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Abstract

In this paper, we deal with a penalized least-squares (PLS) method for a linear regression
model with orthogonal explanatory variables. The used penalties are an adaptive-Lasso (AL)-
type ℓ1 penalty (AL-penalty) and a generalized ridge (GR)-type ℓ2 penalty (GR-penalty). Since
the estimators obtained by minimizing the PLS methods strongly depend on the regularization
parameters, we optimize them by a model selection criterion (MSC)-minimization method. The
estimators based on the AL-penalty and the GR-penalty have different properties, and it is univer-
sally recognized that these are completely different estimators. However, in this paper, we show
an interesting result that the two estimators are exactly equal when the explanatory variables are
orthogonal after optimizing the regularization parameters by the MSC-minimization method.
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1. Introduction

We deal with a linear regression model with an n-dimensional vector of response variables
y = (y1, . . . , yn)′ and an n × k matrix of nonstochastic explanatory variables X , where n is the
sample size and k is the number of explanatory variables. Here, without loss of generality, we
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assume that y and X are centralized, i.e., y′1n = 0 and X ′1n = 0k, where 1n is an n-dimensional
vector of ones and 0k is a k-dimensional vector of zeros. Moreover, in this paper, we particularly
assume that the following equations hold:

rank(X) = k < n − 1, X ′X =D = diag(d1, . . . , dk), d1 ≥ · · · ≥ dk > 0.

The relation X ′X = D indicates that the explanatory variables are orthogonal. Examples of
models with orthogonal explanatory variables include those of principal component analysis
(Massy, 1965; Jolliffe, 1982; Yanagihara, 2018), generalized ridge (GR) regression (Hoerl &
Kennard, 1970), and smoothing using orthogonal basis functions (Yanagihara, 2012; Hagiwara,
2017).

The least-squares (LS) method is widely used for estimating the regression coefficients β =

(β1, . . . , βk)′ of a linear regression model. The LS estimator (LSE) of β is obtained by minimiz-
ing the residual sum of squares (RSS) defined by

RSS(β) = (y −Xβ)′(y −Xβ). (1.1)

There also exist penalized LS (PLS) methods for estimating β. In a PLS method, an estimator
of β is obtained from a minimization of a penalized RSS (PRSS) defined by adding the RSS
to a penalty term. There are many kinds of PLS methods. One such method is the GR regres-
sion proposed by Hoerl & Kennard (1970), which is designed to avoid multicollinearity among
explanatory variables. The GR estimator (GRE) of β is obtained by minimizing the PRSSGR

defined by adding the RSS to the GR-type ℓ2 penalty (GR-penalty) as

PRSSGR(β) = RSS(β) +
k∑

j=1

θ jβ
2
j , (1.2)

where θ j ∈ R+ = {θ ∈ R | θ ≥ 0} ( j = 1, . . . , k) are regularization parameters called ridge
parameters. When θ1 = · · · = θk = 0, the PRSSGR coincides with the usual RSS. Most re-
searchers consider it commonsense that the GRE does not have sparsity. Since the value of the
GRE of β depends on ridge parameters, the optimization of these parameters is very important.
Methods for optimizing ridge parameters include model selection criterion (MSC)-minimization
methods, for example, the generalized Cp (GCp; Atkinson, 1980)- and GCV (Craven & Wahba,
1979)-minimization methods (Nagai et al., 2012; Yanagihara, 2018), and a fast algorithm for
minimizing MSC (Ohishi et al., 2018).

Moreover, Lasso, proposed by Tibshirani (1996), and adaptive-Lasso (AL), proposed by Zou
(2006) as an extension of the Lasso, give sparse estimates of unknown parameters. The AL
estimator (ALE) of β is obtained by minimizing PRSSAL, which is defined by changing the GR-
penalty in (1.2) to the AL-type ℓ1 penalty (AL-penalty) as
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PRSSAL(β) = RSS(β) + 2λ
k∑

j=1

w j|β j|, (1.3)

where λ ∈ R+ is a regularization parameter called a tuning parameter and w j ( j = 1, . . . , k) is a
weight. The PRSSAL with λ = 0 coincides with RSS, and the AL with w j = 1 coincides with the
ordinary Lasso. The ALE of β usually cannot be obtained without a numerical search algorithm,
e.g., LARS (Efron et al., 2004), Coordinate Descent (Friedman et al., 2010), or ADMM (Boyd
et al., 2011). However, in the case of using orthogonal explanatory variables as in this paper, the
ALE can be obtained in closed form. For the weights w j ( j = 1, . . . , k) in the AL, Zou (2006)
proposed w j = 1/|β̂LS

j |δ (δ ∈ R+\{0}), where β̂LS
j is the LSE of β j. Using these weights, it is

known that the ALE satisfies the oracle property (Fan & Li, 2001). Since the value of the ALE of
β depends on a tuning parameter, the optimization of this parameter is very important. Methods
for optimizing the tuning parameter include MSC-minimization methods as in the case of GR.
As examples, there are the CV- and an ERIC (Francis et al., 2015)-minimization methods (Zou,
2006; Francis et al., 2015) and selection stability (Sun et al., 2013).

In this paper, we give the closed form of the tuning parameter optimized by the GCV-
minimization method when w j = 1/|β̂LS

j |. Moreover, although it is widely recognized that the
GRE and the ALE are different estimators because the GRE does not have sparsity and the ALE
has sparsity, we show an interesting result that the GRE and the ALE with w j = 1/|β̂LS

j | are exactly
equal after optimizing the regularization parameters by the GCV-minimization method.

This paper is organized as follows: In Section 2, we show that the tuning parameter of the AL
optimized by the GCV-minimization method can be obtained in closed form. Moreover, we show
the equivalence between the ALE with w j = 1/|β̂LS

j | and the GRE after optimizing the regular-
ization parameters. In Section 3, we show the equivalence between the ALE with w j = 1/|β̂LS

j |
and the GRE after optimizing the regularization parameters by the MSC-minimization method.
Technical details are provided in the Appendix.

2. Equivalence between Two Estimators Optimized by the GCV-Minimization Method

In the beginning of this section, we consider the ALE of β with the tuning parameter optimized
by the GCV-minimization method. Since the explanatory variables are orthogonal, it follows from
the singular-value decomposition that

X = P

 D1/2

On−k,k

 = P1D
1/2, (2.1)

where On,k is an n × k matrix of zeros, P is an orthogonal matrix of order n, and P1 satisfying
P ′1P1 = Ik and P ′11n = 0k is the n × k matrix that consists of the first k columns of P . Using P1,
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we define the k-dimensional vector z1 as

z1 = (z1, . . . , zk)′ = P ′1y. (2.2)

Then the LSE of β that minimizes the RSS in (1.1) is given as

β̂LS =
(
β̂LS

1 , . . . , β̂LS
k

)′
=D−1X ′y =D−1/2z1 =

(
z1/

√
d1, . . . , zk/

√
dk

)′
. (2.3)

When the explanatory variables are orthogonal as in this paper, the ALE of β that minimizes (1.3)
can be obtained in closed form, given as in the following theorem (the proof is given in Appendix
A.1).

Theorem 1. Let Lλ be the diagonal matrix of order k of which the jth diagonal element is

defined by

ℓλ, j =
1
d j

S
(
1, λw j/

(
|z j|

√
d j

))
,

where S (x, a) is a soft-thresholding operator, i.e., S (x, a) = sign(x)(|x| − a)+. Then the ALE of β

that minimizes the PRSSAL in (1.3) is given by

β̂AL
λ = (β̂AL

λ,1 , . . . , β̂
AL
λ,k )′ = LλX

′y = LλD
1/2z1, (2.4)

that is, β̂AL
λ, j is expressed as

β̂AL
λ, j =

1√
d j

S
(
z j, λw j/

√
d j

)
. (2.5)

From Theorem 1 and the result in Ohishi & Yanagihara (2017), we can see that the ALE coincides
with the ordinary Lasso estimator when w j = 1 and the LSE in (2.3) when λ = 0.

Let HAL
λ be a hat matrix of the AL, i.e., HAL

λ =XLλX
′. Then, the predictive value of y from

the AL is given by
ŷAL
λ =Xβ̂AL

λ =HAL
λ y.

The GCV criterion for optimizing a tuning parameter consists of the following estimator of vari-
ance σ̂2

AL and generalized degrees of freedom dfAL:

σ̂2
AL(λ) =

1
n

(y − ŷAL
λ )′(y − ŷAL

λ ) =
1
n
y′(In −XLλX

′)2y, (2.6)

dfAL(λ) = 1 + tr(HAL
λ ) = 1 + tr(LλD). (2.7)

The generalized degrees of freedom in (2.7) with w j = 1 coincides with that proposed by Tibshi-
rani (1996). Using the above equations, the GCV criterion for optimizing a tuning parameter is
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given by

GCVAL(λ) =
σ̂2

AL(λ)
{1 − dfAL(λ)/n}2 .

In this paper, a common weight proposed by Zou (2006) with δ = 1 is used as w j:

w j =
1
|β̂LS

j |
=

√
d j

|z j|
( j = 1, . . . , k).

Then, from Theorem 1, the jth element of the ALE with w j = 1/|β̂LS
j | is calculated as

β̂AL
λ, j =

1√
d j

S
(
z j, λ/|z j|

)
. (2.8)

The σ̂2
AL(λ) and dfAL(λ) are rewritten as in the following lemma (the proof is given in Appendix

A.2).

Lemma 1. The σ̂2
AL(λ) and dfAL(λ) with w j = 1/|β̂LS

j | can be expressed as

σ̂2
AL(λ) =

1
n

nσ̂2
0 +

k∑
j=1

{
S

(
λ/z2

j , 1
)
+ 1

}2
z2

j

 , dfAL(λ) = 1 −
k∑

j=1

S
(
λ/z2

j , 1
)
, (2.9)

where σ̂2
0 is given by

σ̂2
0 =

1
n
y′(In −XD−1X ′)y. (2.10)

Since when k < n−1, σ̂2
0 , 0 in most cases, we assume σ̂2

0 , 0 in this paper. Moreover, let t0 = 0,
t j ( j = 1, . . . , k) be the jth-order statistic of z2

1, . . . , z
2
k , i.e.,

t j =

min{z2
1, . . . , z

2
k} ( j = 1)

min{{z2
1, . . . , z

2
k}\{t1, . . . , t j−1}} ( j = 2, . . . , k)

, (2.11)

R j ( j = 0, 1, . . . , k) be the range defined by

R j =

(t j, t j+1] ( j = 0, 1, . . . , k − 1)

(tk,∞) ( j = k)
, (2.12)

and s2
a (a = 0, 1, . . . , k) be the estimators of variance defined by

s2
a =

nσ̂2
0 +

∑a
j=0 t j

n − k − 1 + a
(a = 0, 1, . . . , k). (2.13)

As the relation between Ra and s2
a, Yanagihara (2018) showed that the following statement is true:

∃!a∗ ∈ {0, . . . , k − 1} s.t. s2
a∗ ∈ Ra∗ . (2.14)

Then, the tuning parameter optimized by the GCV-minimization method is as in the following
theorem (the proof is given in Appendix A.3).
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Theorem 2. Let w j = 1/|β̂LS
j | and let λ̂ be the tuning parameter optimized by the GCV-

minimization method, i.e.,

λ̂ = arg min
λ∈R+

GCVAL(λ).

Then, the closed form of λ̂ is given by λ̂ = s2
a∗ .

By using Theorem 2, from (2.8), we can see that the ALE of β with w j = 1/|β̂LS
j | after optimizing

the tuning parameter by the GCV-minimization method is obtained as the following closed form:

β̂AL
λ̂, j
=

1√
d j

S
(
z j, s2

a∗/|z j|
)
. (2.15)

Next, in order to show the equivalence between the ALE with w j = 1/|β̂LS
j | and the GRE, we

consider the GRE of β with the ridge parameters optimized by the GCV-minimization method.
The GRE that minimizes the PRSSGR in (1.2) is given by

β̂GR
θ =D−1

θ X ′y =D−1
θ D1/2z1,

where Dθ =D+diag(θ1, . . . , θk) and θ = (θ1, . . . , θk)′. Since it is easy to see that the jth element
of β̂GR

θ
depends on only θ j, we write it as

β̂GR
θ j, j =

√
d jz j

d j + θ j
. (2.16)

Let HGR
θ

be a hat matrix of the GR, i.e., HGR
θ
=XD−1

θ X ′. Then, the predictive value of y from
the GR is given by

ŷGR
θ =Xβ̂GR

θ =HGR
θ y.

The GCV criterion for optimizing the ridge parameters consists of the following estimator of
variance σ̂2

GR and generalized degrees of freedom dfGR:

σ̂2
GR(θ) =

1
n

(y − ŷGR
θ )′(y − ŷGR

θ ) =
1
n
y′(In − Jn −XD−1

θ X ′)2y, (2.17)

dfGR(θ) = 1 + tr(HGR
θ ) = 1 + tr(D−1

θ D). (2.18)

Using the above equations, the GCV criterion for optimizing ridge parameters is given by

GCVGR(θ) =
σ̂2

GR(θ)
{1 − dfGR(θ)/n}2 .

Yanagihara (2018) showed that the ridge parameters optimized by the GCV-minimization method
are obtained as the following closed forms:
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θ̂ j =


d js2

a∗

z2
j − s2

a∗

(s2
a∗ < z2

j )

∞ (s2
a∗ ≥ z2

j )

( j = 1, . . . , k).

As the result, we have √
d j

d j + θ̂ j
=

1√
d j

S
(
1, s2

a∗/z
2
j

)
.

Consequently, from the above equation and (2.16), the GRE after optimizing the ridge parameters
by the GCV-minimization method is given by

β̂GR
θ̂ j, j
=

1√
d j

S
(
z j, s2

a∗/|z j|
)
. (2.19)

From the result that (2.19) includes 0, we can see that the GRE after optimizing the ridge param-
eters has sparsity. By comparing (2.15) and (2.19), we can obtain the following theorem.

Theorem 3. When the explanatory variables are orthogonal, the ALE with w j = 1/|β̂LS
j | is ex-

actly equal to the GRE after optimizing the regularization parameters by the GCV-minimization

method, i.e., β̂AL
λ̂, j
= β̂GR

θ̂ j, j
( j = 1, . . . , k).

3. Equivalence between Two Estimators Optimized by the MSC-Minimization Method

In the previous section, we showed the equivalence between the ALE with w j = 1/|β̂LS
j | and

the GRE after optimizing the regularization parameters by the GCV-minimization method. In
this section, we show that the ALE with w j = 1/|β̂LS

j | is equal to the GRE optimized not only by
the GCV-minimization method but also by a general MSC-minimization method. First, we con-
sider the ALE with w j = 1/|β̂LS

j | after optimizing the tuning parameter by the MSC-minimization
method. The MSC for optimizing a tuning parameter can be expressed by a bivariate function
with respect to the σ̂2

AL(λ) in (2.6) and dfAL(λ) in (2.7). From Lemma 1, we obtain the following
lemma about the ranges of σ̂2

AL(λ) and dfAL(λ) (the proof is given in Appendix A.4).

Lemma 2. Ranges of σ̂2
AL(λ) and dfAL(λ) with w j = 1/|β̂LS

j | are given by

σ̂2
AL(λ) ∈ [σ̂2

0, σ̂
2
∞], dfAL(λ) ∈ [1, k + 1],

where σ̂2
0 is given by (2.10) and σ̂2

∞ = limλ→∞ σ̂
2
AL(λ), i.e.,

σ̂2
∞ =

1
n
y′(In − Jn)y.

A general expression of the MSC comes from using the following bivariate function given by
Ohishi et al. (2018).
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Definition 1. The f (r, u) is a bivariate function that satisfies the following conditions:

(C1) f (r, u) is a continuous function at any (r, u) ∈ (0, σ̂2
∞] × [1, u0),

(C2) f (r, u) > 0 for any (r, u) ∈ (0, σ̂2
∞] × [1, u0),

(C3) f (r, u) is first-order partially differentiable at any (r, u) ∈ (0, σ̂2
∞] × [1, u0) and

ḟr(r, u) =
∂

∂r
f (r, u) > 0, ḟu(r, u) =

∂

∂u
f (r, u) > 0, ∀(r, u) ∈ (0, σ̂2

∞] × [1, u0),

where u0 ≤ n.

By using the bivariate function f (r, u), the MSC for optimizing a tuning parameter can be ex-
pressed as

MSCAL(λ) = f (σ̂2
AL(λ), dfAL(λ)). (3.1)

Specific forms of the functions f of existing criteria, for example, a generalized Cp (GCp; Atkin-
son, 1980), a generalized information criterion (GIC; Nishii, 1984) under normality, and an ex-
tended GCV (EGCV; Ohishi et al., 2018), are expressed as follows:

f (r, u) =


nr/s2

0 + αu (GCp)

r exp(αu/n) (GIC)

r/(1 − u/n)α (EGCV : u < n)

,

where s2
0 is given by (2.13) and α is some positive value expressing the strength of a penalty

for model complexity. We can see that s2
0 , 0 because we assume that σ̂2

0 , 0. Moreover, the
original GIC under normality is expressed as n log r + αu. The GIC in this paper is defined as an
exponential transformation of the original GIC divided by n. Using (3.1), the tuning parameter
optimized by the MSC-minimization method is given by

λ̂ = arg min
λ∈R+

MSCAL(λ).

Hence, it follows from λ̂ and (2.8) that the ALE with w j = 1/|β̂LS
j | after optimizing the tuning

parameter by the MSC-minimization method is given by

β̂AL
λ̂, j
=

1√
d j

S
(
z j, λ̂/|z j|

)
. (3.2)

Next, in order to show the equivalence between the ALE with w j = 1/|β̂LS
j | and the GRE, we

give the GRE after optimizing the ridge parameters by the MSC-minimization method. From
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Ohishi et al. (2018), the ridge parameters optimized by the MSC-minimization method are

θ̂ = (θ̂1, . . . , θ̂k)′ = arg min
θ∈Rk

MSCGR(θ), MSCGR(θ) = f (σ̂2
GR(θ), dfGR(θ)), (3.3)

where f is given by Definition 1 and σ̂2
GR(θ) and dfGR(θ) are given by (2.17) and (2.18), respec-

tively. The following lemma describes the ranges of σ̂2
GR(θ) and dfGR(θ) (the proof is given in

Ohishi et al., 2018).

Lemma 3. Ranges of σ̂2
GR(θ) and dfGR(θ) are given by

σ̂2
GR(θ) ∈ [σ̂2

0, σ̂
2
∞], dfGR(θ) ∈ [1, k + 1].

Here, we consider the following class of ridge parameters defined by Ohishi et al. (2018):

∀h ∈ R+, g(h) = (g1(h), . . . , gk(h))′, g j(h) =


d jh

z2
j − h

(h < z2
j )

∞ (h ≥ z2
j )
. (3.4)

In the class, k ridge parameters are written in terms of one parameter h, and hence the codomain
of the class becomes smaller than that of θ. Nevertheless, Ohishi et al. (2018) showed that the
optimal ridge parameters are included in the class. Hence, it follows from (3.3) and (3.4) that the
ridge parameters optimized by the MSC-minimization method are given by

θ̂ = (θ̂1, . . . , θ̂k)′ = g(ĥ) = (g1(ĥ), . . . , gk(ĥ))′, g j(ĥ) =


d jĥ

z2
j − ĥ

(ĥ < z2
j )

∞ (ĥ ≥ z2
j )

,

ĥ = arg min
h∈R+

MSCGR(g(h)).

Equation (2.16) and θ̂ = g(ĥ) imply that the GRE after optimizing the ridge parameters by the
MSC-minimization method is given as

β̂GR
θ̂ j, j
=

1
√

d j
S

(
z j, ĥ/|z j|

)
. (3.5)

From the result that (3.5) includes 0, we can see that the GRE after optimizing the ridge parame-
ters has sparsity as in (2.19).

Equations (3.2) and (3.5) imply that if λ̂ = ĥ, the ALE with w j = 1/|β̂LS
j | is exactly equal to

the GRE after optimizing the regularization parameters. The equality is shown if the function for
optimizing λ is the same as that for optimizing h. The equivalence of the two functions can be
derived by the following lemma (the proof is given in Appendix A.5).
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Lemma 4. When w j = 1/|β̂LS
j |, we have

∀x ∈ R+, MSCAL(x) = MSCGR(g(x)).

Lemma 4 implies that λ̂ = ĥ. Hence, we can obtain the following theorem.

Theorem 4. Suppose that w j = 1/|β̂LS
j |. Let λ̂ and ĥ be the minimizers of MSCAL(λ) and

MSCGR(g(h)), respectively, i.e.,

λ̂ = arg min
λ∈R+

MSCAL(λ), ĥ = arg min
h∈R+

MSCGR(g(h)).

When the explanatory variables are orthogonal, λ̂ is exactly equal to ĥ, and hence the ALE is

exactly equal to the GRE, i.e., β̂AL
λ̂, j
= β̂GR

θ̂ j, j
( j = 1, . . . , k).

Theorem 4 shows the equivalence between the ALE with w j = 1/|β̂LS
j | and the GRE after op-

timizing the regularization parameters by the MSC-minimization method when the explanatory
variables are orthogonal. When we use the PLS method based on the AL-penalty or the GR-
penalty, although we have to calculate λ̂ or ĥ, the values can be obtained in a calculation of order
O(k) by using a fast algorithm proposed by Ohishi et al. (2018).

4. Conclusion

In this paper, we dealt with the PLS methods based on the AL-penalty and the GR-penalty when
the explanatory variables are orthogonal. Although the estimators obtained from these penalties
are different, we showed the interesting result that the two estimators with the regularization pa-
rameters optimized by the MSC-minimization method are exactly equal. The equivalence of the
two estimators was derived from the result that the function for optimizing the tuning parameter
in the AL is equal to that for optimizing the ridge parameters in the GR. Therefore, the two PLS
methods are completely equivalent when the explanatory variables are orthogonal. For the case of
general explanatory variables, although the ALE cannot be obtained without iterative calculation,
the GRE can be obtained in closed form. If the equivalence or some relationship between the
ALE and the GRE can be obtained for general explanatory variables, we may easily obtain the
ALE through the GRE. The results in this paper suggest that possibility.
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Appendix

A.1. Proof of Theorem 1

Using the orthogonal matrix P in (2.1), we define the n-dimensional vector z = P ′y. Then,
since P = (P1,P2), by using z1 in (2.2), z can be partitioned as

z = (z1, . . . , zn)′ = P ′y =

P ′1y
P ′2y

 = z1

z2

 . (A.1)
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These equations imply that

PRSSAL(β) = (y −Xβ)′PP ′(y −Xβ) + 2λ
k∑

j=1

w j|β j|

=

z −
 D1/2

On−k,k

β

′ z −

 D1/2

On−k,k

β
 + 2λ

k∑
j=1

w j|β j|

=

k∑
j=1

{(
z j −

√
d jβ j

)2
+ 2λw j|β j|

}
+

n∑
j=k+1

z2
j .

Hence, the minimization of the PRSSAL is equivalent to that of the following function:

ζ(β j | d j) =
(
z j −

√
d jβ j

)2
+ 2λw j|β j|

= d jβ
2
j − 2

{
z j

√
d j − λw j sign(β j)

}
β j + z2

j ( j = 1, . . . , k).

Since d j > 0, ζ(β j | d j) is a piecewise quadratic function. If the sign of z jd
1/2
j − λw j sign(β j)

that is the β j-coordinate of the vertex of ζ(β j | d j) is equal to the sign of β j, then the minimizer
of ζ(β j | d j) is the β j-coordinate of the vertex, and otherwise it is 0. This result implies (2.5).
Moreover, by using X = P1D

1/2 and z1 = P ′1y, we have

β̂AL
λ =


β̂AL
λ,1
...

β̂AL
λ,k

 =

ℓλ,1
√

d1z1
...

ℓλ,k
√

dkzk

 = LλD
1/2z1 = LλD

1/2P ′1y = LλX
′y.

Consequently, Theorem 1 is proved.

A.2. Proof of Lemma 1

First, we show the result about σ̂2
AL(λ). The σ̂2

AL(λ) can be calculated as

σ̂2
AL(λ) =

1
n
y′

PP ′ − P
 Ik

On−k,k

D1/2LλD
1/2(Ik,Ok,n−k)P ′


2

y

=
1
n
z′

In −
D1/2LλD

1/2 Ok,n−k

On−k,k On−k,n−k




2

z

=
1
n

(z′1, z
′
2)

(Ik −D1/2LλD
1/2)2 Ok,n−k

On−k,k In−k,n−k

 z1

z2


=

1
n

{
z′1(Ik −D1/2LλD

1/2)2z1 + z
′
2z2

}
,

where P and z are the matrix of order n and the n-dimensional vector given by (2.1) and (A.1),
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respectively. Notice that Ik −D1/2LλD
1/2 is a diagonal matrix and that β̂LS

j = z j/d
1/2
j . When

w j = 1/|β̂LS
j |, the jth diagonal element is expressed as

1 − ℓλ, jd j = 1 − S
(
1, λ/z2

j

)
= S

(
λ/z2

j , 1
)
+ 1.

Moreover, z′2z2 can be expressed as

z′2z2 = y′P2P
′
2y = y′(In − P1P

′
1 )y = y′(In −XD−1X ′)y = nσ̂2

0.

Hence, σ̂2
AL(λ) is given by (2.9).

Next, we show the result about dfAL(λ). When w j = 1/|β̂LS
j |, the jth element of LλD is ex-

pressed as

ℓλ, jd j = 1 −
{
S

(
λ/z2

j , 1
)
+ 1

}
= −S

(
λ/z2

j , 1
)
.

Hence, dfAL(λ) is given by (2.9). Consequently, Lemma 1 is proved.

A.3. Proof of Theorem 2

The σ̂2
AL(λ) and dfAL(λ) in Lemma 1 are rewritten as the following piecewise functions:

σ̂2
AL(λ) = σ̂2

AL,a(λ) = σ̂2
0 +

1
n

(c1,a + c2,aλ
2) (λ ∈ Ra), (A.2)

dfAL(λ) = dfAL,a(λ) = 1 + k − a − c2,aλ (λ ∈ Ra), (A.3)

where Ra is the range given by (2.12), σ̂2
0 and t j are given by (2.10) and (2.11), respectively, and

c1,a and c2,a are nonnegative constants defined by

c1,a =

a∑
j=0

t j, c2,a =


k∑

j=a+1

1
t j

(a = 0, 1, . . . , k − 1)

0 (a = k)

.

Hence, the GCV criterion for optimizing the tuning parameter is also expressed as a piecewise
function, as follows

GCVAL(λ) = ϕa(λ) =
σ̂2

AL,a(λ)

{1 − dfAL,a(λ)/n}2 (λ ∈ Ra).

In order to obtain λ̂ that is the minimizer of the GCV, we have to solve the minimization problem
of ϕa(λ). Since c2,k = 0 when a = k, ϕk(λ) is the constant σ̂2

∞/(1 − n−1)2 at any λ ∈ Rk. When
a < k, the derivative of ϕa(λ) is given by

d
dλ
ϕa(λ) =

c2,a

n2{b + (a + c2,aλ)}3 · ψa(λ), (A.4)
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where
b = 1 − 1

n
(k + 1), ψa(λ) = (a + nb)λ − (nσ̂2

0 + c1,a).

Here, by using ψa(λ), we define the function ψ(λ) (λ ∈ (0, tk]) as

ψ(λ) = ψa(λ) (λ ∈ Ra).

Since c2,a/n2{b + (a + c2,aλ)}3 that is the coefficient of ψa(λ) in (A.4) is positive, it is enough to
examine the sign of ψa(λ) in order to search for the local minimum of ϕa(λ). Hence, we should
find the point such that the sign of the linear function ψa(λ) changes negative to positive. The
ψa(λ) is monotonic increasing function at any λ ∈ Ra because a + nb that is the gradient of the
linear function is positive. It follows from the simple calculation that ψ(λ) is continuous at any
λ ∈ (0, tk], i.e.,

ψa(ta+1) = ψa+1(ta+1) (a = 0, 1, . . . , k − 2).

Notice that ψ0(0) = −nσ̂2
0 < 0 and ψk−1(tk) = (n− 2)tk − (nσ̂2

0 + c1,k−1) > 0. Hence, since ψ(λ) is a
piecewise increasing linear function with ψ(0) < 0 and ψ(tk) > 0, λ satisfying ψ(λ) = 0 uniquely
exists, i.e., the following statement is true:

∃!a∗ ∈ {0, . . . , k − 1} s.t. ψa∗ (λ) = 0, λ ∈ Ra∗ .

Notice that nσ̂2
0+c1,a = (n−k−1+a)s2

a. Consequently, Theorem 2 is proved by solving ψa∗ (λ) = 0.

A.4. Proof of Lemma 2

It follows from (A.2) and (A.3) that σ̂2
AL,a(λ) is a monotonic increasing function and dfAL,a(λ)

is a monotonic decreasing function. Notice that

σ̂2
AL,a(ta+1) = σ̂2

AL,a+1(ta+1), dfAL,a(ta+1) = dfAL,a+1(ta+1) (a = 0, 1, . . . , k − 2),

where t j is the jth-order statistic given by (2.11). Hence, σ̂2
AL(λ) is a continuous monotonic in-

creasing function and dfAL(λ) is a continuous monotonic decreasing function. Moreover, Lemma
1 implies

σ̂2
AL(0) = σ̂2

0, dfAL(0) = k + 1,

lim
λ→∞

σ̂2
AL(λ) = lim

λ→∞
σ̂2

AL,k(λ) =
1
n

(nσ̂2
0 + z

′
1z1) =

1
n
y′(In − Jn)y,

lim
λ→∞

dfAL(λ) = lim
λ→∞

dfAL,k(λ) = 1.

Consequently, Lemma 2 is proved.
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A.5. Proof of Lemma 4

From results in Yanagihara (2018), σ̂2
GR(θ) in (2.17) and dfGR(θ) in (2.18) are expressed as

σ̂2
GR(θ) =

1
n

nσ̂2
0 +

k∑
j=1

(
θ j

d j + θ j

)2

z2
j

 , dfGR(θ) = 1 + k −
k∑

j=1

θ j

d j + θ j
.

These equations imply

σ̂2
GR(g(h)) =

1
n

nσ̂2
0 +

k∑
j=1

(
g j(h)

d j + g j(h)

)2

z2
j

 , dfGR(g(h)) = 1 + k −
k∑

j=1

g j(h)
d j + g j(h)

, (A.5)

where z j and σ̂2
0 are given by (2.2) and (2.10), respectively. Moreover, by using (3.4) and the

soft-thresholding operator, we have

g j(h)
d j + g j(h)

= S (h/z2
j , 1) + 1.

Hence, (A.5) can be expressed as

σ̂2
GR(g(h)) =

1
n

nσ̂2
0 +

k∑
j=1

{
S (h/z2

j , 1) + 1
}2

z2
j

 = σ̂2
AL(h),

dfGR(g(h)) = 1 −
k∑

j=1

S (h/z2
j , 1) = dfAL(h),

where σ̂2
AL(λ) and dfAL(λ) are given by (2.9). Recall that MSCAL(h) = f (σ̂2

AL(h), dfAL(h)) from
(3.1). Hence we have

MSCAL(h) = MSCGR(g(h)).

Consequently, Lemma 4 is proved.
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