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Abstract

In the present paper, we derive a new multivariate model to fit correlated data, represent-

ing a general model class. Our model is an extension of the Growth Curve model (also called

generalized multivariate analysis of variance model) by additionally assuming randomness of

regression coefficients like in linear mixed models. Each random coefficient has a linear or a

bilinear form with respect to explanatory variables. In our model, the covariance matrices of

the random coefficients is allowed to be singular. This yields flexible covariance structures of

response data but the parameter space includes a boundary, and thus maximum likelihood

estimators (MLEs) of the unknown parameters have more complicated forms than the crude

Growth Curve models. We derive the MLEs in the proposed model by solving an optimiza-

tion problem, and derive sufficient conditions for consistency property of the MLEs. Through

simulation studies, we confirmed performance of the MLEs when the sample size and the size

of the response variable are large.
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1 Introduction

Today we are able to simultaneously measure many responses repeatedly over time intervals

of various lengths and as a consequence a huge amount of data is obtained (sometimes

termed big data). Often this leads researchers to formulate complicated models to capture

the information provided by the collected data. The statistical paradigm consists of proposing

suitable models and then validate these models against data. If the model does not seem

to fit a new model is formulated and these steps are iterated until one is satisfied with the

agreement. Moreover, it is important that the model which fits data is interpretable, meaning

that parameters and estimators should be interpretable.

The statistical paradigm implies that models cannot be too complicated and data cannot

be too complex if there should be a possibility to validate the models appropriately. In

this article we extend the linear multivariate random coefficient regression models to bilinear

random coefficient regression models which leads to a model class which is relatively flexible

and where it seems possible to perform model validation.

The stem in our model, is usually called Growth Curve model or GMANOVA (generalized

multivariate analysis of variance model). The model was formulated by [1] although other

authors had earlier studied similar models. A general review of the model can, for example,

be found in [2]. Moreover, there are a number of books which discuss the model, for example

[3] focuses on testing, [4] presents a classical approach of how to work with the model and

for a recent contribution see [5], where up-to-date knowledge about the model and some

extensions are presented.

Linear mixed models can be defined via

x = Aβ + Zθ + e, (1)

where A and Z are known design matrices, β is a fixed parameter and, θ is a vector of
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random variables, which is normally distributed with mean 0p, and which is independent of

e ∼ Np(0p,Σx), where Σx is an unknown covariance matrix. This is a very general model

class and in particular it is referred to the book by [6], where many results can be found for

the model. If A = Z we have a so called random coefficient regression model. References

related to random coefficient regression models can, for example, be found in an article by

[7] and in more recent work by [8] who considered the testing of fixed effects of the model.

A multivariate version of (1) equals

X = ABC + ZΘ+ Ex, (2)

where A and Z are as in (1) and C is a new design matrix, B is an unknown regression

coefficients, Θ ∼ Nq,n(Oq,n,ΣΘ, In) is independent of Ex ∼ Np,n(0p,Σx, In) and ΣΘ is an

unknown covariance matrix. For any matrices A1, A2 ∈ Ra×b, A3 ∈ Ra×a and A4 ∈ Rb×b,

A1 ∼ Na,b(A2, A3, A4) is identical to vec(A1) ∼ Nab(vec(A2), A4 ⊗ A3), where vec(·) is the

vec operator and the symbol ⊗ denotes the Kronecker product. Note that Var[vec(X)] =

In⊗ (ZΣΘZ
⊤+Σx). If ΣΘ = Oq,q, i.e., there is no random coefficient, the model in (2) is the

above mentioned classical Growth Curve model of [1]. The model in (2) is also called Growth

Curve model with random effects, [e.g. see 9, 10, 11, 12, 13]. In these articles many more

references to earlier published achievements related to (2) can be found. If in (2) A = Z we

have a multivariate random coefficient regression model.

Our work concerns a generalization of the multivariate random coefficient regression model

which is based on

X = ABC + AEβ + EγC + AEθC + Ex, (3)

where A and C are known matrices and Eβ, Eγ, Eθ and Ex are independently and normally

distributed. More details for the model are provided in Section 2. We can consider the
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model in (3) as a model which reflects two attributes such as spatial and temporal variation

as well as their interaction effect. Later we show that the model in fact can be written

X = ABC + DEF for some new matrices D and F which are functions of the dispersion

matrices of the random effects, given in (3).

In this article maximum likelihood estimators (MLEs) are derived where the technical

problem is that estimators may lay on the boundary of the parameter space which is a well

known phenomenon and has beautifully been treated by [14] when considering a univariate

random coefficient model. Furthermore, these results where extended by [15] who considered

different tests in an extended Growth Curve model with random effects.

To conclude the introduction it is noted that the proposed model which will be studied

is relatively general, has the possibility to handle complicated observational studies and for

the model it is possible to carry out model validation, although the model validation part is

postponed to another publication.

The model with all its details is presented in Section 2, and Appendix A shows how to

obtain a canonical form of the model in Section 2. Thereafter in Section 3 MLEs are stated

where the proof of the results are given in Appendix B and Appendix C. Consistency of

MLEs is considered in Section 4, where the proofs except for B̂ which is an estimator of

B are shown in Appendix D because to show the consistency of B̂ is trivial. In Section 5

the estimators are studied via simulations and in Section 6 a few concluding remarks are

presented.

2 Growth Curve model with bilinear random coefficients

In this section, we propose a Growth Curve model with bilinear random coefficients. For all

i = 1, . . . , p and j = 1, . . . , n, an observed dataset is denoted by {(xij, ais, ctj); s = 1, . . . , q, t =

1, . . . , k}, where xij is a response variable, ais and ctj are non-stochastic explanatory variables.

Then, a relationship between response variable and explanatory variables is obtained as
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follows:

xij =

q∑
s=1

aisβsj +
k∑
t=1

γitctj +

q∑
s=1

k∑
t=1

aisθstctj + εij, (4)

where βsj, γit and θst are regression coefficients, εij
i.i.d.∼ N(0, σ2) is a measurement error and

σ2 > 0 is an unknown parameter. A matrix form of (4) is given by

X = AB + ΓC + AΘC + Ex, (5)

where (X)ij = xij, (A)is = ais, (B)sj = βsj, (Γ)it = γit, (C)tj = ctj, (Θ)st = θst and

(Ex)ij = εij for all i = 1, . . . , p, j = 1, . . . , n, s = 1, . . . , q and t = 1, . . . , k. Note that

Ex ∼ Np,n(Op,n, σ
2Ip, In). We can regard AB and ΓC as single effects with respect to the

design matrices A and C, respectively, and AΘC expresses an interaction effect between A

and C. For simplicity, we assume A and C to be of full rank. In this paper, we also assume

that q and k are fixed constants and np−nq−kp > 0. We consider an asymptotic framework

where p and/or n are allowed to diverge.

The regression coefficients B, Γ and Θ are considered as random coefficients. The random

structures are given as follows:

B = BβC + Eβ,

Γ = ABγ + Eγ,

Θ = Bθ + Eθ,

(6)

where Bβ, Bγ and Bθ are q × k unknown regression coefficients, and Eβ, Eγ and Eθ are error
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terms. The error distributions are assumed to be

Eβ ∼ Nq,n(Oq,n,Σ, In),

Eγ ∼ Np,k(Op,k, δ
2Ip,Ψ),

Eθ ∼ Nq,k(Oq,k,Σ,Ψ),

where Σ and Ψ are unknown covariance matrices. It is worth noting that Σ and Ψ are allowed

to be singular. This implies that the parameter space of Σ and Ψ include its boundary, which

violates usual regularity assumptions. Moreover, we assume all error matrices Ex, Eβ, Eγ and

Eθ to be independent. Because AΘC is a bilinear function of A and C although AB and

ΓC are linear functions of A and C, respectively, we call (5) the Growth Curve model with

bilinear random coefficients.

Combining (5) and (6), we obtain (3). Because Var[vec(X)] = (C⊤ΨC + In)⊗ (AΣA⊤ +

δ2Ip), we can define the Growth Curve model with bilinear random coefficients as follows:

X = ABC +DEF, (7)

where B = Bβ +Bγ +Bθ, D
2 = AΣA⊤ + δ2Ip, F

2 = C⊤ΨC + In and E ∼ Np,n(Op,n, Ip, In).

This model is flexible because this can express various covariance structures by varying Σ

and Ψ.

3 Maximum likelihood estimators

In this section, we derive the MLEs of the unknown parameters in (7). Without loss of

generality, we assume a canonical form for (7), i.e., A = (Iq, Oq,p−q)
⊤ and C = (Ik, Ok,n−k).

A transformation of the model from the general form to the canonical form is shown in

Appendix A. In order to derive the MLEs easily, we use a bijective parameter transformation
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Σ∗ = Σ + δ2Iq, Ψ∗ = δ2(Ψ + Ik). Thus, we firstly estimate Σ∗ and Ψ∗, afterwords, we can

obtain the estimators of Σ and Ψ by using the inverse transformation.

SinceX is distributed asNp,n(ABC,D
2, F 2), the log-likelihood function ℓ(B, δ2,Σ∗,Ψ∗|X)

is given by

ℓ(B, δ2,Σ∗,Ψ∗|X) = −np
2

log 2π − n

2
log |D2| − p

2
log |F 2|

− 1

2
tr{D−2(X − ABC)F−2(X − ABC)⊤}.

Dividing X into four parts as follows:

X =

X11 X12

X21 X22

 :
q × k q × (n− k)

(p− q)× k (p− q)× (n− k)

we can see that under the canonical form log |D2| = log |Σ∗| + (p − q) log δ2, log |F 2| =

log |Ψ∗| − k log δ2 and

tr{D−2(X − ABC)F−2(X − ABC)⊤}

= δ2tr{Ψ−1
∗ (X11 −B)⊤Σ−1

∗ (X11 −B)}

+ tr(Σ−1
∗ X12X

⊤
12) + tr(Ψ−1

∗ X⊤
21X21) + δ−2tr(X22X

⊤
22).

Hence, −2 log-likelihood function is simplified as follows:

−2ℓ(B, δ2,Σ∗,Ψ∗|X) ∝ (np− nq − kp) log δ2 + n log |Σ∗|+ p log |Ψ∗|

+ δ2tr{Ψ−1
∗ (X11 −B)Σ−1

∗ (X11 −B)⊤}

+ tr(Σ−1
∗ X12X

⊤
12) + tr(Ψ−1

∗ X⊤
21X21) + δ−2tr(X22X

⊤
22).

(8)

As a preparation of deriving the MLEs, applying spectral decomposition to X12X
⊤
12 and
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X⊤
21X21, we obtain

X12X
⊤
12 = Q⊤

12diag{λ
(12)
1 , . . . , λ(12)q }Q12,

X⊤
21X21 = Q⊤

21diag{λ
(21)
1 , . . . , λ

(21)
k }Q21,

where Q12 and Q21 are orthogonal matrices, λ
(12)
s = λs(X12X

⊤
12), λ

(21)
t = λt(X

⊤
21X21) and λℓ(·)

denotes the ℓth largest eigenvalue. Specially, we denote λ0(·) = ∞. Using these symbols, we

define the following estimators of B, δ2, Σ∗ and Ψ∗ by

B̂ = X11 = A⊤XC⊤,

δ̂2(qσ, kψ) =
tr(X22X

⊤
22) +

∑
s>qσ

λ
(12)
s +

∑
t>kψ

λ
(21)
t

np− nqσ − kψp
,

Σ̂∗(qσ, kψ) = Q⊤
12diag{λ

(12)
1 /n, . . . , λ(12)qσ /n, δ̂2(qσ, kψ), . . . , δ̂

2(qσ, kψ)}Q12,

Ψ̂∗(qσ, kψ) = Q⊤
21diag{λ

(21)
1 /p, . . . , λ

(21)
kψ

/p, δ̂2(qσ, kψ), . . . , δ̂
2(qσ, kψ)}Q21,

(9)

and a subset of LF = {(qσ, kψ)|0 ≤ qσ ≤ q, 0 ≤ kψ ≤ k} by

L = {(qσ, kψ) ∈ LF |λ(12)qσ /n ≥ δ̂2(qσ, kψ), λ
(21)
kψ

/p ≥ δ̂2(qσ, kψ)},

where Σ̂∗(0, kψ) = δ̂(0, kψ)Iq and Ψ̂∗(qσ, 0) = δ̂(qσ, 0)Ik.

Then, the MLEs can be calculated according to the next theorem:

Theorem 1. Suppose that the model in (7) has the canonical form. Then, it follows that

max
B,δ2,Σ∗,Ψ∗

ℓ(B, δ2,Σ,Ψ|X) = max
(qσ ,kψ)∈L

ℓ(B̂, δ̂2(qσ, kψ), Σ̂∗(qσ, kψ), Ψ̂∗(qσ, kψ)|X).

A proof of Theorem 1 is given in Appendix B. Theorem 1 implies that the optimization

problem of the log-likelihood function with respect to the unknown parameters is reduced

to a discrete optimization problem of (qσ, kψ). Although the computational burden on the
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optimization of (qσ, kψ) is not heavy because the number of possible combinations of (qσ, kψ)

is at most (q + 1)(k + 1), we can in the next theorem give a smaller range

LR = {(qσ, kψ) ∈ L|∀(q′σ, k′ψ) ∈ L \ {(qσ, kψ)}, qσ > q′σ or kψ > k′ψ} (10)

for searching for the optimal (qσ, kψ). The proof of the next theorem is given in Appendix C.

Theorem 2. Suppose that the model (7) is written in a canonical form. The optimum value

of (qσ, kψ) ∈ L in Theorem 1 belongs to LR, that is,

(q̂σ, k̂ψ) = arg max
(qσ ,kψ)∈L

ℓ(qσ, kψ|X) ∈ LR,

where ℓ(qσ, kψ|X) = ℓ(B̂, δ̂2(qσ, kψ), Σ̂∗(qσ, kψ), Ψ̂∗(qσ, kψ)|X).

For example, for each kψ = 1, . . . , k, let qσ(kψ) be the maximum qσ such that (qσ, kψ) ∈ L.

Then, it suffices to search for the optimal (q̂σ, k̂ψ) among {(qσ(kψ), kψ)|kψ = 1, . . . , k}.

4 Consistency of MLEs

In this section, we show the consistency of the MLEs. The MLEs in the previous section

are derived under the canonical form. Thus, applying the inverse transformation, we obtain

estimators of the unknown parameters in the general form.

Let us present the estimators given (qσ, kψ), in the general form

B̂ = (A⊤A)−1A⊤XC⊤(CC⊤)−1,

Σ̂(qσ, kψ) = (A⊤A)−1/2{Σ̂∗(qσ, kψ)− δ̂2(qσ, kψ)Iq}(A⊤A)−1/2,

Ψ̂(qσ, kψ) = (CC⊤)−1/2{Ψ̂∗(qσ, kψ)/δ̂
2(qσ, kψ)− Ik}(CC⊤)−1/2,

where δ̂2(qσ, kψ), Σ̂∗(qσ, kψ) and Ψ̂∗(qσ, kψ) defined in (9) are derived in the canonical form.
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Let δ̂2 = δ̂2(q̂σ, k̂ψ), Σ̂ = Σ̂(q̂σ, k̂ψ) and Ψ̂ = Ψ̂(q̂σ, k̂ψ) as the optimal estimators of δ2, Σ and

Ψ, respectively, where (q̂σ, k̂ψ) is defined in Theorem 2.

Hereafter, we assume eigenvalues of the design matrices to satisfy that there exist ζa and

ζc ∈ (0, 1] such that for all n and p, it holds that

0 < ζa ≤ λq(A
⊤A)/p, 0 < ζc ≤ λk(CC

⊤)/n. (11)

Considering the following three asymptotic frameworks: (i) n → ∞, p → ∞, (ii) n → ∞,

p is fixed and (iii) n is fixed, p → ∞, we show the consistency of δ̂2, Σ̂ and Ψ̂ under

these frameworks and the condition (11). The next two lemmas are needed and shown in

Appendix D. Define q∗σ = rank(Σ) and k∗ψ = rank(Ψ).

Lemma 1. Suppose that λs(Σ) (s = 1, . . . , q) and λt(Ψ) (t = 1, . . . , k) are constants. Then,

for each framework (i)–(iii),

Pr((qσ, kψ) ∈ LR ⇒ qσ ≥ q∗σ, kψ ≥ k∗ψ) → 1,

where LR is defined in (10).

This lemma indicates that for arbitrary large probability q̂σ and k̂ψ are not lower than

the true ranks of Σ and Ψ, respectively, when n and/or p are sufficiently large. On the other

hand, it follows from the following lemma that for fixed (qσ, kψ), which satisfies qσ ≥ q∗σ and

kψ ≥ k∗ψ, then δ̂
2, Σ̂ and Ψ̂ are consistent.

Lemma 2. Suppose that λs(Σ) (s = 1, . . . , q) and λt(Ψ) (t = 1, . . . , k) are constants. Then,
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under the condition (11), for all qσ ≥ q∗σ and kψ ≥ k∗ψ,

|δ̂2(qσ, kψ)− δ2| p→ 0, for (i)− (iii);

∥Σ̂(qσ, kψ)− Σ∥2
p→ 0, for (i) and (ii);

∥Ψ̂(qσ, kψ)−Ψ∥2
p→ 0, for (i) and (iii),

where ∥G∥2 = λ1(G
⊤G)1/2 for a matrix G and the frameworks (i) – (iii) are mentioned in

Lemma 1 and defined before the lemma.

Because q and k are fixed constants, by combining Lemma 1 and Lemma 2, the consistency

of the MLEs can be established immediately.

Theorem 3. Let δ̂2 = δ̂2(q̂σ, k̂ψ), Σ̂ = Σ̂(q̂σ, k̂ψ) and Ψ̂ = Ψ̂(q̂σ, k̂ψ). Suppose that λs(Σ)

(s = 1, . . . , q) and λt(Ψ) (t = 1, . . . , k) are constants. Then, under the condition (11),

|δ̂2 − δ2| p→ 0, for (i)− (iii);

∥Σ̂− Σ∥2
p→ 0, for (i) and (ii);

∥Ψ̂−Ψ∥2
p→ 0, for (i) and (iii).

Next we show the consistency of B̂.

Theorem 4. Under the condition (11),

(a) if λ1(Σ) → 0 as p→ ∞, then

∥B̂ −B∥2
p→ 0, p→ ∞.

(b) if λ1(Ψ) → 0 as n→ ∞, then

∥B̂ −B∥2
p→ 0, n→ ∞.
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A proof of this theorem is omitted because that is straightforward from the variance

of B̂. This theorem indicates that when the true variance Σ or Ψ is small, the MLE of

B is consistent. Note that even when λ1(Σ) → 0 or λ1(Ψ) → 0, it is possible that the

corresponding covariance matrices of the response variable, D2 and F 2, do not converge to

δ2Ip and In, respectively.

5 Simulations

In this section, through 1000 Monte Carlo simulations, we calculate mean squared errors

(MSEs) of B̂, δ̂2, Σ̂ and Ψ̂ in order to show the performance of the MLEs derived in Section

3. For any matrix Θ̂, which is an estimator of Θ, the MSE of Θ̂ is defined by

MSE(Θ̂) = E[∥Θ̂−Θ∥2F ],

where the expectation E[·] is approximated by an average value of 1000 simulation results

and ∥ · ∥F denotes the Frobenius norm. Note that if MSE(Θ̂) goes to zero, then Θ̂
p→ Θ [see

e.g., 16].

For each iteration, the response matrix X is generated according to

X ∼ Np,n(ABC,D
2, F 2),

where D2 = AΣA⊤ + δ2Ip and F
2 = C⊤ΨC + In. The design matrices A and C are given by

A = (1p, A
′), A′ ∼ Np,q−1(Op,q−1, Ip, Iq−1),

C = (1n, C
′)⊤, C ′ ∼ Nn,k−1(On,k−1, In, Ik−1).

The entries of B are given by i.i.d. copies from N(0, 1), and we set q = 5, k = 3, δ2 = 2,
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Σ = diag(1, 1, 0, 0, 0) and Ψ = αndiag(1, 0, 0) with a positive sequence αn. Three choices of

αn have been studied:

Case 1: αn = 1;

Case 2: αn = n−1/2;

Case 3: αn = n−1.

The covariance matrices, Σ and Ψ, are singular. For each case, n and p, we prepare three

scenarios, (i) n → ∞ and p → ∞; (ii) n → ∞ and p is fixed; (iii) n is fixed and p → ∞. In

the simulations, n and p vary from 20 to 3000.

It follows from Theorem 3 that when n tends to infinity Σ̂ is consistent and when p tends

to infinity Ψ̂ is consistent, whereas if either n or p is large δ̂2 is consistent. However, the

condition for consistency of B̂, given in Theorem 4, is only satisfied in the Cases 2 and 3

when n goes to infinity.

Tables 1, 2 and 3 present the MSEs of B̂, δ̂2, Σ̂ and Ψ̂, for Cases 1, 2 and 3, respectively.

It can be seen from Tables 2 and 3 that the MSE of B̂ is small when n is large while it does

not go to zero even when n and p are large in Table 1. This may be due to the condition for

the consistency of B̂ given in Theorem 4. In order to check the condition, it needs to estimate

Σ and Ψ, precisely. As mentioned previously, it follows from Theorem 3 that Σ̂
p→ Σ and

Ψ̂
p→ Ψ with n→ ∞ and p→ ∞, respectively. Therefore, we next check the performance of

Σ̂ and Ψ̂ in finite sample situations. The MSE of Σ̂ can be small when n is large regardless

of p in all tables although it does not approach zero when n is small. An opposite result can

be seen for the MSE of Ψ̂ in Table 1. On the other hand, the MSE of Ψ̂ is small even when

p is finite in Tables 2 and 3. This is because the entries of Ψ̂ approach zero in Cases 2 and 3

when n tends to infinity. Moreover, in all tables, the MSE of δ̂2 become small when n and/or

p are small. These results agree with the consistency property for the estimators shown in
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Theorem 3. Thus, the adequacy of the MLEs has been confirmed through this simulation

study.

Table 1: (Case 1: αn = 1) Mean squared errors (MSE) and their standard errors (SE) for B̂,
δ̂2, Σ̂ and Ψ̂ are presented when n and p vary between 20 and 3000. All entries of MSE and
SE are rounded to 3 digits.

B̂ δ̂2 Σ̂ Ψ̂
n p MSE SE MSE SE MSE SE MSE SE
20 20 3.127 0.079 0.038 0.001 0.456 0.008 0.138 0.005
50 50 2.263 0.064 0.004 0.000 0.136 0.003 0.046 0.002
100 100 2.100 0.062 0.001 0.000 0.064 0.002 0.023 0.001
200 200 2.048 0.065 0.000 0.000 0.030 0.001 0.011 0.000
500 500 1.928 0.059 0.000 0.000 0.012 0.000 0.004 0.000
1000 1000 2.169 0.071 0.000 0.000 0.006 0.000 0.002 0.000
2000 2000 2.038 0.065 0.000 0.000 0.003 0.000 0.001 0.000
3000 3000 2.048 0.060 0.000 0.000 0.002 0.000 0.001 0.000
50 20 2.877 0.071 0.013 0.001 0.194 0.004 0.133 0.004
100 20 2.800 0.075 0.006 0.000 0.097 0.002 0.145 0.005
200 20 2.774 0.068 0.003 0.000 0.048 0.001 0.135 0.004
500 20 2.789 0.079 0.001 0.000 0.020 0.000 0.138 0.004
1000 20 2.660 0.071 0.001 0.000 0.010 0.000 0.136 0.004
2000 20 2.733 0.074 0.000 0.000 0.005 0.000 0.138 0.004
3000 20 2.662 0.070 0.000 0.000 0.003 0.000 0.140 0.005
20 50 2.474 0.064 0.011 0.000 0.351 0.008 0.052 0.002
20 100 2.341 0.068 0.005 0.000 0.322 0.007 0.027 0.001
20 200 2.321 0.066 0.002 0.000 0.320 0.008 0.013 0.001
20 500 2.317 0.068 0.001 0.000 0.303 0.007 0.005 0.000
20 1000 2.244 0.064 0.000 0.000 0.304 0.007 0.003 0.000
20 2000 2.236 0.066 0.000 0.000 0.299 0.007 0.001 0.000
20 3000 2.339 0.065 0.000 0.000 0.289 0.006 0.001 0.000

6 Concluding remarks

The present paper proposes a new multivariate model, which is an extension of the Growth

Curve model and the linear mixed model. This model has a bilinear random coefficients

structure and expresses a flexible model class for correlated data. Moreover, we derive the
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Table 2: (Case 2: αn = n−1/2) Mean squared errors (MSE) and their standard errors (SE)
for B̂, δ̂2, Σ̂ and Ψ̂ are presented when n and p vary between 20 and 3000. All entries of
MSE and SE are rounded to 3 digits.

B̂ δ̂2 Σ̂ Ψ̂
n p MSE SE MSE SE MSE SE MSE SE
20 20 1.009 0.021 0.038 0.002 0.456 0.008 0.011 0.000
50 50 0.434 0.010 0.004 0.000 0.136 0.003 0.001 0.000
100 100 0.269 0.007 0.001 0.000 0.064 0.002 0.000 0.000
200 200 0.175 0.005 0.000 0.000 0.030 0.001 0.000 0.000
500 500 0.098 0.003 0.000 0.000 0.012 0.000 0.000 0.000
1000 1000 0.075 0.002 0.000 0.000 0.006 0.000 0.000 0.000
2000 2000 0.049 0.001 0.000 0.000 0.003 0.000 0.000 0.000
3000 3000 0.039 0.001 0.000 0.000 0.002 0.000 0.000 0.000
50 20 0.553 0.012 0.013 0.001 0.194 0.004 0.004 0.000
100 20 0.358 0.008 0.006 0.000 0.097 0.002 0.002 0.000
200 20 0.235 0.005 0.003 0.000 0.048 0.001 0.001 0.000
500 20 0.141 0.004 0.001 0.000 0.020 0.000 0.000 0.000
1000 20 0.092 0.002 0.001 0.000 0.010 0.000 0.000 0.000
2000 20 0.065 0.002 0.000 0.000 0.005 0.000 0.000 0.000
3000 20 0.051 0.001 0.000 0.000 0.003 0.000 0.000 0.000
20 50 0.811 0.018 0.011 0.000 0.351 0.008 0.004 0.000
20 100 0.759 0.019 0.005 0.000 0.322 0.007 0.002 0.000
20 200 0.753 0.018 0.002 0.000 0.320 0.008 0.001 0.000
20 500 0.751 0.019 0.001 0.000 0.303 0.007 0.000 0.000
20 1000 0.731 0.018 0.000 0.000 0.304 0.007 0.000 0.000
20 2000 0.724 0.018 0.000 0.000 0.299 0.007 0.000 0.000
20 3000 0.749 0.018 0.000 0.000 0.289 0.006 0.000 0.000
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Table 3: (Case 3: αn = n−1) Mean squared errors (MSE) and their standard errors (SE) for
B̂, δ̂2, Σ̂ and Ψ̂ are presented when n and p vary between 20 and 3000. All entries of MSE
and SE are rounded to 3 digits.

B̂ δ̂2 Σ̂ Ψ̂
n p MSE SE MSE SE MSE SE MSE SE
20 20 0.534 0.009 0.040 0.002 0.456 0.008 0.002 0.000
50 50 0.176 0.003 0.004 0.000 0.136 0.003 0.000 0.000
100 100 0.086 0.002 0.001 0.000 0.064 0.002 0.000 0.000
200 200 0.042 0.001 0.000 0.000 0.030 0.001 0.000 0.000
500 500 0.016 0.000 0.000 0.000 0.012 0.000 0.000 0.000
1000 1000 0.009 0.000 0.000 0.000 0.006 0.000 0.000 0.000
2000 2000 0.004 0.000 0.000 0.000 0.003 0.000 0.000 0.000
3000 3000 0.003 0.000 0.000 0.000 0.002 0.000 0.000 0.000
50 20 0.224 0.004 0.013 0.001 0.194 0.004 0.000 0.000
100 20 0.114 0.002 0.006 0.000 0.097 0.002 0.000 0.000
200 20 0.055 0.001 0.003 0.000 0.048 0.001 0.000 0.000
500 20 0.022 0.000 0.001 0.000 0.020 0.000 0.000 0.000
1000 20 0.011 0.000 0.001 0.000 0.010 0.000 0.000 0.000
2000 20 0.005 0.000 0.000 0.000 0.005 0.000 0.000 0.000
3000 20 0.004 0.000 0.000 0.000 0.003 0.000 0.000 0.000
20 50 0.438 0.008 0.011 0.000 0.351 0.008 0.001 0.000
20 100 0.406 0.008 0.005 0.000 0.322 0.007 0.000 0.000
20 200 0.402 0.008 0.002 0.000 0.320 0.008 0.000 0.000
20 500 0.400 0.009 0.001 0.000 0.303 0.007 0.000 0.000
20 1000 0.393 0.008 0.000 0.000 0.304 0.007 0.000 0.000
20 2000 0.386 0.008 0.000 0.000 0.299 0.007 0.000 0.000
20 3000 0.394 0.008 0.000 0.000 0.289 0.006 0.000 0.000
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MLEs of the unknown parameters as well as their consistency property. Because the param-

eter space includes the boundary and the maximum can take place on the boundary of the

parameter space, the structure as well as distributions of the MLEs except for B̂ is compli-

cated so that their properties such as finding of an asymptotic distribution looks hard to show

theoretically. From the simulation studies, we demonstrate the finite sample performance of

the MLEs that can be equipped with a consistency property even when both n and p are

large.

It is possible to extend our result to the case when we have N independent observations

of X in (3), i.e. X1, . . . , XN . Thus, we have independent observations of a bilinear random

regression model which indeed means that we have a trilinear scenario. Nowadays, some

results exist for trilinear models and a recent reference is [17], where also other works are

mentioned. However, our extended model differs significantly from the model considered in

[17], i.e. they do not include random coefficient regression effects in their model. It will be

possible to produce estimators of the unknown parameters using N samples, X1, . . . , XN ,

corresponding to Theorems 1 and 2 in this paper. It will also be possible to select the true

rank of the covariance matrices of the random coefficients by using an information criteria

as considered in [18]. We can expect that this approach enables us to select the true rank

with a probability tending to one, under appropriate conditions. However, we leave this for

future works.
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Appendix A Transformation from general form to canonical form

We present one way of transforming the Growth Curve model to a canonical form. Let PA

and PC be defined by

PA = (A(A⊤A)−1/2, QA), PC = (C⊤(CC⊤)−1/2, QC),

where Q⊤
AA = Op−q,q, Q

⊤
AQA = Ip−q, CQC = Ok,n−k and Q⊤

CQC = In−k are fulfilled. Thus,

P⊤
AA = ((A⊤A)1/2, Oq,p−q)

⊤, CPC = ((CC⊤)1/2, Ok,n−k).

Moreover, it follows that P⊤
A PA = Ip, P

⊤
C PC = In and

P⊤
AD

2PA = (Iq, Oq,p−q)
⊤(A⊤A)1/2Σ(A⊤A)1/2(Iq, Oq,p−q) + δ2Ip,

P⊤
C F

2PC = (Ik, Ok,n−k)
⊤(CC⊤)1/2Ψ(CC⊤)1/2(Ik, Ok,n−k) + In.

Using PA and PC indicates that

X̃ : = P⊤
AXPC = P⊤

A (ABC +DEF )PC = ÃB̃C̃ + D̃EF̃ ,

where Ã = (Iq, Oq,p−q)
⊤, B̃ = (A⊤A)1/2B(CC⊤)1/2, C̃ = (Ik, Ok,n−k), D̃

2 = ÃΣ̃Ã⊤ + δ2Ip,

F̃ 2 = C̃⊤Ψ̃C̃ + In, Σ̃ = (A⊤A)1/2Σ(A⊤A)1/2 and Ψ̃ = (CC⊤)1/2Ψ(CC⊤)1/2. Hence, by

replacing X, A, B, C, Σ and Ψ by X̃, Ã, B̃, C̃, Σ̃ and Ψ̃, respectively, we obtain the

canonical form in (7).
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Appendix B Proof of Theorem 1

Proof. Since the fourth term on the right hand side in (8), δ2tr{Ψ−1
∗ (X11−B)Σ−1

∗ (X11−B)⊤}

is non-negative, the optimum value of B is given by B̂ = X11. On the other hand, it follows

from [14] that the maximum point of ℓ(B̂,Σ∗,Ψ∗, δ
2|X) attains when Σ∗ and Ψ∗ satisfy

that Q12Σ∗Q
⊤
12 and Q21Ψ∗Q

⊤
21 are diagonal matrices, respectively. Hence, we re-parametrize

Q12Σ∗Q
⊤
12 = diag(σ2

1, . . . , σ
2
q ) and Q21Ψ∗Q

⊤
21 = diag(ψ2

1, . . . , ψ
2
k). Moreover, the assumptions

Σ∗ − δ2Iq ≥ 0 and Ψ∗ − δ2Ik ≥ 0 imply σ2
s ≥ δ2 and ψ2

t ≥ δ2, respectively. Therefore, instead

of minimizing (8),

min
σ̃2
s ,ψ̃

2
t ,δ̃

2
−(np− nq − kp) log δ̃2 + δ̃2tr(X22X

⊤
22)

+

q∑
s=1

{−n log σ̃2
s + λ(12)s σ̃2

s}

+
k∑
t=1

{−p log ψ̃2
t + λ

(21)
t ψ̃2

t }.

(12)

subject to σ̃2
s − δ̃2 ≤ 0, s = 1, . . . , q,

ψ̃2
t − δ̃2 ≤ 0, t = 1, . . . , k,

(13)

where δ̃2 = δ−2, σ̃2
s = σ−2

s and ψ̃2
t = ψ−2

t . We note that this optimization problem consisting

of (12) and (13) is a convex problem because np− nq− kp is assumed to be positive. Hence,

the Karush-Kuhn-Tucker (KKT) conditions are necessary and sufficient conditions for the

optimization of (12) given (13). By using KKT multipliers λσ,s ≥ 0 and λψ,t ≥ 0, along with
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(13), we obtain the following KKT conditions:

− (np− nq − kp)δ̃−2 + tr(X22X
⊤
22)−

q∑
s=1

λσ,s −
k∑
t=1

λψ,t = 0,

− nσ̃−2
s + λ(12)s + λσ,s = 0, s = 1, . . . , q,

− pψ̃−2
t + λ

(21)
t + λψ,t = 0, t = 1, . . . , k,

λσ,s(σ̃
2
s − δ̃2) = 0, s = 1, . . . , q,

λψ,t(ψ̃
2
t − δ̃2) = 0, t = 1, . . . , k.

Let two index sets Iσ and Iψ be defined by

Iσ = {1 ≤ s ≤ q|λσ,s = 0}, Iψ = {1 ≤ t ≤ k|λψ,t = 0}.

The 2nd − 5th KKT conditions show that

σ̃−2
s =

 δ̃−2, λσ,s ̸= 0 ⇔ s ̸∈ Iσ,

λ
(12)
s /n, λσ,s = 0 ⇔ s ∈ Iσ,

ψ̃−2
t =

 δ̃−2, λψ,t ̸= 0 ⇔ t ̸∈ Iψ,

λ
(21)
t /p, λψ,t = 0 ⇔ t ∈ Iψ.

(14)
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Moreover, it follows from (14) and the 1st KKT condition that

0 = −(np− nq − kp)δ̃−2 + tr(X22X
⊤
22)−

q∑
s=1

λσ,s −
k∑
t=1

λψ,t

= −(np− nq − kp)δ̃−2 + tr(X22X
⊤
22)−

∑
s ̸∈Iσ

λσ,s −
∑
t̸∈Iψ

λψ,t

= −(np− nq − kp)δ̃−2 + tr(X22X
⊤
22)−

∑
s ̸∈Iσ

{nδ̃−2 − λ(12)s } −
∑
t̸∈Iψ

{pδ̃−2 − λ
(21)
t }

= −(pn− n#Iσ − p#Iψ)δ̃
−2 + tr(X22X

⊤
22) +

∑
s ̸∈Iσ

λ(12)s +
∑
t̸∈Iψ

λ
(21)
t ,

where #Iσ and #Iψ are the number of elements in the sets Iσ and Iψ, respectively. Hence,

given Iσ and Iψ, estimators of σ2
s , ψ

2
t and δ2 equal

δ̂2(Iσ, Iψ) =
tr(X22X

⊤
22) +

∑
s ̸∈Iσ λ

(12)
s +

∑
t̸∈Iψ λ

(21)
t

np− n#Iσ − p#Iψ
,

σ̂2
s(Iσ, Iψ) =

 δ̂2(Iσ, Iψ), s ̸∈ Iσ,

λ
(12)
s /n, s ∈ Iσ,

ψ̂2
t (Iσ, Iψ) =

 δ̂2(Iσ, Iψ), t ̸∈ Iψ,

λ
(21)
t /p, t ∈ Iψ.

(15)

Because of (13), they have to satisfy that δ̂2(Iσ, Iψ) ≤ σ̂2
s(Iσ, Iψ) and δ̂

2(Iσ, Iψ) ≤ ψ̂2
t (Iσ, Iψ)

for all s ∈ Iσ and t ∈ Iψ. Note that if Iσ and Iψ are full sets, then the MLEs of δ2, Σ∗

and Ψ∗ are given by δ̂2(Iσ, Iψ) = tr(X22X
⊤
22)/(np − nq − kp), Σ̂∗(Iσ, Iψ) = X12X

⊤
12/n and

Ψ̂∗(Iσ, Iψ) = X⊤
21X21/p, respectively.

Next, we want to optimize the index sets Iσ and Iψ. Let ℓ(Iσ, Iψ) be the maximum

likelihood function given Iσ and Iψ, where

−2ℓ(Iσ, Iψ) ∝ (pn− n#Iσ − p#Iψ) log δ̂
2(Iσ, Iψ) + n

∑
s∈Iσ

log
λ
(12)
s

n
+ p

∑
t∈Iψ

log
λ
(21)
t

p
. (16)
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At first, we fix Iψ, and compare the index sets I
(1)
σ = I

(0)
σ ∪{s1} and I

(2)
σ = I

(0)
σ ∪{s2}, where

I
(0)
σ ⊊ {1, . . . , q} and s1, s2 ̸∈ I

(0)
σ satisfying s1 < s2. When s1 < s2, it holds that λ

(12)
s1 ≥ λ

(12)
s2 .

Thus, it also holds from (15) that δ̂2(I
(1)
σ , Iψ) ≤ δ̂2(I

(2)
σ , Iψ) and σ̂

2
s2
(I

(2)
σ , Iψ) ≤ σ̂2

s1
(I

(1)
σ , Iψ).

Suppose that the estimators based on I
(2)
σ satisfies (13), i.e., δ̂2(I

(2)
σ , Iψ) ≤ σ̂2

s(I
(2)
σ , Iψ) for all

s ∈ I
(2)
σ . Then, it follows that

δ̂2(I(1)σ , Iψ) ≤ δ̂2(I(2)σ , Iψ) ≤ σ̂2
s2
(I(2)σ , Iψ) ≤ σ̂2

s1
(I(1)σ , Iψ). (17)

Hence, δ̂2(I
(1)
σ , Iψ) ≤ σ̂2

s(I
(1)
σ , Iψ) is established for all s ∈ I

(1)
σ , that is, the estimators based

on I
(1)
σ satisfies (13).

Now we want to show that −2ℓ(I
(1)
σ , Iψ) ≤ −2ℓ(I

(2)
σ , Iψ), which indicates that I

(1)
σ is better

than I
(2)
σ in terms of the likelihood function. To simplify notation, we denote

K = tr(X22X
⊤
22) +

∑
s ̸∈I(0)σ

λ(12)s +
∑
t̸∈Iψ

λ
(21)
t ,

L = n
∑
s∈I(0)σ

log
λ
(12)
s

n
+ p

∑
t∈Iψ

log
λ
(21)
t

p
,

M = np− n#I(0)σ − p#Iψ.

Here, we use the inequality that for a, b, c, d > 0,

b

a
≤ d

c
⇒ b

a
≤ b+ d

a+ c
≤ d

c
. (18)

Let a =M−n, b = K−λ(12)s2 , c = n and d = λ
(12)
s2 . Because b/a = δ̂2(I

(2)
σ , Iψ) ≤ σ̂2

s2
(I

(2)
σ , Iψ) =

λ
(12)
s2 /n = d/c is established from (17), it follows from (18) that

K

M
=
b+ d

a+ c
≤ d

c
=
λ
(12)
s2

n
≤ λ

(12)
s1

n
, (19)
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where the last inequality follows from the assumption that s1 < s2. For x ∈ (0, K/n), denote

f(x) = (M − n) log
K − nx

M − n
+ n log x+ L,

which satisfies f(λ
(12)
sm /n) = −2ℓ(I

(m)
σ , Iψ) for m = 1, 2. It is easy to show that f is concave

and its critical point is given by x = K/M , which implies that f is monotonically decreasing

when x ≥ K/M . This and (19) clarify that −2ℓ(I
(1)
σ , Iψ) ≤ −2ℓ(I

(2)
σ , Iψ) when the estimators

based on I
(2)
σ satisfies (13).

Hence, there exists a non-negative integer qσ such that the optimum set for Iσ is obtained

by Îσ ≡ {1, . . . , qσ}. In a similar way, we can show that an optimal index set of Iψ can be

expressed by Îψ ≡ {1, . . . , kψ}, where kψ is a non-negative integer. Note that qσ = 0 and

kψ = 0 imply Îσ and Îψ are empty, respectively. Thus, the proof is completed.

Appendix C Proof of Theorem 2

Proof. Let I
(0)
σ = {1, . . . , qσ}, I(1)σ = {1, . . . , qσ+1}, I(0)ψ = {1, . . . , kψ} and I

(1)
ψ = {1, . . . , kψ+

1}. At first, we show that −2ℓ(I
(1)
σ , I

(0)
ψ ) ≤ −2ℓ(I

(0)
σ , I

(0)
ψ ) when (qσ + 1, kψ) ∈ L. Denoting

K, L and M as in Appendix B, we can see that

−2ℓ(I(0)σ , I
(0)
ψ ) + 2ℓ(I(1)σ , I

(0)
ψ ) =M log

K

M
− (M − n) log

K − λ
(12)
qσ+1

M − n
− n log

λ
(12)
qσ+1

n
.

Note that since (qσ+1, kψ) belongs to L, it holds that {K−λ(12)qσ+1}/(M−n) = δ̂2(I
(1)
σ , I

(0)
ψ ) ≤

σ̂2
qσ+1(I

(1)
σ , I

(0)
ψ ) = λ

(12)
qσ+1/n. From (18) with a =M − n, b = K − λ

(12)
qσ+1, c = n and d = λ

(12)
qσ+1,

it follows that K/M = (b + d)/(a + c) ≤ d/c = λ
(12)
qσ+1/n < K/n. Here, for x ∈ (0, K/n),

denote

g(x) =M log
K

M
− (M − n) log

K − nx

M − n
− n log x.
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Because g is convex and its critical point is given by K/M , we can see that

−2ℓ(I(0)σ , I
(0)
ψ ) + 2ℓ(I(1)σ , I

(0)
ψ ) = g(λ

(12)
qσ+1/n) ≥ g(K/M) = 0.

Likewise, it can be seen that −2ℓ(I
(0)
σ , I

(1)
ψ ) ≤ −2ℓ(I

(0)
σ , I

(0)
ψ ) when (qσ, kψ+1) ∈ L. Hence,

the proof is completed.

Appendix D Proofs of Lemma 1 and Lemma 2

Proof. Firstly, we prepare the following lemma to show Lemma 1.

Lemma 3. For any a ≥ 0 and symmetric matrices A1, A2 ∈ Rm×m such that A1 and A2 are

positive and non-negative definite, respectively, it holds that for all ℓ ∈ 1, . . . ,m,

{a+ λℓ(A2)}λm(A1) ≤ λℓ(A1(A2 + aIm)) ≤ {a+ λℓ(A2)}λ1(A1).

It follows from some linear algebra [see e.g., 19] that for all ℓ ∈ 0, . . . ,m− 1,

λℓ+1(A1(A2 + aIm)) = λℓ+1(A
1/2
1 (A2 + aIm)A

1/2
1 )

= inf
Fℓ

sup
F⊤
ℓ x=0ℓ

x⊤A
1/2
1 (A2 + aIm)A

1/2
1 x

x⊤x

= inf
Fℓ

sup
F⊤
ℓ y=0ℓ

y⊤(A2 + aIm)y

y⊤A−1
1 y

,

where Fℓ ∈ Rm×ℓ. Because eigenvalues of A−1
1 are inverse of eigenvalues of A1, which is

positive definite, for all y ∈ Rm,

y⊤(A2 + aIm)y

y⊤A−1
1 y

≤ λm(A
−1
1 )−1y

⊤(A2 + aIm)y

y⊤y
= λ1(A1)

y⊤(A2 + aIm)y

y⊤y
,

y⊤(A2 + aIm)y

y⊤A−1
1 y

≥ λ1(A
−1
1 )−1y

⊤(A2 + aIm)y

y⊤y
= λm(A1)

y⊤(A2 + aIm)y

y⊤y
.
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Note that

inf
Fℓ

sup
F⊤
ℓ y=0ℓ

y⊤(A2 + aIm)y

y⊤y
= λℓ+1(A2 + aIm) = a+ λℓ+1(A2).

Hence, the proof is completed.

Proof of Lemma 1

Proof. At first, we show Pr((q∗σ, k
∗
σ) ∈ L) → 1 for all asymptotic frameworks (i)–(iii) of the

lemma, that is,

Pr(λ
(12)
q∗σ

/n ≥ δ̂2(q∗σ, k
∗
σ), λ

(21)
k∗ψ

/p ≥ δ̂2(q∗σ, k
∗
σ)) → 1.

We firstly show that for all qσ ≥ q∗σ and kψ ≥ k∗ψ, δ̂
2(qσ, kψ) converges to δ2 in probability.

By considering the transformation in Appendix A, we can see that

ÃB̃C̃ =

B̃ O

O O

 , D̃2 =

Σ̃ + δ2Iq Oq,p−q

Op−q,q δ2Ip−q

 , F̃ 2 =

Ψ̃ + Ik Ok,n−k

On−k,k In−k

 .

Splitting the error matrix E into four parts like X, i.e.,

E =

E11 E12

E21 E22

 :
q × k q × (n− k)

(p− q)× k (p− q)× (n− k)

we can see that

X̃ =

B̃ + (Σ̃ + δ2Iq)
1/2E11(Ψ̃ + Ik)

1/2 (Σ̃ + δ2Iq)
1/2E12

δE21(Ψ̃ + Ik)
1/2 δE22

 ,
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where X̃ = ÃB̃C̃ + D̃EF̃ . Hence, X12 and X21 can be expressed as

X12 = (Σ̃ + δ2Iq)
1/2E12, X21 = δE21(Ψ̃ + Ik)

1/2,

where E12 ∼ Nq,n−k(Oq,n−k, Iq, In−k) and E21 ∼ Np−q,k(Op−q,k, Ip−q, Ik). Note that Σ̃ =

(A⊤A)1/2Σ(A⊤A)1/2 and Ψ̃ = (CC⊤)1/2Ψ(CC⊤)1/2. Define

W12 = E12E
⊤
12 ∼ Wq(Iq, n− k), W21 = E⊤

21E21 ∼ Wk(Ik, p− q). (20)

Then, λ
(12)
qσ and λ

(21)
kψ

can be expressed as follows:

λ(12)qσ = λqσ(X12X
⊤
12) = λqσ((Σ̃ + δ2Iq)W12),

λ
(21)
kψ

= λkψ(X21X
⊤
21) = δ2λkψ((Ψ̃ + Ik)W21).

(21)

Here, let us fix qσ > q∗σ and kψ > k∗ψ. Because λqσ(Σ) = λkψ(Ψ) = 0, Lemma 3 yields that

λqσ(Σ̃) = λkψ(Ψ̃) = 0. Combining this result, (21) and Lemma 3, we have

δ2λq(W12) ≤ λ(12)qσ ≤ δ2λ1(W12),

δ2λk(W21) ≤ λ
(21)
kψ

≤ δ2λ1(W21).

(22)

Because W12/n
p→ Iq as n → ∞ and W21/p

p→ Ik as p → ∞, we can see that λ1(W12)/n,

λq(W12)/n
p→ 1 and λ1(W21)/p, λk(W21)/p

p→ 1 when n and p go to infinity, respectively.

Therefore, (22) indicates that

λ(12)qσ /n
p→ δ2 for (i), (ii), λ(12)qσ /n = Op(1) for (iii),

λ
(21)
kψ

/p
p→ δ2 for (i), (iii), λ

(21)
kψ

/p = Op(1) for (ii).
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On the other hand, tr(X22X
⊤
22)/δ

2 ∼ χ2
(n−k)(p−q) and χ

2
(n−k)(p−q)/(n−k)(p−q)

p→ 1 for (i)–(iii).

Hence, it holds that

δ̂2(qσ, kψ) =
tr(X22X

⊤
22) +

∑
s>qσ

λ
(12)
s +

∑
t>kψ

λ
(21)
t

np− nqσ − kψp

p→ δ2 (23)

for (i)–(iii) when qσ ≥ q∗σ and kψ ≥ k∗ψ.

Next, we obtain the lower bounds of λ
(12)
q∗σ

and λ
(21)
k∗ψ

. Using Lemma 3 and the condition

(11), we have

λq∗σ(Σ̃ + δ2Iq) ≥ λq(A
⊤A)λq∗σ(Σ) + δ2 ≥ pζaλq∗σ(Σ) + δ2,

λk∗ψ(Ψ̃ + Ik) ≥ λk(CC
⊤)λk∗ψ(Ψ) + 1 ≥ nζcλk∗ψ(Ψ) + 1.

By applying this evaluation and Lemma 3 into (21), it follows that

λ
(12)
q∗σ

≥ λq∗σ(Σ̃ + δ2Iq)λq(W12) ≥ {pζaλq∗σ(Σ) + δ2}λq(W12),

λ
(21)
k∗ψ

≥ δ2λk∗ψ(Ψ̃ + Ik)λk(W21) ≥ δ2{nζcλk∗ψ(Ψ) + 1}λk(W21).

(24)

If λq(W12)/n ≥ {ζaλq∗σ(Σ)/2+ δ2}/{pζaλq∗σ(Σ)+ δ2}, then it follows from (24) that λ
(12)
q∗σ

/n ≥

ζaλq∗σ(Σ)/2 + δ2. Here, we consider the case when n → ∞, i.e., (i) and (ii). Because

{ζaλq∗σ(Σ)/2 + δ2}/{pζaλq∗σ(Σ) + δ2} ≤ 1 + ζaλq∗σ(Σ)/(2δ
2) < 1 and λq(W12)/n

p→ 1, it holds

that for (i) and (ii),

Pr(λq(W12)/n ≥ {ζaλq∗σ(Σ)/2 + δ2}/{pζaλq∗σ(Σ) + δ2}) → 1.

Hence, we can see that

Pr(λ
(12)
q∗σ

/n ≥ ζaλq∗σ(Σ)/2 + δ2) → 1, (25)
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for (i) and (ii). In the case (iii), because λq∗σ(Σ) > 0,

Pr(λq(W12)/n ≥ {ζaλq∗σ(Σ)/2 + δ2}/{pζaλq∗σ(Σ) + δ2}) → 1.

Hence (25) holds for (iii). In a similar way, for (i)–(iii), it follows that

Pr(λ
(21)
k∗ψ

/p ≥ δ2{ζcλk∗ψ(Ψ)/2 + 1}) → 1. (26)

Combining (23), (25) and (26), it can be seen that Pr((q∗σ, k
∗
ψ) ∈ L) → 1 for (i)–(iii). Thus,

for all qσ < q∗σ and kψ < k∗ψ, Pr((qσ, kψ) ̸∈ LR) → 1 for all (i)–(iii).

For the proof of the lemma, it suffices to show that (qσ, kψ), which satisfies qσ ≥ q∗σ, kψ <

k∗ψ or qσ < q∗σ, kψ ≥ k∗ψ, does not belong to LR with a probability tending to 1. Because

of symmetry, we only consider the case qσ ≥ q∗σ and kψ < k∗ψ. Suppose that there exists

(qσ, kψ) ∈ L such that qσ ≥ q∗σ and kψ < k∗ψ. Then, from the definition of L, it follows that

δ̂2(qσ, kψ) ≤
λ
(12)
qσ

n
, δ̂2(qσ, kψ) ≤

λ
(21)
kψ

p
.

On the other hand, because kψ < k∗ψ is assumed, if (qσ, k
∗
ψ) ∈ L, that is,

δ̂2(qσ, k
∗
ψ) ≤

λ
(12)
qσ

n
. δ̂2(qσ, k

∗
ψ) ≤

λ
(21)
k∗ψ

p
,

then (qσ, kψ) ̸∈ LR. From the previous result presented in (23), δ̂2(qσ, k
∗
ψ)

p→ δ2. This and

(26) indicate that

Pr(δ̂2(qσ, k
∗
ψ) ≤ λ

(21)
k∗ψ

/p) → 1 (27)

for (i)–(iii). Moreover, it follows from (18) with a = np − nqσ − k∗ψp, b = tr(X22X
⊤
22) +
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∑
s>qσ

λ
(12)
s +

∑
t>k∗ψ

λ
(21)
t , c = (kψ − k∗ψ)p and d =

∑
kψ<t≤k∗ψ

λ
(21)
t that

b

a
= δ̂2(qσ, k

∗
ψ) ≤

λ
(21)
k∗ψ

p
≤

∑
kψ<t≤k∗ψ

λ
(21)
t

(kψ − k∗ψ)p
=
d

c

⇒ δ̂2(qσ, k
∗
ψ) =

b

a
≤ b+ d

a+ c
= δ̂2(qσ, kψ).

Hence, (27) implies that Pr(δ̂2(qσ, k
∗
ψ) ≤ δ̂2(qσ, kψ)) → 1 for (i)–(iii). Since the assumption

(qσ, kψ) ∈ L indicates that δ̂2(qσ, kψ) ≤ λ
(12)
qσ /n, the inequality δ̂2(qσ, k

∗
ψ) ≤ δ̂2(qσ, kψ) yields

δ̂2(qσ, k
∗
ψ) ≤ λ

(12)
qσ /n. From (27), it follows that

Pr(δ̂2(qσ, k
∗
ψ) ≤ λ(12)qσ /n) → 1 (28)

for (i)–(iii). It is established from (27) and (28) that

Pr(qσ ≥ q∗σ, kψ < k∗ψ ⇒ (qσ, kψ) ̸∈ LR) → 1,

for (i)–(iii). Thus, the proof is completed.

Proof of Lemma 2

Proof. Fix qσ ≥ q∗σ and kψ ≥ k∗ψ. Recall that

Σ̂(qσ, kψ) = (A⊤A)−1/2{Σ̂∗(qσ, kψ)− δ̂2(qσ, kψ)Iq}(A⊤A)−1/2,

Σ̂∗(qσ, kψ) = Q⊤
12diag{λ

(12)
1 /n, . . . , λ(12)qσ /n, δ̂2(qσ, kψ), . . . , δ̂

2(qσ, kψ)}Q12,

whereQ12 is an orthogonal matrix, which is used to diagonalize: nΣ̂∗(q, k) = (Σ̃+δ2Iq)
1/2W12(Σ̃+

δ2Iq)
1/2 = Q⊤

12diag{λ
(12)
1 , . . . , λ

(12)
q }Q12. Note that Σ̃ = (A⊤A)1/2Σ(A⊤A)1/2 and W12 ∼
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Wq(Iq, n− k) defined in (20). Here, Σ̂(qσ, kψ)− Σ is evaluated by

Σ̂(qσ, kψ)− Σ = (A⊤A)−1/2Σ̂∗(qσ, kψ)(A
⊤A)−1/2 − δ̂2(qσ, kψ)(A

⊤A)−1 − Σ

= (A⊤A)−1/2{Σ̂∗(qσ, kψ)− Σ̂∗(q, k)}(A⊤A)−1/2

+ (A⊤A)−1/2Σ̂∗(q, k)(A
⊤A)−1/2 − Σ− δ2(A⊤A)−1

+ {δ2 − δ̂2(qσ, kψ)}(A⊤A)−1.

Therefore, an upper bound of ∥Σ̂(qσ, kψ)− Σ∥2 can be obtained as follows:

∥Σ̂(qσ, kψ)− Σ∥2 ≤ max
qσ<s≤q

|δ̂2(qσ, kψ)− λ(12)s /n|∥(A⊤A)−1∥2

+ ∥(A⊤A)−1/2Σ̂∗(q, k)(A
⊤A)−1/2 − Σ− δ2(A⊤A)−1∥2

+ |δ2 − δ̂2(qσ, kψ)|∥(A⊤A)−1∥2.

For (i) and (ii), the limits δ̂2(qσ, kψ)
p→ δ2 (qσ ≥ q∗σ, kψ ≥ k∗ψ) and λ

(12)
s /n

p→ δ2 (s > q∗σ) have

been shown in the proof of Lemma 1. Moreover, because W12/n
p→ Iq, it holds that

∥(A⊤A)−1/2Σ̂∗(q, k)(A
⊤A)−1/2 − Σ− δ2(A⊤A)−1∥2

≤ ∥Σ + δ2(A⊤A)−1∥2∥W12/n− Iq∥2
p→ 0.

Hence, for (i) and (ii), ∥Σ̂(qσ, kψ)− Σ∥2
p→ 0.

In a similar way to the above presentation, we can verify the convergence of Ψ̂(qσ, kψ) to

Ψ for (i) and (iii). Hence, the proof is completed.
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