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Abstract

This paper is concerned with selection of variables in two-group

discriminant analysis with the same covariance matrix. We propose a

test-based criterion (TC) drawing on the significance of each variable.

The selection method can be applied for high-dimensional data. Suf-

ficient conditions for the test-based criterion to be consistent are pro-

vided when the dimension and the sample are large. For the case that

the dimension is larger than the sample size, the regularized method

is proposed. Our results, and tendencies therein are explored numer-

ically through a Monte Carlo simulation.
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1. Introduction

This paper is concerned with the variable selection problem in two-group

discriminant analysis with the same covariance matrix. In a variable selection

problem under such discriminant model, one of the goals is to find a subset of

variables whose coefficients of the linear discriminant function are not zero.

Several methods including model section criteria AIC and BIC have been

developed. It is known (see, e.g., Fujikoshi 1984, Nishii et al.1988) that in

a large sample framework, AIC is not consistent, but BIC is consistent. On

the other hand, the selection methods are based on the minimization of the

criteria, and become computationally onerous when the dimension is large.

Though some stepwise methods have been proposed, their optimality is not

known. In our discriminant model, there are methods based on misclassifi-

cation errors by MaLachlan (1976), Fujikoshi (1985), Hyodo and Kubokawa

(2014), Yamada et al. (2018) for a high-dimensional case as well as a large-

sample case. It is known (see, e.g., Fujikoshi 1985) that two methods by

misclassification error rate and Akaike’s information criterion are asymptoti-

cally equivalent under a large-sample framework. For high-dimensional data,

Lasso and other regularization methods have been extended. For such study,

see, e.g., Clemmensen et al. (2011), Witten and Tibshirani (2011), etc.

In this paper we propose a test-based criterion based on significance test

of each variable, which is useful for high-dimensional data as well as large-

sample data. The criterion involves a constant term which should be deter-

mined by point of some optimality. We propose a class of constants satisfying

a consistency when the dimension and the sample size are large. For the case

when the dimension is larger than the sample size, a regularized method

is numerically examined. Our results, and tendencies therein are explored

numerically through a Monte Carlo simulation.

The remainder of the present paper is organized as follows. In Section

2, we present the relevant notation and the test-based method. In Sections
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3 we derive sufficient conditions for the test-based criterion to be consis-

tent under a high-dimensional case. In Section 4 we study the test-based

criterion through a Monte Carlo simulation. In Section 5, we propose the

ridge-type criteria, whose consistency properties are numerically examined.

In Section 6, conclusions are offered. All proofs of our results are provided

in the Appendix.

2. Test-based Criterion

In two-group discriminant analysis, suppose that we have independent

samples y
(i)
1 , . . . ,y

(i)
ni from p-dimensional normal distributions Np(µ

(i),Σ),

i = 1, 2. Let Y be the total sample matrix defined by

Y = (y
(1)
1 , . . . ,y(1)

n1
,y

(2)
1 , . . . ,y(2)

n2
)′.

The coefficients of the population discriminant function are given by

β = Σ−1(µ(1) − µ(2)) = (β1, . . . , βp)
′. (2.1)

Let ∆ andD be the population and the sample Mahalanobis distances defined

by ∆ =
{
(µ(1) − µ(1))′Σ−1(µ(1) − µ(1))

}1/2
, and

D =
{
(x̄(1) − x̄(2))′S−1(x̄(1) − x̄(2))

}1/2
,

respectively. Here x̄(1) and x̄(2) are the sample mean vectors, and S be the

pooled sample covariance matrix based on n = n1 + n2 samples.

Suppose that j denotes a subset of ω = {1, . . . , p} containing pj elements,

and yj denotes the pj vector consisting of the elements of y indexed by the

elements of j. We use the notation Dj and Dω for D based on yj and

yω(= y), respectively. Let Mj be a variable selection model defined by

Mj : βi ̸= 0 if i ∈ j, and βi = 0 if i ̸∈ j. (2.2)
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We identify the selection of Mj with the selection of yj. Let AICj be the

AIC for Mj. Then, it is known (see, e.g., Fujikoshi 1985) that

Aj = AICj − AICω (2.3)

= n log

{
1 +

g2(D2
ω −D2

j )

n− 2 + g2D2
j

}
− 2(p− pj),

where g =
√

(n1n2)/n. Similarly, let BICj be the BIC for Mj, and we have

Bj = BICj − BICω (2.4)

= n log

{
1 +

g2(D2
ω −D2

j )

n− 2 + g2D2
j

}
− (log n)(p− pj).

In a large sample framework, it is known (see, Fujikoshi 1985, Nishii et

al. 1988) that AIC is not consistent, but BIC is consistent. On the other

hand, the variable selection methods based on AIC and BIC are given as

minj AICj and minj BICj, respectively. Therefore, such criteria become com-

putationally onerous when p is large. To circumvent this issue, we consider

a test-based criterion (TC) drawing on the significance of each variable. A

critical region for ”βi = 0” based on the likelihood ratio principle is expressed

(see, e.g., Rao 1973, Fujikoshi et al. 2010) as

Td,i = n log

{
1 +

g2(D2
ω −D2

(−i))

n− 2 + g2D2
(−i)

}
− d > 0, (2.5)

where (−i), i = 1, . . . , p is the subset of ω = {1, . . . , p} obtained by omitting

the i from ω, and d is a positive constant which may depend on p and n.

Note that

T2,i > 0 ⇐⇒ AICω(−i) − AICω > 0.

We consider a test-based criterion for the selection of variables defined by

selecting the set of suffixes or the set of variables given by

TCd = {i ∈ ω | Td,i > 0}, (2.6)

or {yi ∈ {y1, . . . , yp} | Td,i > 0}. The notation ĵTCd
is also used for TCd.
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In general, if d is large, a small number of variables is selected. On the

other hand, if d is small, a large number of variables is selected. Ideally,

we want to select only the true variables whose discriminant coefficients are

not zero. For a test-based criterion, there is an important problem how to

decide the constant term d. Nishii et al. (1988) have used a special case

with d = log n. They noted that under a large sample framework, TClogn is

consistent. However, we note that TClogn will be not consistent for a high-

dimensional case, through a simulation experiment. We propose a class of d

satisfying a high-dimensional consistency including d =
√
n in Section 3.

3. Consistency of TCd under High-dimensional

Framework

For studying consistency of the variable selection criterion TCd, it is as-

sumed that the true modelM∗ is included in the full model. Let the minimum

model including M∗ be Mj∗ . For a notational simplicity, we regard the true

model M∗ as Mj∗ . Let F be the entire suite of candidate models, that is

F = {{1}, . . . , {k}, {1, 2}, . . . , {1, . . . , k}}.

A subset j of ω is called overspecified model if j include the true model. On

the other hand, a subset j of ω is called underspecified model if j does not

include the true model. Then, F is separated into two sets, one is a set of

overspecified models, i.e., F+ = {j ∈ F | j∗ ⊆ j} and the other is a set of

underspecified models, i.e., F− = Fc
+ ∩ F. It is said that a model selection

criterion ĵ has a high-dimensional consistency if

lim
p/n→c∈(0,∞)

Pr(ĵ = j∗) = 1.

Here we list some of our main assumptions:

A1 (The true model): Mj∗ ∈ F.
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A2 (The high-dimensional asymptotic framework):

p → ∞, n → ∞, p/n → c ∈ (0,∞), ni/n → ki > 0, (i = 1, 2).

For the dimensionality p∗ of the true model and the Mahalanobis distance

∆, the following two cases are considered:

A3 : p∗ is finite, and ∆2 = O(1).

For the constant d of test-based statistic Td,i in (2.5), we consider the fol-

lowing assumptions:

B1 : d/n → 0.

B2 : h ≡ d/n− 1/(n− p− 3) > 0, and h = O(n−a), where 0 < a < 1.

A consistency of TCd in (2.6) for some d > 0 shall be shown along the

following outline: In general, we have

TCd = j∗ ⇔ ”Td,i > 0 for i ∈ j∗”, and ”Td,i ≤ 0 for i /∈ j∗”

Therefore

P (TCd = j∗) = P

∩
i∈j∗

”Td,i > 0”
∩
i/∈j∗

”Td,i < 0”


= 1− P

∪
i∈j∗

”Td,i ≤ 0”
∪
i/∈j∗

”Td,i ≥ 0”


≥ 1−

∑
i∈j∗

P (Td,i ≤ 0)−
∑
i/∈j∗

P (Td,i ≥ 0).

We shall consider to show

[F1] ≡
∑
i∈j∗

P (Td,i ≤ 0) → 0. (3.1)

[F2] ≡
∑
i/∈j∗

P (Td,i ≥ 0) → 0, (3.2)

[F1] denotes the probability such that the true variables are not selected.

[F2] denotes the probability such that the non true variables are selected.
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Theorem 3.1. Suppose that assumptions A1, A2 and A3 are satisfied. Then,

the test-based criterion TCd is consistent if B1 and B2 are satisfied.

Let d = nr, where 0 < r < 1. Then, h = O(n−(1−r)), and the condition

B2 is satisfied. So, the test-based criteria with

d = n3/4, n2/3, n1/2, n1/3 or n1/4

have a high-dimensional consistency. Among of them, we have numerically

seen that the one with d =
√
n has a good behavior. Note that TC2 and

TClogn do not satisfy B2.

As a special case, under the assumptions of Theorem 3.1 we have seen

that the probability of selecting overspecified models tends to zero, that is∑
i/∈j∗

P (TCd = i) =
∑
i/∈j∗

P (Td,i ≥ 0) → 0.

The proof given there is applicable also to the case replaced assumption A3

by assumption A4:

A4 : p∗ = O(p), and ∆2 = O(p).

In other words, such a property holds regardless of whether the dimension of

j∗ is finite or not. Further, it does not depend on the order of the Mahalanobis

distance. The square of Mahalanobis distance of y is decomposed as a sum of

the squares of Mahalanobis distance of y(−i) and the conditional Mahalanobis

distance of y{i} given y(−i) as follows:

∆2 = ∆2
(−i) +∆2

{i}·(−i). (3.3)

When i ∈ j∗, (−i) /∈ F+ and hence

∆2
{i}·(−i) = ∆2 −∆2

(−i) > 0.

Related to consistency of TCd under assumption A4, we consider the follow-

ing assumption:
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A5 : For i ∈ j∗,

∆2
(−i) = O(p), ,∆2

{i}·(−i) = O(pb), 0 < b < 1.

Theorem 3.2. Suppose that assumptions A1, A2, A4 and A5 are satis-

fied. Then, the test-based criterion TCd is consistent if B1, B2 and ”a <

b, 3/4 < b” are satisfied.

It is conjectured that the condition ”3/4 < b” can be replaced by ”1/2 <

b”

Theorem 3.3. Suppose that assumption; A1 and

”p; fixed, ni/n → ki(i = 1, 2), d → ∞, d/n → 0”

are satisfied. Then, the test-based criterion TCd is consistent when n tends

to infty.

From Theorem 3.3 we can see that TClogn and TC√
n are consistent under

a large-sample framework.

4. Numerical Study

In this section we numerically explore the validity of our claims through

three test-based criteria, TC2, TClogn, and TC√
n. Note that TC√

n satisfies

sufficient conditions B1 and B2 for its consistency, but TC2 and TClogn do

not satisfy them.

The true model was assumed as follows: the true dimension is j∗ = 3, 6,

the true mean vectors;

µ1 = α(1, . . . , 1, 0, . . . , 0)′, µ2 = α(−1, . . . ,−1, 0, . . . , 0)′,
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and the true covariance matrice Σ∗ = Ip.

The selection rates associated with these criteria are given in Tables 4.1 to

4.3. ”Under”, ”True”, and ”Over” denote the underspecified models, the true

model, and the overspecified models, respectively. We focused on selection

rates for 103 replications in Tables 4.1 ∼ 4.2, and for 102 replications in

Tables 4.3.

From Tables 4.1, we can identify the following tendencies.

• The selection probabilities of the true model by TC2 are relatively large

when the dimension is small as in the case p = 5. However, the values

do not approach to 1 as n increases, and it seems that TC2 has no

consistency under a large sample case.

• The selection probabilities of the true model by TClogn are near to

1, and has a consistency under a large sample case. However, the

probabilities are decreasing as p increases, and so will not a consistency

in a high-dimensional case.

• The selection probabilities of the true model by TC√
n approach 1 as

n is large, even if p is small. Further, if p is large, but under a high-

dimensional framework such that n is also large, then it has a consis-

tency. However, the probabilities decrease as the ratio p/n approaches

1.

• As the quantity α presenting a distance between two groups becomes

large, the selection probabilities of the true model by TC2 and TClogn

increase in a large sample se as in the case p = 5. However, the ef-

fect becomes small when p is large. On the other hand, the selection

probabilities of the true model by TClogn increase in a sense both in

large-sample and high-dimensional cases in select

In Table 4.2, we examine the case where the dimension p∗ of the true

model is larger that the one in Table 4.1. The following tendencies can be

identified
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• As is the case with Table 4.1, TC2 and TClogn are not consistent as

p increases, but TC√
n is consistent. In general, the probability of

selecting the true model decreases as the dimension of the true model

is large.

In Table 4.3, we examine the case where the dimension p∗ of the true

model is relatively large, and especially in the case of p∗ = p/4. The following

tendencies can be idetified.

• When p∗ = p/4, the consistency of TC2 and TClogn can be not seen.

The consistency of TC√
n can be seen when n is large.

Table 4.1. Selection rates of TC2, TClogn and TC√
n for p∗ = 3

p∗ = 3, α = 1 TC2 TClogn TC√
n

n1 n2 p Under True Over Under True Over Under True Over

50 50 5 0.00 0.66 0.34 0.00 0.93 0.07 0.04 0.96 0.00
100 100 5 0.00 0.70 0.30 0.00 0.95 0.05 0.00 1.00 0.00
200 200 5 0.00 0.71 0.29 0.00 0.95 0.05 0.00 1.00 0.00

50 50 25 0.00 0.01 0.98 0.01 0.28 0.71 0.07 0.80 0.13
100 100 50 0.00 0.00 1.00 0.00 0.13 0.87 0.00 0.94 0.06
200 200 100 0.00 0.00 1.00 0.00 0.06 0.94 0.00 0.99 0.01

50 50 50 0.01 0.00 0.99 0.04 0.01 0.95 0.15 0.34 0.52
100 100 100 0.00 0.00 1.00 0.00 0.00 1.00 0.01 0.53 0.46
200 200 200 0.00 0.00 1.00 0.00 0.00 1.00 0.00 0.74 0.26

p∗ = 3, α = 2 TC2 TClogn TC√
n

n1 n2 p Under True Over Under True Over Under True Over

50 50 5 0.00 0.27 0.73 0.00 0.85 0.15 0.00 1.00 0.00
100 100 5 0.00 0.67 0.33 0.00 0.95 0.05 0.00 1.00 0.00
200 200 5 0.00 0.72 0.28 0.00 0.97 0.04 0.00 1.00 0.00

50 50 25 0.00 0.00 1.00 0.00 0.27 0.72 0.01 0.86 0.13
100 100 50 0.00 0.00 1.00 0.00 0.16 0.85 0.00 0.95 0.05
200 200 100 0.00 0.00 1.00 0.00 0.05 0.96 0.00 0.99 0.01

50 50 50 0.00 0.00 1.00 0.00 0.01 0.98 0.03 0.37 0.59
100 100 100 0.00 0.00 1.00 0.00 0.00 1.00 0.00 0.53 0.47
200 200 200 0.00 0.00 1.00 0.00 0.00 1.00 0.00 0.75 0.25
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p∗ = 3, α = 3 TC2 TClogn TC√
n

n1 n2 p Under True Over Under True Over Under True Over

50 50 5 0.00 0.70 0.31 0.00 0.92 0.08 0.00 0.99 0.01
100 100 5 0.00 0.71 0.29 0.00 0.95 0.05 0.00 1.00 0.00
200 200 5 0.00 0.70 0.30 0.00 0.97 0.03 0.00 1.00 0.00

50 50 25 0.00 0.01 0.99 0.00 0.26 0.74 0.01 0.87 0.12
100 100 50 0.00 0.00 1.00 0.00 0.13 0.87 0.00 0.94 0.06
200 200 100 0.00 0.00 1.00 0.00 0.04 0.96 0.00 0.99 0.01

50 50 50 0.00 0.00 1.00 0.00 0.01 0.99 0.03 0.35 0.62
100 100 100 0.00 0.00 1.00 0.00 0.00 1.00 0.00 0.51 0.49
200 200 200 0.00 0.00 1.00 0.00 0.00 1.00 0.00 0.73 0.27

Table 4.2. Selection rates of TC2, TClogn and TC√
n for p∗ = 6

p∗ = 6, α = 1 TC2 TClogn TC√
n

n1 n2 p Under True Over Under True Over Under True Over

50 50 25 0.08 0.01 0.92 0.30 0.24 0.46 0.86 0.12 0.02
100 100 50 0.00 0.00 1.00 0.01 0.16 0.83 0.30 0.66 0.04
200 200 100 0.00 0.00 1.00 0.00 0.06 0.94 0.01 0.98 0.01

50 50 50 0.19 0.00 0.81 0.49 0.00 0.51 0.90 0.03 0.07
100 100 100 0.00 0.00 1.00 0.05 0.00 0.95 0.48 0.28 0.25
200 200 200 0.00 0.00 1.00 0.00 0.00 1.00 0.03 0.73 0.24

p∗ = 6, α = 2 TC2 TClogn TC√
n

n1 n2 p Under True Over Under True Over Under True Over

50 50 25 0.06 0.01 0.93 0.23 0.24 0.53 0.75 0.21 0.04
100 100 50 0.00 0.00 1.00 0.01 0.16 0.83 0.14 0.81 0.05
200 200 100 0.00 0.00 1.00 0.00 0.06 0.94 0.00 0.99 0.01

50 50 50 0.12 0.00 0.88 0.36 0.01 0.63 0.82 0.07 0.11
100 100 100 0.00 0.00 1.00 0.02 0.00 0.98 0.33 0.32 0.35
200 200 200 0.00 0.00 1.00 0.00 0.00 1.00 0.02 0.74 0.24

p∗ = 6, α = 3 TC2 TClogn TC√
n

n1 n2 p Under True Over Under True Over Under True Over

50 50 25 0.03 0.01 0.96 0.17 0.24 0.59 0.71 0.25 0.05
100 100 50 0.00 0.00 1.00 0.00 0.17 0.83 0.13 0.83 0.04
200 200 100 0.00 0.00 1.00 0.00 0.07 0.93 0.00 0.99 0.01

50 50 50 0.13 0.00 0.87 0.35 0.01 0.65 0.82 0.05 0.13
100 100 100 0.00 0.00 1.00 0.03 0.00 0.97 0.30 0.37 0.33
200 200 200 0.00 0.00 1.00 0.00 0.00 1.00 0.01 0.75 0.24
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Table 4.3. Selection rates of TC2, TClogn and TC√
n for p∗ = p/4

p = 100, p∗ = 25 TC2 TClogn TC√
n

n1 n2 α Under True Over Under True Over Under True Over

100 100 1 0.99 0.00 0.01 1.00 0.00 0.00 1.00 0.00 0.00
200 200 1 0.28 0.00 0.72 0.94 0.01 0.05 1.00 0.00 0.00
500 500 1 0.00 0.00 1.00 0.01 0.36 0.63 1.00 0.00 0.00
1000 1000 1 0.00 0.00 1.00 0.00 0.58 0.42 0.43 0.57 0.00
2000 2000 1 0.00 0.00 1.00 0.00 0.73 0.27 0.00 1.00 0.00

p = 200, p∗ = 50 TC2 TClogn TC√
n

n1 n2 α Under True Over Under True Over Under True Over

200 200 1 1.00 0.00 0.00 1.00 0.00 0.00 1.00 0.00 0.00
500 500 1 0.19 0.00 0.81 0.96 0.01 0.03 1.00 0.00 0.00
1000 1000 1 0.00 0.00 1.00 0.02 0.17 0.81 1.00 0.00 0.00
2000 2000 1 0.00 0.00 1.00 0.00 0.45 0.55 1.00 0.00 0.00
5000 5000 1 0.00 0.00 1.00 0.00 0.70 0.30 0.00 1.00 0.00
10000 10000 1 0.00 0.00 1.00 0.00 0.75 0.25 0.00 1.00 0.00

5. Ridge-type criteria

When p > n − 2, S becomes singular, and so we cannot use the TCd.

One way to overcome this problem is to use the ridge-type estimator of Σ

defined by

Σ̂λ =
1

n
{(n− 2)S+ λIp}, (5.1)

where λ = (n − 2)(np)−1trS. The estimator was used in multivariate re-

gression model, by Kubokawa and Srivastava (2012), Fujikoshi and Sakurai

(2016), etc.

The numerical experiment was done for j∗ = 3, µ1 = α(1, 1, 1, 0, . . . , 0),

µ2 = α(−1,−1,−1, 0, . . . , 0), Σ = Ip. We focused on selection rates for 102

replications in Tables 5.1. From Table 5.1, we can identify the following

tendencies.

• TC2 has not consistency. On the other hand, it seems that TClogn and

TC√
n have consistency when the dimension p and the total sample size

n are separated.
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Table 5.1. Selection rates of TC2, TClogn and TC√
n for p∗ = p/4

α = 1 TC2 TClogn TC√
n

n1 n2 p Under True Over Under True Over Under True Over

15 15 40 0.31 0.00 0.69 0.48 0.00 0.52 0.73 0.04 0.23
25 25 60 0.15 0.00 0.85 0.30 0.00 0.70 0.52 0.00 0.48
50 50 110 0.07 0.00 0.93 0.14 0.00 0.87 0.35 0.00 0.65

15 15 90 0.14 0.29 0.57 0.48 0.48 0.04 0.91 0.09 0.00
25 25 150 0.01 0.13 0.86 0.10 0.83 0.07 0.60 0.40 0.00
50 50 300 0.00 0.02 0.98 0.00 0.95 0.05 0.08 0.93 0.00

6. Concluding Remarks

In this paper we propose a test-based criterion (TC) for the variable

selection problem, based on drawing on the significance of each variable.

The criterion invoves a constant term d, and is denoted by TCd. When

d = 2 and d = log n, the corresponding TC’s are related to AIC and BIC,

respectively. However, the usual model selection criteria such as AIC and

BIC need to examine all the subsets. However, TCd need not to examine all

the subsets, but need to examine only the p subsets (−i), i = 1, . . . , p. This

circumvents computational complexities associated with AIC and BIC has

been resolved. Further, it was identified that TCd has a high-dimensional

consistency property for some d including d =
√
n, when (i) p∗ is finite and

∆2 = O(1), and (ii) p∗ is infinite and ∆2 = O(p), The problem of determining

an optimum d is left as a future work. Further, an extension to nonnormality

is left.
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Appendix: Proofs of Theorems 3.1, 3.2 and 3.3

A1. Preliminary Lemmas

First we study distributional results related to the test statistics Td,i

in (2.5). For a notational simplicity, consider a decomposition of y =

(y1,y2)
′, y; p1 × 1, p2; p2 × 1. Similarly, decompose β = (β′

1,β
′
2)

′, and

S =

(
S11 S12

S21 S22

)
, S; p1 × p2

Let λ be the likelihood ratio criterion for testing a hypothesis β2 = 0, then

−2 log λ = n log

{
1 +

g2(D2 −D2
1)

n− 2 + g2D2
1

}
(A.1)

The following lemma (see, e.g., Fujikoshi et al. 2010) is used.

Lemma A1. Let D1 and D be the sample Mahalanobis distances based on

y1 and y, respectively. Let D2
2·1 = D2 − D2

1. Similarly, the corresponding

population quantities are expressed as ∆1, ∆ and ∆2
2·1. Then, it holds that

(1) D2
1 = (n− 2)g−2R, R = χ2

p1
(g2∆2

1)
{
χ2
n−p1−1

}−1
.

(2) D2
2·1 = (n− 2)g−2χ2

p2

(
g2∆2

2·1 ·
1

1 +R

){
χ2
n−p−1

}−1
(1 +R).

(3)
g2(D2 −D2

1)

n− 2 + g2D2
1

= χ2
p2
(g2∆2

2·1(1 +R)−1){χ2
n−p−1}−1

Here, χ2
p1
(·), χ2

n−p1−1, χ
2
p2
(·), and χ2

n−p−1 are independent chi-square variates.

Related to the conditional distribution of the righthand side of (3) with

p2 = 1 and m = n−p−1 in Lemma A1, consider the random variable defined

by

V =
χ2
1(λ

2)

χ2
m

− 1 + λ2

m− 2
, (A.2)

where χ2
1(λ

2) and χ2
m are independent. We can express V as

V = U1U2 + (m− 2)−1U1 + (1 + λ2)U2, (A.3)

14



in terms of the centralized variables U1 and U2 defined by

U1 = χ2
1(1 + λ2)− (1 + λ2), U2 =

1

χ2
m

− 1

m− 2
. (A.4)

It is well known (see, e.g., Tiku 1985) that

E(U1) = 0,

E(U2
1 ) = 2(1 + 2λ2),

E(U3
1 ) = 8(1 + 3λ2),

E(U4
1 ) = 48(1 + 4λ2) + 4(1 + 3λ2)2.

Further,

E
(
Uk
2

)
=

k∑
i=0

kCiE

{(
1

χ2
m

)i
}(

− 1

m− 2

)k−i

=
k∑

i=1

kCi
1

(m− 2) · · · (m− 2i)

(
− 1

m− 2

)k−i

+

(
− 1

m− 2

)k

.

These give the first four moments of V . In particular, we use the following

results.

Lemma A2. Let V be the random variable defined by (A.3). Suppose that

λ2 = O(m). Then

E(V ) = 0, E(V 2) =
2(m− 3− 2λ2 + λ4)

(m− 2)2(m− 4)
= O(m−1),

E(V 3) = O(m−2), E(V 4) = O(m−2).

A2. Proof of Theorems 3.1

First we show ”[F1] → 0”. Let i ∈ j∗. Then, (−i) /∈ F+, and hence

∆2
(−i) < ∆2, ∆2

{i}·(−i) > 0.

Using (A.1) and Lemma A1 (3)

Td,i = n log

{
1 +

χ2
1(g

2∆2
{i}·(−i)(1 +R)−1)

χ2
n−p−1

}
− d,

15



where R = χ2
p−1(g

2∆2
(−i))

{
χ2
n−p

}−1
. Here, since j∗ is finite, by showing

Td,i
p→ t > 0 or Td,i

p→ ∞,

we obtain P (Td,i ≤ 0) → 0, and hence ”[F1] → 0”. It is easily seen that

R →
c+ k1k2∆

2
(−i)

1− c
,

and hence

(1 +R)−1 → 1− c

1 + k1k2∆2
(−i)

.

Therefore, we obtain

1

n
Td,i → log

(
1 +

k1k2∆
2
{i}·(−i)

1 + k1k2∆2
{i}·(−i)

)
> 0,

which implies our assertion.

Next, consider to show ”[F2] → 0”. For any i /∈ j∗, ∆
2 = ∆2

(−i). There-

fore, using Lemma A1(3) we have

Td,i = n log

(
1 +

χ2
1

χ2
n−p−1

)
− d, (A.5)

whose distribution does not depend on i. Here, χ2
1 and χ2

n−p−1 are indepen-

dent chi-square variates with 1 and n−p−1 degrees of freedom. This implies

that

Td,i > 0 ⇔ χ2
1

χ2
n−p−1

> ed/n − 1.

Noting that E[χ2
1/χ

2
n−p−1] = (n− p− 3)−1, let

U =
χ2
1

χ2
n−p−1

− 1

n− p− 3
.

Then, since ed/n − 1− 1
n−p−3

> h,

P (Td,i > 0) = P

(
U > ed/n − 1− 1

n− p− 3

)
≤ P (U > h) .

16



Further, using Markov inequality, we have

P (Td,i > 0) ≤ P (|U | > h)

≤ h−2ℓE(U2ℓ), ℓ = 1, 2, . . .

Further, it is easily seen that

E(U2ℓ) = O(n−2ℓ),

by using e.g., Theorem 16.2.2 in Fujikoshi et al. (2010), When h = O(n−a),

h−2ℓE(U2ℓ) = O(n−2(1−a)ℓ).

Choosing ℓ such that ℓ > (1− a)−1, we have ”[F2] → 0”.

A3. Proof of Theorem 3.2

First, note that in the proof of ”[F2] → 0” in Theorem 3.1, assumption A3

is not used. This implies the assertion in Theorem 3.2.

Now we consider to show ”[F1] → 0” when p∗ = O(p) and ∆2 = O(p). In

this case, b tends to ∞. Based on the proof in Theorem 3.1, we can express

Td,i for i ∈ {1, . . . , b} as

Td,i = n log

{
1 +

χ2
1(λ̂

2
i )

χ2
n−p−1

}
− d,

where λ̂2
i = g2∆2

{i}·(−i)(1 + Ri)
−1 and Ri = χ2

p−1(g
2∆2

(−i))
{
χ2
n−p

}−1
. Note

that χ2
1 and χ2

n−p−1 are independent of Ri, and hence λ̂2
i . Then, we have

P (Td.i ≤ 0) = P (V̂ ≤ ĥ) (A.6)

where

V̂ =
χ2
1(λ̂

2
i )

χ2
m

− 1 + λ̂2
i

m− 2
,

ĥ = ed/n − 1− (1 + λ̂2
i )/(m− 2),

17



and m = n−p−1. Considering the conditional distribution of the right-hand

side in (A.6), we have

P (V̂ ≤ ĥ) = Eλ̂2
i

{
Q(λ̂2

i )
}
, (A.7)

where

Q(λ2
i ) = P (V ≤ h).

Here,

V =
χ2
1(λ

2
i )

χ2
m

− 1 + λ2
i

m− 2
,

h = ed/n − 1− (1 + λ2
i )/(m− 2).

From assumption A5, let

∆2
(−i) = pΓ2

(−i). ∆2
{i}·(−i) = pbΓ2

{i}·(−i).

Then, Γ2
(−i) = O(1) and Γ2

{i}·(−i) = O(1). We can easily see that

λ̂2
i ∼ pbθ2i −O(pb), θ2i = {(1− c)Γ2

{i}·(−i)}/{cΓ2
(−i)}.

Now we consider the probability P (V ≤ h) when λ2
i = O(pb). From assump-

tions a < b, for large n, h < 0. In that case

p(V ≤ h) ≤ P (|V | ≥ |h|)

h−4E(V 4),

whose order is O(n−(1+ϵ)) with ϵ > 0. Noting that λ̂2
i = λ̂2

i + O(n−1/2). we

have P (Td,i ≤ 0) = O(n−(1+ϵ)), which implies ”[F1] → 0”.

A4. Proof of Theorem 3.3

The assortion ”[F1] → 0” follows from the proof of ”[F1] → 0” in Theorem

3.1. For a proof of ”[F2] → 0”, it is enough to show that

for i /∈ j∗, Td,i → −∞.

since p has been fixed. From (A.5), the limiting distribution of Td,i is ”χ
2
1−d”.

This implies ”[F2] → 0”.
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Kiadó, Budapest.

[2] Clemmensen, L., Hastie, T., Witten, D. M. and Ersbell, B.

(2011). Sparse discriminant analysis. Technometrics, 53, 406–413.

[3] Fujikoshi, Y. (1985). Selection of variables in two-group discriminant

analysis by error rate and Akaike’s information criteria. J. Multivariate

Anal., 17, 27–37.

[4] Fujikoshi, Y., Ulyanov, V. V. and Shimizu, R. (2010). Multivariate

Statistics: High-Dimensional and Large-Sample Approximations. Wiley,

Hobeken, N.J.

[5] Fujikoshi, Y., Sakurai, T. and Yanagihara, H. (2013). Consistency

of high-dimensional AIC-type and Cp-type criteria in multivariate linear

regression. J. Multivariate Anal., 144, 184–200.

[6] Fujikoshi, Y. and Sakurai, T. (2016). High-dimensional consistency

of rank estimation criteria in multivariate linear model. J. Multivariate

Anal., 149, 199–212.

[7] Hyodo, M. and Kubokawa, T. (2014). A variable selection criterion

for linear discriminant rule and its optimality in high dimensional and

large sample data. J. Multivariate Anal., 123, 364–379.

19



[8] Kubokawa, T. and Srivastava, M. S. (2012). Selection of variables

in multivariate regression models for large dimensions. Communication

in Statistics-Theory and Methods, 41, 2465–2489.

[9] McLachlan, G. J. (1976). A criterion for selecting variables for the

linear discriminant function. Biometrics, bf 32, 529-534.

[10] Nishii, R. , Bai, Z. D. andKrishnaia, P. R. (1988). Strong consistency

of the information criterion for model selection in multivariate analysis.

Hiroshima Math. J., 18, 451–462.

[11] Rao, C. R. (1973). Linear Statistical Inference and Its Applications, 2nd

ed. Wiley, New-York.

[12] Sakurai, T., Nakada, T. and Fujikoshi, Y. (2013). High-dimensional

AICs for selection of variables in discriminant analysis. Sankhya, Ser.

A, 75, 1–25.

[13] Yanagihara, H., Wakaki, H. and Fujikoshi, Y. (2015). A consis-

tency property of the AIC for multivariate linear models when the di-

mension and the sample size are large. Electron. J. Stat., 9, 869–897.

Witten, D. W. and Tibshirani, R. (2011). Penalized classification

using Fisher’s linear discriminant. J. R. Statist. Soc. B, 73, 753–772.

20


