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Abstract

This paper is concerned with the multivariate 3rd moment and its estimation. Mardia (1970)
and Srivastava (1984) proposed the multivariate skewness and its estimator, independently. How-
ever, these estimators can not defined for the case in which the dimension p is larger than the
sample size N . In this paper, we treat the multivariate 3rd moment γ which is defined by using
Hadamard product of observation vectors, and propose an estimate of γ which is well defined when
p > N . Based on the estimator, we propose new test for multivariate normality. Simulation results
revealed that our proposed test has good accuracy.
Keywords: Multivariate 3rd moment, Hadamard product, testing multivariate normality, (n, p)-
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1 Introduction

Let x and y be p-variate random vectors which are independently and identically distributed as a
p-dimensional distribution Fp(µ,Σ) with mean vector µ and covariance matrix Σ. Mardia (1970)
defined multivariate skewness and kurtosis as

βM1,p = E[{(x− µ)′Σ−1(y − µ)}3],
βM2,p = E[{(x− µ)′Σ−1(x− µ)}2],

respectively. When p = 1, β1,p and β2,p are reduced to the ordinal univariate squared skewness and
kurtosis, respectively. Let x1, . . . ,xN be a random sample drown from a population with distribution
Fp(µ,Σ). Mardia [10] proposed sample counterparts of βM1,p and βM2,p as

bM1,p =
1

N2

N∑
i=1

N∑
j=1

{(xi − x̄)′S−1(xj − x̄)}3,

bM2,p =
1

N

N∑
i=1

{(xi − x̄)′S−1(xi − x̄)}2,

respectively, where

x̄ =
1

N

N∑
i=1

xi, S =
1

N

N∑
i=1

(xi − x̄)(xi − x̄)′.

Srivastava [8] (as cited in a more recent book by this author [9]) defined other multivariate skewness
βS1,p and kurtosis βS2,p, which are described as follows: Let Γ = (γ1, . . . ,γp) be an orthogonal matrix
such that Γ = (γ1, . . . ,γp), where Dλ = diag(λ1, . . . , λp). Let yℓ = γ′

ℓx and θℓ = γ′
ℓµ for ℓ = 1, . . . , p.
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Then βS1,p and βS2,p are given by

βS1,p =
1

p

p∑
ℓ=1

{
E[(yℓ − θℓ)

3]

λ
3/2
ℓ

2
}
,

βS2,p =
1

p

p∑
ℓ=1

E[(yℓ − θℓ)
4]

λ2
ℓ

,

respectively. Srivastava [8] proposed sample counterparts of βS1,p and βS2,p as bS1,p and bS2,p, respec-
tively. To describe them, let {N/(N − 1)}S = HDuH

′, where H = (h1, . . . ,hp) is an orthogonal
matrix and Du = diag(u1, . . . , up). With being

yℓi = h′
ℓxi (ℓ = 1, . . . , p, i = 1, . . . , N),

bS1,p and bS2,p are given by

bS1,p =
1

p

p∑
ℓ=1

{
u
−3/2
ℓ

N

N∑
i=1

(yℓi − ȳℓ)
3

}2

,

bS2,p =
1

Np

p∑
ℓ=1

u−2
ℓ

N∑
i=1

(yℓi − ȳℓ)
4,

respectively, where ȳℓ = N−1
∑N

i=1 yℓi.
These sample counterparts of multivariate skewness and kurtosis are applied for testing multivariate

normality, i.e., testing null hypothesis that population distribution is multivariate normal. Under
multivariate normality, Mardia [10] showed that (N/6)bM1,p converges in distribution to χ2(fM1), chi-

squared distribution with fM1 degrees of freedom, and
√
N{bM2,p− p(p+2)}/{8p(p+2)}1/2 converges

in distribution to N(0, 1). Here, fM1 = p(p+ 1)(p+ 2)/6. Thus, if

N

6
bM1,p ≥ χ2

fM1
(1− α) (1)

non-normality of the data is expected, where χ2
fM1

(1−α) is the 100(1−α)% point of χ2(fM1). Similarly,
the normality is rejected if ∣∣∣∣∣

√
N

8p(p+ 2)
bM2,p − p(p+ 2)

∣∣∣∣∣ ≥ z1−α/2,

where z1−α/2 is the 100(1 − α/2)% point of the standard normal distribution. Srivastava [8] showed
that {Np/6}bS1,p converges in distribution to χ2(p) under multivariate normality, and showed that
(Np/24)1/2(bS2,p− 3) converges in distribution to N(0, 1). Based on these convergences, Srivastava [8]
proposed testing criterion which rejects the normality of the data if

Np

6
bS1,p ≥ χ2

p(1− α), (2)

and proposed the testing criterion that the normality is rejected if∣∣∣∣∣
√

Np

24
(bS2,p − 3)

∣∣∣∣∣ ≥ z1−α/2.

Some other methods to assess the multivariate normality have been studied. For a review of the results,
see, e.g., Henze [3] and Mecklin and Mundfrom [11].

In last years, we encounter more and more problems in applications when p is comparable with N
or even exceeds it. For example, financial data, consumer data, network data and medical data have
this feature. When p > N , it is impossible to define bM1,p, bM2,p, bS1,p and bS2,p, because the sample
covariance matrix S becomes singular.
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Instead of dealing with βM2,p or βS2,p, Himeno and Yamada [4] has treated

κ = E[{(x− µ)′(x− µ)}]− 2 trΣ2 − (trΣ)2.

When Σ equals to identity matrix Ip, κ is the same as the another definition of the Mardia [10]’s
multivariate kurtosis β2M,1 − p(p + 2). Himeno and Yamada [4] gave the unbiased estimator of κ as
the sample counterpart of κ, which is as follows:

κ̂ = − 1

(N − 2)(N − 3)
{2N2 trS2 +N2(trS)2 −N(N + 1)Q},

where

Q =
1

N − 1

N∑
i=1

{(x− x̄)′(x− x̄)}2.

It is noted that κ̂ is well defined for the case in which p > N . Himeno and Yamada [4] showed
that (N/8)1/2p−1(κ̂/â2) converges in distribution to N(0, 1) as N and p go to infinity together under
the following assumptions: (1) (N − 1)/p converges to a positive constant as N, p go to infinity; (2)
ai = trΣi/p converges to a positive constant as p → ∞, i = 1, . . . , 4. Here, â2 is an unbiased estimator
of a2, which is as follows:

â2 =
1

(N − 1)(N − 2)(N − 3)
{N(N − 1)(N − 2) trS2 +N(trS)2 − (N − 1)2Q}.

They proposed testing criterion which rejects the normality of the data if∣∣∣∣∣
√

N

8

1

p

κ̂

â2

∣∣∣∣∣ ≥ z1−α/2.

It is reported in Himeno and Yamada [4] that the power of this test gets large as N and p become
large for local alternative hypothesis that population distribution is multivariate t.

In this paper, we treat other multivariate 3rd moment γ instead of dealing with βM1,p or β1S1,p.
An estimator of γ is proposed that is well defined for the case in which p > N . Based on γ̂, we propose
a new test for assessing multivariate normality.

The present paper is organized as follows. In Section 2, we propose γ, and gave the estimator
γ̂. Asymptotic normality of γ̂ is shown under the asymptotic framework that N, p → ∞ for the case
in which population distribution is multivariate normal. We give a testing criterion for multivariate
normality based on γ̂. Some results of small-scale simulation including to see attained significance level
and empirical power are reported in Section 3. We give concluding remarks in Section 4. All technical
proofs are relegated to the Appendix.

2 Multivariate 3rd moment and its estimator

Assume that x1, . . . ,xN are independently and identically distributed (i.i.d.), and assume the following
multivariate linear model:

xi = µ+Σ1/2εi, (3)

where ε1, . . . , εN are i.i.d. as a p-dimensional distribution Fp(0, Ip). For random vector x = µ+Σ1/2ε
with ε ∼ Fp(0, Ip), let

γ =
E[{⊙3(x− µ)}′1p]√

1′
p(⊙3Σ)1p

,

where the notation “⊙iA” stands for the Hadamard product of i matrices A, i.e.,

⊙iA = A⊙A⊙ · · · ⊙A (i times).

We note that ⊙iA is positive definite, which is guaranteed by Schur’s product theorem (cf. Schott
[7]). When p = 1, γ is reduced to the univariate skewness. It is hard to obtain analytic form for
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the unbiased estimator of γ. Instead of getting it, we construct the estimator by taking the ratio of
unbiased estimator for the numerator of γ divided by for the denominator, which an estimator we
proposed is as follows.

γ̂ =
̂E[{⊙3(x− µ)}′1p]√
̂1′

p(⊙3Σ)1p

=
T√
S
,

where

T =
4

3NP3

N∑
i,j,k

*
[
⊙3

{
xi −

1

2
(xj + xk)

}]′
1p,

S =
1

8NP6

N∑
k,ℓ,α,β,

γ,δ

* 1′
p{(xk − xℓ)(xk − xℓ)

′ ⊙ (xα − xβ)(xα − xβ)
′ ⊙ (xγ − xδ)(xγ − xδ)

′}1p.

Here, the notation
∑∗

stands for the sum of all pairs of indices which are not equal. For example,∑
i,j,k

∗
=
∑

i=1

∑
j=1,j ̸=i

∑
k=1,k ̸=i,k ̸=j .

2.1 Asymptotic distribution of γ̂ and a test for γ

Firstly, we show the asymptotic normality of γ̂ as N, p → ∞ under the assumption that Fp(0, Ip) =
Np(0, Ip). It is noted that T is invariant under the location shift. Hence, without loss of generality,
we may assume µ = 0. It can be described that

T =
4

3NP3

N∑
i,j,k

*⊙3

[
Σ1/2

{
zi −

1

2
(zj + zk)

}]′
1p.

For deriving the anaclitic form of Var(T ), we decompose T as

T =
1

N

p∑
ℓ=1

N∑
i=1

(a′
ℓzi)

3 − 3

N(N − 1)

p∑
ℓ=1

N∑
i,j

*(a′
ℓzi)

2a′
ℓzj

+
2

N(N − 1)(N − 2)

p∑
ℓ=1

N∑
i,j,k

*a′
ℓzia

′
ℓzja

′
ℓzk

=
1

N

p∑
ℓ=1

N∑
i=1

{
(a′

ℓzi)
3 − 3a′

ℓaℓa
′
ℓzi

}
− 3

N(N − 1)

p∑
ℓ=1


N∑
i,j

*(a′
ℓzi)

2a′
ℓzj − (N − 1)a′

ℓaℓ

N∑
i=1

a′
ℓzi


+

2

N(N − 1)(N − 2)

p∑
ℓ=1

N∑
i,j,k

*a′
ℓzia

′
ℓzja

′
ℓzk

= T1 + T2 + T3,

where Σ1/2 = A = (a1, . . . ,ap)
′. After much algebraic calculations, it is shown that Cov(T1, T2) = 0,

Cov(T2, T3) = 0 and Cov(T1, T3) = 0, and so

σ2
T = Var(T ) = Var(T1) + Var(T2) + Var(T3).

We obtain analytic forms of Var(T1), Var(T2) and Var(T3), respectively, which are as follows.

Var(T1) =
6

N
1′
p(⊙3Σ)1p, (4)

Var(T2) =
18

N(N − 1)
1′
p(⊙3Σ)1p, (5)

Var(T3) =
24

N(N − 1)(N − 2)
1′
p(⊙3Σ)1p. (6)
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These proofs are given in Appendix. From (4), (5) and (6), we have

Var(T ) =
6N

(N − 1)(N − 2)
1′
p(⊙3Σ)1p.

It is found that

Var(T2)

σ2
T

=
3(N − 2)

N2
→ 0 (N, p → ∞),

Var(T3)

σ2
T

=
4

N2
→ 0 (N, p → ∞).

From Chebyshev inequality we have

1

σT
T2

p→ 0 (N, p → ∞),
1

σT
T3

p→ 0 (N, p → ∞).

These probability convergences imply that

1

σT
(T − T1)

p→ 0 (N, p → ∞).

And we can express that

1

σT
T1 =

1√
N

N∑
i=1

[
1

σT

√
N

p∑
ℓ=1

{
(a′

ℓzi)
3 − 3a′

ℓaℓa
′
ℓzi

}]
=

1√
N

N∑
i=1

ηi
σT

.

It is shown that E[ηi] = 0, and is shown in Appendix that

Var

(
ηi
σT

)
=

6

Nσ2
T

1′
p(⊙3Σ)1p, (7)

which converges to 1 as N, p → ∞. By virtue of the ordinal central limit theorem, we find that the
asymptotic distribution of σ−1

T T1 is N(0, 1) as N, p → ∞. Using Slutsly theorem, the asymptotic
normality of T can be proved, which is given as the following theorem.

Theorem 1. As N, p → ∞,
1

σT
T

D→ N(0, 1).

In Appendix, we prove the rate consistency for S/1′
p(⊙3Σ)1p under the condition C;

C : lim sup
p

1′
p(⊙3Σ+)1p

1′
p(⊙3Σ)1p

< ∞,

where Σ+ = (|σij |) for Σ = (σij). The result is given as the following theorem.

Theorem 2. Suppose that the condition C holds. Then, as N, p → ∞,

S

1′
p(⊙3Σ)1p

p→ 1.

From these theorems (Theorem 1 and Theorem 2) and Slutsky’s theorem, we find that√
N

6
γ̂

D→ N(0, 1) (8)

as N, p → ∞ under the condition that C holds.
As an application, assessing the assumption of multivariate normality is considered by testing

γ = 0. The null hypothesis that γ = 0 is rejected with significance level α for the case in which
|
√

N/6γ̂| > z1−α/2, where zα is the 100 α% point of the standard normal distribution.
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3 Numerical results

3.1 Simulation

In order to see the accuracy of the asymptotic normality (8), we tried a numerical simulation. It can
be expressed that

S =
1

NP3
A− 3

NP4
B +

3

NP5
C − 1

NP6
D, (9)

where

A =

N∑
k,ℓ,α

*1′
p(xkx

′
k ⊙ xℓx

′
ℓ ⊙ xαx

′
α)1p, B =

N∑
k,ℓ,α,β

*1′
p(xkx

′
k ⊙ xℓx

′
ℓ ⊙ xαx

′
β)1p,

C =

N∑
k,ℓ,α,β,γ

*1′
p(xkx

′
k ⊙ xℓx

′
α ⊙ xβx

′
γ)1p, D =

N∑
k,ℓ,α,β,γ,δ

*1′
p(xkx

′
ℓ ⊙ xαx

′
β ⊙ xγx

′
δ)1p.

To compute A, it is needed to calculate triple sum, which is performed by triple-loop calculations. We
see that B, C, D and T are needed to perform multi-loop calculations. Generally, it takes a lot time
to carry out multi-loop calculations. To save computing time, we shall provide other expressions for
A, B, C, D and T .

Put

Xij =

N∑
k=1

(⊙ixk)(⊙jxk)
′ (i, j = 1, . . . , 3),

X0i = X ′
i0 =

{
N∑

k=1

(⊙ixk)1
′
p

}′

(i = 1, . . . , 3),

sk =

N∑
i=1

(⊙kxi) (k = 1, . . . , 3).

Then, it holds that

T =
N

(N − 1)(N − 2)
s′31p −

3

(N − 1)(N − 2)
(s2 ⊙ s1)

′1p +
2

N(N − 1)(N − 2)
(⊙3s1)

′1p,

A = 1′
p

[
(⊙3X11)− 3X11 ⊙X22 + 2X33

]
1p,

B = 1′
p

[
−(⊙3X11) + 5X11 ⊙X22 − 6X33 − 4X10 ⊙X11 ⊙X12 + 4X10 ⊙X23

+2X12 ⊙X21 +X01 ⊙X10 ⊙ (⊙2X11)−X01 ⊙X10 ⊙X22

]
1p,

C = 1′
p

[
2(⊙3X11)− 14X11 ⊙X22 + 24X33 + 16X10 ⊙X11 ⊙X12 − 24X10 ⊙X23

− 8X12 ⊙X21 − 4X01 ⊙X10 ⊙ (⊙2X11) + 8X01 ⊙X10 ⊙X22 − 4X01 ⊙ (⊙2X10)⊙X12

+ 4(⊙2X10)⊙X13 + 4X01 ⊙X12 ⊙X20 − 4X13 ⊙X20 − 2X02 ⊙ (⊙2X10)⊙X11

+X02 ⊙X11 ⊙X20 + (⊙2X01)⊙ (⊙2X10)⊙X11

]
1p,

D = {(⊙3s1)
′1p − 3(s2 ⊙ s1)

′1p + 2s′31p}2 − 6A− 18B − 9C.

One can see that these expressions have no multi-sum expression.
Generate the data based on the model (3). Firstly, we checked the asymptotic normality of γ̂

given in (8). Make 104 samples of the size N , each of which is constructed by p-dimensional vectors
which are i.i.d. as Np(0,Σ). In this study, the following two cases for Σ are treated: (1) Σ = Ip;

(2) Σ has Toeplitz structure such that Σ = ΣT = D1/2PD1/2, where D = diag(d1, . . . , dp) with
di = 5+(−1)i−1(p− i+1)/p, and P = (0.1|i−j|). We note that these two cases satisfy the condition C.
Figure 1 shows Q-Q plot of

√
N/6γ̂ when Σ = Ip for the case in which (N, p) = (60, 60), and Figure 2

shows Q-Q plot when Σ = ΣT. We can see the goodness of fit of the standard normal distribution to√
N/6γ̂ from these figures. This numerical simulations were carried out for several other dimensions
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Figure 1: Q-Q plot of
√
10γ̂ when Σ = I10
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Figure 2: Q-Q plot of
√
10γ̂ when Σ = ΣT

as well, p = 120, 240, 480, and also for other sample sizes, N = 120, 240, 480, but due to similarity of
the graphs, only a selection is reported here.

Next, we checked the attained significance level(ASL) for testing the null hypothesis that H0 :
Fp(0, Ip) = Np(0, Ip) under the assumption of model (3) by using the following criterion:

|
√
N/6γ̂| > z1−α/2 =⇒ reject the null hypothesis that H0 : Fp(0, Ip) = Np(0, Ip). (10)

To compute ASL, Monte Carlo simulation with 104 replication was done for the nominal level α = 0.05.
We computed for the case in which N = 60,120, 240, 480, and p = 60, 120, 240, 480, and wrote these
values in Table 1. The settings of Σ treated in this paper are as follows.

Case 1. Σ = Ip.
Case 2. Σ = ΣT.
Case 3. Generate a sparse positive definite covariance matrix Σ by Algorithm 1. Set sparsity level

Algorithm 1 The algorithm for generating sparse covariance matrix Σ

1: Construct p× p matrix R = (rij) as follows. For each i < j,

rij =

 Unif(0, 1) with probability (1− s)× 0.75,
Unif(−1, 0) with probability (1− s)× 0.75,
0 with probability s,

where s is the level of sparsity in R. Then, we set rji = rij to obtain symmetry. Furthermore, set
the diagonal elements of R to equal 1.

2: Prepare a p×p diagonal matrix D = (dij) such that d11, . . . , dpp are i.i.d. chi-squared distribution
with 1 degree of freedom.

3: Create A = DRD.
4: In order to obtain positive definiteness of Σ, calculate the minimum eigenvalue emin of A. Set

Σ =

{
A+ (−emin + 0.1)Ip if emin ≤ 0,
A otherwise.

s = 0.7.
Case 4. Use the same generating method as Case 3 with sparsity level s = 0.4.
Case 5. Use the same generating method as Case 3 with sparsity level s = 0.1.

For Case 3-5, we repeat the Monte Carlo simulation 102 times, and wrote the average of these 102

values in the table. The value in parenthesis is the standard error.
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Table 1: Attained significance level of the proposed test
N p Case 1 Case 2 Case 3(S.E) Case 4(S.E) Case 5(S.E)

60

60 0.058 0.058 0.056(0.0022) 0.056(0.0026) 0.056(0.0024)
120 0.055 0.055 0.056(0.0024) 0.056(0.0021) 0.056(0.0020)
240 0.055 0.052 0.056(0.0025) 0.056(0.0021) 0.056(0.0023)
480 0.056 0.050 0.056(0.0025) 0.056(0.0021) 0.056(0.0022)

120

60 0.053 0.055 0.053(0.0022) 0.053(0.0024) 0.053(0.0021)
120 0.053 0.055 0.053(0.0022) 0.053(0.0021) 0.053(0.0019)
240 0.055 0.052 0.053(0.0023) 0.053(0.0023) 0.053(0.0024)
480 0.054 0.050 0.052(0.0021) 0.053(0.0023) 0.053(0.0023)

240

60 0.054 0.052 0.052(0.0025) 0.052(0.0023) 0.052(0.0022)
120 0.052 0.053 0.051(0.0025) 0.052(0.0020) 0.051(0.0020)
240 0.050 0.049 0.051(0.0021) 0.051(0.0018) 0.051(0.0020)
480 0.049 0.050 0.051(0.0020) 0.052(0.0022) 0.052(0.0020)

480

60 0.051 0.051 0.051(0.0022) 0.051(0.0023) 0.051(0.0023)
120 0.051 0.054 0.051(0.0022) 0.051(0.0021) 0.051(0.0022)
240 0.050 0.049 0.051(0.0020) 0.051(0.0021) 0.051(0.0022)
480 0.049 0.049 0.050(0.0023) 0.051(0.0024) 0.051(0.0021)

We can see from Table 1 that ASL of our statistic is little affeected by the sparsity of the covariance
matrix. It is observed that the accuracy of the approximation gets better as N and p become large.

Thirdly, we checked low-dimensional performance of the proposed test. The setting of dimensional-
ity is p = 10. We compare ASL of our proposed test with the one of Mardia [10]’s test (1) and the one
of Srivastava [8]’s test (2) for the case in which N = 40, 50, 60, 70, 80, 90, 100 and Σ = I10. Computing
methodology is the same as the one in Table 1. The symbol “P” denotes the value of ASL for proposed
test (10), “M” denotes for Mardia [10]’s test (1), and “S” denotes for Srivastava [8]’s test (2). We can
see that ASL of our proposed test overestimate, whereas ASLs of Mardia [10]’s test and Srivastava [8]’s
test underestimate. Our approximation seems to be good for the case in which N ≥ 70, whereas other
two approximations are not good. The precisions of all three tests gets better as N becomes large.

P P P
P P P P

M
M

M
M M M M

S
S

S S
S

S S

40 50 60 70 80 90 100

0.
00

0.
02

0.
04

0.
06

N

A
S

L

Figure 3: Comparison of ASL when p = 10

Finally, we checked the empirical power(EMP) of the proposed test by Monte Carlo simulation.
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The setting of the local alternative hypothesis treated in this paper is as follows: For ε = (ε1, . . . , εp)
′ ∼

Fp(0, Ip),

εi =

√
ν

2

(ci
ν

− 1
)

(i = 1, . . . , p),

where c1, . . . , cp are i.i.d. as the chi-squared distribution with ν degrees of freedom. We computed the
EMP based on 103 repetition for the case in which α = 0.05 and ν = 10000. The settings of N and p
are the same as the ones in Table 1. We carried out for all models of Σ written in Table 1, but due
to similarity of the tendencies, Case 2-5 are omitted here. We can see from Table 2 that EMP are
monotone increasing for p and N .

Table 2: Empirical power of the proposed test for Case 1
N \ p 60 120 240 480
60 0.11 0.17 0.29 0.50
120 0.16 0.29 0.52 0.78
240 0.32 0.51 0.78 0.98
480 0.49 0.78 0.98 1.00

3.2 Real data analysis

We applied our test to data-set which is used in Kubokawa and Srivastava [6]. The first applied
data is colon data which is constructed by 2000 (p) genes expression levels on 22 normal colon tissues
and 40 tumor colon tissues. We preprocessed the data by applying 10 logarithmic transformation.
The second applied data-set is leukemia data which is constructed by 3571(p) gene expressions on 47
patients suffering from acute lymphoblastic leukemia (ALL, 47 cases) and 25 patients suffering from
acute myeloid leukemia (AML, 25 cases). The data-set are preprocessed by following protocol written
in Dudoit et al. [1].

For the colon data, the p-value of our test is 0.000 for normal colon tissues and 0.000 for tumor colon
tissues. For the leukemia data, we observed that both the p-value of our test for ALL and for AML
are 0.000 for the leukemia data. These results indicate that the multivariate normality assumption on
both sets of data cannot be rejected at the usual significance level 5%.

4 Concluding remarks

This paper treats multivariate 3rd moment γ which is defined by using Hadamard product of obser-
vation vectors. When the dimension equals to 1, γ becomes univariate skewness. An estimator of γ,
denoted as γ̂, which is well defined for p > N is proposed. Based on γ̂, testing criterion for assessing
multivariate normality is given.

We prepare the expression of the testing statistic without having multi-sum. Calculating time
becomes shorten. The performance of the testing criterion, in terms of the attained significance
level and the empirical power, is shown through simulations for several setting of sample sizes and
dimensions. We apply our proposed test to microarray data sets, some of the most popular are in
high-dimensional data.

To assess the normality of high-dimensional data, we recommend to use not only our proposed
test but also Himeno and Yamada [4]’s test based on κ̂ together. Omnibus test using γ̂ and κ̂, which
imitates Jarque and Bera [5]’s test, is a future work.

A Moment of statistic

In this section, analytic forms of Var(T1), Var(T2) and Var(T3) are proposed. We derive them by using
these results (Lemma 1), proofs of which are tedious but simple, therefore skipped.
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Lemma 1. Let z be a random vector distributed as Np(0, Ip), and a and b be constant vectors. Then,

E[(a′z)2] = a′a,

E[(a′z)4] = 3(a′a)2,

E[(a′z)2(b′z)2] = 2(a′b)2 + a′ab′b,

E[(a′z)3b′z] = 3a′aa′b,

E[(a′z)6] = 15(a′a)3,

E[(a′z)3(b′z)3] = 6(a′b)3 + 9a′aa′bb′b.

Here, we write analytic forms of Var(T1), Var(T2) and Var(T3) in the following lemma.

Lemma 2. For T1, T2 and T3, as defined in Section 2.1,

Var(T1) =
6

N
1′
p(⊙3Σ)1p,

Var(T2) =
18

N(N − 1)
1′
p(⊙3Σ)1p,

Var(T3) =
24

N(N − 1)(N − 2)
1′
p(⊙3Σ)1p.

Proof. In Section 3, we expressed that

T1 =
1√
N

N∑
i=1

ηi,

where

ηi =
1√
N

p∑
ℓ=1

{
(a′

ℓzi)
3 − 3a′

ℓaℓz
′
ℓzi

}
.

Since η1, . . . , ηN are i.i.d., it holds that

Var(T1) = Var(η) = Var

(
1√
N

p∑
ℓ=1

{(a′
ℓz)

3 − 3a′
ℓaℓa

′
ℓz}

)
,

where z ∼ Np(0, Ip). We find that E[ζ] = 0, and so

Var(ζ) = E[ζ2]

= E

[
1

N

p∑
ℓ=1

{(a′
ℓz)

3 − 3a′
ℓaℓa

′
ℓz}2

+
1

N

p∑
ℓ,α

*{(a′
ℓz)

3 − 3a′
ℓaℓa

′
ℓz}{(a′

αz)
3 − 3a′

αaαa
′
αz}


=

[
1

N

p∑
ℓ=1

{(15− 18 + 9)(a′
ℓaℓ)

3}

+
1

N

p∑
ℓ,α

*{6(a′
ℓaℓ)

3 + (9− 9− 9 + 9)a′
ℓaℓa

′
ℓaαa

′
αaα}


=

6

N


p∑

ℓ=1

(a′
ℓaℓ)

3 +

p∑
ℓ,α

*(a′
ℓaα)

3


=

6

N
1′
p(⊙3A2)1p

=
6

N
1′
p(⊙3Σ)1p,
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where the third equality follows from Lemma 1.
Since E[T2] = 0, we have

Var(T2) = E[T 2
2 ]

=
9

N2(N − 1)2
E

 p∑
ℓ=1


N∑
i,j

*(a′
ℓzi)

4(a′
ℓzj)

2 − (N − 1)a′
ℓaℓ

N∑
i=1

a′
ℓzi


2

+

p∑
ℓ,α

*


N∑
i,j

*(a′
ℓzi)

4(a′
ℓzj)

2 − (N − 1)a′
ℓaℓ

N∑
i=1

a′
ℓzi


·


N∑
i,j

*(a′
αzi)

4(a′
αzj)

2 − (N − 1)a′
αaα

N∑
i=1

a′
αzi




=
9

N2(N − 1)2
E

 p∑
ℓ=1


N∑
i,j

*(a′
ℓzi)

4(a′
ℓzj)

2 +

N∑
i,j,k

*(a′
ℓzi)

2(a′
ℓzj)

2(a′
ℓzk)

2

+(N − 1)2(a′
ℓaℓ)

2
N∑
i=1

(a′
ℓzi)

2 − 2(N − 1)a′
ℓaℓ

N∑
i,j

*(a′
ℓzi)

2(a′
ℓzj)

2


+

p∑
ℓ,α

*


N∑
i,j

*(a′
ℓzi)

2(a′
αzi)

2a′
ℓzja

′
αzj +

N∑
i,j,k

*(a′
ℓzi)

2a′
ℓzja

′
αzj(a

′
αzk)

2

− (N − 1)a′
αaα

N∑
i,j

*(a′
ℓzi)

2a′
ℓzja

′
αzj − (N − 1)a′

ℓaℓ

N∑
i,j

*(a′
αzi)

2a′
αzja

′
ℓzj

+(N − 1)2a′
ℓaℓa

′
αaα

N∑
i=1

a′
ℓzia

′
αzi

}]

=
9

N2(N − 1)2

[
p∑

ℓ=1

{
3N(N − 1) +N(N − 1)(N − 2) +N(N − 1)2

−2N(N − 1)2
}
(a′

ℓaℓ)
3 +

p∑
ℓ,α

*{N(N − 1){2(a′
ℓaα)

2 + a′
ℓaℓa

′
αaα}a′

ℓaα

+ {N(N − 1)(N − 2)−N(N − 1)2 −N(N − 1)2 +N(N − 1)2}a′
ℓaℓa

′
ℓaαa

′
αaα

]

=
9

N2(N − 1)2

2N(N − 1)

p∑
ℓ=1

(a′
ℓaℓ)

3 + 2N(N − 1)

p∑
ℓ,α

*(a′
ℓaα)

3


=

18

N(N − 1)
1′
p(⊙3A2)1p

=
18

N(N − 1)
1′
p(⊙3Σ)1p,

where the fourth equality follows from Lemma 1.
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Since E[T3] = 0, we have

Var(T3) = E[T 2
3 ]

=
4

N2(N − 1)2(N − 2)2
E

 p∑
ℓ=1

 N∑
i,j,k

*a′
ℓzia

′
ℓzja

′
ℓzk

2

+

p∑
ℓ,α

*

 p∑
ℓ=1

N∑
i,j,k

*a′
ℓzia

′
ℓzja

′
ℓzk

 N∑
i,j,k

*a′
αzia

′
αzja

′
αzk


=

4

N2(N − 1)2(N − 2)2
E

6 p∑
ℓ=1

N∑
i,j,k

*(a′
ℓzi)

2(a′
ℓzj)

2(a′
ℓzk)

2

+6

p∑
ℓ,α

*
N∑

i,j,k

*a′
ℓziz

′
iaαa

′
ℓzjz

′
jaαa

′
ℓzkz

′
kaα


=

24

N(N − 1)(N − 2)

 p∑
ℓ=1

(a′
ℓaℓ)

3 +

p∑
ℓ,α

*(a′
ℓaα)

3


=

24

N(N − 1)(N − 2)
1′
p(⊙3A2)1p

=
24

N(N − 1)(N − 2)
1′
p(⊙3Σ)1p,

where the fourth equality follows from Lemma 1.

B Proof of Theorem 2

In this section, we give a proof of Theorem 2. Before proving it, we prepare three lemmas. The first
two lemmas (Lemma 3 and Lemma 4) treat formula about multi-sum, and the last lemma treats the
order of the expectations which is used to prove Theorem 2. Since proofs of Lemma 3 and Lemma 4
are tedious but simple, we skipped here.

Lemma 3. The following equations hold:

p∑
i,j,s,t

*σ2
ijσ

2
stσisσjt = tr{(⊙2Σ)Σ}2 − trDΣ(⊙2Σ)ΣD − trD(⊙2Σ)Σ(⊙2Σ)− 1′

p(⊙3Σ)21p

+ 21′
p{D

3(⊙3Σ)}1p −
p∑

i,j,s

*σ3
ijσ

3
is −

p∑
i,j,s

*σ2
ijσisσjjσ

2
js −

p∑
i,j,s

*σiiσ
2
ijσ

2
isσjs,

p∑
i,j,s,t

*σijσstσisσjtσitσjs =

p∑
i=1

p∑
j=1

p∑
s=1

p∑
t=1

σijσstσisσjtσitσjs − trD(⊙2Σ)Σ(⊙2Σ)

− 2 trD(⊙2Σ)Σ(⊙2Σ) + 21′
p{D

3(⊙3Σ)}1p − 3

p∑
i,j,s

*σiiσ
2
ijσ

2
isσjs.
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Lemma 4. The following equations hold:

p∑
i,j,s

*σ3
ijσ

3
is = 1′

p(⊙3Σ)21p − 1′
p{D

3(⊙3Σ)}1p −
p∑
i,j

*σ3
iiσ

3
ij −

p∑
i,j

*σ6
ij ,

p∑
i,j,s

*σ2
iiσijσisσ

2
js = trDΣ(⊙2Σ)ΣD − 1′

p{D
3(⊙3Σ)}1p −

p∑
i,j

*σ3
iiσ

3
ij −

p∑
i,j

*σ2
iiσ

2
ijσ

2
jj ,

p∑
i,j,s

*σiiσ
2
ijσ

2
isσjs = trD(⊙2Σ)Σ(⊙2Σ)− 1′

p{D
3(⊙3Σ)}1p −

p∑
i,j

*σ3
iiσ

3
ij −

p∑
i,j

*σiiσ
4
ijσjj .

Lemma 5. Let

Qkℓαβγδ =

p∑
i=1

p∑
j=1

a′
izkzℓajaizαzβaja

′
izγz

′
δaj ,

where Σ1/2 = A = (a1, . . . ,ap)
′, and zk, zℓ, zα, zβ, zγ and zδ are i.i.d. as Np(0, Ip). Then,

E[Q2
112233] = O

max

{1′
p(⊙3Σ)1p}2,

∣∣∣∣∣∣
p∑

i=1

p∑
j=1

p∑
s=1

p∑
t=1

σijσstσisσjtσitσjs

∣∣∣∣∣∣

 , (11)

E[Q2
112234] = O

max

{1′
p(⊙3Σ)1p}2,

∣∣∣∣∣∣
p∑

i=1

p∑
j=1

p∑
s=1

p∑
t=1

σijσstσisσjtσitσjs

∣∣∣∣∣∣

 , (12)

E[Q2
112345] = O

(
{1′

p(⊙3Σ)1p}2
)
, (13)

E[Q2
123456] = O

(
{1′

p(⊙3Σ)1p}2
)
. (14)

In addition, under the assumption C,

E[Q2
112233] = O

(
{1′

p(⊙3Σ)1p}2
)
, E[Q2

112234] = O
(
{1′

p(⊙3Σ)1p}2
)
.

Proof. Since (12), (13) and (14) can be proved by using the same way to show (11), we only show this,
and omit other three here. It can be expressed that

E[Q2
112233] = E

[
p∑

i=1

(a′
iz1z1aia

′
iz2z2aia

′
iz3z3ai)

2

+

p∑
i,j

*(a′
iz1z1aia

′
iz2z2aia

′
iz3z3ai)(a

′
jz1z1aja

′
jz2z2aja

′
jz3z3aj)

+ 2

p∑
i,j

*(a′
iz1z1aja

′
iz2z2aja

′
iz3z3aj)

2

+ 4

p∑
i,j,s

*(a′
iz1z1aja

′
iz2z2aja

′
iz3z3aj)(a

′
iz1z1asa

′
iz2z2asa

′
iz3z3as)

+

p∑
i,j,s,t

*(a′
iz1z1aja

′
iz2z2aja

′
iz3z3aj)(a

′
sz1z1ata

′
sz2z2ata

′
sz3z3at)

+ 4

p∑
i,j

*(a′
iz1z1aia

′
iz2z2aia

′
iz3z3ai)(a

′
iz1z1asa

′
iz2z2asa

′
iz3z3as)

+ 2

p∑
i,j

*(a′
iz1z1aia

′
iz2z2aia

′
iz3z3ai)(a

′
jz1z1asa

′
jz2z2asa

′
jz3z3as)



13



=

p∑
i=1

{3(a′
iai)

2}3 +
p∑
i,j

*{a′
iaia

′
jaj + 2(a′

iaj)
2}3 + 2

p∑
i,j

*{a′
iaia

′
jaj + 2(a′

iaj)
2}3

+ 4

p∑
i,j,s

*(a′
iaia

′
jas + 2a′

iaja
′
ias)

3 +

p∑
i,j,s,t

*(a′
iaja

′
sat + a′

iasa
′
jat + a′

iata
′
jas)

3

+ 4

p∑
i,j

*(3a′
iaia

′
iaj)

3 + 2

p∑
i,j,s

*(a′
iaia

′
jas + 2a′

iaja
′
jas)

3

= 27

p∑
i=1

σ6
ii + 3

p∑
i,j

*σ3
iiσ

3
jj + 18

p∑
i,j

*σ2
iiσ

2
ijσ

2
jj + 36

p∑
i,j

*σiiσ
4
ijσjj + 24

p∑
i,j

*σ6
ij

+ 108

p∑
i,j

*σ3
iiσ

3
ij + 48

p∑
i,j,s

*σ3
ijσ

3
is + 6

p∑
i,j,s

*σ3
iiσ

3
js + 36

p∑
i,j,s

*σ2
iiσijσisσ

2
js

+ 72

p∑
i,j,s

*σiiσ
2
ijσ

2
isσjs + 3

p∑
i,j,s,t

*σ3
ijσ

3
st + 18

p∑
i,j,s,t

*σ2
ijσ

2
stσisσjt + 6

p∑
i,j,s,t

*σijσisσitσjsσjtσst

= 3{1′
p(⊙3Σ)1p}2 + 24

p∑
i=1

σ6
ii + 18

p∑
i,j

*σ2
iiσ

2
ijσ

2
jj + 36

p∑
i,j

*σiiσ
4
ijσjj + 18

p∑
i,j

*σ6
ij

+ 96

p∑
i,j

*σ3
iiσ

3
ij + 36

p∑
i,j,s

*σ3
ijσ

3
is + 36

p∑
i,j,s

*σ2
iiσijσisσ

2
js + 72

p∑
i,j,s

*σiiσjsσ
2
ijσ

2
is

+ 18

p∑
i,j,s,t

*σ2
ijσ

2
stσisσjt + 6

p∑
i,j,s,t

*σijσisσitσjsσjtσst

= 3{1′
p(⊙3Σ)1p}2 + 18 tr{(⊙2Σ)Σ}2 − 18 trDΣ(⊙2Σ)ΣD − 36 trD(⊙2Σ)Σ(⊙2Σ)

− 181′
p(⊙3Σ)21p + 481′

p{D
3(⊙3Σ)}1p + 24

p∑
i=1

σ6
ii + 18

p∑
i,j

*σ2
iiσ

2
ijσ

2
jj + 36

p∑
i,j

*σiiσ
4
ijσjj

+ 18

p∑
i,j

*σ6
ij + 96

p∑
i,j

*σ3
iiσ

3
ij + 18

p∑
i,j,s

*σ3
ijσ

3
is + 18

p∑
i,j,s

*σ2
iiσijσisσ

2
js + 36

p∑
i,j,s

*σiiσ
2
ijσ

2
isσjs

+ 6

p∑
i=1

p∑
j=1

p∑
s=1

p∑
t=1

σijσisσitσjsσjtσst

= 3{1′
p(⊙3Σ)1p}2 + 18 tr{(⊙2Σ)Σ}2 − 241′

p{D
3(⊙3Σ)}1p + 24

p∑
i=1

σ6
ii + 24

p∑
i,j

*σ3
iiσ

3
ij

+ 6

p∑
i=1

p∑
j=1

p∑
s=1

p∑
t=1

σijσisσitσjsσjtσst

= 3{1′
p(⊙3Σ)1p}2 + 18 tr{(⊙2Σ)Σ}2 + 6

p∑
i=1

p∑
j=1

p∑
s=1

p∑
t=1

σijσisσitσjsσjtσst,

where the second equality follows from Lemma 1, the third equality from bottom follows from Lemma
3 and the second equality from bottom follows from Lemma 4. Since ⊙2Σ is positive definite, we have

tr{(⊙2Σ)Σ}2 ≤ {tr(⊙2Σ)Σ}2,

where the right-hand side of the inequality can be written as {1′
p(⊙3Σ)1p}2. From this result, it is

found that

E[Q2
112233] = O

max

{1′
p(⊙3Σ)1p}2,

∣∣∣∣∣∣
p∑

i=1

p∑
j=1

p∑
s=1

p∑
t=1

σijσstσisσjtσitσjs

∣∣∣∣∣∣

 .
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Note that

σijσstσisσjtσitσjs ≤ σijσst(
√

|σis|)2(
√

|σjt|)2σjsσit

≤
σ2
ijσ

2
st|σis||σjt|+ σ2

sjσ
2
ti|σis||σjt|

2
,

From this inequality, we have∣∣∣∣∣∣
p∑

i=1

p∑
j=1

p∑
s=1

p∑
t=1

σijσstσisσjtσitσjs

∣∣∣∣∣∣ ≤
p∑

i=1

p∑
j=1

p∑
s=1

p∑
t=1

|σijσstσisσjtσitσjs|

≤ 1

2

[
tr{(⊙2Σ+)Σ+}2 + tr{(⊙2Σ+)Σ+}2

]
≤
[
1′
p(⊙3Σ+)1p

]2
.

Hence under the assumption C,

p∑
i=1

p∑
j=1

p∑
s=1

p∑
t=1

σijσstσisσjtσitσjs = O
(
{1′

p(⊙3Σ)1p}2
)
,

and so
E[Q2

112233] = O
(
{1′

p(⊙3Σ)1p}2
)
.

Proof of Theorem 2. Since S is unbiased estimator of 1′
p(⊙3Σ)1p, it is sufficient to show that

Var(S/1′
p(⊙3Σ)1p) → 0 (15)

as N, p → ∞. Since S is invariant under location shift, without loss of generality, we may assume that
µ = 0. Each of A, B, C and D in (9) can be written as

A =

N∑
k,ℓ,α

*1′
p{(Σ

1/2zkz
′
kΣ

1/2)⊙ (Σ1/2zℓz
′
ℓΣ

1/2)⊙ (Σ1/2zαz
′
αΣ

1/2)}1p,

B =

N∑
k,ℓ,α,β

*1′
p{(Σ

1/2zkz
′
kΣ

1/2)⊙ (Σ1/2zℓz
′
ℓΣ

1/2)⊙ (Σ1/2zαz
′
βΣ

1/2)}1p,

C =

N∑
k,ℓ,α,β,γ

*1′
p{(Σ

1/2zkz
′
kΣ

1/2)⊙ (Σ1/2zℓz
′
αΣ

1/2)⊙ (Σ1/2zβz
′
γΣ

1/2)}1p,

D =

N∑
k,ℓ,α,β,γ,δ

*1′
p{(Σ

1/2zkz
′
ℓΣ

1/2)⊙ (Σ1/2zαz
′
βΣ

1/2)⊙ (Σ1/2zγz
′
δΣ

1/2)}1p.

From (9), we can express that(
S/1′

p(⊙3Σ)1p − 1
)2

=

[{
1

NP3

A

1′
p(⊙3Σ)1p

− 1

}
− 3

NP4

B

1′
p(⊙3Σ)1p

+
3

NP5

C

1′
p(⊙3Σ)1p

− 1

NP6

D

1′
p(⊙3Σ)1p

]2
≤ 4

[{
1

NP3

A

1′
p(⊙3Σ)1p

− 1

}2

+

(
3

NP4

)2(
B

1′
p(⊙3Σ)1p

)2

+

(
3

NP5

)2(
C

1′
p(⊙3Σ)1p

)2

+

(
1

NP6

)2(
D

1′
p(⊙3Σ)1p

)2
]
,
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where the inequality follows from Jensen inequality. Thus, it is described that

Var

(
S

1′
p(⊙3Σ)1p

)
≤ 4

[
E

[{
1

NP3

A

1′
p(⊙3Σ)1p

− 1

}2
]
+

(
3

NP4

)2

E

[(
B

1′
p(⊙3Σ)1p

)2
]

+

(
3

NP5

)2

E

[(
C

1′
p(⊙3Σ)1p

)2
]
+

(
1

NP6

)2

E

[(
D

1′
p(⊙3Σ)1p

)2
]]

. (16)

For the first term in the right-hand side of the inequality (16), expanding {.}2, and excluding the term
whose expectation becomes 0, we have

E

[{
1

NP3

A

1′
p(⊙3Σ)1p

− 1

}2
]
=

(
1

NP31
′
p(⊙3Σ)1p

)2

E

6 N∑
k,ℓ,α

*Q2
kkℓℓαα + 18

N∑
k,ℓ,α,β

*QkkℓℓααQkkℓℓββ

+9

N∑
k,ℓ,α,β,γ

*QkkℓℓααQkkββγγ +

N∑
k,ℓ,α,β,γ,δ

*QkkℓℓααQββγγδδ


=

(
1

NP3

)2

[6NP3E[A1] + 18NP4E[A2] + 9NP5E[A3]]

+

{
NP6

(NP3)2
− 1

}
=

(
1

NP3

)2

[6NP3E[A1] + 18NP4E[A2] + 9NP5E[A3]]

− 3(3N2 − 15N + 20)

NP3
, (17)

where

E[A1] =
E[Q2

112233]

{1′
p(⊙3Σ)1p}2

, E[A2] =
E[Q112233Q112244]

{1′
p(⊙3Σ)1p}2

, E[A3] =
E[Q112233Q114455]

{1′
p(⊙3Σ)1p}2

.

Using the same calculation method, the second-fourth terms in the right-hand side of the inequality
(16) can be written as

E

[{
1

NP4

B

1′
p(⊙3Σ)1p

}2
]
=

(
1

NP4

)2

[2NP4E[B1] + 2NP4E[B2] + 4NP5E[B3] + 4NP5E[B4]

+2NP6E[B5] + 2NP6E[B6]] , (18)

E

[{
1

NP5

C

1′
p(⊙3Σ)1p

}2
]
=

(
1

NP5

)2

[4NP5E[C1] + 8NP5E[C2] + 8NP5E[C3] + 4NP5E[C4]

+4NP6E[C5] + 8NP6E[C6] + 8NP6E[C7] + 4NP6E[C8]] , (19)

E

[{
1

NP6

D

1′
p(⊙3Σ)1p

}2
]
=

(
1

NP6

)2

[36NP6E[D1] + 324NP6E[D2] + 324NP6E[D3]

+36NP6E[D4]] , (20)
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where

E[B1] =
E[Q2

112234]

{1′
p(⊙3Σ)1p}2

, E[B2] =
E[Q112234Q112243]

{1′
p(⊙3Σ)1p}2

, E[B3] =
E[Q112234Q115534]

{1′
p(⊙3Σ)1p}2

,

E[B4] =
E[Q112234Q115543]

{1′
p(⊙3Σ)1p}2

, E[B5] =
E[Q112234Q556634]

{1′
p(⊙3Σ)1p}2

, E[B6] =
E[Q112234Q556643]

{1′
p(⊙3Σ)1p}2

,

E[C1] =
E[Q2

112345]

{1′
p(⊙3Σ)1p}2

, E[C2] =
E[Q112345Q112354]

{1′
p(⊙3Σ)1p}2

, E[C3] =
E[Q112345Q112435]

{1′
p(⊙3Σ)1p}2

,

E[C4] =
E[Q112345Q113254]

{1′
p(⊙3Σ)1p}2

, E[C5] =
E[Q112345Q662345]

{1′
p(⊙3Σ)1p}2

, E[C6] =
E[Q112345Q662354]

{1′
p(⊙3Σ)1p}2

,

E[C7] =
E[Q112345Q662435]

{1′
p(⊙3Σ)1p}2

, E[C8] =
E[Q112345Q663254]

{1′
p(⊙3Σ)1p}2

,

E[D1] =
E[Q2

123456]

{1′
p(⊙3Σ)1p}2

, E[D2] =
E[Q123456Q123465]

{1′
p(⊙3Σ)1p}2

, E[D3] =
E[Q123456Q124365]

{1′
p(⊙3Σ)1p}2

,

E[D4] =
E[Q123456Q214365]

{1′
p(⊙3Σ)1p}2

.

From Lemma 5, we have

E[A1] = O(1), E[B1] = O(1), E[C1] = O(1), E[D1] = O(1).

It follows from Cauchy-Schwarz inequality that

|E[Aj ]| ≤ E[A1] (j = 2, 3, 4),

|E[Bj ]| ≤ E[B1] (j = 2, . . . , 6),

|E[Cj ]| ≤ E[C1] (j = 2, . . . , 8),

|E[Dj ]| ≤ E[D1] (j = 2, 3, 4).

From them, we find that

E[Aj ] = O(1) (j = 2, 3, 4),

E[Bj ] = O(1) (j = 2, . . . , 6),

E[Cj ] = O(1) (j = 2, . . . , 8),

E[Dj ] = O(1) (j = 2, 3, 4).

Combining these results with (17), (18), (19) and (20), it is found that

E

[{
1

NP3

A

1′
p(⊙3Σ)1p

− 1

}2
]
= O(N−1),

E

[{
1

NP4

B

1′
p(⊙3Σ)1p

}2
]
= O(N−2),

E

[{
1

NP5

C

1′
p(⊙3Σ)1p

}2
]
= O(N−4),

E

[{
1

NP6

C

1′
p(⊙3Σ)1p

}2
]
= O(N−6),

and so

Var

(
S

1′
p(⊙3Σ)1p

)
= O(N−1),

which converges to 0 as N, p → ∞.
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