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Abstract

In this article, we deal with tests for the parallelism and flatness hypotheses in multi-group profile analysis for high-
dimensional data. We extend procedures from the results for normal populations proposed by Harrar and Kong [S.
W. Harrar, X. Kong, High-dimensional multivariate repeated measures analysis with unequal covariance matrices, J.
Multivariate Anal. 145 (2016) 1–21] to results for elliptical populations. Specifically, for an elliptical population, we
demonstrate the asymptotic normality of the statistics used in their study, and we propose a new approximate test by
improving an estimator of the asymptotic variance. Using asymptotic normality, we show that the asymptotic size
of the proposed test is equal to the nominal significance level, and we also derive the asymptotic power. Finally, we
present simulation results and find that our results are superior to those found using the existing procedure.

AMS 2000 subject classification: Primary 62H15; secondary 62F05.
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1. Introduction

We consider the multi-sample test problem for profile analysis for elliptical populations. For g ∈ {1, . . . , a}, let
µg = (µg1, . . . , µgp)⊤ be a p-dimensional real vector, Λg a p × p nonnegative definite matrix and ξg(·) a nonnegative
function. The p-dimensional random vector Xg is said to have an elliptically contoured distribution if the characteristic
function of Xg can be written as

ϕg(t) = eit⊤µgξg(t⊤Λg t).

This will be denoted by Xg ∼ Cp(ξg,µg,Λg). Note that the expectation and covariance matrix of Xg are E(Xg) = µg
and var(Xg) = −2ξ′g(0)Λg := Σg, respectively. Elliptical distributions include several special cases, for instance, the
multivariate normal, multivariate t, and contaminated normal distributions referred to by Muirhead [9].

Let Xgi be ng independent and identically distributed (i.i.d.) copies of Xg for i ∈ {1, . . . , ng}. We consider a
procedure for testing the parallelism hypothesis

H01 : µg − µa = γg1p for any g ∈ {1, . . . , a − 1} vs. A01 : notH01. (1.1)

Here, γg is a unknown real constant and 1p = (1, . . . , 1)⊤. We also consider a procedure for testing the flatness
hypothesis

H02 : µg1 = · · · = µgp for any g ∈ {1, . . . , a − 1} vs. A02 : notH02, (1.2)

and the level hypothesis

H03 : γ1 = · · · = γa−1 = 0 vs. A03 : notH03. (1.3)

Harrar and Kong [4] showed other expressions that are equivalent to hypotheses (1.1)-(1.3). Expression (1.1) is
equivalent to

H̃01 : µ⊤K01µ = 0 vs. Ã01 : µ⊤K01µ > 0
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with

K01 = Pa ⊗ Pp,

where µ = (µ⊤1 , . . . ,µ
⊤
a )⊤ and Pk = Ik − k−11k1⊤k for k ∈ {a, p}. Other expressions equivalent to hypotheses (1.2) and

(1.3) are also obtained:

H̃0x : µ⊤K0xµ = 0 vs. Ã0x : µ⊤K0xµ > 0

for x ∈ {2, 3} with

K02 = (a−11a1⊤a ) ⊗ Pp and K03 = Da ⊗ (p−11p1⊤p ),

where Da = diag(n1, . . . , na) − n−1
(a)nn⊤. Here, n = (n1, . . . , na)⊤ and n(a) =

∑a
g=1 ng.

Srivastava [12] derived the likelihood ratio test for hypotheses (1.1), (1.2), and (1.3) for two normal populations.
However, the likelihood ratio test for (1.1) and (1.2) cannot be applied to data sets, such as microarray data, for
n(a) ≪ p, even for normal populations with covariance homogeneity.

In profile analysis, Takahashi and Shutoh [13] considered approximation tests for hypotheses (1.1) and (1.2)
for two normal populations with equal covariance matrices. Harrar and Kong [4] extended these tests for multi-
group normal populations without assuming equal covariance matrices. They also obtained the approximation test for
hypothesis (1.3) based on matching moments.

On the other hand, some previous studies of profile analysis have investigated the effects of non-normality in pro-
file analysis. Okamoto et al. [10] used a perturbation method to obtain the asymptotic expansions of the distributions
of test statistics for elliptical populations. Maruyama [7] extended the results under more general conditions using a
different method introduced by Kano [6]. Note that these results are derived for a large asymptotic n(a).

In this paper, we propose new approximation tests for (1.1) and (1.2) for high-dimensional elliptical populations
without assuming equal covariance matrices. We note that the rank of K03 is at most a − 1. That is, it does not grow
with p and hence, it does not make sense to consider a large asymptotic (n(a), p). Thus, our primary interest is to
test (1.1) and (1.2). To propose these approximation tests, for high-dimensional elliptical populations, we show the
asymptotic normality of the test statistics proposed by Harrar and Kong [4]. As a result, asymptotic normality is also
established for a high-dimensional elliptical population, but that is not a trivial result. Furthermore, improving the
estimator of the asymptotic variance of these test statistics enables us to propose a new approximate test for (1.1) and
(1.2) for a high-dimensional elliptical population.

The remainder of this paper is organized as follows. The preliminary results for approximation tests are presented
in Section 2. Using the asymptotic results in Section 2, we construct approximate tests for (1.1) and (1.2) and derive
the asymptotic sizes and powers of these tests for elliptical populations in Section 3. In Section 4, the numerical
accuracy of the proposed tests is investigated. The application of the results is illustrated with a real data example in
Section 5.

2. Preliminary asymptotic results

We define a non-random a × a matrix

(Ra)i j =

di if i = j
ψδiδ j if i , j.

with di, δi, ψ ∈ R for i ∈ {1, . . . , a}. Then we consider following random variable:

T = X
⊤

(Ra ⊗ Pp)X −
a∑

g=1

dgtr(PpS g)
ng

,

where

X = (X
⊤
1 , . . . , X

⊤
a )⊤, S g =

1
ng − 1

ng∑
i=1

(Xgi − Xg)(Xgi − Xg)⊤.

Here, Xg = n−1
g

∑ng

i=1 Xgi.
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Remark 2.1. If ψ = −1, di = 1 − 1/a, and δi = 1/
√

a for i ∈ {1, . . . , a}, then T is the test statistic for H01. If
ψ = di = a−1, δi = 1 then T is the test statistic forH02.

Here, T is an unbiased estimator of µ⊤(Ra ⊗ Pp)µ, i.e.,

E(T ) = µ⊤(Ra ⊗ Pp)µ. (2.1)

In addition, the variance of T is obtained as follows:

σ2 =

a∑
g=1

2d2
gtr{(PpΣg)2}
ng(ng − 1)

+

a∑
g=2

g−1∑
h=1

4ψ2δ2
gδ

2
htr(PpΣgPpΣh)

ngnh
+ 4µ⊤(Ra ⊗ Pp)


a∑

g=1

1
ng

(ege⊤g ) ⊗ Σg

 (Ra ⊗ Pp)µ, (2.2)

where ei denotes i-th basis vector.

Remark 2.2. If Ra is an idempotent matrix, then Ra ⊗ Pp is also an idempotent matrix, and µ⊤(Ra ⊗ Pp)µ = 0 is
equivalent to (Ra ⊗ Pp)µ = 0. Thus, if Ra is an idempotent matrix and µ⊤(Ra ⊗ Pp)µ = 0, then

E(T ) = 0,

σ2 =

a∑
g=1

2d2
gtr{(PpΣg)2}
ng(ng − 1)

+

a∑
g=2

g−1∑
h=1

4ψ2δ2
gδ

2
htr(PpΣgPpΣh)

ngnh
.

We investigate the asymptotic distribution of T for elliptical populations. Our primary objective in this section is
to derive the asymptotic distribution of T under some assumptions.

Let ng for g ∈ {1, . . . , a} be function of p, i.e., ng = ng(p), and

tr{(PpΣgPpΣh)i} for any g, h ∈ {1, . . . a}, i ∈ {1, 2}

be function of p. Then we assume following conditions:

(A1) limp→∞ ng(p) = ∞, 0 < limp→∞
ng(p)
nh(p) < ∞ for any g, h ∈ {1, . . . a},

(A2) κg < ∞ for any g ∈ {1, . . . a},

(A3)
tr{(PpΣgPpΣh)2}
{tr(PpΣgPpΣh)}2 = o(1) for any g, h ∈ {1, . . . a},

where

κg =
E[{(Xg − µg)⊤Σ−1

g (Xg − µg)}2]

p(p + 2)
− 1.

The parameter κg is called a kurtosis parameter.
To discuss examples satisfying the assumptions (A2) and (A3), we consider the following three density function

of Z = Σ−1/2
g (Xg − µg).

a) The multivariate normal distribution with density function

f (z) =
1

(2π)p/2 exp
(
− z⊤ z

2

)
.

b) The ϵ-contaminated normal distribution with density function

f (z) =
1 − ϵ

(2π)p/2 exp
(
− z⊤ z

2

)
+

ϵ

(2πη2)p/2 exp
(
− z⊤ z

2η2

)
, (2.3)

for ε ∈ [0, 1] and η ∈ (0,∞).
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c) The multivariate t distribution with k degrees of freedom with the density function

f (z) =
Γ[(k + p)/2]
Γ[k/2](kπ)p/2

(
1 +

z⊤ z
k

)−(k+p)/2

for k ∈ N. Here, Γ[·] denotes gamma function.

These distributions satisfy assumption (A2). Actually, the kurtosis parameter of a) is 0, the kurtosis parameter of b) is

1 + ϵ(η4 − 1)
{1 + ϵ(η2 − 1)}2 − 1,

and the kurtosis parameter of c) is 2/(k − 4) for k > 4. Examples of covariance matrices that satisfy (A3) are those
with compound symmetry. Actually, if Σg = (1 − ρg)Ip + ρg(1p1⊤p ), for g ∈ {1, . . . , a} and ρg ∈ (−1/(p − 1), 1), then
tr{(PpΣgPpΣh)2}/{tr(PpΣgPpΣh)}2 = 1/(p − 1).

The following lemma provides the asymptotic normality of T under assumptions (A1), (A2), and (A3). The lemma
assures us that the asymptotic normality of the statistic T is maintained for an elliptical population.

Lemma 2.1. Under assumptions (A1), (A2), and (A3),

T − µ⊤(Ra ⊗ Pp)µ
σ

⇝ N(0, 1) as p→ ∞.

Proof. See, Appendix A.2.

3. Principal results

3.1. Proposed test

In this subsection, we propose approximation tests using a normal approximation based on Lemma 2.1. The test
statistics for (1.1) and (1.2) are given by

T01 = X
⊤

K01X −
a∑

g=1

(
1 − 1

a

)
tr(PpS g)

ng
,

T02 = X
⊤

K02X −
a∑

g=1

tr(PpS g)
ang

,

respectively. These statistics are also used in Harrar and Kong [4]. From (2.1), (2.2), and Remark 2.2, their expectation
and variance for elliptical populations are summarized by the following equations. For x ∈ {1, 2},

E(T0x) =

0 under H0x,

µ⊤K0xµ (> 0) under A0x.

var(T0x) =

σ2
H0x

under H0x,

σ2
A0x

under A0x.

Here, for x ∈ {1, 2} with

σ2
A0x
= σ2

H0x
+ 4µ⊤K0x


a∑

g=1

1
ng

(ege⊤g ) ⊗ Σg

 K0xµ,
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where

σ2
H01

=

a∑
g=1

(
1 − 1

a

)2 2tr{(PpΣg)2}
ng(ng − 1)

+

a∑
g=2

g−1∑
h=1

4tr(PpΣgPpΣh)
a2ngnh

,

σ2
H02

=

a∑
g=1

2tr{(PpΣg)2}
a2ng(ng − 1)

+

a∑
g=2

g−1∑
h=1

4tr(PpΣgPpΣh)
a2ngnh

.

In practical use, it is necessary to estimate the asymptotic variance σ2
H0x

. Harrar and Kong [4] used the following
estimator:

˜tr{(PpΣg)2} =
(ng − 1)2

(ng + 1)(ng − 2)

[
tr{(PpS g)2} −

{tr(PpS g)}2
ng − 1

]
, (3.1)

̂tr(PpΣgPpΣh) = tr(PpS gPpS h). (3.2)

Under elliptical populations, the expectations of them are calculated as following:

E[ ˜tr{(PpΣg)2}] = tr{(PpΣg)2} +
κg(ng − 1)
ng(ng + 1)

[{tr(PpΣg)}2 + 2tr{(PpΣg)2}],

E{ ̂tr(PpΣgPpΣh)} = tr(PpΣgPpΣh).

Thus, the estimator (3.1) has a bias for elliptical populations except when κg = 0.
We use the same estimator of tr(PpΣgPpΣh) as Harrar and Kong [4], but different estimators of tr{(PpΣg)2}, which

is defined as follows:

̂tr{(PpΣg)2} =
ng − 1

ng(ng − 2)(ng − 3)

[
(ng − 1)(ng − 2)tr{(PpS g)2} + {tr(PpS g)}2 − ngMg

]
, (3.3)

where

Mg =
1

ng − 1

ng∑
i=1

{(Xgi − Xg)⊤Pp(Xgi − Xg)}2.

Some properties of the estimators (3.2) and (3.3) are summarized in the following lemma.

Lemma 3.1. The estimators ̂tr{(PpΣg)2} and ̂tr(PpΣgPpΣh) are unbiased, and rate consistent estimator, i.e. under (A1)
and (A2),

̂tr{(PpΣg)2}
tr{(PpΣg)2} = 1 + op(1),

̂tr(PpΣgPpΣh)
tr(PpΣgPpΣh)

= 1 + op(1) as p→ ∞.

Proof. See, Appendix A.3.

Remark 3.1. If Pp is replaced by Ip, ̂tr(PpΣg)2 is the same as that of Himeno and Yamada [5].

Using (3.2) and (3.3) yields

σ̂2
H01

=

a∑
g=1

(
1 − 1

a

)2 2 ̂tr{(PpΣg)2}
ng(ng − 1)

+

a∑
g=2

g−1∑
h=1

4 ̂tr(PpΣgPpΣh)
a2ngnh

,

σ̂2
H02

=

a∑
g=1

2 ̂tr{(PpΣg)2}
a2ng(ng − 1)

+

a∑
g=2

g−1∑
h=1

4 ̂tr(PpΣgPpΣh)
a2ngnh

,
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as the unbiased estimators of σ2
H01

and σ2
H02

, respectively.

Since
√
σ̂2
H0x
/σH0x = 1 + op(1) as p → ∞ under (A1) and (A2), Lemma 2.1 and Slutsky’s theorem complete the

following null asymptotic normality. For x ∈ {1, 2}, under (A1), (A2), (A3), andH0x,

T0x√
σ̂2
H0x

⇝ N(0, 1) (3.4)

as p→ ∞.
Based on the asymptotic normality (3.4), we propose the following approximation tests:

rejectingH01 ⇐⇒ T01 ≥
√
σ̂2
H01

zα, (3.5)

rejectingH02 ⇐⇒ T02 ≥
√
σ̂2
H02

zα, (3.6)

where zα denotes upper 100α percentile of standard normal distribution.

3.2. Asymptotic size and power
In this subsection, we investigate sizes and powers of test (3.5) and (3.6).
First, we investigate the asymptotic sizes of tests (3.5) and (3.6). Using (3.4), for x ∈ {1, 2}, under (A1), (A2), and

(A3) yields

Pr
(
T0x ≥

√
σ̂2
H0x

zα|H0x

)
= α + o(1)

as p→ ∞.
Next, we investigate the asymptotic powers of tests (3.5) and (3.6). Using if Lemma 2.1 and Lemma 3.1, we have

the following theorem summarizing the asymptotic powers of tests (3.5) and (3.6).

Theorem 3.1. For x ∈ {1, 2}, under (A1), (A2), and (A3),

Pr
(
T0x ≥

√
σ̂2
H0x

zα|A0x

)
= Φ

(
µ⊤K0xµ

σA0x

− σH0x

σA0x

zα

)
+ o(1)

as p→ ∞, where Φ(·) denotes the cumulative distribution function (CDF) of the standard normal distribution.

Proof. See, Appendix A.4.

Thus, if the difference between H0x and A0x is not too small in that µ⊤K0xµ is of the same order as σA0x or of a
higher order, the test will be powerful. Conversely, if the difference between H0x and A0x is so small that µ⊤K0xµ is
of a lower order than σA0x , the test will not be powerful and cannot distinguishH0x fromA0x.

4. Simulation and real example

4.1. Simulation
In this section, we perform Monte Carlo simulation for some selected parameters in order to verify the superiority

of our test as compared to Harrar and Kong’s tests for (1.1) and (1.2) when the kurtosis parameter is not 0.
In our simulation, we compare the empirical size and power of the proposed tests and Harrar and Kong’s tests. We

generated data from the following model:

Xgi = Σ
1/2
g Zgi + µg for i ∈ {1, . . . , ng}, (4.1)

where

µg = (g − 1)1p, Σg = (1 − 0.1g)Ip + (0.1g)1p1⊤p .
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for g ∈ {1, . . . , a}. We deal with a ∈ {2, 3, 4, 5}. Under this model, the null hypotheses H01 and H02 hold. For the
distribution of Zg j in (4.1), we set one of the following distributions:

(a) Multivariate normal distribution,
(b) Contaminated normal distribution with (ϵ, η) = (0.1, 5),
(c) Multivariate t distribution with five degrees of freedom.

The kurtosis parameters of (a), (b), and (c) are 0, approximately 4.48, and 2, respectively. The sizes calculated with
10,000 replications are listed in Tables 1 and 2. Here, the nominal significance level is α = 0.05. The settings of a, p
and n are also checked in these tables.

Please insert Tables 1 and 2 approximately here.

The empirical sizes of our proposed test and Harrar and Kong’s test are presented in Tables 1 and 2, respectively. As
can be seen in Table 1, our approximate test shows only approximately a 0.01 difference from the nominal significance
level α = 0.05 regardless of the population distribution setting when the dimension p is 200 or 400. From Table 2, we
see that Harrar and Kong’s test has the same tendency only when the population distribution is a multivariate normal
distribution. However, the empirical size of Harrar and Kong’s test is significantly less than the nominal significance
level when the distribution of Zg j is (b) or (c).

For the alternative hypothesis, we choose µg in (4.1) as follows:

µg =

(g − 1)1p, g ∈ {1, . . . , a − 1},
(a − 1)(1⊤⌊0.99p⌋, 0.7 × 1⊤p−⌊0.99p⌋)

⊤, g = a,

where ⌊·⌋ denotes the floor function. The settings of a, p, n, the covariance matrix and the distribution of Zg j are the
same as the settings for the null hypothesis. Under these models, bothH01 andH02 do not hold. The power calculated
using 10,000 replications is listed in Tables 3 and 4. Here, the nominal significance level is α = 0.05. The settings of
a, p, and n are also checked in these tables. The empirical power of our proposed test and Harrar and Kong’s test are
presented in Tables 3 and 4, respectively. In Table 3, the asymptotic approximation of the power of our proposed test,

approx = Φ
(
µ⊤K0xµ

σA0x

− σH0x

σA0x

zα

)
is also calculated in each setting. This approximation is based on the result of Theorem 3.1.

Please insert Tables 3 and 4 approximately here.

It can be confirmed that these asymptotic approximations are accurate. Therefore, the power of the proposed tests can
be roughly estimated as the value obtained by dividing the distance between the null hypothesis and the alternative
hypothesis by the variance of T0x under the alternative hypothesis. From Tables 3 and 4, we see that the powers of
both tests are almost same when Zg j follows a multivariate normal distribution. On the other hand, it can also be seen
that the proposed test is more powerful than Harrar and Kong’s test when the distribution of Zg j is (b) or (c).

From these simulation results, we can see that our tests are more robust against the effects of non-normality as
compared to Harrar and Kong’s test. The difference between Harrar and Kong’s test and our test appears in the

estimator of tr{(PgΣg)2}. Thus, we compare the bias of Harrar and Kong’s estimator ˜tr{(PpΣg)2} divided by the true

parameter tr{(PgΣg)2} and one of our estimators ̂tr{(PpΣg)2} divided by the true parameter tr{(PgΣg)2} under the model
(4.1) with µg = 0 and Σg = (1 − 0.5)Ip + 0.51p1⊤p . The biases of these estimators are calculated using 10,000

replications in each setting. The biases of ˜tr{(PpΣg)2}/tr{(PgΣg)2} and ̂tr{(PpΣg)2}/tr{(PgΣg)2} are presented in Table
5. The settings of p and ng can be checked in Table 5.

Please insert Table 5 approximately here.
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From Table 5, we can see that ˜tr{(PpΣg)2} remarkably overestimates tr{(PpΣg)2} when the distribution of Zg j is (b) or
(c). This overestimation contributes to raising the critical value of the test. Since raising the critical value is equivalent
to difficulty in rejecting the null hypothesis, we expect that the size for Harrar and Kong’s test will be lower than
the nominal significance level. This observation is consistent with the results of Table 2. On the other hand, we can
understand that ̂tr{(PpΣg)2} is almost unaffected by change in distribution. Therefore, we can understand that changing
the estimator of tr{(PpΣg)2} is never a minor correction.

4.2. Real example
We apply our test to the following dataset analyzed by Takahashi and Shutoh [13]. The data consist of a = 2

groups, with a body weight of ng = 10 rats for each group. The weights of the total 20 rats were observed every week
for p = 22 weeks.

We applied our tests (3.5) and (3.6) to the parallelism hypothesisH01 and flatness hypothesisH02 with the signif-

icance level α=0.05. Since T01/
√
σ̂2
H01

and zα are calculated as

T01/
√
σ̂2
H01
≈ −0.657 < zα ≈ 1.6449,

we can see that the parallelism hypothesisH01 is retained. Since T02/
√
σ̂2
H02

and zα are calculated as

T02/
√
σ̂2
H02
≈ 250.264 > zα ≈ 1.6449,

we can see that the flatness hypothesisH02 is rejected.

5. Discussion and Conclusion

In this paper, we proposed new approximation tests for the parallelism and flatness hypotheses in profile analysis
for high-dimensional elliptical populations with unequal covariance matrices, and we derived the asymptotic sizes
and power of these proposed tests. We showed that the asymptotic sizes of the proposed tests are at a nominal signifi-
cance level. However, Harrar and Kong’s approximation tests do not necessarily have similar properties for elliptical
populations, because the unbiasedness of their estimator of asymptotic variance depends on kurtosis parameters. Fur-
thermore, we found that the asymptotic power depends on the value obtained by dividing the distance between the
null and alternative hypotheses by the variance under the alternative hypothesis.

Furthermore, we compared the proposed tests and Harrar and Kong’s tests numerically in simulation studies. We
found that our tests and Harrar and Kong’s tests had approximately the same accuracy when the population distribution
is a multivariate normal distribution, and we confirmed our expectation that our tests are superior to Harrar and Kong’s
tests for elliptical distributions other than the multivariate normal distribution. We also confirmed that this superiority
is attributable to the estimator used in asymptotic variance.

In addition, we applied the tests to real data. However, we have not determined whether the assumption of an
elliptical population is appropriate. The solution to this problem is to find the validity of the elliptical distribution from
the data or to guarantee accuracy with a wider range of distribution families than the elliptical distribution. To achieve
the former, it is necessary to extend the method proposed by Batsidis and Zografos [1] to high-dimensional settings.
To achieve the latter, it will first be necessary to investigate situations in which the symmetry of the distribution is not
assumed, such as when a skew elliptical distribution is used. This change is expected to complicate the estimation of
the asymptotic variance. These two tasks are left to future work.
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A. Appendix

A.1. Some moments
Lemma A.1. Let be X ∼ Cp(ξ, 0,Λ), and let A and B be p × p symmetric real matrices.

(i) E(X⊤AX) = tr(AΣ),
(ii) E(X⊤AXX⊤BX) = (κ + 1){tr(AΣ)tr(BΣ) + 2tr(AΣBΣ)},
(iii) var(X⊤AX) = κ{tr(AΣ)}2 + 2(κ + 1)tr(AΣ)2,

(iv) cov(X⊤AX, X⊤BX) = κtr(AΣ)tr(BΣ) + 2(κ + 1)tr(AΣBΣ),

where

Σ := −2ξ′(0)Λ, κ :=
ξ′′(0)

(ξ′(0))2 − 1
(
=

E{(X′Σ−1X)2}
p(p + 2)

− 1
)
.

Proof. See Mathai et al. [8].

A.2. Proof of Lemma 2.1
We define Ygi = Xgi − µg for g ∈ {1, . . . , a}, i ∈ {1, . . . , ng}. Note that Ygi is distributed according to an elliptical

distribution with E(Ygi) = 0 and var(Ygi) = Σg.
Then the statistic T can be rewritten as

T =
a∑

g=1

dg

ng(ng − 1)

ng∑
i=1
i, j

Y⊤giPpYg j +

a∑
g,h

ψδgδhY
⊤
g PpYh + 2µ⊤(Ra ⊗ Pp)Y + µ⊤(Ra ⊗ Pp)µ,

where Y = (Y
⊤
1 , . . . ,Y

⊤
a )⊤. We note that µ⊤(Ra ⊗ Pp)Y = 0 and µ⊤(Ra ⊗ Pp)µ = 0 if (Ra ⊗ Pp)µ = 0. That is, the

distribution of T does not depend on µ as long as (Ra ⊗ Pp)µ = 0.
Let n(0) = 0, n(g) =

∑g
ℓ=1 nℓ for g ∈ {1, . . . , a}, and i′ = i − n(g−1). We define

εi =
2

σng(ng − 1)
Y⊤gi′Ppagi′

for g ∈ {1, . . . , a}, i ∈ {n(g−1) + 1, . . . , n(g)}. Here,

agi′ = I(i′ ≥ 2)dg

i′−1∑
j=1

Yg j + I(g ≥ 2)(ng − 1)
g−1∑
h=1

ψδgδhYh + (ng − 1)
a∑

h=1

ψδgδhµh,

where I(·) denotes an indicator function. Then,

T − µ⊤(Ra ⊗ Pp)µ
σ

=

n(a)∑
i=1

εi.

Define F0 = {∅,Ω}, and let Fi for i ∈ N be the σ-algebra generated by the random variables (ε1, . . . , εi). Then we find
that

F0 ⊆ · · · ⊆ F∞
and E(εi|Fi−1) = 0. Thus, {εi} is a martingale difference sequence.

We show the asymptotic normality of
∑n(a)

i=1 εi by adapting the martingale difference central limit theorem (see
Shiryaev [11] or Hall and Heyde [3]). It is necessary to check the following two conditions to apply this theorem:

(I)
n(a)∑
i=1

E(ε2
i |Fi−1) = 1 + op(1) as p→ ∞,

(II)
n(a)∑
i=1

E(ε4
i ) = o(1) as p→ ∞
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under (A1), (A2), and (A3).
First, we check condition (I). We rewrite

n(a)∑
i=1

E(ε2
i |Fi−1) = 1 +

7∑
j=1

A j,

where

A1 =

a∑
g=1

4d2
g

σ2n2
g(ng − 1)2

ng∑
i=1

(ng − i)[Y⊤giPpΣgPpYgi − tr{(ΣgPp)2}],

A2 =

a∑
g=1

8d2
g

σ2n2
g(ng − 1)2

ng∑
i=2

i−1∑
j=1

(ng − i)Y⊤giPpΣgPpYg j,

A3 =

a∑
g=2

g−1∑
h=1

8dgψδgδh

σ2n2
g(ng − 1)

ng∑
i=1

(ng − i)Y⊤giPpΣgPpYh,

A4 =

a∑
g=1

a∑
h=1

8dgψδgδh

σ2n2
g(ng − 1)

ng∑
i=1

(ng − i)Y⊤giPpΣgPpµh,

A5 =

a∑
g=2

g−1∑
h=1

4ψ2δ2
gδ

2
h

σ2ng

{
Y
⊤
h PpΣgPpYh −

tr(PpΣgPpΣh)
nh

}
,

A6 =

a∑
g=3

g−1∑
h=2

h−1∑
ℓ=1

8ψ2δ2
gδhδℓ

ng
Y
⊤
h PpΣgPpYℓ,

A7 =

a∑
g=2

g−1∑
h=1

a∑
ℓ=1

8ψ2δ2
gδhδℓ

σ2ng
Y
⊤
h PpΣgPpµℓ.

It is straightforward to show that E(
∑7

j=1 A j) = 0. Holder’s inequality yields

var


n(a)∑
i=1

E(ε2
i |Fi−1)

 = E


 7∑

i=1

Ai


2 ≤ 7

7∑
i=1

E(A2
i ). (A.1)

The expectations E(A2
1) through E(A2

7) are evaluated as follows:

E(A2
1) ≤

a∑
g=1

2(2ng − 1)(3κg + 2)
3ng(ng − 1)

= o(1), (A.2)

E(A2
2) ≤

a∑
g=1

4(ng − 2)
3ng

tr{(PpΣg)4}
[tr{(PpΣg)2}]2 = o(1), (A.3)

E(A2
3) ≤

a∑
g=2

g−1∑
h=1

2(2ng − 1)
3ng

√
tr{(PpΣg)4}

[tr{(PpΣg)2}]2

√
tr{(PpΣgPpΣh)2}
{tr(PpΣgPpΣh)}2 = o(1), (A.4)

E(A2
4) ≤

a∑
g=1

2(2ng − 1)
3ng

√
tr{(PpΣg)4}

[tr{(PpΣg)2}]2 = o(1), (A.5)

E(A2
5) ≤ a(a − 1)

a∑
g=2

a−1∑
h=1

[
κh

2nh
+

(κh + nh)tr{(PpΣgPpΣh)2}
nh{tr(PpΣgPpΣh)}2

]
= o(1), (A.6)
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E(A2
6) ≤ a(a − 1)(a − 2)

a∑
g=3

g−1∑
h=2

h−1∑
ℓ=1

2
√

tr{(PpΣgPpΣh)2}tr{(PpΣgPpΣℓ)2}
3tr(PpΣgPpΣh)tr(PpΣgPpΣℓ)

= o(1), (A.7)

E(A2
7) ≤ a(a − 1)

a∑
g=2

g−1∑
h=1

√
tr{(PpΣgPpΣh)2}
tr(PpΣgPpΣh)

= o(1). (A.8)

The details of these inequalities are described in Supplemental Materials 1. Substituting (A.2)-(A.8) into (A.1) yields

var


n(a)∑
i=1

E(ε2
i |Fi−1)

 = o(1).

Condition (I) follows.
Next, we check condition (II). Define

ε(1)
i =

2I(i′ ≥ 2)dg

σng(ng − 1)
Y⊤gi′Pp

i′−1∑
j=1

Yg j, ε
(2)
i =

2I(g ≥ 2)
σng

Y⊤gi′Pp

ℓ−1∑
h=1

ψδgδhYh, ε
(3)
i =

2
σng

Y⊤gi′Pp

a∑
h=1

ψδgδhµh.

Then, Holder’s inequality yields

n(a)∑
i=1

E(ε4
i ) =

a∑
g=1

n(g)∑
i=n(g−1)+1

E


 3∑

j=1

ε
( j)
i


4 ≤

a∑
g=1

n(g)∑
i=n(g−1)+1

E

33
3∑

j=1

ε
( j)4

i

 = 33
a∑

g=1

n(g)∑
i=n(g−1)+1

3∑
j=1

E
(
ε

( j)4

i

)
.

Thus, it is sufficient to show that
∑n(g)

i=n(g−1)+1 E(ε( j)4

i ) = o(1) for j ∈ {1, 2, 3}. We have following expectations:

n(g)∑
i=n(g−1)+1

E
(
ε(1)4

i

)
≤

18(κg + 1)2

ng(ng − 1)
+

4(κg + 1)(ng − 2)
ng(ng − 1)

+
8(κg + 1)(ng − 2)

ng(ng − 1)
= O(n−1

g ),

n(g)∑
i=n(g−1)+1

E
(
ε(2)4

i

)
≤

g−1∑
h=1

9(κg + 1)(κh + 1)
ngnh

+

g−1∑
h=1

3(κg + 1)(nh − 1)
ngnh

+

g−1∑
h,h′

3(κg + 1)
ng

+

g−1∑
h,h′

6(κg + 1)
ng

= O(n−1
g ),

n(g)∑
i=n(g−1)+1

E
(
ε(3)4

i

)
≤ 3

ng
= O(n−1

g ).

The details of these inequalities are described in Supplemental Materials 2. The above results complete the proof of
(II). □

A.3. Proof of Lemma 3.1

First, we show the unbiasedness and consistency of ̂tr(PpΣg)2. From Lemma A.1, it follows that

E[tr{(PpS g)2}] =
κg + 1

ng

[
{tr(PpΣg)}2 + 2tr{(PpΣg)2}

]
+

n2
g − 2ng + 2

ng(ng − 1)
tr{(PpΣg)2} + 1

ng(ng − 1)
{tr(PpΣg)}2,

E[{tr(PpS g)}2] =
κg + 1

ng

[
{tr(PpΣg)}2 + 2tr{(PpΣg)2}

]
+

2
ng(ng − 1)

tr{(PpΣg)2} +
ng − 1

ng
{tr(PpΣg)}2,

E(Mg) =
(κg + 1)(n2

g − 3ng + 3)

n2
g

[
{tr(PpΣg)}2 + 2tr{(PpΣg)2}

]
+

4ng − 6
n2

g
tr{(PpΣg)2} +

2ng − 3
n2

g
{tr(PpΣg)}2.

Then we solve simultaneously for tr{(PpΣg)2}, {tr(PpΣg)}2 and κg. The solutions of the simultaneous equations can be
obtained easily , with the result that

tr{(PpΣg)2} =
ng − 1

ng(ng − 2)(ng − 3)

{
(ng − 1)(ng − 2)E[tr{(PpS g)2}] + E[{tr(PpS g)}2] − ngE(Mg)

}
.
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Thus, the unbiased estimator of tr{(PpΣg)2} is ̂tr{(PpΣg)2}. Also, variance of ̂tr{(PpΣg)2} is

var[ ̂tr{(PpΣg)2}] =

 4(n2
g − 6ng + 11)

ng(ng − 1)(ng − 2)(ng − 3)
+

2κg

ng(ng − 1)

 [
tr{(PpΣg)2}

]2

+

 4(2n3
g − 12n2

g + 21ng − 5)

ng(ng − 1)(ng − 2)(ng − 3)
+

κ2
1

ng(ng − 1)
+

4n2
g − 11ng + 2

ng(ng − 1)(ng − 2)
κg

 tr{(PpΣg)4}.

Thus under (A1) and (A2),

̂tr(PpΣg)2

tr(PpΣg)2 = 1 + op(1) as p→ ∞.

Next, we show the unbiasedness and consistency of ̂tr(PpΣgPpΣh). We can rewrite the estimator ̂tr(PpΣgPpΣh) as

̂tr(PpΣgPpΣh) =
1

ngnh

ng∑
i=1

nh∑
j=1

(Y⊤giPpYh j)2 − 1
ngnh(nh − 1)

ng∑
i=1

nh∑
j,k=1
j,k

Y⊤giPpYh jY⊤giPpYhk

− 1
ng(nh − 1)nh

ng∑
i, j=1
i, j

nh∑
k=1

Y⊤giPpYhkY⊤g jPpYhk +
1

ngnh(ng − 1)(nh − 1)

ng∑
i, j=1
i, j

nh∑
k,ℓ=1
k,ℓ

Y⊤giPpYhkY⊤g jPpYhℓ.

Using Lemma A.1, we get E{ ̂tr(PpΣgPpΣh)} = tr(PpΣgPpΣh). Also, second moment of ̂tr(PpΣgPpΣh) is

E[{ ̂tr(PpΣgPpΣh)}2] =

{
1 +

3κgκh

ngnh
+
κg(nh + 1)
ng(nh − 1)

+
κh(ng + 1)
nh(ng − 1)

+
2

(ng − 1)(nh − 1)

}
{tr(PpΣgPpΣh)}2

+2
{

3κgκh

ngnh
+
κg(nh + 1)
ng(nh − 1)

+
κh(ng + 1)
(ng − 1)nh

+
1

(ng − 1)(nh − 1)
+

1
ng − 1

+
1

nh − 1

}
tr{(PpΣgPpΣh)2}.

Thus under (A1) and (A2),

̂tr(PpΣgPpΣh)
tr(PpΣgPpΣh)

= 1 + op(1) as p→ ∞. □

A.4. Proof of Theorem 3.1

We assume A0x. From Lemma 3.1 and σ2
H0x
/σ2
A0x

< 1, under (A1) and (A2), σ̂2
H0x
/σ2
A0x
= σ2

H0x
/σ2
A0x
+ op(1) as

p→ ∞. Thus, under (A1) and (A2),

Pr
(
T0x ≥

√
σ̂2
H0x

zα
)
= Pr

(
T0x − µ⊤K0xµ

σA0x

≥ σH0x

σA0x

zα −
µ⊤K0xµ

σA0x

)
+ o(1)

as p→ ∞. Furthermore, from Lemma 2.1, under (A1), (A2), and (A3),

Pr
(

T0x − µ⊤K0xµ

σA0x

≥ σH0x

σA0x

zα −
µ⊤K0xµ

σA0x

)
= Φ

(
µ⊤K0xµ

σA0x

− σH0x

σA0x

zα

)
+ o(1)

as p→ ∞. Combining these two equations yields the theorem.□
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Table 1: The empirical size of proposed test
Parallelism Flatness

p n⊤ (a) (b) (c) (a) (b) (c)
(25,25) 0.056 0.059 0.053 0.054 0.062 0.056

100 (10,20,20) 0.075 0.062 0.068 0.060 0.062 0.062
(10,10,10,20) 0.076 0.072 0.069 0.062 0.060 0.054

(10,10,10,10,10) 0.064 0.065 0.064 0.053 0.055 0.074
(50,50) 0.057 0.058 0.057 0.053 0.058 0.058

200 (20,40,40) 0.057 0.055 0.059 0.057 0.060 0.056
(20,20,20,40) 0.057 0.059 0.056 0.058 0.059 0.055

(40,40,40,40,40) 0.058 0.053 0.059 0.056 0.057 0.054
(100,100) 0.053 0.051 0.057 0.052 0.052 0.057

400 (40,80,80) 0.056 0.053 0.052 0.055 0.056 0.054
(40,40,40,80) 0.054 0.054 0.057 0.054 0.053 0.054

(40,40,40,40,40) 0.052 0.056 0.053 0.056 0.057 0.055

Table 2: The empirical size of Harrar and Kong’s test
Parallelism Flatness

p n⊤ (a) (b) (c) (a) (b) (c)
(25,25) 0.057 0.000 0.006 0.054 0.000 0.017

100 (10,20,20) 0.071 0.000 0.005 0.062 0.000 0.010
(10,10,10,20) 0.075 0.000 0.003 0.056 0.000 0.007

(10,10,10,10,10) 0.064 0.000 0.001 0.055 0.000 0.011
(50,50) 0.057 0.000 0.005 0.053 0.000 0.008

200 (20,40,40) 0.057 0.000 0.001 0.057 0.000 0.005
(20,20,20,40) 0.057 0.000 0.000 0.058 0.000 0.005

(40,40,40,40,40) 0.058 0.000 0.000 0.056 0.000 0.006
(100,100) 0.053 0.000 0.004 0.052 0.000 0.005

400 (40,80,80) 0.056 0.000 0.007 0.055 0.000 0.002
(40,40,40,80) 0.054 0.000 0.000 0.054 0.000 0.002

(40,40,40,40,40) 0.052 0.000 0.000 0.057 0.000 0.005



Table 3: The empirical power of proposed test

Parallelism Flatness
p n⊤ (a) (b) (c) approx (a) (b) (c) approx

(25,25) 0.069 0.076 0.073 0.063 0.071 0.076 0.072 0.063
100 (10,20,20) 0.093 0.104 0.094 0.078 0.079 0.087 0.084 0.072

(10,10,10,20) 0.117 0.140 0.126 0.102 0.093 0.103 0.097 0.082
(10,10,10,10,10) 0.166 0.201 0.167 0.149 0.107 0.111 0.107 0.096

(50,50) 0.095 0.104 0.094 0.089 0.098 0.097 0.088 0.089
200 (20,40,40) 0.153 0.191 0.161 0.152 0.131 0.145 0.138 0.123

(20,20,20,40) 0.266 0.320 0.275 0.265 0.162 0.187 0.170 0.161
(40,40,40,40,40) 0.482 0.532 0.500 0.486 0.212 0.244 0.222 0.221

(100,100) 0.200 0.204 0.192 0.195 0.197 0.208 0.198 0.195
400 (40,80,80) 0.491 0.535 0.507 0.501 0.348 0.379 0.345 0.349

(40,40,40,80) 0.858 0.861 0.863 0.862 0.505 0.523 0.513 0.513
(40,40,40,40,40) 0.995 0.991 0.994 0.995 0.713 0.727 0.716 0.717

Table 4: The empirical power of Harrar and Kong’s method
Parallelism Flatness

p n⊤ (a) (b) (c) (a) (b) (c)
(25,25) 0.069 0.001 0.014 0.071 0.001 0.014

100 (10,20,20) 0.093 0.001 0.007 0.079 0.001 0.016
(10,10,10,20) 0.117 0.001 0.006 0.093 0.002 0.018

(10,10,10,10,10) 0.167 0.003 0.005 0.107 0.001 0.029
(50,50) 0.095 0.000 0.014 0.098 0.000 0.011

200 (20,40,40) 0.152 0.000 0.007 0.131 0.000 0.018
(20,20,20,40) 0.266 0.000 0.007 0.162 0.001 0.028

(40,40,40,40,40) 0.482 0.000 0.016 0.212 0.000 0.049
(100,100) 0.200 0.000 0.027 0.197 0.000 0.028

400 (40,80,80) 0.491 0.000 0.034 0.344 0.000 0.054
(40,40,40,80) 0.858 0.000 0.098 0.505 0.001 0.124

(40,40,40,40,40) 0.995 0.000 0.394 0.713 0.011 0.307



Table 5: Bias of ˜tr{(PpΣ1)2}/tr{(PpΣ1)
2} and of ̂tr{(PpΣ1)2}/tr{(PpΣ1)

2}
˜tr{(PpΣ1)2}/tr{(PpΣ1)

2} ̂tr{(PpΣ1)2}/tr{(PpΣ1)
2}

p n1 (a) (b) (c) (a) (b) (c)
100 10 0.00 37.80 14.92 0.00 0.05 0.00

25 0.00 16.91 7.67 0.00 0.00 0.00
200 20 0.00 40.57 14.76 0.00 -0.01 -0.01

50 0.00 17.33 8.12 0.00 0.00 0.00
400 40 0.00 43.03 16.31 0.00 0.02 -0.01

100 0.00 17.54 6.75 0.00 -0.01 0.00



· The evaluation of E(A2
1)

E(A2
1) =

a∑
g=1

8d4g(2ng − 1)

3σ4gn
3
g(ng − 1)3

var(Y ⊤
g1PpΣgPpY g1)

=

a∑
g=1

8d4g(2ng − 1)

3σ4gn
3
g(ng − 1)3

[
κg[tr{(PpΣg)

2}]2 + 2(κg + 1)tr{(PpΣg)
4}
]

≤
a∑

g=1

8d4g(2ng − 1)(3κg + 2)

3σ4gn
3
g(ng − 1)3

[tr{(PpΣg)
2}]2

≤
a∑

g=1

2(2ng − 1)(3κg + 2)

3ng(ng − 1)

= o(1).

· The evaluation of E(A2
2)

E(A2
2) =

a∑
g=1

16d4g(ng − 2)

3σ4n3g(ng − 1)2
E{(Y ⊤

g1PpΣgPpY g2)
2}

=
a∑

g=1

16d4g(ng − 2)

3σ4n3g(ng − 1)2
tr{(PpΣg)

4}

≤
a∑

g=1

4(ng − 2)

3ng

tr{(PpΣg)
4}

[tr{(PpΣg)2}]2

= o(1).

· The evaluation of E(A2
3)

E(A2
3) =

a∑
g=2

g−1∑
h=1

32(2ng − 1)d2gψ
2δ2gδ

2
h

3σ4n3g(ng − 1)nh
E{(Y ⊤

g1PpΣgPpY h1)
2}

=

a∑
g=2

g−1∑
h=1

32(2ng − 1)d2gψ
2δ2gδ

2
h

3σ4n3g(ng − 1)nh
tr{(PpΣg)

3PpΣh}

≤
a∑

g=2

g−1∑
h=1

32(2ng − 1)d2gψ
2δ2gδ

2
h

3σ4n3g(ng − 1)nh

√
tr{(PpΣg)4}

√
tr{(PpΣgPpΣh)2}

≤
a∑

g=2

g−1∑
h=1

2(2ng − 1)

3ng

√
tr{(PpΣg)4}
[tr{(PpΣg)2}]2

√
tr{(PpΣgPpΣh)2}
{tr(PpΣgPpΣh)}2

= o(1).
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· The evaluation of E(A2
4)

E(A2
4) =

a∑
g=1

32d2g(2ng − 1)

3σ4n3g(ng − 1)
E

{Y ⊤
g1PpΣgPp

(
a∑

h=1

ψδgδhµh

)}2


=

a∑
g=1

32d2g(2ng − 1)

3σ4n3g(ng − 1)

×

(
a∑

h=1

ψδgδhµh

)⊤

PpΣgPpΣgPpΣgPp

(
a∑

h=1

ψδgδhµh

)

≤
a∑

g=1

32d2g(2ng − 1)

3σ4n3g(ng − 1)

×

(
a∑

h=1

ψδgδhµh

)⊤

PpΣgPp

(
a∑

h=1

ψδgδhµh

)√
tr{(PpΣg)4}

≤
a∑

g=1

32d2g(2ng − 1)

3σ4n2g(ng − 1)

√
tr{(PpΣg)4}

×µ⊤(Ra ⊗ Pp)


a∑

g=1

n−1
g (ege

⊤
g )⊗ Σg

 (Ra ⊗ Pp)µ

≤
a∑

g=1

2(2ng − 1)

3ng

√
tr{(PpΣg)4}
[tr{(PpΣg)2}]2

= o(1).

2



· The evaluation of E(A2
5)

E(A2
5) ≤ a(a− 1)

a∑
g=2

g−1∑
h=1

8ψ4δ4gδ
4
h

σ4n2g

{
var(Y ⊤

h1PpΣgPpY h1)

n3h

+
2(nh − 1)tr{(PpΣgPpΣh)

2}
n3h

}

= a(a− 1)

a∑
g=2

g−1∑
h=1

8κhψ
4δ4gδ

4
h

σ4n2gn
3
h

{tr(PpΣgPpΣh)}2

+a(a− 1)

a∑
g=2

g−1∑
h=1

16(nh + κh)ψ
4δ4gδ

4
h

σ4n2gn
3
h

{tr(PpΣgPpΣh)}2

≤ a(a− 1)
a∑

g=2

a−1∑
h=1

κh
2nh

+a(a− 1)

a∑
g=2

a−1∑
h=1

κh + nh
nh

tr{(PpΣgPpΣh)
2}

{tr(PpΣgPpΣh)}2

= o(1).

· The evaluation of E(A2
6)

E(A2
6) ≤ a(a− 1)(a− 2)

a∑
g=3

g−1∑
h=2

h−1∑
ℓ=1

32ψ4δ4gδ
2
hδ

2
ℓ

3σ4n2gnhnℓ
E{(Y ⊤

h1PpΣgPpY ℓ1)
2}

= a(a− 1)(a− 2)
a∑

g=3

g−1∑
h=2

h−1∑
ℓ=1

32ψ4δ4gδ
2
hδ

2
ℓ

3σ4n2gnhnℓ
tr(PpΣgPpΣhPpΣgPpΣℓ)

≤ a(a− 1)(a− 2)

a∑
g=3

g−1∑
h=2

h−1∑
ℓ=1

32ψ4δ4gδ
2
hδ

2
ℓ

3σ4n2gnhnℓ

√
tr{(PpΣgPpΣh)2}tr{(PpΣgPpΣℓ)2}

≤ a(a− 1)(a− 2)

a∑
g=3

g−1∑
h=2

h−1∑
ℓ=1

2
√

tr{(PpΣgPpΣh)2}tr{(PpΣgPpΣℓ)2}
3tr(PpΣgPpΣh)tr(PpΣgPpΣℓ)

= o(1).

3



· The evaluation of E(A2
7)

E(A2
7) ≤ a(a− 1)

a∑
g=2

g−1∑
h=1

32ψ2δ2gδ
2
h

σ4n2gnh
E

{Y ⊤
h1PpΣgPp

(
a∑

ℓ=1

ψδgδℓµℓ

)}2


= a(a− 1)

a∑
g=2

g−1∑
h=1

32ψ2δ2gδ
2
h

σ4n2gnh

(
a∑

ℓ=1

ψδgδℓµℓ

)⊤

PpΣgPpΣhPpΣgPp

(
a∑

ℓ=1

ψδgδℓµℓ

)

≤ a(a− 1)
a∑

g=2

g−1∑
h=1

32ψ2δ2gδ
2
h

σ4n2gnh

√
tr{(PpΣgPpΣh)2}

×

(
a∑

ℓ=1

ψδgδℓµℓ

)⊤

PpΣgPp

(
a∑

ℓ=1

ψδgδℓµℓ

)

≤ a(a− 1)

a∑
g=2

g−1∑
h=1

32ψ2δ2gδ
2
h

σ4ngnh

√
tr{(PpΣgPpΣh)2}

× µ⊤(Ra ⊗ Pp)


a∑

g=1

n−1
g (ege

⊤
g )⊗ Σg

 (Ra ⊗ Pp)

≤ a(a− 1)

a∑
g=2

g−1∑
h=1

√
tr{(PpΣgPpΣh)2}
tr(PpΣgPpΣh)

= o(1).

4



· The evaluation of E
(
ε
(1)4

i

)
n(g)∑

i=n(g−1)+1

E
(
ε
(1)4

i

)
=

16d4g
σ4n4g(ng − 1)4

ng∑
i=2

E


Y ⊤

giPp

i−1∑
j=1

i−1∑
k=1

Y gjY
⊤
gkPpY gi

2
≤

48(κg + 1)d4g
σ4n4g(ng − 1)4

ng∑
i=2

E


 i−1∑

j=1

i−1∑
k=1

Y ⊤
gkPpΣgPpY gj

2
≤

48(κg + 1)d4g
σ4n4g(ng − 1)4

ng∑
i=1

(i− 1)E{(Y ⊤
g1PpΣgPpY g1)

2}

+
48(κg + 1)d4g
σ4n4g(ng − 1)4

ng∑
i=1

(i− 1)(i− 2)[tr{(PpΣg)
2}]2

+
96(κg + 1)d4g
σ4n4g(ng − 1)4

ng∑
i=1

(i− 1)(i− 2)tr{(PpΣg)
4}

≤
72(κg + 1)2d4g
σ4n3g(ng − 1)3

[tr{(PpΣg)
2}]2

+
16(κg + 1)(ng − 2)d4g

σ4n3g(ng − 1)3
[tr{(PpΣg)

2}]2

+
32(κg + 1)(ng − 2)d4g

σ4n3g(ng − 1)3
tr{(PpΣg)

4}

=
18(κg + 1)2

ng(ng − 1)
+

4(κg + 1)(ng − 2)

ng(ng − 1)

+
8(κg + 1)(ng − 2)

ng(ng − 1)

= O(n−1
g ).

1



· The evaluation of E
(
ε
(2)4

i

)
n(g)∑

i=n(g−1)+1

E
(
ε
(2)4

i

)
=

16

σ4n3g

n(g)∑
i=1

E


(
Y ⊤

giPp

g−1∑
h=1

vghY h

)4


≤ 48(κg + 1)

σ4n3g

{
g−1∑
h=1

(ψδgδh)
4E{(Y ′

hPpΣgPpY h)
2}

+

g−1∑
h̸=h′

(ψδgδh)
2(ψδgδh′)2E(Y

⊤
h PpΣgPpY h)E(Y

⊤
h′PpΣgPpY h′)

+2

g−1∑
h̸=h′

(ψδgδh)
2(ψδgδh′)2E{(Y ⊤

h PpΣgPpY h′)2}


≤

g−1∑
h=1

144(κg + 1)(κh + 1)(ψδgδh)
4

σ4n3gn
3
h

{tr(PpΣgPpΣh)}2

+

g−1∑
h=1

48(κg + 1)(nh − 1)(ψδgδh)
4

σ4n3gn
3
h

{tr(PpΣgPpΣh)}2

+

g−1∑
h̸=h′

48(κg + 1)(ψδgδh)
2(ψδgδh′)2

σ4n3gnhnh′
tr(PpΣgPpΣh)tr(PpΣgPpΣh′)

+

g−1∑
h̸=h′

96(κg + 1)(ψδgδh)
2(ψδgδh′)2

σ4n3gnhnh′
tr(PpΣgPpΣhPpΣgPpΣh′)

≤
g−1∑
h=1

9(κg + 1)(κh + 1)

ngnh
+

g−1∑
h=1

3(κg + 1)(nh − 1)

ngnh

+

g−1∑
h̸=h′

3(κg + 1)

ng
+

g−1∑
h̸=h′

6(κg + 1)

ng

= O(n−1
g ).

2



· The evaluation of E
(
ε
(3)4

i

)
n(g)∑

i=n(g−1)+1

E
[
ε
(3)4

i

]
=

16

σ4n3g
E

Y ⊤
g1Pp

(
a∑

h=1

ψδgδhµh

)(
a∑

h=1

ψδgδhµh

)⊤

PpY g1


2

≤ 48(κg + 1)

σ4n3g


(

a∑
h=1

ψδgδhµh

)⊤

PpΣgPp

(
a∑

h=1

ψδgδhµh

)
2

≤ 3

ng
= O(n−1

g ).
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