.
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5. Numerical experiments

In this section, we confirm estimation accuracies of the AICTO and the TOCp through numerical

experiments. Let Xij ∼ N(θi, σ
2), where i = 1, 2, 3, 4 and j = 1, . . . , Ni for each i. We set

N1 = N2 = N3 = N4. Furthermore, we put N = N1 +N2 +N3 +N4. In this setting, we consider

the ANOVA model with the following restriction:

∀j ∈ {2, 3, 4}, θ1 ≤ θj .

Hence, in this candidate model, the parameter space Θ is given by

Θ ≡ {θ = (θ1, θ2, θ3, θ4)
′ ∈ R4 | ∀j ∈ {2, 3, 4}, θ1 ≤ θj}.

Here, for comparison, we define the following two criteria:

fAIC : = −2l(µ̂, σ̂2;Y ) + 2(4 + 1),

fCp : = (N − k∗ − 2)
σ̂2

σ̄2
+ 2(4 + 1).

Thus, the penalty term of both the fAIC and the fCp is 2× the number of parameters. Note

that since the parameters are restricted, the fAIC and the fCp are not necessary (asymptotically)

unbiased estimators of risk functions in general.

Next, in this numerical experiments, we consider the following true parameters:

Case 1 : θ1 = 1, θ2 = 2, θ3 = 3, θ4 = 4, σ2 = 1,

Case 2 : θ1 = 1, θ2 = 1.05, θ3 = 1.05, θ4 = 1.05, σ2 = 1,

Case 3 : θ1 = 1, θ2 = 1, θ3 = 1, θ4 = 1, σ2 = 1,

Case 4 : θ1 = 2, θ2 = 1.4, θ3 = 0.8, θ4 = 0.2, σ2 = 1.

We would like to note that the vector of true parameters θ = (θ1, . . . , θ4)
′ is an interior point of Θ

in Case 1. Similarly, in Case 2, θ is an interior point of Θ, but θ is very close to the boundary. On

the other hand, θ is a boundary point of Θ in Case 3. Moreover, in Case 4, θ is not included in Θ.

Therefore, the true model is included in the candidate model when Case 1–3. However, in Case 4,

it is not included. From 1,000,000 Monte Carlo simulation runs, we confirm estimation accuracies

of four criteria. Obtained results are given in Table 5.1 – 5.4.

Table 5.1 Estimation accuracy of four criteria in Case 1

N R1 AICTO fAIC R2 TOCp fCp

12 47.08 37.47 37.70 15.82 15.82 16.05

36 108.75 106.75 106.78 39.97 39.97 40.00

100 289.30 288.64 288.64 104.00 104.00 104.00

200 572.81 572.53 572.53 204.00 204.00 204.00

1000 2842.93 2842.87 2842.87 1004.00 1004.00 1004.00

10000 28383.78 28383.90 28383.90 10004.00 10004.00 10004.00
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Table 5.2 Estimation accuracy of four criteria in Case 2

N R1 AICTO fAIC R2 TOCp fCp

12 43.20 37.07 39.15 14.92 14.92 16.99

36 107.19 105.83 107.84 38.92 38.92 40.93

100 288.08 287.63 289.53 102.93 102.94 104.84

200 571.71 571.52 573.30 202.96 202.96 204.74

1000 2842.03 2842.01 2843.33 1003.11 1003.12 1004.44

10000 28383.61 28383.52 28383.73 10003.82 10003.83 10004.03

Table 5.3 Estimation accuracy of four criteria in Case 3

N R1 AICTO fAIC R2 TOCp fCp

12 43.02 37.12 39.29 14.91 14.91 17.09

36 107.13 105.83 108.01 38.91 38.91 41.09

100 288.04 287.60 289.78 102.91 102.91 105.09

200 571.65 571.47 573.64 202.91 202.91 205.09

1000 2841.82 2841.74 2843.91 1002.91 1002.91 1005.09

10000 28382.69 28382.59 28384.77 10002.91 10002.91 10005.09

Table 5.4 Estimation accuracy of four criteria in Case 4

N R1 AICTO fAIC R2 TOCp fCp

12 42.67 41.87 45.54 19.26 19.24 22.91

36 117.64 118.52 122.31 53.25 53.26 57.06

100 321.39 322.62 326.48 144.11 144.13 147.99

200 640.13 641.46 645.40 286.06 286.05 289.99

1000 3190.87 3192.31 3196.31 1422.00 1422.04 1426.04

10000 31887.66 31888.95 31892.95 14202.00 14201.98 14205.98

From Table 5.1, we can see that the AICTO and the fAIC are asymptotically unbiased estimators

of the risk R1 in Case 1. Furthermore, the TOCp and the fCp are unbiased and asymptotically

unbiased estimators of R2, respectively. Similarly, from Table 5.2 we can see that the result of Case

2 is similar to that of Case 1. Nevertheless, estimation accuracies of the fAIC and the fCp in Case 2

are not good even if the sample size N is less than 1000. On the other hand, in Case 3, from Table

5.3 we can see that the AICTO is the asymptotically unbiased estimator of R1 and the fAIC has

the asymptotically bias. Similarly, the TOCp is the unbiased estimator of R2 and the fCp has the

asymptotic bias. Finally, from Table 5.4 we can see that the three criteria AICTO, fAIC and fCp

have asymptotic biases in Case 4. However, the TOCp is the unbiased estimator of R2.
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6. Conclusion

Under ANOVA model with the tree ordering, we derived the asymptotically unbiased AIC and

the unbiased Cp criterion, called AICTO and TOCp, respectively. In particular, the TOCp is the

unbiased estimator even if the true model is not included in the set of candidate models. Moreover,

we show that the TOCp is the UMVUE. We confirmed these results through numerical experiments.

Appendix 1: Proof of Lemma 2.1

In this section, we prove Lemma 2.1. First, we provide the following lemma.

Lemma A. The following three propositions hold:

(1) Let A and B be non-empty subsets of Nl, and let A ∩B = ∅. Then, it holds that

x̄A < x̄B ⇒ x̄A < x̄A∪B < x̄B .

(2) Let A and B1, . . . , Bi be non-empty subsets of Nl, and let A and B1, . . . , Bi be disjoint. Then,

it holds that
∀j ∈ {1, . . . , i}, x̄A < x̄Bj ⇒ x̄A < x̄B , (A.1)

where B is given by

B =
i∪

j=1

Bj .

Similarly, it also holds that

∀j ∈ {1, . . . , i}, x̄Bj ≤ x̄A ⇒ x̄B ≤ x̄A. (A.2)

(3) Let A, B and C be non-empty subsets of Nl, and let A, B and C be disjoint. Then, it holds

that
x̄A < x̄C , x̄B ≤ x̄C ⇒ x̄A∪B < x̄C . (A.3)

Proof. First, we prove (1). Let A and B be non-empty and disjoint subsets of Nl, and let x̄A < x̄B.

Then, multiplying both sides by ÑB =
∑

b∈B Nb, we get

ÑBx̄A < ÑBx̄B =
∑
b∈B

Nbxb.

Furthermore, adding ÑAx̄A to both sides we have

(ÑA + ÑB)x̄A < ÑAx̄A +
∑
b∈B

Nbxb =
∑
a∈A

Naxa +
∑
b∈B

Nbxb.

In addition, dividing this inequality by ÑA + ÑB =
∑

a∈A Na +
∑

b∈B Nb we obtain

x̄A <

∑
a∈A Naxa +

∑
b∈B Nbxb∑

a∈A Na +
∑

b∈B Nb
.

Here, recall that A and B are disjoint. Therefore, it holds that∑
a∈A Naxa +

∑
b∈B Nbxb∑

a∈A Na +
∑

b∈B Nb
=

∑
s∈A∪B Nsxs∑
s∈A∪B Ns

= x̄A∪B.
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Hence, x̄A < x̄A∪B holds. By using the same argument, we can also prove that x̄A∪B < x̄B holds.

Thus, the proposition (1) holds.

Next, we prove (2). Let A and B1, . . . , Bi be non-empty and disjoint subsets of Nl. Assume that

x̄A < x̄Bj for any integer j with 1 ≤ j ≤ i. Here, multiplying both sides of x̄A < x̄B1 by ÑB1 , we

have
ÑB1 x̄A < ÑB1 x̄B1 =

∑
s∈B1

Nsxs,

and multiplying both sides of x̄A < x̄B2 by ÑB2 , we get

ÑB2 x̄A < ÑB2 x̄B2 =
∑
t∈B2

Ntxt.

Thus, using these two inequalities we obtain

x̄A <

∑
s∈B1

Nsxs +
∑

t∈B2
Ntxt

ÑB1 + ÑB2

=

∑
s∈B1

Nsxs +
∑

t∈B2
Ntxt∑

s∈B1
Ns +

∑
t∈B2

Nt
.

Moreover, noting that B1 and B2 are disjoint, we get∑
s∈B1

Nsxs +
∑

t∈B2
Ntxt∑

s∈B1
Ns +

∑
t∈B2

Nt
=

∑
u∈B1∪B2

Nuxu∑
u∈B1∪B2

Nu
= x̄B1∪B2 .

Hence, x̄A < x̄B1∪B2 holds. Here, we put B1 ∪ B2 = C. Then, it holds that x̄A < x̄C . From

this inequality and x̄A < x̄B3 , using the same argument we obtain x̄A < x̄C∪B3 = x̄B1∪B2∪B3 . By

repeating this process, we get (A.1). Furthermore, (A.2) and (A.3) can be proved by using the same

argument. Thus, the propositions (2) and (3) are proved.

Next, we prove Lemma 2.1.

Proof. When l = 2, the statements of Lemma 2.1 are equivalent to Lemma C given by Inatsu

(2016), and it is already proved. Therefore, we prove the case of l ≥ 3.

First, we prove (1) of Lemma 2.1. From (2.5) it holds that

l∪
i=1

∪
J∈J (l)

i

A(l)(J) = {x ∈ Rl | x1 ≤ x2, . . . , x1 ≤ xl} = A(l),

and A(l)(J) ̸= A(l)(J∗) where J ̸= J∗. Therefore, from the definition of the inverse image, it is clear

that (1) holds because ηl is the function from Rl to A(l).

Next, using mathematical induction we prove (2) and (3) of Lemma 2.1. Thus, assume that

Lemma 2.1 is true when l = 2, . . . , q − 1. In this assumption, we prove that Lemma 2.1 is also true

when l = q. Here, in the case of i = 1, J (q)
1 has only one set J = {1}. First, for this set J , we show

the inclusion relation ⊃ of (2.7). Let x = (x1, . . . , xq)
′ be an element of Rq satisfying

DJxJ ≥ 0, ∀t ∈ Nq \ J, x̄J < xt.

Here, note that x̄J = x1. Hence, for any integer t with 2 ≤ t ≤ q, the inequality x1 < xt holds. This

implies that x ∈ A(q)(J) ⊂ A(q). Meanwhile, let

Hq(δ;x) =

q∑
u=1

Nu(xu − δu)
2.
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Then, noting that x ∈ A(q), we get

0 ≤ min
δ∈A(q)

Hq(δ;x) ≤ Hq(x;x) = 0.

Therefore, it holds that
min

δ∈A(q)
Hq(δ;x) = Hq(x;x) = 0.

This equality means that ηq(x) = x ∈ A(q)(J). Thus, we obtain ηq(x) ∈ A(q)(J). Therefore,

x ∈ η−1
q

(
A(q)(J)

)
holds. Hence, the inclusion relation ⊃ of (2.7) in the case of J = {1} is proved.

Next, we show ⊂ of (2.7). Let y = (y1, . . . , yq)
′ be an element of Rq satisfying y ∈ η−1

q

(
A(q)(J)

)
.

In other words, we assume that

ηq(y) = argmin
δ∈A(q)

Hq(δ;y) ≡ α = (α1, . . . , αq)
′ ∈ A(q)(J).

Here, noting that A(q)(J) is an open set, there exists an ε-neighborhood U(α; ε) of α such that

U(α; ε) ⊂ A(q)(J). Thus, for any element γ = (γ1, . . . , γq)
′ of Rq satisfying γ ∈ U(α; ε) ⊂ A(q), it

holds that
Hq(α;y) ≤ Hq(γ;y).

This implies that α is a local minimizer of Hq(δ;y). In addition, since Hq(δ;y) is a strictly convex

function on Rq with respect to (w.r.t.) δ, the local minimizer α is a unique global minimizer.

Moreover, it is clear that the global minimizer is y because Hq(δ;y) is non-negative and Hq(y;y) =

0. Therefore, we get α = y and it holds that

ηq(y) = α = y ∈ A(q)(J).

Hence, for any s with s ∈ Nq \ J , the inequality y1 < ys holds. Consequently, the inclusion relation

⊂ of (2.7) in the case of J = {1} is proved.

Next, for any i with 2 ≤ i ≤ q − 1, we prove the inclusion relation ⊃ of (2.7). Let i be an integer

with 2 ≤ i ≤ q − 1, and let J be a set with J ∈ J (q)
i . Assume that x = (x1, . . . , xq)

′ is an element

of Rq satisfying DJxJ ≥ 0 and x̄J < xt for any t ∈ Nq \ J . Here, the function Hq(α;x) can be

expressed as

Hq(α;x) =

q∑
d=1

Nd(xd − αd)
2 =

∑
s∈J

Ns(xs − αs)
2 +

∑
t∈Nq\J

Nt(xt − αt)
2

= H#J(αJ ;xJ ) +H#Nq\J(αNq\J ;xNq\J).

Therefore, it is easily checked that

min
α∈A(q)

Hq(α;x) ≥ min
αJ∈A(#J)

H#J (αJ ;xJ) +H#Nq\J(xNq\J ;xNq\J ). (A.4)

In addition, we put xJ = (y1, . . . , y#J)
′ = y, αJ = (β1, . . . , β#J)

′ = β, NJ = (n1, . . . , n#J)
′ = n

and J∗ = N#J . By using these notations, we obtain

H#J(αJ ;xJ) =
∑
s∈J

Ns(xs − αs)
2 =

#J∑
u=1

nu(yu − βu)
2 = H#J(β;y),

and
min

αJ∈A(#J)
H#J (αJ ;xJ) = min

β∈A(#J)
H#J (β;y).
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Recall that Lemma 2.1 is true when l = 2, . . . , q−1 from the assumption of mathematical induction.

Moreover, it also holds that D
(N)
J xJ ≥ 0. This inequality is equal to D

(n)
J∗ yJ∗ ≥ 0. Furthermore,

noting that J∗ = N#J and 2 ≤ #J ≤ q − 1, from (3) of Lemma 2.1 we get

min
αJ∈A(#J)

H#J (αJ ;xJ) = min
β∈A(#J)

H#J (β;y)

=

#J∑
u=1

nu(yu − ȳJ∗)2 =
∑
s∈J

Ns(xs − x̄J)
2. (A.5)

Hence, from (A.4) and (A.5), it holds that

min
α∈A(q)

Hq(α;x) ≥
∑
s∈J

Ns(xs − x̄J)
2 +

∑
t∈Nq\J

Nt(xt − xt)
2. (A.6)

Here, let γ = (γ1, . . . , γq)
′ be a q-dimensional vector whose sth element (s ∈ J) is x̄J and tth

element (t ∈ Nq \ J) is xt. Then, from the assumption, for any t ∈ Nq \ J it holds that x̄J < xt.

Thus, from the definition of γ, we obtain γ ∈ A(q). Hence, the following inequality holds:

min
α∈A(q)

Hq(α;x) ≤ Hq(γ;x) =
∑
s∈J

Ns(xs − x̄J)
2 +

∑
t∈Nq\J

Nt(xt − xt)
2. (A.7)

Therefore, from (A.6) and (A.7) we get

min
α∈A(q)

Hq(α;x) = Hq(γ;x).

This implies that
ηq(x) = argmin

α∈A(q)

Hq(α;x) = γ.

Noting that from the definition of γ, we have γ ∈ A(q)(J), i.e., x ∈ η−1
q

(
A(q)(J)

)
. Consequently,

for any i with 2 ≤ i ≤ q − 1, the inclusion relation ⊃ of (2.7) is proved.

Next, we prove the inclusion relation ⊂ of (2.7). Let i be an integer with 2 ≤ i ≤ q− 1, and let J

be a set with J ∈ J (q)
i . Also let x = (x1, . . . , xq)

′ be an element of Rq satisfying x ∈ η−1
q

(
A(q)(J)

)
.

In other words, we assume that

ηq(x) = (α1, . . . , αq)
′ = α ∈ A(q)(J).

Here, from the definition of A(q)(J), for any s ∈ J and for any t ∈ Nq \J , it holds that α1 = αs and

α1 < αt. Incidentally, from the definition of ηq, we get

min
δ∈A(q)

q∑
i=1

Ni(xi − δi)
2 =

∑
s∈J

Ns(xs − αs)
2 +

∑
t∈Nq\J

Nt(xt − αt)
2

=
∑
s∈J

Ns(xs − α1)
2 +

∑
t∈Nq\J

Nt(xt − αt)
2.

In addition, for the subvector γ∗ = (γ1,γ
′
Nq\J )

′, we consider the following function:

H(γ∗;x) =
∑
s∈J

Ns(xs − γ1)
2 +

∑
t∈Nq\J

Nt(xt − γt)
2.

Noting that α∗ = (α1,α
′
Nq\J)

′ ∈ A(q−#J+1)({1}) and A(q−#J+1)({1}) is an open set, there exists

an ε-neighborhood U(α∗; ε) of α∗ such that U(α∗; ε) ⊂ A(q−#J+1)({1}). Let ζ = (ζ1, . . . , ζq)
′, and
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let ζ∗ = (ζ1, ζ
′
Nq\J)

′ ∈ U(α∗; ε). Moreover, let ξ = (ξ1, . . . , ξq)
′ be a q-dimensional vector whose sth

element (s ∈ J) is ξs = ζ1, and tth element (t ∈ Nq \ J) is ξt = ζt. Then, noting that ξ ∈ A(q) we

obtain

H(ζ∗;x) =
∑
s∈J

Ns(xs − ζ1)
2 +

∑
t∈Nq\J

Nt(xt − ζt)
2 =

∑
s∈J

Ns(xs − ξs)
2 +

∑
t∈Nq\J

Nt(xt − ξt)
2

≥ min
δ∈A(q)

q∑
i=1

Ni(xi − δi)
2 =

∑
s∈J

Ns(xs − α1)
2 +

∑
t∈Nq\J

Nt(xt − αt)
2 = H(α∗;x).

Thus, α∗ is a local minimizer of H(γ∗;x). In addition, since H(γ∗;x) is a strictly convex function

on Rq−#J+1 w.r.t. γ∗, the local minimizer α∗ is a unique global minimizer of H(γ∗;x). Moreover,

the global minimizer can be obtained by differentiating H(γ∗;x) w.r.t. γ∗ as

α1 = x̄J , αt = xt (t ∈ Nq \ J).

Therefore, noting that α1 < αt, we have x̄J < xt.

Next, we prove D
(N)
J xJ ≥ 0. We replace xJ and NJ with y = (y1, . . . , yi)

′ and n = (n1, . . . , ni)
′,

respectively. In addition, we put J∗ = Ni. Note that xJ = y = yJ∗ . Also note that y is an

i-dimensional vector and 2 ≤ i ≤ q − 1. Recall that from (1) of Lemma 2.1, it holds that

Ri =
i∪

s=1

∪
J∈J (i)

s

η−1
i

(
A(i)(J)

)
,

η−1
i

(
A(i)(J)

)
∩ η−1

i

(
A(i)(J∗)

)
= ∅ (J ̸= J∗).

In order to prove D
(N)
J xJ ≥ 0, we show y ∈ η−1

i

(
A(i)(Ni)

)
using proof by contradiction. Thus,

we assume that there exists an integer s with 1 ≤ s ≤ i − 1 and a set J∗∗ of J (i)
s such that

y ∈ η−1
i

(
A(i)(J∗∗)

)
. Recall that from the assumption of mathematical induction, Lemma 2.1 is

true when l = 2, . . . , q−1. Furthermore, since i ≤ q−1, from (2) of Lemma 2.1, y ∈ η−1
i

(
A(i)(J∗∗)

)
is equivalent to

D
(n)
J∗∗yJ∗∗ ≥ 0, ȳJ∗∗ < yt (t ∈ Ni \ J∗∗).

Here, by using (2) of Lemma A, we get ȳJ∗∗ < ȳNi\J∗∗ . Moreover, using (1) of Lemma A we have

ȳJ∗∗ < ȳNi = x̄J . Therefore, combining x̄J < xt (t ∈ Nq \ J), we get

ȳJ∗∗ < xr (r ∈ Nq \ J). (A.8)

Note that there exists a set J∗∗∗ with J∗∗∗ ⫋ J satisfies ȳJ∗∗ = x̄J∗∗∗ and

D
(n)
J∗∗yJ∗∗ = D

(N)
J∗∗∗xJ∗∗∗ ≥ 0, x̄J∗∗∗ < xv (v ∈ J \ J∗∗∗). (A.9)

Hence, for the set J∗∗∗, from (A.8) and (A.9) it holds that

D
(N)
J∗∗∗xJ∗∗∗ ≥ 0, x̄J∗∗∗ < xu (u ∈ Nq \ J∗∗∗).

As we proved before, this implies that x ∈ η−1
q

(
A(q)(J∗∗∗)

)
. However, this result is a contradiction

because J ̸= J∗∗∗, x ∈ η−1
q

(
A(q)(J)

)
and η−1

q

(
A(q)(J)

)
∩ η−1

q

(
A(q)(J∗∗∗)

)
= ∅. Therefore, we

obtain y ∈ η−1
i

(
A(i)(Ni)

)
. From (2) of Lemma 2.1, this result is equivalent to D

(n)
Ni

y ≥ 0. This

18



inequality can be written by using N , J and xJ as D
(N)
J xJ ≥ 0. Thus, for any i with 2 ≤ i ≤ q−1,

the inclusion relation ⊂ of (2.7) is proved.

Finally, in the case of i = q, i.e., J = Nq ∈ J (q)
q , we prove (2.7). First, we prove the inclusion

relation ⊃ of (2.7). Let x = (x1, . . . , xq)
′ ∈ Rq, and let DJxJ ≥ 0. Recall that the following relation

holds:

Rq =

q∪
s=1

∪
J∈J (q)

s

η−1
q

(
A(q)(J)

)
,

η−1
q

(
A(q)(J)

)
∩ η−1

q

(
A(q)(J∗)

)
= ∅ (J ̸= J∗).

Again, we consider proof by contradiction. Hence, we assume that there exists an integer s with

1 ≤ s ≤ q − 1 and a set J∗ of J (q)
s satisfying x ∈ η−1

q

(
A(q)(J∗)

)
. Thus, as we mentioned before, it

holds that
DJ∗xJ∗ ≥ 0, x̄J∗ < xt (t ∈ Nq \ J∗).

We would like to recall that 1 ∈ J∗ and the number of elements in J∗ is s. Here, if s = q − 1, then

Nq \ J∗ has only one element a satisfying a > 1. Therefore, it holds that

x̄Nq\{a} < xa.

However, this inequality is a contradiction because DJxJ ≥ 0. Hence, s satisfies 1 ≤ s ≤ q − 2.

Incidentally, note that there exists a element t∗ of Nq \ J∗ which satisfies

∀t ∈ Nq \ (J∗ ∪ {t∗}), xt ≤ xt∗

Therefore, form (2) of Lemma A we get

x̄Nq\(J∗∪{t∗}) ≤ xt∗

In addition, since x̄J < xt∗ , from (3) of Lemma A we obtain

x̄Nq\{t∗} < xt∗

However, this inequality is also contradiction because DJxJ ≥ 0. Thus, we get s = q. This implies

that J∗ = Nq ∈ J (q)
q and x ∈ η−1

q

(
A(q)(Nq)

)
. Therefore, the inclusion relation ⊃ of (2.7) in the

case of i = q is proved. Next, we prove ⊂. Assume that x ∈ η−1
q

(
A(q)(Nq)

)
. In other words, it

holds that
ηq(x) ≡ α ∈ A(q)(Nq).

From the definition of A(q)(Nq), we get α = 1qα, where 1q is a q-dimensional vector and every

element of 1q is equal to one. Here, again we consider proof by contradiction. Therefore, we assume

that there exists an integer s with 2 ≤ s ≤ q which satisfies

x̄Nq\{s} < xs. (A.10)

Meanwhile, for the function Hq(δ;x) given by

Hq(δ;x) =

q∑
a=1

Na(xa − δa)
2,
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it is easily checked that

min
δ∈A(q)

Hq(δ;x) = Hq(α;x) =

q∑
a=1

Na(xa − α)2, (A.11)

because x ∈ η−1
q

(
A(q)(Nq)

)
is true. Here, it is clear that the following inequality holds:

q∑
a=1

Na(xa − α)2 ≥ min
β∈R

q∑
a=1, a ̸=s

Na(xa − β)2 =

q∑
a=1, a ̸=s

Na(xa − x̄Nq\{s})
2. (A.12)

Hence, combining (A.11) and (A.12) we get

min
δ∈A(q)

Hq(δ;x) ≥
q∑

a=1, a ̸=s

Na(xa − x̄Nq\{s})
2. (A.13)

Let β be a q-dimensional vector whose sth and tth (t ∈ Nq \ {s}) elements are xs and x̄Nq\{s},

respectively. Then, the inequality (A.13) can be written by using β as

min
δ∈A(q)

Hq(δ;x) ≥ Hq(β;x).

On the other hand, from the assumption (A.10), we obtain

min
δ∈A(q)

Hq(δ;x) ≤ Hq(β;x),

because β ∈ A(q). Thus, we have

min
δ∈A(q)

Hq(δ;x) = Hq(β;x),

and this means that ηq(x) = β. However, this result is a contradiction because ηq(x) = α and

α ̸= β. Hence, for any integer s with 2 ≤ s ≤ q, it holds that x̄Nq\{s} ≥ xs. This inequality is

equivalent to DNqxNq ≥ 0. Therefore, the inclusion relation ⊂ of (2.7) in the case of i = q is proved.

Consequently, (2) of Lemma 2.1 is proved.

Finally, we prove (3) of Lemma 2.1. When J ̸= Nq, we have already proved in the proof of (2)

of Lemma 2.1. Thus, we prove the case of J = Nq. Let x ∈ η−1
q

(
A(q)(Nq)

)
. Then, it holds that

ηq(x) ≡ α ∈ A(q)(Nq) and α can be written as α = α1q. Here, for the function Hq(δ;x) defined by

Hq(δ;x) =

q∑
a=1

Na(xa − δa)
2,

we obtain

min
δ∈A(q)

Hq(δ;x) = Hq(α;x) =

q∑
a=1

Na(xa − α)2

≥ min
β∈R

q∑
a=1

Na(xa − β)2 =

q∑
a=1

Na(xa − x̄Nq )
2 = Hq(x̄Nq1q;x), (A.14)

because x ∈ η−1
q

(
A(q)(Nq)

)
holds. On the other hand, since x̄Nq1q ∈ A(q), we get

min
δ∈A(q)

Hq(δ;x) ≤ Hq(x̄Nq1q;x).

By combining this inequality and (A.14), we have

min
δ∈A(q)

Hq(δ;x) = Hq(x̄Nq1q;x).

This implies ηq(x) = α = x̄Nq1q. Therefore, (3) of Lemma 2.1 is proved.
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Appendix 2: Technical lemma

In this section, we provide two technical lemmas. Using Lemma 2.1 and provided two lemmas,

we prove Theorem 3.1 in Appendix 3.

Lemma B. Let v1, . . . , vl be independent random variables, and let vs ∼ N(ξs, τ
2/Ns) where

1 ≤ s ≤ l, τ2 > 0, ξ1, . . . , ξl ∈ R and N1, . . . , Nl ∈ R>0. Let N = (N1, . . . , Nl)
′, v = (v1, . . . , vl)

′

and ξ = (ξ1, . . . , ξl)
′. In addition, for any integer i with 1 ≤ i ≤ l and for any set J with J ∈ J (l)

i ,

define
S(J) =

∑
s∈J

Ns(vs − ξs)(vs − v̄J).

Then, the following two propositions hold:

(1) If J ̸= Nl, then vNl\J , ((DJvJ)
′, S(J))′ and v̄J are mutually independent.

(2) if J = Nl, then ((DJvJ)
′, S(J))′ and v̄J are mutually independent.

Proof. First, we prove (1). From the assumption, v is distributed as the multivariate normal

distribution with a diagonal covariance matrix. Therefore, noting that the two sets J and Nl \ J

are disjoint sets, it can be shown that the two subvectors vJ and vNl\J are also distributed as

(multivariate) normal distributions and these are mutually independent.

Next, we prove that ((DJvJ)
′, S(J))′ and v̄J are functions of vJ , and these are mutually inde-

pendent. Here, the case of J = {1} is clear because ((DJvJ )
′, S(J))′ = (0, 0)′. Thus, we consider

the case of J ̸= {1}. Since ∑
s∈J

Nsv̄J(vs − v̄J) = 0,

it holds that

S(J) =
∑
s∈J

Ns(vs − ξs)(vs − v̄J) =
∑
s∈J

Ns(vs − v̄J − ξs)(vs − v̄J)

=
∑
s∈J

Ns(vs − v̄J)
2 −

∑
s∈J

Nsξs(vs − v̄J ).

Here, let

A = (diag(NJ))
1/2

{
I#J − 1#J

ÑJ

N ′
J

}
, (B.1)

where diag(NJ ) means the diagonal matrix whose (a, a) element is the ath element of the vector

NJ . Then, S(J) can be expressed as

S(J) = (AvJ)
′(AvJ )− (ξ′J(diag(NJ))

1/2)AvJ .

Hence, ((DJvJ)
′, S(J))′ is the function of ((DJvJ )

′, (AvJ)
′)′. Therefore, it is sufficient to prove

that ((DJvJ)
′, (AvJ )

′)′ and v̄J are independent. Note that the vector ((DJvJ)
′, (AvJ)

′, v̄J)
′ can

written by DJvJ

AvJ

v̄J

 =

 DJ

A

N ′
J/ÑJ

vJ ,
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and vJ are distributed as multivariate normal distribution. Thus, ((DJvJ)
′, (AvJ)

′)′ and v̄J are

distributed as (multivariate) normal distributions. Hence, in order to prove its independence, it is

sufficient to prove that the covariance of ((DJvJ)
′, (AvJ )

′)′ and v̄J is the zero vector. Here, the

covariance of DJvJ and v̄J can be expressed as

Cov[DJvJ , v̄J ] = DJVar[vJ ]NJ/ÑJ . (B.2)

Furthermore, noting that Var[vJ ] = τ2(diag(NJ ))
−1, (B.2) can be written as

Cov[DJvJ , v̄J ] = (τ2/ÑJ )DJ(diag(NJ))
−1NJ = (τ2/ÑJ)DJ1#J .

In addition, from the definition of the matrix DJ , it holds that DJ1#J = 0. Therefore, we get

Cov[DJvJ , v̄J ] = 0. Similarly, the covariance of AvJ and v̄J is given by

Cov[AvJ , v̄J ] = (τ2/ÑJ )A1#J ,

and it holds that A1#J = 0 from (B.1). Thus, we have Cov[AvJ , v̄J ] = 0. Therefore,

((DJvJ)
′, (AvJ )

′)′ and v̄J are independent. This implies that ((DJvJ)
′, S(J))′ and v̄J are

independent. Hence, (1) is proved. On the other hand, by using the same argument, we can also

prove (2).

Lemma C. Let v1, . . . , vl be independent random variables defined as in Lemma B, and let

A(l)({1}) = {(x1, . . . , xl)
′ ∈ Rl | x1 < x2, . . . , x1 < xl}.

Then, it holds that

E

[
1{v∈η−1

l (A(l)({1}))} ×
1

τ2

l∑
s=1

Nsvs(vs − ξs)

]

= E

[
1{v∈A(l)({1})} ×

1

τ2

l∑
s=1

Nsvs(vs − ξs)

]
= lE[1{v∈A(l)({1})}] = lE[1{v∈η−1

l (A(l)({1}))}] = lP(v ∈ η−1
l (A(l)({1}))). (C.1)

Proof. From the definition of an indicator function, it is clear that the fourth equality holds. On

the other hand, for the first and third equalities, we must prove

v ∈ η−1
l (A(l)({1})) ⇔ v ∈ A(l)({1}).

However, we have already proved this relation in (2.7). Therefore, we prove the second equality.

For any integer s with 1 ≤ s ≤ l, we define

√
Ns(vs − ξs)

τ
= zs, bs =

ξs
√
Ns

τ
.

Note that z1, . . . , zl are independent and identically distributed as N(0, 1). Furthermore, it holds

that

1

τ2

l∑
s=1

Nsvs(vs − ξs) =

l∑
s=1

zs(zs + bs). (C.2)
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In addition, for any integer t with 2 ≤ t ≤ l, putting

√
Nt√
N1

= at,

the following relation holds:

v ∈ A(l)({1}) ⇔ 2 ≤ t ≤ l, v1 < vt ⇔ 2 ≤ t ≤ l, at(z1 + b1)− bt < zt.

Here, define

El = {(c1, . . . , cl) ∈ Rl | 2 ≤ t ≤ l, at(c1 + b1)− bt < ct}.

Then, for the vector z = (z1, . . . , zl)
′, it holds that v ∈ A(l)({1}) ⇔ z ∈ El. Using this result and

(C.2), we obtain

E

[
1{v∈A(l)({1})} ×

1

τ2

l∑
s=1

Nsvs(vs − ξs)

]
= E

[
1{z∈El} ×

l∑
s=1

zs(zs + bs)

]

=

∫
· · ·
∫
El

{
l∑

s=1

zs(zs + bs)

}
l∏

s=1

ϕ(zs)dz1 · · · dzl, (C.3)

where ϕ(x) is the probability density function of standard normal distribution. Here, when l = 2,

Inatsu (2016) proved that (C.3) is equal to lE[1{v∈A(l)({1})}]. Hence, we prove the case of l ≥ 3.

First, for any integer s with 2 ≤ s ≤ l we define

Fs(x) =

∫ ∞

as(x+b1)−bs

ϕ(y)dy.

In addition, let

G1 =

∫ ∞

−∞
z1(z1 + b1)

(
l∏

s=2

Fs(z1)

)
ϕ(z1)dz1,

and let

Gs =

∫ ∞

−∞

(∫ ∞

as(z1+b1)−bs

zs(zs + bs)ϕ(zs)dzs

) ∏
2≤t≤l, t ̸=s

Ft(z1)

ϕ(z1)dz1, (C.4)

where s = 2, . . . , l. Then, (C.3) can be written as

∫
· · ·
∫
El

{
l∑

s=1

zs(zs + bs)

}
l∏

s=1

ϕ(zs)dz1 · · · dzl =
l∑

s=1

Gs. (C.5)

Next, we calculate G1 and Gs. Using the integration by parts, G1 can be expressed as

G1 =

[
−ϕ(z1)(z1 + b1)

(
l∏

s=2

Fs(z1)

)]∞
−∞

+

∫ ∞

−∞
ϕ(z1)

(
l∏

s=2

Fs(z1)

)
dz1

+

∫ ∞

−∞
ϕ(z1)(z1 + b1)

d

dz1

(
l∏

s=2

Fs(z1)

)
dz1. (C.6)

Here, noting that
d

dz1
Fs(z1) = −asϕ(as(z1 + b1)− bs)
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and the first term of the right hand side of (C.6) is zero, (C.6) can be written as

G1 =

∫ ∞

−∞
ϕ(z1)

(
l∏

s=2

Fs(z1)

)
dz1

+

∫ ∞

−∞
ϕ(z1)(z1 + b1)


l∑

s=2

{−asϕ(as(z1 + b1)− bs)}

 ∏
2≤t≤l, t̸=s

Ft(z1)

 dz1. (C.7)

Next, we calculate Gs. Here, note that∫ ∞

as(z1+b1)−bs

zs(zs + bs)ϕ(zs)dzs = [−ϕ(zs)(zs + bs)]
∞
as(z1+b1)−bs

+

∫ ∞

as(z1+b1)−bs

ϕ(zs)dzs

= as(z1 + b1)ϕ{as(z1 + b1)− bs}+ Fs(z1). (C.8)

Hence, substituting (C.8) into (C.4) yields

Gs =

∫ ∞

−∞
ϕ(z1)

(
l∏

s=2

Fs(z1)

)
dz1

+

∫ ∞

−∞
ϕ(z1)(z1 + b1){asϕ(as(z1 + b1)− bs)}

 ∏
2≤t≤l, t ̸=s

Ft(z1)

 dz1. (C.9)

Therefore, using (C.7) and (C.9) we get

l∑
s=1

Gs = l

∫ ∞

−∞
ϕ(z1)

(
l∏

s=2

Fs(z1)

)
dz1 = l

∫
· · ·
∫
El

l∏
s=1

ϕ(zs)dz1 · · · dzl

= lE[1{z∈El}] = lE[1{v∈A(l)({1})}]. (C.10)

Thus, by substituting (C.10) into (C.5), we obtain (C.1).

Appendix 3: Proof of Theorem 3.1

In this section, we prove Theorem 3.1. First, we provide the following lemma.

Lemma D. Let n1, n2 and τ2 be positive numbers, and let ξ1, and ξ2 be real numbers. Put

n = (n1, n2)
′. Let x1 and x2 be independent random variables distributed as xs ∼ N(ξs, τ

2/ns),

(s = 1, 2), and let x = (x1, x2)
′. Then, the following two propositions hold:

(P1) For any integer i with 1 ≤ i ≤ 2, and for any set J with J ∈ J (2)
i , it holds that

E

[
1{D(n)

J xJ≥0}
1

τ2

∑
s∈J

ns(xs − ξs)(xs − x̄
(n)
J )

]
= (i− 1)P(D

(n)
J xJ ≥ 0). (D.1)

(P2) The following equality holds:

E

[
1

τ2

2∑
s=1

ns(xs − ξs)(xs − η
(n)
2 (x)[s])

]
= P

(
η
(n)
2 (x) ∈ A(2)(N2)

)
. (D.2)
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Proof. First, we prove (D.1). When i = 1, i.e., J = {1}, noting that x̄J = x1, the equality (D.1)

is clear. On the other hand, when i = 2, i.e., J = N2, the equality (D.1) is equivalent to (P1) of

Lemma F given by Inatsu (2016), and it is already proved. Similarly, the proof of (D.2) is equivalent

to the proof of (P2) of Lemma F given by Inatsu (2016). Therefore, lemma D is proved.

Next, we consider the following lemma:

Lemma E. Let l be an integer with l ≥ 2. Assume that the following proposition (P) is true:

(P) Let N1, . . . , Nl and ς2 be positive numbers, and let ζ1, . . . , ζl be real numbers. Let y1, . . . , yl

be independent random variables, and let ys ∼ N(ζs, ς
2/Ns) where s = 1, . . . , l. Put N =

(N1, . . . , Nl)
′, ζ = (ζ1, . . . , ζl)

′ and y = (y1, . . . , yl)
′. Then, for any integer i with 1 ≤ i ≤ l

and for any set J with J ∈ J (l)
i , it holds that

E

[
1{D(N)

J yJ≥0}
1

ς2

∑
s∈J

Ns(ys − ζs)(ys − ȳ
(N)
J )

]
= (i− 1)P(D

(N)
J yJ ≥ 0). (E.1)

Under the assumption (P), the following proposition (P∗) holds:

(P∗) Let n1, . . . , nl+1 and τ2 be positive numbers, and let ξ1, . . . , ξl+1 be real numbers. Let

x1, . . . , xl+1 be independent random variables, and let xs ∼ N(ξs, τ
2/ns) where s = 1, . . . , l+1.

Put n = (n1, . . . , nl+1)
′, ξ = (ξ1, . . . , ξl+1)

′ and x = (x1, . . . , xl+1)
′. Then, for any integer i

with 1 ≤ i ≤ l + 1 and for any set J with J ∈ J (l+1)
i , it holds that

E

[
1{D(n)

J xJ≥0}
1

τ2

∑
s∈J

ns(xs − ξs)(xs − x̄
(n)
J )

]
= (i− 1)P(D

(n)
J xJ ≥ 0). (E.2)

Moreover, the following equality holds:

E

[
1

τ2

l+1∑
s=1

ns(xs − ξs)(xs − η
(n)
l+1(x)[s])

]

=
l+1∑
i=2

(i− 1)P

ηl+1(x) ∈
∪

J∈J l+1
i

A(l+1)(J)

 . (E.3)

Note that Lemma D and Lemma E yield Theorem 3.1. Hence, we prove Lemma E.

Proof. First, we prove (E.2). Suppose that i is an integer satisfying 1 ≤ i ≤ l and suppose also that

J is a set satisfying J ∈ J (l+1)
i . In this case, we replace nJ , xJ and ξJ with N = (N1, . . . , Ni)

′,

y = (y1, . . . , yi)
′ and ζ = (ζ1, . . . , ζi)

′, respectively. We put J∗ = Ni. Then, from the assumption
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(E.1), the left hand side of (E.2) can be expressed as

E

[
1{D(n)

J xJ≥0}
1

τ2

∑
s∈J

ns(xs − ξs)(xs − x̄
(n)
J )

]

= E

[
1{D(N)

J∗ yJ∗≥0}
1

τ2

∑
t∈J∗

Nt(yt − ζt)(yt − ȳ
(N)
J∗ )

]
= (i− 1)P(D

(N)
J∗ yJ∗ ≥ 0) = (i− 1)P(D

(n)
J xJ ≥ 0). (E.4)

Hence, we get (E.2). Therefore, it is sufficient to prove the case of i = l+1, i.e., J = Nl+1 ∈ J (l+1)
i .

Here, the left hand side of (E.2) can be rewritten as

E

[
1{D(n)

J xJ≥0}
1

τ2

∑
s∈J

ns(xs − ξs)(xs − x̄
(n)
J )

]
= X − Y, (E.5)

where X and Y are given by

X = E

[
1{D(n)

J xJ≥0}
1

τ2

l+1∑
s=1

ns(xs − ξs)xs

]
,

Y = E

[
1{D(n)

J xJ≥0}
1

τ2

l+1∑
s=1

ns(xs − ξs)x̄
(n)
J

]
.

First, we calculate Y . Noting that

1

τ2

l+1∑
s=1

ns(xs − ξs)x̄
(n)
J =

ñJ

τ2
(x̄

(n)
J − ξ̄

(n)
J )x̄

(n)
J

and x̄
(n)
J ∼ N(ξ̄

(n)
J , τ2/ñJ), from (2) of Lemma B we obtain

Y = E

[
1{D(n)

J xJ≥0}
1

τ2

l+1∑
s=1

ns(xs − ξs)x̄
(n)
J

]

= E
[
1{D(n)

J xJ≥0}

]
E

[
ñJ

τ2
(x̄

(n)
J − ξ̄

(n)
J )x̄

(n)
J

]
= E

[
1{D(n)

J xJ≥0}

]
× 1 = P(D

(n)
J xJ ≥ 0). (E.6)

Next, we calculate X. From (1) of Lemma 2.1, it is easily checked that the following equality holds:

1{D(n)
J xJ≥0} = 1−

l∑
u=1

∑
J∗∈J (l+1)

u

1{x∈η−1
l+1(A

(l+1)(J∗))}. (E.7)

Therefore, X can be expressed by using (E.7) as

X = E

[
1

τ2

l+1∑
s=1

ns(xs − ξs)xs

]

−
l∑

u=1

∑
J∗∈J l+1

u

E

[
1{x∈η−1

l+1(A
(l+1)(J∗))}

1

τ2

l+1∑
s=1

ns(xs − ξs)xs

]

= (l + 1)−
l∑

u=1

∑
J∗∈J l+1

u

E

[
1{x∈η−1

l+1(A
(l+1)(J∗))}

1

τ2

l+1∑
s=1

ns(xs − ξs)xs

]
, (E.8)
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where the first term of the last equality in (E.8) is derived by xs ∼ N(ξs, τ
2/ns). Next, for any

integer u with 1 ≤ u ≤ l and for any set J∗ with J∗ ∈ J l+1
u , we calculate

E

[
1{x∈η−1

l+1(A
(l+1)(J∗))}

1

τ2

l+1∑
s=1

ns(xs − ξs)xs

]
. (E.9)

Here, recall that from (2) of Lemma 2.1, the following relation holds:

x ∈ η−1
l+1(A

(l+1)(J∗)) ⇔ DJ∗xJ∗ ≥ 0, ∀t ∈ Nl+1 \ J∗, x̄J∗ < xt. (E.10)

Thus, noting that

1

τ2

l+1∑
s=1

ns(xs − ξs)xs

=
1

τ2

∑
s∈J∗

ns(xs − ξs)xs +
1

τ2

∑
t∈Nl+1\J∗

nt(xt − ξt)xt

=
1

τ2

∑
s∈J∗

ns(xs − ξs)(xs − x̄J∗ + x̄J∗) +
1

τ2

∑
t∈Nl+1\J∗

nt(xt − ξt)xt

=
1

τ2

∑
s∈J∗

ns(xs − ξs)(xs − x̄J∗) +
ñJ∗

τ2
(x̄J∗ − ξ̄J∗)x̄J∗ +

1

τ2

∑
t∈Nl+1\J∗

nt(xt − ξt)xt,

the expectation (E.9) can be rewritten as

E

[
1{x∈η−1

l+1(A
(l+1)(J∗))}

1

τ2

l+1∑
s=1

ns(xs − ξs)xs

]
= G+H, (E.11)

where G and H are given by

G = E

[
1{x∈η−1

l+1(A
(l+1)(J∗))}

1

τ2

∑
s∈J∗

ns(xs − ξs)(xs − x̄J∗)

]
,

H = E

1{x∈η−1
l+1(A

(l+1)(J∗))}

 ñJ∗

τ2
(x̄J∗ − ξ̄J∗)x̄J∗ +

1

τ2

∑
t∈Nl+1\J∗

nt(xt − ξt)xt

 .

By using (E.10), Lemma B and (E.4), G can be expressed as

G = E[1{∀t∈Nl+1\J∗, x̄J∗<xt}]× E

[
1{DJ∗xJ∗≥0}

1

τ2

∑
s∈J∗

ns(xs − ξs)(xs − x̄J∗)

]
= E[1{∀t∈Nl+1\J∗, x̄J∗<xt}]× (u− 1)E[1{DJ∗xJ∗≥0}]

= (u− 1)× E[1{DJ∗xJ∗≥0, ∀t∈Nl+1\J∗, x̄J∗<xt}] = (u− 1)× E[1{x∈η−1
l+1(A

(l+1)(J∗))}].

On the other hand, using (E.10), Lemma B and Lemma C, H can be written as

H = E[1{DJ∗xJ∗≥0}]

×E

1{∀t∈Nl+1\J∗, x̄J∗<xt}

 ñJ∗

τ2
(x̄J∗ − ξ̄J∗)x̄J∗ +

1

τ2

∑
t∈Nl+1\J∗

nt(xt − ξt)xt


= E[1{DJ∗xJ∗≥0}]× (l + 1− u+ 1)E

[
1{∀t∈Nl+1\J∗, x̄J∗<xt}

]
= (l + 1− u+ 1)× E[1{x∈η−1

l+1(A
(l+1)(J∗))}].
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Hence, substituting G and H into (E.11) yields

E

[
1{x∈η−1

l+1(A
(l+1)(J∗))}

1

τ2

l+1∑
s=1

ns(xs − ξs)xs

]
= (l + 1)× E[1{x∈η−1

l+1(A
(l+1)(J∗))}]. (E.12)

Furthermore, combining (E.12) and (E.8) we get

X = (l + 1)−
l∑

u=1

∑
J∗∈J l+1

u

(l + 1)× E[1{x∈η−1
l+1(A

(l+1)(J∗))}]

= (l + 1)E

1− l∑
u=1

∑
J∗∈J l+1

u

1{x∈η−1
l+1(A

(l+1)(J∗))}

 = (l + 1)E[1{x∈η−1
l+1(A

(l+1)(J))}]

= (l + 1)E[1{DJxJ≥0}] = (l + 1)P(DJxJ ≥ 0). (E.13)

Thus, substituting (E.6) and (E.13) into (E.5) yields

E

[
1{D(n)

J xJ≥0}
1

τ2

∑
s∈J

ns(xs − ξs)(xs − x̄
(n)
J )

]
= lP(DJxJ ≥ 0).

Hence, the expectation (E.2) for the case of i = l + 1 (i.e., J = Nl+1), is proved.

Finally, we prove (E.3). By using (1) and (3) of Lemma 2.1, the left hand side of (E.3) can be

expressed as

E

[
1

τ2

l+1∑
s=1

ns(xs − ξs)(xs − η
(n)
l+1(x)[s])

]

= E

 l+1∑
i=1

∑
J∈J (l+1)

i

(
1{x∈η−1

l+1(A
(l+1)(J))}

1

τ2

l+1∑
s=1

ns(xs − ξs)(xs − η
(n)
l+1(x)[s])

)
=

l+1∑
i=2

∑
J∈J (l+1)

i

E

[(
1{x∈η−1

l+1(A
(l+1)(J))}

1

τ2

∑
r∈J

nr(xr − ξr)(xr − x̄J)

)]
. (E.14)

Here, using (E.2), Lemma B and

(2) of Lemma 2.1, we obtain

E

[(
1{x∈η−1

l+1(A
(l+1)(J))}

1

τ2

∑
r∈J

nr(xr − ξr)(xr − x̄J )

)]

= E[1{∀u∈Nl+1\J, x̄J<xu}]× E

[
1{DJxJ≥0}

1

τ2

∑
r∈J

nr(xr − ξr)(xr − x̄J )

]
= E[1{∀u∈Nl+1\J, x̄J<xu}]× (i− 1)E[1{DJxJ≥0}] = (i− 1)P(ηl+1(x) ∈ A(l+1)(J)). (E.15)

Thus, substituting (E.15) into (E.14) yields

E

[
1

τ2

l+1∑
s=1

ns(xs − ξs)(xs − η
(n)
l+1(x)[s])

]

=
l+1∑
i=2

(i− 1)
∑

J∈J (l+1)
i

P(ηl+1(x) ∈ A(l+1)(J))

=
l+1∑
i=2

(i− 1)P

ηl+1(x) ∈
∪

J∈J l+1
i

A(l+1)(J)

 ,
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because A(l+1)(J) ∩A(l+1)(J∗) = ∅ when J ̸= J∗. Therefore, (E.3) is proved.
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