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Abstract

We propose an estimator of the covariance matrix, the L2 penal-
izing least squares esitmation of the Cholesky factor. We derive some
theoretical properties of the estimator, consistency, asymptotic ap-
proximation of the Kullback-Leibler risk and optimal penalizing pa-
rameter. It is notable that these properties just hold for normal data,
do not require any covariance structure constraint. Some simulation
results show that the estimator using the optimal penalizing parame-
ter is better than the others in high-dimensional setting.

keywords: covariance estimation, high dimensional, modified Cholesky de-
composition, Ridge regression, asymptotic expansion.

1 Introduction

The purpose of this paper is to propose useful estimator of a covariance ma-
trix. A p× p covariance matrix Σ of a random vector y = (y1, · · · , yp)′ plays
central role in multivariate analysis, time series analysis, and many applied
problems. Some applications (e.g. linear discriminant analysis, cannoni-
cal correlation analysis) need to estimate Σ−1 rather than Σ itself. There-
fore, positive-definiteness has been an important constraint for covariance
matrix estimation. Usual estimator of Σ is the sample covariance matrix
S =

∑n
i=1 y

′
iyi/n, based on a sample of size n from a normal population

with mean zero and covariance Σ. Although S is unbiased and positive-
definite when n > p, In high-dimensional data n < p, S is not invertible and
the bias of the largest eigenvalue will be upward (Jonestone, 2001). For this
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reason, many methods are proposed that are available in high-dimensional
data (for the details in Pourahmadi, 2013).

Pourahmadhi (1999) employed the modified Cholesky decomposition of
Σ, which not only can guarantee positive-definiteness, but also provides sta-
tistical interpretation of the Cholesky factor as certain linear regression co-
efficients and the residual variances (Section 2). The most natural estimator
of the coefficients and the variances are the least squares estimator. This
estimator Σ̂LSE is the modified Cholesky decomposition of the sample co-
variance matrix S under certain conditions. However, It cannot guarantee
positive-definiteness in high-dimensional data owing to the singularity of the
regression. Hence some regularization is necessary for high-dimensional data,
Huang et al. (2006), Levina et al. (2008) and Chang and Tsay (2010) pro-
posed estimation methods that penalize the log-likelihood for normal data.

The penalized likelihood estimator may be too complicated to study
the theoretical properties without some covariance structure constraint (see
Bickel and Levina, 2008). Thus, we propose a simple estimator Σ̂PLSE(λ),
the L2 penalizing least squares esitmation (PLSE) of the Cholesky factor. We
derive some theoretical properties of Σ̂PLSE(λ) in large sample asymptotic
framework, consistency, asymptotic approximation of the Kullback-Leibler
risk and optimal penalizing parameter λ∗ (Section 3). It is notable that
these properties just hold for normal data, do not require any covariance
structure constraint. Since λ∗ depends on the true covariance matrix Σ, we
also propose a cross-validation approach α̂CV∗ that selects the scalar param-
eter for λ∗.

Pourahmadhi (1999) assume mean vector zero for the reason of explaining
statistical properties of the modified Cholesky decomposition of covariance
matrix. We also study the modified Cholesky decomposition and the per-
formance of Σ̂PLSE(λ) without the assumption of mean vector in Section
4.

In order to compare the performance of the penalizing parameter selec-
tion methods and the other existing methods, we run some Monte-Carlo
simulations (Section 5). Although our method λ∗ is derived in large sam-
ple asymptotic framework, some results show that the estimator using λ∗ is
better than the others in high-dimensional setting. Section 6 concludes the
paper with discussion.

2 The modified Cholesky decomposition

In this section, we briefly review the modified Cholesky decomposition by
Pourahmadi (1999), and provide two estimator of Cholesky factor, the sample
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covariance matirix S and the L2 penalized maximum likelihood estimator
proposed by Hunag et al. (2006).

2.1 The modified Cholesky decomposition

Let y = (y1, . . . , yp)
′ be distributed as a certain distribution with mean 0

and covariance Σ which is assumed to be positive-definite. The standard
Cholesky decomposition of Σ is CC ′ where C = (cij) is the lower-trianglar
matrix with positive diangonal entries. The modified Cholesky decomposi-
tion of Σ is

Σ = LD2L′, (2.1)

where D = diag(c11, . . . , cpp) and L = CD−1 is an unit lower-triangular
matrix whose diagonal elements are all one. Note that positive-definiteness
of Σ is necessary and sufficient for uniquely defined L and D2. Pourahmadi
(1999) shows that the elements of L and D have statistical interpretations
as the following linear regression coefficients ϕj’s and the residual variances
σ2
j ’s:

yj =

j−1∑
k=1

ϕj,kyk + εj, (j = 2, · · · , p) (2.2)

where

ϕj = (ϕj,1, . . . , ϕj,j−1)
′

= argmin
β=(β1,...,βj−1)′∈Rj−1

E

(yj − j−1∑
i=1

yiβi

)2
 .

Let T = (tij) be a unit lower-trianglar matrix with tij = −ϕij for i < j,
ε1 = y1 and ε = (ε1, . . . , εp)

′, then (2.2) becomes

Ty = ϵ. (2.3)

Since ϵj’s are uncorrelated, taking covariance of both side of (2.3) gives the
modified Cholesky decomposition (2.1),

Σ = T−1D2 (T ′)
−1
, (2.4)

where D2 = diag(Var(ϵ1), . . . ,Var(ϵp)) = diag(σ2
1, . . . , σ

2
p). Therefore the

modified Cholesky decomposition can transform the problem of the covari-
ance matrix estimation into that of the linear regression coefficients and the
residual variances estimation. Note that the regression coefficients ϕj’s are
unconstrained, however, the residual variances σ2

j ’s must be positive. We call
ϕj’s and σ

2
j ’s the Cholesky factors for short.
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2.2 Some estimators using the modified Cholesky de-
composition

Suppose that we observe a random sample Y = (y1, . . . ,yn)
′ = (yij) where

yi’s are mutually independently and identically distributed as Np(0,Σ). The
most natural estimator of ϕj’s and σ

2
j ’s are the least squares estimator

ϕ̂j,LSE =
(
Y ′

j−1Yj−1

)−1
Y ′

j−1y(j),

σ̂2
j,LSE =

1

n
(y(j) − Yj−1ϕ̂j,LSE)

′(y(j) − Yj−1ϕ̂j,LSE), (2.5)

for j = 2, . . . , p where y(k) = (y1k, . . . , ynk)
′,Yk = (y(1), . . . ,y(k)), and σ̂

2
1,LSE =

y′
(1)y(1)/n. This estimator is derived from minimizing the squared error

(y(j) − Yj−1β)
′(y(j) − Yj−1β), (j = 2, · · · , p)

that is, the same problem of maximizing the log-likelihood function l(Σ;Y )
under the assumption of normality. The log-likelihood function is

−2l(Σ;Y ) =
n∑

i=1

log|D2|+ y′
iT

′D−2Tyi

= n

p∑
j=1

logσ2
j +

1

σ2
1

y′
(1)y(1)

+

p∑
j=2

1

σ2
1

(
y(j) − Yj−1ϕj

)′ (
y(j) − Yj−1ϕj

)
, (2.6)

ignoring constant. Therefore, the estimator Σ̂LSE that replaces ϕj’s and

σ2
j ’s with ϕ̂j,LSE’s and σ̂2

j,LSE’s in (2.4), is the sample covariance matrix

S = Y ′Y /n. If n < p (for j ≥ n + 1), Σ̂LSE cannot guarantee positive-
definiteness because ϕ̂j,LSE is not unique and σ̂2

j,LSE can become zero, hence

some regularization is necessary for ϕ̂j to be unique.
Huang et al. (2006), Levina et al. (2008), and Chang and Tsay (2010)

proposed a regularzation method based on penalizing l(Σ;Y ), impose a
penalty on the Cholesky factor ϕ′

js. Huang et al. (2006) proposed adding
Lq penalty to (2.6)

−2l(Σ;Y ) + δ

p∑
j=2

|ϕj|q, (2.7)
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where q > 0 and δ ≥ 0. The penalized likelihood estimator minimising (2.7)
for q = 2 can be written as

ϕ̂j,Huang =
(
Y ′

j−1Yj−1 + δσ̂2
j,HuangIj−1

)−1
Y ′

j−1y(j)

σ̂2
j,Huang =

1

n
(y(j) − Yj−1ϕ̂j,Huang)

′(y(j) − Yj−1ϕ̂j,Huang), (2.8)

for j = 2, . . . , p where Ij is the j×j identity matrix and σ̂2
1,Huang = y

′
(1)y(1)/n.

The estimator of Σ using ϕ̂j,Huang’s and σ̂2
j,Huang’s with δ > 0 is positive-

definite. However, iterative algorithm is necessary for the estimation.

3 The L2 penalized least squares estimator

In this section, we propose Σ̂PLSE(λ): the L2 penalized least squares estimator
ofΣ, and study some asymptotic properties. Moreover, we clarify the optimal
penalizing parameter λ∗ with respect to a certain risk, and suggest how to
estimate the parameter.

The penalized likelihood estimator may be too complicated to study the-
oretical properties. Therefore, we propose a simple estimator Σ̂PLSE(λ) that
the estimator of ϕj’s and σ

2
j ’s has the following closed-form,

ϕ̂j,PLSE =
(
Y ′

j−1Yj−1 + λjIj−1

)−1
Y ′

j−1y(j),

σ̂2
j,PLSE =

1

n
(y(j) − Yj−1ϕ̂j,PLSE)

′(y(j) − Yj−1ϕ̂j,PLSE), (3.1)

for j = 2, . . . , p where σ̂2
1,PLSE = y′

(1)y(1)/n, λ = (λ2, · · · , λp)′, λj ≥ 0.

This estimator is derived from Ridge regression (Hoerl and Kennard, 1970),
minimizing the L2 penalized squares error (y(j) − Yj−1β)

′(y(j) − Yj−1β) +
λj∥β∥22 for j = 2, · · · , p. (2.8) can be considered as a special case of (3.1)
in the sense that λj = δσ̂2

j,Huang. If δ = 0 and λ = 0, then the estimator
(2.8) and (3.1) become the sample covariance matrix (2.5). If λj’s are fixed
constants, (3.1) does not need any iterative algorithm.

We also propose the following estimator by selecting the penalizing pa-
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rameter:

Σ̂PLSE(λ∗ : α̂CV ∗) := Σ̂PLSE

(
λ∗

(
Σ̂PLSE(α̂CV ∗1p−1)

))
,

λ∗(Σ) := (λ2∗, · · · , λp∗)′, λj∗ = trΣ−1
j−1

σ2
j

ϕ′
jΣ

−1
j−1ϕj

,

α̂CV ∗ = argmin
α≥0

1

K

K∑
ν=1

(
nν log

∣∣∣Σ̂PLSE(λ∗ : α)−ν

∣∣∣
+
∑
i∈Iν

y′
iΣ̂

−1
PLSE(λ∗ : α)−νyi

)
.

The detail and the derivation are given in the following subsection.

3.1 Asymptotic properties

Σ̂PLSE(λ) is derived by Ridge regression, shrink the estimators of regression
coefficients ϕj’s. Shrinkage the elements of the sample covariance is studied
by Stein (1975), Ledoit and Wolf (2003) etc. By contrast, Few studies have
focused on the shrinkage estimation of the Cholesky factor for covariance
estimation. Therefore, we study some theoretical properties of Σ̂PLSE(λ),
consistency and asymptotic approximation of the Kullback-Leibler risk.

In this subsection, we assume that {yi}ni=1 are independently and iden-
tically distributed as Np(0,Σ) (Normal distribution), p is fixed and n → ∞
(Large sample asymptotic framework), and λj = O(1) for all j = 2, · · · , p
(Constant order).

First, we represent the estimator (3.1) using the true residual εj’s in (2.2).
Let ε(j) = y(j) − Yj−1ϕj for j = 2, . . . , p, then

ϕ̂j,PLSE =

(
1

n
Y ′

j−1Yj−1 +
1

n
λjIj−1

)−1(
1

n
Y ′

j−1ε(j) +
1

n
Y ′

j−1Yj−1ϕj

)
, (3.2)

σ̂2
j,PLSE =

1

n
ε′(j)ε(j) +

2

n

(
ϕj − ϕ̂j,PLSE

)′
Y ′

j−1ε(j) (3.3)

+
(
ϕj − ϕ̂j,PLSE

)′ 1
n
Y ′

j−1Yj−1

(
ϕj − ϕ̂j,PLSE

)′
.

Here, the distribution of the random vector or matrix, Y ′
j−1Yj−1, Y

′
j−1ε(j),

and ε′(j)ε(j) can be expressed as the following lemma.
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Lemma 3.1. It holds for j = 2, . . . , p that

n−1Σ
−1/2
j−1 Y

′
j−1Yj−1Σ

−1/2
j−1 = Ij−1 +Zn

−1/2,

n−1/2σ−1
j Σ

−1/2
j−1 Y

′
j−1ε(j) =

{
Ij−1 +

1

2
Zn−1/2 − 1

8
Z2n−1 +

1

16
Z3n−3/2

}
V +Op(n

−5/2),

n−1σ−2
j ε

′
(j)ε(j) = 1 +

√
2Xn−1/2 + (V ′V − j + 1)n−1 − 1√

2
(j − 1)Xn−3/2 +Op(n

−5/2)

where Σj is the submatrix of Σ = (σij): the entries (Σj)kl = σkl for 1 ≤
k, l ≤ j,

Z :=
√
n

(
1

n
Σ

−1/2
j−1 Y

′
j−1Yj−1Σ

−1/2
j−1 − Ij−1

)
d−→ Nj−1×j−1(Oj−1×j−1,Ω),

V := σ−1
j

(
Σ

−1/2
j−1 Y

′
j−1Yj−1Σ

−1/2
j−1

)−1/2

Σ
−1/2
j−1 Y

′
j−1ε(j) ∼ Nj−1(0, Ij−1)

X :=

√
n− j + 1

2

(
1

n− j + 1
U ′U − 1

)
d−→ N(0, 1),

and U ∼ Nn−j+1(0, In−j+1), Ω : Cov(Zij, Zkl) = δikδjl + δilδjk, and Z, V ,
X(orU) are mutually independent.

The proof of the lemma is given in Appendix. Note that Σ−1
j is not any

submatrix of Σ−1, but the inverse matrix of Σj.
Applying Lemma 3.1 to (3.2) and (3.3), we can derive a perturbation

expansion of ϕ̂j,PLSE’s and σ̂
2
j,PLSE’s.

Lemma 3.2.

ϕ̂j,PLSE = Σ
−1/2
j−1

{
Σ

1/2
j−1ϕj + σjV n

−1/2 +

(
−1

2
σjZV − λjΣ

−1/2
j−1 ϕj

)
n−1

+

(
3

8
σjZ

2V − λjσjΣ
−1
j−1V + λjZΣ

−1/2
j−1 ϕj

)
n−3/2

+

(
− 5

16
σjZ

3V +
1

2
λjσjΣ

−1
j−1ZV + λjσjZΣ−1

j−1V

+λ2jΣ
−3/2
j−1 ϕj − λjZ

2Σ
−1/2
j−1 ϕj

)
n−2
}
+Op(n

−5/2),

σ̂2
j PLSE = σ2

j

(
1 +

√
2Xn−1/2 − (j − 1)n−1

− 1√
2
(j − 1)Xn−3/2 +

λ2j
σ2
j

ϕ′
jΣ

−1
j−1ϕjn

−2

)
+Op(n

−5/2),

From Lemma 3.2 and the consistency of σ̂2
1,PLSE = y′

(1)y(1)/n, the consis-

tency of Σ̂PLSE holds:
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Theorem 3.1.

Σ̂PLSE
p−→ Σ.

Note that this theorem holds for arbitrary positive value λ and covariance
structure.

In order to estimate the optimal penalizing parameter and theoretical
comparison with the sample covariance matrix, we approximate the Kullback-
Leibler risk with using some recurrence formula. Let Σ̂(Y ) = Σ̂ be an es-
timator of Σ using a sample Y , then the Kullback-Leibler loss is defined
as

KL(Σ, Σ̂) = tr
(
ΣΣ̂−1

)
− log

∣∣∣ΣΣ̂−1
∣∣∣− p. (3.4)

The loss is used as the measure for an estimator of inverse covariance matrix.
We say an estimator is considered better than another estimator, if the risk
of the estimator

EY

[
KL(Σ, Σ̂(Y ))

]
,

is smaller than that of another one. For a fixed p, the Kullback-Leibler loss
can be obtained recursively as in the following lemma.

Lemma 3.3. For j = 2, . . . , p, it holds that

KL(Σj, Σ̂j) = KL(Σj−1, Σ̂j−1)

+
1

σ̂2
j

(
ϕ̂j − ϕj

)′
Σj−1

(
ϕ̂j − ϕj

)
+
σ2
j

σ̂2
j

− log
σ2
j

σ̂2
j

− 1,

where Σ̂j is the j × j submatrix of Σ̂.

The proof is given in Appendix. Note that the lemma do not need normal
and large sample assumption. The following Lemma gives an approximation
of the expected value using Σ̂PLSE(λ).

Lemma 3.4. It holds for j = 2, . . . , p that

E

[
1

σ̂2
j,PLSE

(
ϕ̂j,PLSE − ϕj

)′
Σj−1

(
ϕ̂j,PLSE − ϕj

)
+

σ2
j

σ̂2
j,PLSE

− log
σ2
j

σ̂2
j,PLSE

− 1

]

= jn−1 +

{
5

2
j2 + j +

1

6
+
λ2j
σ2
j

ϕ′
jΣ

−1
j−1ϕj − 2tr

(
Σ−1

j−1

)
λj−1

}
n−2 +O(n−5/2)
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The proof is given in Appendix. Accordingly, we obtain the approxima-
tion of the Kullback-Leibler risk.

Theorem 3.2.

E
[
KL(Σ, Σ̂PLSE(λ))

]
=
p

2
(p+ 1)n−1 +

{ p

12

(
10p2 + 21p+ 13

)
(3.5)

+

p∑
j=2

ϕ′
jΣ

−1
j−1ϕj

σ2
j

λ2j − 2trΣ−1
j−1λj

}
n−2 +O(n−5/2).

Proof. For simplicity, we write Σ̂PLSE(λ) = Σ̂, ϕ̂j,PLSE = ϕ̂j and σ̂2
j,PLSE =

σ̂2
j . From Lemma 3.3 and Lemma 3.4, we evaluate the first term of the

following equation,

E
[
KL(Σ, Σ̂)

]
= E

[
KL(Σ1, Σ̂1)

]
+

p∑
j=2

E

[
1

σ̂2
j

(
ϕ̂j − ϕj

)′
Σj−1

(
ϕ̂j − ϕj

)
+
σ2
j

σ̂2
j

− log
σ2
j

σ̂2
j

− 1

]
.

Since Σ̂1 = σ̂2
1 = y′

(1)y(1)/n, Σ1 = σ2
1, and nσ̂

2
1/σ

2
1 ∼ χ2

n,

E
[
KL(Σ1, Σ̂1)

]
= E

[
σ2
1

σ̂2
1

− log
σ2
1

σ̂2
1

− 1

]
=

n

n− 2
− log n+ log 2 + ψ

(n
2

)
− 1

= n−1 +
11

3
n−2 +O

(
n−5/2

)
,

where ψ is the digamma function. Here, we used the asymptotic expansion,
ψ(x) = log x− 1/(2x)−

∑∞
k=1B2k(2kx

2k)−1 where B2k is the k-th Bernoulli
number.

From Theorem 2, we can compare Σ̂PLSE(λ) with the sample covari-
ance matrix Σ̂PLSE(0) for a fixed λ. Furthermore, (4.4) can be considered
a quadratic function of λ ignoring the higher order term in the expansion.
These discussion is in Section 3.3 due to the constant constraint of penalizing
parameters.

3.2 How to select the penalizing parameter

The performance of penalized methods depends on the choice of the penal-
izing parameter. Huang et al. (2006) used two cross-validation methods,
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K-fold cross-validation and generalized cross-varidation. The penalizing pa-
rameter of the proposed method in (2.8) is a scalar δ, whereas that of our
method is p−1 dimensional vector λ = (λ2, · · · , λp)′. The optimization with
respect to p− 1 variables in the cross-validation criterion should be avoided
for computational cost. Therefore, we give the optimal penalizing parameter
λ∗ under the Kullback-Leibler risk, and theoretical comparison Σ̂PLSE(λ∗)
with the sample covariance matrix S. Since λ∗ depends on the true covari-
ance matrix Σ, we also propose a cross-validation approach α̂CV ∗ that selects
a scalar parameter for λ∗.

3.2.1 Optimal penalizing parameter under the Kullback-Leibler
risk

From theorem 2, the approximated risk can be considered as a quadratic
function of λ ignoring the higher order term in the expansion. Thus, the op-
timal penalizing parameter and the risk can be approximated by minimizing
the quadratic function.

Theorem 3.3. Suppose that (σ1j, . . . , σj−1,j)
′ ̸= 0 for all j = 2, . . . , p. If we

use the penalizing parameter λ∗ = (λ2∗, . . . , λp∗)
′, where

λj∗ = tr
(
Σ−1

j−1

) σ2
j

ϕ′
jΣ

−1
j−1ϕj

, (j = 2, . . . , p),

then the risk can be written as

E
[
KL(Σ, Σ̂PLSE(λ∗))

]
=

p

2
(p+ 1)n−1 +

{
p

12

(
10p2 + 21p+ 13

)
−

p∑
j=2

λj∗tr
(
Σ−1

j−1

)}
n−2 +O(n−5/2).

For all j = 2, . . . , p, λj∗ must be a positive value because Σj is positive-
definite. The risk of the sample covariance matrix is also approximated by
λ = 0 in (4.4), that is the first and second term of (4.4). Therefore, the
approximated risk of Σ̂PLSE(λ∗) is smaller than that of the sample covariance
matrix by

∑p
j=2 λj∗tr

(
Σ−1

j−1

)
.

Note that λ∗ is expected to be useful without the covariance structure
assumption, (σ1j, . . . , σj−1,j)

′ ̸= 0 for all j = 2, . . . , p. If (σ1j, . . . , σj−1,j) = 0
(e.g. Σ is a diagonal matrix), then the parameter constant assumption λ =
O(1) is not satisfied because ϕj = Σ−1

j−1(σ1j, . . . , σj−1,j)
′ = 0 ⇒ λj∗ = ∞. For

this reason, the approximation of the risk may be poor in these covariance
structure. However, if λj = ∞, the estimator takes the right value ϕ̂j,PLSE =
0. To see the performance in such cases, we run the simulations in Section
4.
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3.2.2 The cross-validated estimator

Since the optimal penalizing parameter λ∗ includes the true covariance ma-
trixΣ, we propose a cross-validation method that replaces it with Σ̂PLSE(α̂CV ∗1p−1).

We define λ∗ as a function of Σ, λ∗(Σ) = (λ2∗(Σ), . . . , λp∗(Σ))′,

λj∗(Σ) =
σ2
j tr
(
Σ−1

j−1

)
ϕ′

jΣ
−1
j−1ϕj

, (j = 2 . . . , p).

We consider to replace Σ in λ∗(Σ) with Σ̂PLSE(α1p−1), where α ≥ 0 is
a scalar parameter, and 1p−1 = (1, · · · , 1)′. Therefore, for a fixed α, the
estimator of Σ can be expressed as

Σ̂PLSE(λ∗ : α) := Σ̂PLSE(λ∗(Σ̂PLSE(α1p−1))).

Hence we just consider how to select a scalar α ≥ 0. According to K-fold
cross-validation in Huang et al. (2006), we can select the parameter α̂CV

that minimize the criterion

α̂CV = argmin
α≥0

1

K

K∑
ν=1

(
nν log

∣∣∣Σ̂PLSE(α1p−1)−ν

∣∣∣
+
∑
i∈Iν

y′
iΣ̂

−1
PLSE(α1p−1)−νyi

)
, (3.6)

where K is the number of folding the sample, D is the full sample, Dν is the
ν-th test sample, D − Dν is the training sample, Iν is the index set of Dν ,
nν is the size of Iν , and Σ̂PLSE(α1p−1)−ν is the estimator using D − Dν for
λ = α1p−1. The function of α in (3.6) can be considered as an estimator of
the log-lokelihood for normally distributed sample (see Huang et al., 2006,
Levina et al., 2008). However, we can also consider it as a criterion of the
Kullback-Leibler risk

KL(ΣΣ̂) = tr
(
ΣΣ̂−1

)
− log

∣∣∣ΣΣ̂−1
∣∣∣− p (3.7)

∝ trΣΣ̂−1 + log
∣∣∣Σ̂∣∣∣ ≈ tr

1

nν

∑
i∈Iν

yiy
′
iΣ̂

−1
−ν + log

∣∣∣Σ̂−1
−ν

∣∣∣ .
Although the estimation target of α̂CV can be considered as

αCV = argminE
[
KL(Σ, Σ̂PLSE(α1p−1))

]
,
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in generally

E
[
KL(Σ, Σ̂PLSE(λ∗ : αCV ))

]
̸= minE

[
KL(Σ, Σ̂PLSE(λ∗ : α))

]
. (3.8)

Therefore, the estimation target that we actually want is the right side in
(3.8),

αCV ∗ = argmin
α≥0

E
[
KL(Σ, Σ̂PLSE(λ∗ : α))

]
. (3.9)

Hence we propose the cross-validation method to choose the scalar α = α̂CV ∗
that minimize the Kullback-Leibler criterion with λ∗(Σ̂PLSE(α1p−1))

α̂CV ∗ = argmin
α≥0

1

K

K∑
ν=1

(
nν log

∣∣∣Σ̂PLSE(λ∗ : α)−ν

∣∣∣+∑
i∈Iν

y′
iΣ̂

−1
PLSE(λ∗ : α)−νyi

)
.

Note that this cross-validation method is not an optimization of p−1 variables
function. The computational cost of this cross-validation method is expected
as same as or a little more expensive than the scalar cross-validation (3.6).

4 The estimator when non-zero mean

In this section, we study the modified Cholesky decomposition of Σ and
the estimator Σ̂PLSE without the assumption of mean vector µ = 0. The
differences between the result under the assumption µ = 0 (Section 3) and
that of µ ̸= 0 are centering the data before the estimation, and the order
(degree of freedom) n and N = n− 1.

Let y = (y1, . . . , yp)
′ be distributed as a certain distribution with mean

µ = (µ1, . . . , µp)
′ and covariance Σ = (σij). Then, the model corresponding

in (2.2) can be expressed as

yj = αj +

j−1∑
k=1

ϕkjyk + εj, (j = 2, . . . , p), (4.1)

where (
αj

ϕj

)
= argmin

β=(β0,β1,...,βj−1)′∈Rj

E

[
(yj − β0 −

j−1∑
i=1

yiβi)
2

]

=

(
µj − µ′

j−1ϕj

Σ−1
j−1(σ1j, · · · , σj−1,j)

′

)
.

12



Therefore, (4.1) can be written as

(yj − µj) =

j−1∑
k=1

ϕkj(yk − µk) + ϵj, (j = 2, . . . , p). (4.2)

Thus, we can consider the model (4.2) is the usually model (2.2) because
(y1 − µ1, . . . , yp,−µp)

′ is mean vector zero.

4.1 The asymptotic properties when non-zero mean

Suppose that we observe a random sample Y = (y1, . . . ,yn)
′ = (yij) where

yi’s are mutually independently and identically distributed as Np(µ,Σ).
From (4.1), the model of n sample can be written for j = 2, . . . , p,

ỹ(j) = Ỹj−1ϕj + ε̃(j)

where ỹ(j) = (In − Jn)y(j), Ỹj−1 = (In − Jn)Yj−1, ε̃(j) = (In − Jn)ε(j),
Jn = n−11n1

′
n, 1n is n dimensional vector that all elements are one. (In−Jn)

is the column centered operator matrix. Here, the estimator can be derived
that minimize ε̃′(j)ε̃(j) + λj∥ϕj∥22,

ϕ̂j,PLSE =
(
Ỹ ′

j−1Ỹj−1 + λjIj−1

)−1

Ỹ ′
j−1ỹ(j)

σ̂2
j,PLSE =

1

n− 1
(ỹ(j) − Ỹj−1ϕ̂j,PLSE)

′(ỹ(j) − Ỹj−1ϕ̂j,PLSE), (4.3)

for j = 2, . . . , p where σ̂2
1,PLSE = ỹ′

(1)ỹ(1)/(n− 1). Therefore, one can use the

estimator Σ̂PLSE(λ) as in the case of µ = 0 (3.1) after columm centering the
data. Note that (4.3) can also be derived as ε′(j)ε(j) + λj∥ϕj∥22 minimization
problem, where

y(j) = 1nαj + Yj−1ϕj + ε(j)

=Wjψj + ε(j),

where Wj = (1n,Yj−1), ψj = (αj,ϕ
′
j)

′.

ϕ̂j,PLSE =

(
1

N
Ỹ ′

j−1Ỹj−1 +
1

N
λjIj−1

)−1(
1

N
Ỹ ′

j−1ε̃(j) +
1

N
Ỹ ′

j−1Ỹj−1ϕj

)
,

σ̂2
j,PLSE =

1

N
ϵ̃′(j)ε̃(j) +

2

N

(
ϕj − ϕ̂j,PLSE

)′
Ỹ ′

j−1ε̃(j)

+
(
ϕj − ϕ̂j,PLSE

)′ 1
N
Ỹ ′

j−1Ỹj−1

(
ϕj − ϕ̂j,PLSE

)
,

13



where n = N − 1.

In − Jn = (Q1 Q2)

(
IN 0
0′ 0

)(
Q′

1

Q′
2

)
= Q1Q

′
1,

We understand that Q′
1Yj−1 ∼ NN×j−1(0,Σj−1⊗ IN), Q

′
1ϵ(j) ∼ NN(0, σ

2
j IN)

By proof like Lemma 3.1, we obtain the following lemma.

Lemma 4.1. It holds for j = 2, . . . , p that

1

N
Σ

−1/2
j−1 Ỹ

′
j−1Ỹj−1Σ

−1/2
j−1 = Ij−1 +ZN

−1/2,

σ−1
j N−1/2Σ

−1/2
j−1 Ỹ

′ε̃(j) =

{
Ij−1 +

1

2
ZN−1/2 − 1

8
Z2N−1 +

1

16
Z3N−3/2

}
V +Op(N

−5/2),

1

σ2
jN
ε̃′(j)ε̃(j) = 1 +

√
2XN−1/2 + (V ′V − j + 1)N−1 −

√
2

2
(j − 1)XN−3/2 +Op(N

−5/2)

where Σj is the submatrix of Σ = (σij): the entries (Σj)kl = σkl for 1 ≤ k,
l ≤ j,

Z :=
√
N

(
1

N
Σ

−1/2
j−1 Ỹ

′
j−1Ỹj−1Σ

−1/2
j−1 − Ij−1

)
d−→ Nj−1×j−1(0j−1×j−1,Ω),

,

V := σ−1
j

(
Σ

−1/2
j−1 Ỹ

′
j−1Ỹj−1Σ

−1/2
j−1

)−1/2

Σ
−1/2
j−1 Ỹ

′
j−1ϵ̃(j) ∼ Nj−1(0, Ij−1),

X :=

√
N − j + 1

2

(
1

N − j + 1
U ′U − 1

)
d−→ N(0, 1),

and U ∼ NN−j+1(0, IN−j+1), Ω : Cov(Zij, Zkl) = δikδjl + δilδjk and Z, V ,
X(orU) are mutually independent.

Similarly, we have the following lemma’s and theorem’s.
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Lemma 4.2.

ϕ̂j,PLSE = Σ
−1/2
j−1

{
Σ

1/2
j−1ϕj + σjV N

−1/2 +

(
−1

2
σjZV − λjΣ

−1/2
j−1 ϕj

)
N−1

+

(
3

8
σjZ

2V − λjσjΣ
−1
j−1V + λjZΣ

−1/2
j−1 ϕj

)
N−3/2

+

(
− 5

16
σjZ

3V +
1

2
λjσjΣ

−1
j−1ZV + λjσjZΣ−1

j−1V

+λ2jΣ
−3/2
j−1 ϕj − λjZ

2Σ
−1/2
j−1 ϕj

)
N−2

}
+Op(N

−5/2),

σ̂2
j PLSE = σ2

j

(
1 +

√
2XN−1/2 − (j − 1)N−1

− 1√
2
(j − 1)XN−3/2 +

λ2j
σ2
j

ϕ′
jΣ

−1
j−1ϕjN

−2

)
+Op(N

−5/2),

From Lemma 4.2 and the consistency of σ̂2
1,PLSE = y′

(1)y(1)/n, the consis-

tency of Σ̂PLSE holds:

Theorem 4.1.

Σ̂PLSE
p−→ Σ.

Note that this theorem holds for arbitrary positive value λ and covariance
structure.

Theorem 4.2.

E
[
KL(Σ, Σ̂PLSE(λ))

]
=
p

2
(p+ 1)N−1 +

{ p

12

(
10p2 + 21p+ 13

)
(4.4)

+

p∑
j=2

ϕ′
jΣ

−1
j−1ϕj

σ2
j

λ2j − 2trΣ−1
j−1λj

}
N−2 +O(N−5/2).

Theorem 4.3. Suppose that (σ1j, . . . , σj−1,j)
′ ̸= 0 for all j = 2, . . . , p. If we

use the penalizing parameter λ∗ = (λ2∗, . . . , λp∗)
′, where

λj∗ = tr
(
Σ−1

j−1

) σ2
j

ϕ′
jΣ

−1
j−1ϕj

, (j = 2, . . . , p),

then the risk can be written as

E
[
KL(Σ, Σ̂PLSE(λ∗))

]
=
p

2
(p+ 1)N−1

+

{
p

12

(
10p2 + 21p+ 13

)
−

p∑
j=2

λj∗tr
(
Σ−1

j−1

)}
N−2 +O(N− 5

2 ).

=
p

2
(p+ 1)n−1 +

{
p

12

(
10p2 + 27p+ 19

)
−

p∑
j=2

λj∗tr
(
Σ−1

j−1

)}
n−2 +O(n− 5

2 ).
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5 Numerical study

In this section, we compare the performance of the penalizing parameter se-
lection methods, Σ̂PLSE(α̂CV 1p−1), Σ̂PLSE(λ∗ : α̂CV ), and Σ̂PLSE(λ∗ : α̂CV ∗).
As a benchmark, we also compare them with two existing methods, the sam-
ple covariance matrix, and the L2 penalized maximum likelihood estimator
of Huang et al. (2006).

To evaluate the performance, we use M = 1000 repeated Monte-Carlo
simulations to approximate the mean and the corresponding standard devi-
ation of the the Kullback-Leibler loss

EY [KL(Σ, Σ̂)] ≈ 1

M

M∑
m=1

KL(Σ, Σ̂(Ym)), (5.1)

where Ym’s are n × p observations from a multivariate distribution. The
sample size is n = 100, the dimensions are p = 10, 30, 50, 80 and 120,
and two different distributions, multivariate normal (§4.1) and multivariate
t with 5 degrees of freedom (§4.2).

We consider the following four covariance structures.

Σ(1) = diag(1, 2, . . . , p).

Σ(2) : the compound symmetry σij = ρ, i ̸= j, σii = 1, ρ = 0.5.

Σ(3) : AR(1), σij =
σ2

1− γ2
γi−j, σ2 = 0.01 γ = 0.8.

Σ(4) : random structure (Onion method).

Σ(1) is to check for usefulness of λ∗ when the covariance structure assumption
is not satisfied (§3.31). Σ(2) and Σ(3) are also considered in Huang et al.
(2006). The first has a sparse Cholesky factor, another not sparse. To test
the robustness of various covariance structures, Σ(4) is changed the structure
at random every simulation run. We use Onion method for change by Ghosh
and Henderson (2003), and Joe (2006) (R-package: clusterGeneration).

The penalizing parameter of the L2 penalized maximum likelihood esti-
mator of Huang et al. (2006) is selected by K-fold cross-validation for K = 5.
Other estimator, Σ̂PLSE(α̂CV 1p−1), Σ̂PLSE(λ∗ : α̂CV ), and Σ̂PLSE(λ∗ : α̂CV ∗)
is also selected for K = 5. For the optimization about these criterion, we use
optimize function in R for δ and α ∈ (0, 104].

5.1 Multivariate normal simulations

The results for Ym = (y1, . . . ,yn)
′, yi ∼ Np(0,Σ) are given in Table 1.

On Σ(1), as expected, Σ̂PLSE(λ∗ : α̂CV ) and Σ̂PLSE(λ∗ : α̂CV ∗) perform
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Table 1: The means and, in parentheses, standard deviations of the the
Kullback-Leibler losses for multivariate normal sample.

Σ̂PLSE

Σ p S Huang et al. α̂CV 1p−1 λ∗ : α̂CV λ∗ : α̂CV ∗
10 0.675(0.005) 0.106(0.002) 0.117(0.002) 0.107(0.002) 0.116(0.002)
30 8.295(0.030) 0.314(0.003) 0.393(0.003) 0.313(0.003) 0.321(0.003)

Σ(1) 50 36.443(0.099) 0.522(0.004) 1.076(0.005) 0.526(0.004) 0.530(0.004)
80 293.633(1.086) 0.841(0.004) 4.181(0.011) 0.903(0.005) 0.903(0.005)
120 Inf(NA) 1.281(0.005) 17.554(0.026) 1.801(0.007) 1.801(0.007)

10 0.661(0.005) 0.459(0.004) 0.431(0.004) 0.462(0.004) 0.446(0.004)
30 8.307(0.030) 2.183(0.010) 1.901(0.009) 2.294(0.015) 1.771(0.010)

Σ(2) 50 36.154(0.102) 4.196(0.017) 3.547(0.015) 5.323(0.032) 3.172(0.015)
80 299.830(3.773) 7.516(0.080) 6.219(0.069) 12.261(0.172) 5.476(0.067)
120 Inf(NA) 11.742(0.040) 9.571(0.035) 24.233(0.109) 8.293(0.033)

10 0.678(0.005) 0.605(0.005) 0.600(0.005) 0.626(0.005) 0.627(0.005)
30 8.282(0.029) 5.023(0.017) 4.834(0.016) 4.805(0.016) 4.790(0.016)

Σ(3) 50 36.491(0.104) 13.888(0.033) 13.000(0.030) 12.752(0.029) 12.435(0.029)
80 297.095(3.735) 34.273(0.162) 31.195(0.146) 31.511(0.150) 28.907(0.142)
120 Inf(NA) 70.565(0.076) 63.856(0.069) 68.091(0.064) 58.260(0.066)

10 0.667(0.005) 0.660(0.005) 0.664(0.005) 0.660(0.005) 0.662(0.005)
30 8.290(0.029) 8.212(0.031) 8.430(0.032) 7.945(0.029) 7.968(0.029)

Σ(4) 50 36.261(0.106) 32.881(0.079) 31.981(0.075) 32.291(0.075) 31.383(0.075)
80 292.741(3.333) 68.895(0.283) 64.173(0.271) 68.503(0.269) 63.620(0.273)
120 Inf(NA) 111.819(0.088) 106.597(0.087) 113.583(0.086) 106.009(0.088)
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better than the sample covariance matrix and Σ̂PLSE(α̂CV 1p−1). Althoght λ∗
may be useful without the covariance structure assumption, the L2 penalized
maximum likelihood estimator of Huang et al. (2006) is the best estimator
on Σ(1). On other structures, we can see the following trend. Although
Σ̂PLSE(λ∗ : α̂CV ) does good in large sample setting (e.g. p = 10), It is not
good in high-dimensional setting. In contrast, Σ̂PLSE(λ∗ : α̂CV ∗) is better
than the others, and relatively stable as the dimension increase. Moreover,
our method Σ̂PLSE(λ∗ : α̂CV ∗) is the best estimator in high-dimensional set-
ting. Thus, λ∗ may be useful for high-dimensional estimation.

5.2 Multivariate t5 simulations

To test the behavior of the methods with a non-normal and non-centered
sample, we run the simulations with multivariate t distributions. The sample
is taken from √

d

x
Σ

1
2y + µ ∼ td(µ,Σ),

where y ∼ Np(0, Ip), x ∼ χ2
d, and y and x are independent. After centering

the sample, we similarly use the sample as is the case of normal distribution.
Note that we must replace Σ with d(d−2)−1Σ in loss (5.1). Table 2 gives the
results for d = 5 and µ = 31p. The results exhibit almost similar trends with

multivariate normal sample. Thus, our proposed method Σ̂PLSE(λ∗ : α̂CV ∗)
may be well estimation for non-normal and non-centerd data.

6 Discussion

We propose an estimator of covariance matrix using modified Cholesky de-
composition (Pourahmadi, 1999), that using Ridge regression, and a method
of select a penalizing parameter. The estimator is shown to be better than
the sample covariance matrix by simulations and the theoretical result, an
asymptotic approximation of the Kullback-Leibler risk. The optimal penal-
izing parameter is also derived by the approximated risk in large sample
asymptotic framework, and could be well estimated in high-dimensional sim-
ulations. Moreover, in comparison, the L2 penalized likelihood estimator by
Huang et al. (2006), our method does not need iterative algorithm. The
derivation of penalizing parameter in high-dimensional asymptotic frame-
work is a subject for future work.
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Table 2: The means and, in parentheses, standard deviations of the the
Kullback-Leibler losses for multivariate t5 sample.

Σ̂PLSE

Σ p S Huang et al. α̂CV 1p−1 λ∗ : α̂CV λ∗ : α̂CV ∗
10 1.371(0.013) 0.317(0.007) 0.318(0.007) 0.295(0.006) 0.318(0.007)
30 15.541(0.074) 0.864(0.013) 1.206(0.015) 0.833(0.012) 0.866(0.013)

Σ(1) 50 66.285(0.256) 1.454(0.021) 3.789(0.029) 1.506(0.019) 1.516(0.019)
80 527.750(2.269) 2.325(0.030) 14.499(0.064) 3.134(0.032) 3.134(0.032)
120 Inf(NA) 3.590(0.046) 54.724(0.143) 8.805(0.059) 8.805(0.059)

10 1.354(0.012) 0.912(0.010) 0.858(0.009) 0.867(0.009) 0.873(0.010)
30 15.497(0.074) 3.832(0.028) 3.352(0.028) 3.296(0.028) 3.122(0.027)

Σ(2) 50 66.466(0.251) 7.209(0.047) 6.170(0.046) 6.917(0.055) 5.555(0.045)
80 531.129(2.306) 12.344(0.078) 10.411(0.078) 14.553(0.102) 9.164(0.078)
120 Inf(NA) 19.287(0.111) 16.085(0.112) 28.432(0.173) 13.932(0.116)

10 1.350(0.012) 1.187(0.011) 1.169(0.011) 1.214(0.011) 1.213(0.011)
30 15.649(0.076) 8.667(0.046) 8.261(0.045) 8.132(0.044) 8.113(0.044)

Σ(3) 50 66.427(0.256) 21.559(0.080) 20.111(0.079) 19.116(0.074) 19.142(0.079)
80 527.065(2.253) 48.709(0.134) 44.916(0.136) 43.193(0.114) 41.655(0.137)
120 Inf(NA) 91.844(0.178) 85.162(0.192) 85.078(0.137) 77.879(0.202)

10 1.362(0.012) 1.400(0.017) 1.399(0.013) 1.358(0.012) 1.378(0.013)
30 15.376(0.072) 15.631(0.080) 16.880(0.077) 16.138(0.078) 15.999(0.078)

Σ(4) 50 65.541(0.256) 41.825(0.095) 40.096(0.097) 40.832(0.094) 39.890(0.101)
80 529.655(2.324) 75.599(0.107) 73.036(0.119) 75.436(0.099) 72.878(0.128)
120 Inf(NA) 117.762(0.112) 115.380(0.131) 118.264(0.100) 115.347(0.143)
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Appendix

A.1 Proof of Lemma 3.1.

Since Y ′
j−1Yj−1 ∼ Wj−1(n,Σj−1), Σ

−1/2
j−1 Y

′
j−1Yj−1Σ

−1/2
j−1 ∼ Wj−1(n, Ij−1). We

use the central limit theorem for Wishart distribution (see section 2.5 in
Fujikoshi et al., 2010)

Z :=
√
n

(
1

n
Σ

−1/2
j−1 Y

′
j−1Yj−1Σ

−1/2
j−1 − Ij−1

)
d−→ Nj−1×j−1(0j−1×j−1,Ω),

where Ω : cov(zij, zkl) = δikδjl + δilδjk,, δij is Kronecker’s delta. From the
normal assumption, ε(j) ∼ Nn(0, σ

2
jIn), and ε(j) and Yj−1 are independent.

Here, we define a random vector

V :=
1

σj

(
Σ

−1/2
j−1 Y

′
j−1Yj−1Σ

−1/2
j−1

)−1/2

Σ
−1/2
j−1 Y

′
j−1ε(j) ∼ Nj−1(0, Ij−1),

that is independent of Z. Thus, we obtain

1

n
Y ′

j−1ε(j) = σjn
−1/2Σ

1/2
j−1

(
Ij−1 +Zn

−1/2
)1/2

V

= σjn
−1/2Σ

1/2
j−1

(
Ij−1 +

1

2
Zn−1/2 − 1

8
Z2n−1 +

1

16
Z3n−3/2

)
V +Op(n

−5/2).

Here, we consider an orthogonal transformation,

ε̃(j) :=
1

σj
Hε(j) =

(
V
U

)
, (A.1.1)

where

H =

( (
Σ

−1/2
j−1 Y

′
j−1Yj−1Σ

−1/2
j−1

)−1/2

Σ
−1/2
j−1 Y

′
j−1

H2

)
,

andH2 is a n−j+1×n−j+1 orthogonal matrix. From σ−1
j ϵ(j) ∼ Nn(0, In),

ε̃(j) ∼ Nn(0, In). Then U and V are independent, and U ′U ∼ χ2(n− j+1).
Therefore, from the central limit theorem,

X :=

√
n− j + 1

2

(
1

n− j + 1
U ′U − 1

)
d−→ N(0, 1).
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Then it holds that

1

n
ε′(j)ε(j) =

1

n
σ2
j (V

′V +U ′U) ,

= σ2
j

{
V ′V n−1 +

√
2Xn−1/2

√
1− j − 1

n
− (j − 1)n−1 + 1

}

= σ2
j

{
V ′V n−1 +

√
2Xn−1/2

(
1− 1

2
(j − 1)n−1

)
− (j − 1)n−1 + 1

}
+Op(n

−5/2).

A.2 Proof of Lemma 3.3.

We partition the modified Cholesky decomposition of covariance matrix or
its estimator:

Σ = T−1D2(T ′)
−1
,(

Σp−1 σp

σ′
p σpp

)
=

(
Tp−1 0
−ϕ′

p 1

)−1(
D2

p−1 0
0′ σ2

p

)(
T ′
p−1 −ϕp

0′ 1

)−1

=

(
T−1
p−1 0

ϕ′
pT

−1
p−1 1

)(
D2

p−1 0
0′ σ2

p

)(
(T ′

p−1)
−1 (T ′

p−1)
−1ϕp

0′ 1

)
=

(
T−1
p−1D

2
p−1(T

′
p−1)

−1 T−1
p−1D

2
p−1(T

′
p−1)

−1ϕp

ϕ′
pT

−1
p−1D

2
p−1(T

′
p−1)

−1 ϕ′
pT

−1
p−1D

2
p−1(T

′
p−1)

−1ϕp + σ2
p

)
=

(
Σp−1 Σp−1ϕp

ϕ′
pΣp−1 ϕ′

pΣp−1ϕp + σ2
p

)
,

where Tp−1 and D2
p−1 are the submatrix of T and D2, respectively. We

also partition the modified Cholesky decomposition of the inverse covariance
matrix.

Σ−1 = T ′D−2T ,(
Σp−1 σp

σp′ σpp

)
=

(
T ′
p−1 −ϕp

0′ 1

)(
D−2

p−1 0
0′ σ−2

p

)(
Tp−1 0
−ϕ′

p 1

)
,

=

(
T ′
p−1D

−2
p−1Tp−1 + σ−2

p ϕpϕ
′
p −σ−2

p ϕp

−σ−2
p ϕ

′
p σ−2

p

)
,

=

(
Σ−1

p−1 + σ−2
p ϕpϕ

′
p −σ−2

p ϕp

−σ−2
p ϕ

′
p σ−2

p

)
.

21



The same argument can be considered for Σ̂ and Σ̂−1. Therefore, it holds
that

KL(Σ, Σ̂) = trΣΣ̂−1 − log
∣∣∣ΣΣ̂−1

∣∣∣− p

= tr

{(
Σp−1 Σp−1ϕp

ϕ′
pΣp−1 ϕ′

pΣp−1ϕp + σ2
p

)(
Σ̂−1

p−1 + σ̂−2
p ϕ̂pϕ̂

′
p −σ̂−2

p ϕ̂p

−σ̂−2
p ϕ̂

′
p σ̂−2

p

)}

− log

∣∣∣∣∣
(
D2

p−1 0
0′ σ2

p

)(
D̂2

p−1 0
0′ σ̂2

p

)−1
∣∣∣∣∣− (p− 1)− 1

= KL(Σp−1, Σ̂p−1) +
1

σ̂2
p

(
ϕ̂p − ϕp

)′
Σp−1

(
ϕ̂p − ϕp

)
+
σ2
p

σ̂2
p

− log
σ2
p

σ̂2
p

− 1.

We can use the same argument for j = p− 1, p− 2, . . . , 2.

A.3 Proof of Lemma 3.4

For simplicity, we write Σ̂PLSE(λ) = Σ̂, ϕ̂j,PLSE = ϕ̂j, and σ̂2
j,PLSE = σ̂2

j .
From Lemma 3.2, it holds that(

ϕj − ϕ̂j

)′
Σj−1

(
ϕj − ϕ̂j

)
(A.3.2)

= σ2
j

{
V ′V n−1 +

(
−V ′ZV − 2λj

σj
V ′Σ

−1/2
j−1 ϕj

)
n−3/2

+

(
V ′Z2V − 2λjV

′Σ−1
j−1V +

3λj
σj
V ′ZΣ

−1/2
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λ2j
σ2
j

ϕ′
jΣ

−1
j−1ϕj

)
n−2

}
+Op(n

− 5
2 ),

σ2
j

σ̂2
j

= 1−
√
2Xn−1/2 + (2X2 + j − 1)n−1 +

(
−2

√
2X3 − 3

√
2

2
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n−3/2
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j

ϕ′
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−1
j−1ϕj

)
n−2 +Op(n
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(A.3.3)

σ2
j

σ̂2
j

− log
σ2
j

σ̂2
j

= 1 +X2n−1 +

{
−
√
2(j − 1)X − 4

√
2

3
X3

}
n−3/2

+

{
3X4 + 3(j − 1)X2 +

1

2
(j − 1)2

}
n−2 +Op(n

−5/2). (A.3.4)
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Here, (A.3.3) and (A.3.4) are functions of X, and (A.3.2) is a function of Z
and V . Thus,

E

[
1

σ̂2
j

(
ϕ̂j − ϕj

)′
Σj−1

(
ϕ̂j − ϕj

)
+
σ2
j

σ̂2
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− 1

]
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1
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)]
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j

σ̂2
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− log
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j

σ̂2
j

− 1

]
.

Note that from the definition of X,

E[X] = 0, E[X2] = 1,

E[X3] = 2
√
2n− 1

2 +O(n−1), E[X4] = 3 +O(n−1).

Hence

EX

[
1

σ̂2
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2 ).

Furthermore, from the distribution of Z and V ,

E[Z] = 0j−1×j−1, E[Z2] = jIj−1,

V ′V ∼ χ2(j − 1), V V ′ ∼ Wj−1(1, Ij−1).

Then
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Therefore,
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