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Abstract

When we deal with data that depends on spaces, it is important to clarify effects from spaces
called spatial effects. In this paper, we consider estimation for spatial effects. Our idea is that
we split the space subjected to analysis into smaller spaces and estimate spatial effects with
respect to those smaller spaces, that is to say, we evaluate spatial effects discretely. Since split
small spaces have adjacent relationships, we take the join of adjacent spaces into account in
the estimation by using the fused Lasso. Then, if spatial effects of adjacent spaces are equal,
the corresponding spaces are joined. Because the estimation method can perform clustering by
joining adjacent spaces, we can expect that it offers additional value as secondary use. For the
purposes of efficient and accurate estimation even if a large sample data, we provide an update
equation of the coordinate descent algorithm in closed form.
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1. Introduction

In this paper, we deal with spatial data that the sample depends on space. That is, we con-
sider pairs of a response variable y j,i and a vector x j,i of explanatory variables for the ith sample
(i ∈ {1, . . . , n j}) in the space j (∈ {1, . . . ,m}). When we use such data, it is important to unravel
spatial effects as described by Anselin (1990) and Anselin & Getis (1992). For example, it
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is widely known that the rent or price of apartments is influenced by their address and that
ecological surveys of flora and fauna are influenced by the observation points.

Spatial effects can be estimated by a geographically weighted regression (GWR) proposed
by Brunsdon et al. (1996). The GWR is a weighted estimation method that estimates at each
sample point and the estimator can be obtained in closed form. In real data analysis, the GWR
has been widely applied (e.g., Löchl & Axhausen, 2010; Nagamura & Kaneda, 2015). Al-
though the GWR has advantages, there are also important shortcomings, not least. The first
disadvantage of the GWR is that it may be intractable in large sample data. To calculate weights
used for local estimation, a distance matrix needs to be calculated that has distances between
each sample point as the elements. Since the size of the distance matrix depends on the sample
size, the calculation is computationally onerous in large sample data. The second drawback is
that placement and shape of kernel both need to be optimized. The weights are calculated by
the kernel with distance as the argument. Hence, results of estimation and contour line depend
on the placement and the shape. The third problem is that the GWR is not appropriate where
data are markedly sparse or unbalanced. Since the estimation results depend on the sample
points, the GWR cannot estimate well for such data. Fourth and finally, it is hard to use the
GWR for prediction problem. Since the estimation results are obtained at each sample point, to
obtain predictive values for new observed points, we must locally estimate again at the points.
A predictive model that must estimate parameters every time new observed points are acquired
is cumbersome to use and inefficient in practical aspect.

To overcome the above shortcomings of the GWR, we propose an estimation method that
discretely evaluates spatial effects by splitting the space subjected to analysis. Specifically,
since the split small spaces have adjacent relationships, we estimate spatial effects by using
the idea of the fused Lasso proposed by Tibshirani et al. (2005). A key merit of discrete
evaluation is that calculation of the distance matrix and the kernel are unnecessary. Therefore,
estimation in large sample data becomes straightforward. Since adjacent relationships of small
spaces are used rather than the sample points, this method is not vulnerable to markedly sparse
or unbalanced issues. Moreover, by using the fused Lasso, we can obtain clustering of spatial
effects by joining the adjacent small spaces. The clustering results have the potential to be used
in business practice, e.g., area marketing. Furthermore, the proposed method is amenable to
prediction problems. The reason is when we get a new observed point, the predictive value can
be derived by using the estimate for the space included the point.

Specifically, we propose the spatial-fused Lasso, which is an extension of the fused Lasso,
for adjacent relationships of spaces. The optimization problem of the spatial-fused Lasso can
come down to the optimization problem of the generalized Lasso (Tibshirani & Taylor, 2011)
and the optimal solution can be obtained by using the algorithm proposed by Tibshirani & Tay-
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lor (2011) that obtains the solution path by solving the dual problem. For modeling purposes
with the spatial-fused Lasso, the algorithm implemented as the package genlasso (e.g., Arnold
& Tibshirani, 2019) in R (e.g., R Core Team, 2019) is available to calculate the optimal solu-
tion. However, estimation with the genlasso package has a high calculation cost and cannot
be practically executed in large sample data. Moreover, there are issues in terms of numerical
error and estimates cannot be exactly joined. Accordingly, we focus on the coordinate descent
algorithm. To accurately calculate the optimal solution of the spatial-fused Lasso, even in large
sample data, we give an update equation of the coordinate descent algorithm in closed form.

This paper is organized as follows: In section 2, we describe the spatial-fused Lasso and
its optimization. In section 3, we give closed form update equations of the coordinate descent
algorithm for optimizing the spatial-fused Lasso. Numerical examples are discussed in section
4. Technical details are relegated to the Appendix.

2. Preliminaries

2.1. Spatial-Fused Lasso

We split the space subjected to analysis into m small spaces and let µ j ( j ∈ {1, . . . ,m}) be the
spatial effect for space j. Then, we consider the following model for an n j-dimensional vector
y j = (y j,1, . . . , y j,n j )

′ of response variables for space j:

y j =X jβ + µ j1n j + ε j ( j ∈ {1, . . . ,m}) ,

where X j = (x j,1, . . . ,x j,n j )
′ is an n j × p matrix of nonstochastic explanatory variables, β is

a p-dimensional vector of regression coefficients that does not depend on space, 1n is an n-
dimensional vector of ones, and ε j is an n j-dimensional vector of independent error variables
from a distribution with mean 0 and variance σ2. In addition, ε1, . . . , εm are independent vec-
tors. Then, an n-dimensional vector y = (y′1, . . . ,y

′
m)′ of response variables for all spaces is

expressed as

y =Xβ +Rµ + ε,

where X = (X ′
1, . . . ,X

′
m)′ is an n × p matrix of nonstochastic explanatory variables, R =

diag(1n1 , . . . ,1nm ) is an n × m block diagonal matrix, µ = (µ1, . . . , µm)′ is an m-dimensional
vector of spatial effects, ε = (ε′1, . . . , ε

′
m)′ is an n-dimensional vector of independent error vari-

ables, and n =
∑m

j=1 n j. Without loss of generality, we assume that a norm of a column vector
of X is 1. Moreover, for the purposes of applications with a dummy variable with 3 or more
categories as one explanatory variable, let the number of explanatory variables be k (≤ p) and
we express X and β as
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X = (A1, . . . ,Ak), β = (β′1, . . . ,β
′
k)′,

where Aℓ is an n× pℓ matrix that expresses the ℓth explanatory variable, βℓ is a pℓ-dimensional
vector of regression coefficients for the ℓth explanatory variable, and pℓ satisfies pℓ ≥ 1 and
p =

∑k
ℓ=1 pℓ. In particular, when pℓ = 1, we denote Aℓ = aℓ and βℓ = βℓ. Notice that X

is scaled and Aℓ (ℓ s.t. pℓ ≥ 2) is a matrix of a dummy variable, i.e., the number of non-zero
elements of a row vector is one at most. Hence, the following equations hold:

∥aℓ∥2 = 1 (ℓ s.t. pℓ = 1), A′ℓAℓ = Ipℓ (ℓ s.t. pℓ ≥ 2).

We estimate unknown parameters β and µ by minimizing the following penalized residual
sum of squares:

∥y −Xβ −Rµ∥22 + λ1

k∑
j=1

w1, j∥β j∥2 + λ2

m∑
j=1

∑
ℓ∈D j

w2, jℓ |µ j − µℓ |, (2.1)

where λ1 and λ2 are tuning parameters, w1, j and w2, jℓ are adaptive Lasso weights pro-
posed by Zou (2006), and D j is an index set of adjacent spaces for space j that satisfies
D j ⊆ {1, . . . ,m}\{ j}. For example, if space 1 adjoins space 2 and 3, D1 = {2, 3}. The sec-
ond term in (2.1) is the group Lasso-type penalty proposed by Yuan & Lin (2006). This is an
extension of Lasso (Tibshirani, 1996) to variable selection in terms of whether several vari-
ables are simultaneously zero. In this paper, since we consider variable selection in terms of
whether the elements of βℓ are simultaneously zero, the penalty is invoked. The third term in
(2.1) is an extended penalty of the fused Lasso (Tibshirani et al., 2005) for considering spatial
effects. The ordinary fused Lasso is an extension of Lasso to analyze variables that have an
order relationship and can equally join anteroposterior estimates. Since spatial effects have
an adjacent relationship that is more complex than an anteroposterior relationship, we use the
extended penalty of the fused Lasso. To distinguish it from the ordinary fused Lasso, we call
it the spatial-fused Lasso-type penalty. By using the spatial-fused Lasso-type penalty, the esti-
mation of spatial effects with the join of adjacent spaces becomes possible and we can equally
estimate spatial effects of adjacent spaces. Moreover, these are adaptive penalties weighted by
using an idea of the adaptive Lasso proposed by Zou (2006). By using weights based on the
least-squares estimator, the adaptive Lasso estimator has the oracle property (Fan & Li, 2001).
We estimate spatial effects by optimizing β and µ via objective function (2.1). Furthermore,
since the method is based on the fused Lasso, a clustering of spatial effects can be performed
by joining adjacent spaces. Thus, the results obtained using this method have a secondary use
in terms of local modeling in a clustered space, area marketing, and so on.
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2.2. Optimization Procedure

We describe the procedure to optimize β and µ via the objective function (2.1). Since the
function includes two unknown parameters β and µ and two tuning parameters λ1 and λ2, we
must consider not only optimization with respect to the unknown parameters but also the opti-
mal selection of the tuning parameters. Although the function (2.1) is convex with respect to
β and µ with fixed λ1 and λ2, it is not convex with respect to λ1 and λ2. Hence, we must select
the optimal pair (λ1, λ2) by optimizing β and µ for any pairs (λ1, λ2). However, although each
maximum in search points of λ1 and λ2 can be calculated from the data, these maxima cannot
be simultaneously obtained, because the maxima of λ1 and λ2 depend on µ and β, respectively.
Then, we obtain the optimal solutions of β and µ by using the following algorithm whereby
optimizations of λ1 and β and the optimizations of λ2 and µ are alternately repeated.

• Alternate Optimization Algorithm
Input: Initial vectors of β and µ

Output: Optimal solutions of β and µ

Step 1: Optimize λ1 and β by using fixed µ.

Step 2: Optimize λ2 and µ by using fixed β.

Step 3: Repeat Steps 1 and 2 until β and µ converge.

The following describes optimizations of β and µ, respectively.

Optimization of β

Let µ be fixed (let µ = µ̂). Then, the optimal solution of β under fixed λ1 can be obtained
by minimizing the following function:

∥ỹ1 −Xβ∥22 + λ1

k∑
j=1

w1, j∥β j∥2, (2.2)

where ỹ1 = y − Rµ̂. As above, the optimization problem of β comes down to the opti-
mization problem of the ordinary group Lasso as (2.2). To optimize the group Lasso, Yuan &
Lin (2006) proposed an update equation of the coordinate descent algorithm, an extension of
LARS (Efron et al., 2004), and an extension of non-negative garrote (Breiman, 1995). Herein,
we optimize β by using the update equation of the coordinate descent algorithm because it can
be obtained in closed form and the algorithm is tractable. Although, the update equation pro-
posed by Yuan & Lin (2006) requires a orthogonality of explanatory variables, the condition is
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satisfied, i.e., A′ℓAℓ = Ipℓ . Hence, we obtain the following update equation of the coordinate
descent algorithm for (2.2):

β̂λ1,i =

(
1 − λ1w1,i

2∥ci∥2

)
+

ci (i = 1, . . . , k), (2.3)

where ci = A′i(ỹ1 −
∑k

j,i A jβ̂ j) and (x)+ = max{0, x}. In particular, when pi = 1, β̂λ1,i is given
as

β̂λ1,i = S
(
ci, λ1w1,i/2

)
, (2.4)

where S (x, a) is a soft-thresholding operator (e.g., Donoho & Johnstone, 1994), i.e., S (x, a) =
sign(x)(|x| − a)+. The equation (2.4) is equal to an update equation given by Friedman et al.

(2007). We decide a search point set Λ1 of λ1 and by using the following algorithm (which
repeats updating of β with (2.3) or (2.4) for any λ1 ∈ Λ1), λ1 and β can be optimized.

• Coordinate Descent Algorithm for β (CDAβ)
Input: Initial vector of β and search point set Λ1

Output: Optimal solutions of β and λ1

Step 1: Fix λ1 and update β̂λ1,i by using (2.3) or (2.4) for i ∈ {1, . . . , k}.

Step 2: Repeat Step 1 for fixed λ1 until β̂λ1 converges.

Step 3: Repeat Steps 1 and 2 for all λ1 ∈ Λ1.

Step 4: Select the optimal λ1.

When we use the CDAβ,Λ1 can be decided by defining λ1,max and splitting the range [0, λ1,max].
For an example of λ1,max, we use the λ1 that satisfies β̂λ1 = 0p, where 0p is a p-dimensional
vector of zeros. From (2.3) and (2.4), λ1,max satisfies

∀ℓ ∈ {1, . . . , k}, 1 − λ1w1,ℓ

2∥cℓ∥2
≤ 0.

Thus, we have

λ1,max = max
ℓ∈{1,...,k}

2∥cℓ∥2
w1,ℓ

. (2.5)

Optimization of µ

Let β be fixed (let β = β̂). Then, the optimal solution of µ under fixed λ2 can be obtained
by minimizing the following function:
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∥ỹ2 −Rµ∥22 + λ2

m∑
j=1

∑
ℓ∈D j

w2, jℓ |µ j − µℓ |, (2.6)

where ỹ2 = y −Xβ̂. Since the spatial-fused Lasso can be reinterpreted as the generalized
Lasso proposed by Tibshirani & Taylor (2011), the former can be optimized by using an opti-
mization method for the latter. The penalty of the generalized Lasso is expressed as ∥Dµ∥1 by
using known penalty matrix D. For example, if m = 3, D1 = {2}, D2 = {1, 3} and D3 = {2},
then we use the following D:

D =


w2,12 −w2,12 0
−w2,21 w2,21 0

0 w2,23 −w2,23

0 −w2,32 w2,32

 .
Regarding optimization of the generalized Lasso, an algorithm exists for obtaining the solution
path by solving a dual problem (Tibshirani & Taylor, 2011). The algorithm is implemented via
the genlasso package in R; thus µ can be optimized therein. However, the genlasso package
has the following problems:

(P1) The numerical error is large.

(P2) The calculation cost is high.

Although we can obtain a sparse solution that includes an exact zero by using the ordinary
Lasso, the zero may not be an exact zero when Lasso is optimized using the genlasso package.
Moreover, although we can obtain a solution which joins elements by using the ordinary fused
Lasso, optimization by the genlasso package may not exactly join. In terms of calculation cost,
running the algorithm takes a long time and it cannot be executed large sample data. Clearly,
this raises non-trivial concerns. Consequently, in this paper, we propose an efficient algorithm
to minimize (2.6) for the purpose of estimating spatial effects.

3. Coordinate Descent Algorithm

In this section, we describe the optimization method of the spatial-fused Lasso by using
the coordinate descent algorithm. For the ordinary fused Lasso, Friedman et al. (2007) pro-
posed the coordinate descent algorithm. The algorithm consists of descent cycle and fusion
cycle. The descent cycle successively minimizes along coordinate directions. The ordinary
coordinate descent algorithm only consists of the descent cycle. However, when the ordinary
coordinate descent algorithm is applied for fused Lasso, some estimates are joined and then
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the solution gets stuck, failing to reach the minimum. To avoid this problem, Friedman et al.

(2007) invoked the fusion cycle. Since this problem can also occur when using the spatial-
fused Lasso, we give update equations of µ for the descent cycle and the fusion cycle.

descent cycle

The descent cycle minimizes along coordinate directions. That is to say, let µ j ( j ∈
{1, . . . ,m}\{i}, i ∈ {1, . . . ,m}) be fixed (let µ j = µ̂ j) and we minimize (2.6) with respect to
µi. The update equation for µi is given as follows: We denote the elements of Di by

Di =
{
di,1, . . . , di,ri

}
(⊆ {1, . . . ,m}\{i}),

where ri is the number of elements of Di, i.e., ri = #(Di) ≤ m − 1. Moreover, let ti,0 = −∞ and
let ti,1, . . . , ti,ri be the order statistics of µ̂ j ( j ∈ Di), i.e.,

ti, j =

min
{
µ̂di,1 , . . . , µ̂di,ri

}
( j = 1)

min
{{
µ̂di,1 , . . . , µ̂di,ri

}
\
{
ti,1, . . . , ti, j−1

}}
( j = 2, . . . , ri)

, (3.1)

and J+i,a and J−i,a be index sets for a ∈ {0, . . . , ri} defined by

J+i,a =
{
j ∈ Di | µ̂ j ≤ ti,a

}
, J−i,a =

{
j ∈ Di | ti,a < µ̂ j

}
. (3.2)

By using these equations, we define w̃i,a and vi,a as

w̃i,a =
∑
j∈J+i,a

w2,i j −
∑
j∈J−i,a

w2,i j, vi,a =
ỹ′2,i1ni − λ2w̃i,a

ni
, (3.3)

where ỹ2,i is the ith block of ỹ2, i.e., ỹ2,i = yi −Xiβ̂. Then, the update equation for µi is given
as

µ̂i =

vi,a∗i (a∗i exists)

ti,a⋆i (a⋆i exists)
, (3.4)

where a∗i and a⋆i are nonnegative values defined by

a∗i ∈ {0, . . . , ri} s.t. vi,a∗i ∈ Ri,a∗i , a⋆i ∈ {1, . . . , ri} s.t. ti,a⋆i ∈ [vi,a⋆i , vi,a⋆i −1),

and Ri,a is the range defined by

Ri,a =

(ti,a, ti,a+1] (a = 0, . . . , ri − 1)

(ti,ri ,∞) (a = ri)
. (3.5)

By updating µi (i ∈ {1, . . . ,m}) in order with (3.4), we can obtain the solution of µ for the
descent cycle. If µ̂i = ti,a⋆i , spaces i and j ( j ∈ Di s.t. ti,a⋆i = µ̂ j) are joined. The uniqueness of
(3.4) holds by the following theorem (the proof is given in Appendix A.1):
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Theorem 1. Let ϕ(x) be the continuous piecewise function defined by

ϕ(x) = ϕa(x) = c2x2 + c1,ax + c0 (c2 > 0, x ∈ Ra),

where Ra (a ∈ {0, . . . , q}) is the range defined with (3.5) by using monotonically increasing

sequence t0 = −∞, t1, . . . , tq. Suppose that va, the x-coordinate of the vertex of ϕa(x), is mono-

tonically decreasing with respect to a. Then, x̂ = arg minx∈R ϕ(x) is given by

x̂ =

va∗ (a∗ exists)

ta⋆ (a⋆ exists)
,

where a∗ and a⋆ are nonnegative values defined by

a∗ ∈ {0, . . . , q} s.t. va∗ ∈ Ra∗ , a⋆ ∈ {1, . . . , q} s.t. ta⋆ ∈ [va⋆ , va⋆−1),

and satisfy the following statements:

(i) a⋆ does not exist⇔ a∗ exists.

(ii) If a∗ or a⋆ exists, it is unique.

The equation (2.6) can be expressed as a piecewise function with respect to µi that satisfies the
condition in Theorem 1 by using Lemmas A.1 and A.2 (details are given in Appendix A.2.1).
Consequently, the update equation of µi is given in closed form as (3.4) by using Theorem 1.

fusion cycle

The fusion cycle avoids a solution getting stuck when some estimates are joined at the de-
scent cycle. Suppose that we obtain µ̂ j = µ̂ℓ as estimates of µ j and µℓ ( j , ℓ) at the descent
cycle. Then, to avoid µ̂ j and µ̂ℓ getting stuck, let ηi = µ j = µℓ and minimize toward the ηi-axis
direction.

After the descent cycle, suppose that we obtain µ̂1, . . . , µ̂m as estimates of µ1, . . . , µm. Let
η̂1, . . . , η̂b (b ≤ m) be distinct values of µ̂1, . . . , µ̂m and we define index sets E1, . . . , Eb as

E j =
{
ℓ ∈ {1, . . . ,m} | µ̂ℓ = η̂ j

}
(⊆ {1, . . . ,m}).

These E j satisfy E j , ∅ and E j ∩ Eℓ = ∅ ( j , ℓ). If b < m, we execute the fusion cycle. In the
fusion cycle, let η j ( j ∈ {1, . . . , b}\{i}, i ∈ {1, . . . , b}) be fixed (let η j = η̂ j) and we minimize
(2.6) with respect to ηi as in the descent cycle. We define a positive constant qi as

qi =
∑
j∈Ei

qi j, qi j = #
(
D j\Ei

)
.
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Let ti,0 = −∞ and let ti,1, . . . , ti,qi be the order statistics of µ̂ℓ (ℓ ∈ D j\Ei, j ∈ Ei) and J+i j,a and
J−i j,a ( j ∈ Ei) be index sets for a ∈ {0, . . . , qi} defined by

J+i j,a =
{
ℓ ∈ D j\Ei | µ̂ℓ ≤ ti,a

}
, J−i j,a =

{
ℓ ∈ D j\Ei | ti,a < µ̂ℓ

}
.

By using these equations, we define w̃i,a and vi,a as

w̃i,a =
∑
j∈Ei

∑
ℓ∈J+i j,a

w2,i j −
∑
j∈Ei

∑
ℓ∈J−i j,a

w2,i j, vi,a =
c1,i − λ2w̃i,a

c2,i
, (3.6)

where c1,i and c2,i are constants defined by

c1,i =
∑
j∈Ei

ỹ′j1n j , c2,i =
∑
j∈Ei

n j. (3.7)

Then, the update equation of ηi is given as

η̂i =

vi,a∗i (a∗i exists)

ti,a⋆i (a⋆i exists)
, (3.8)

where a∗i and a⋆i are nonnegative values defined by

a∗i ∈ {0, . . . , qi} s.t. vi,a∗i ∈ Ri,a∗i , a⋆i ∈ {1, . . . , qi} s.t. ti,a⋆i ∈ [vi,a⋆i , vi,a⋆i −1),

and Ri,a (a ∈ {0, . . . , qi}) is the range defined as with (3.5) by using ti,0, . . . , ti,qi . By updating
ηi (i ∈ {1, . . . , b}) in order with (3.8), we can obtain the solution of µ in the fusion cycle. If
η̂i = ti,a⋆i , Ei and corresponding E j are joined, and the fusion cycle is repeated until a join of
spaces does not occur. The uniqueness of (3.8) holds by Theorem 1 as with (3.4). The equation
(2.6) can be expressed as a piecewise function with respect to ηi that satisfies the condition in
Theorem 1 by Lemmas A.3 and A.4 (details are given in Appendix A.2.2). Consequently, the
update equation of ηi is given in closed form as (3.8) by using Theorem 1.

As above, we obtain update equations of the descent cycle and the fusion cycle. We decide
a search point set Λ2 of λ2 and by using the following algorithm (which repeats updating of µ
in the descent cycle and the fusion cycle by using (3.4) and (3.8) for any λ2 ∈ Λ2), λ2 and µ

can be optimized.

• Coordinate Descent Algorithm for µ (CDAµ)
Input: Initial vector of µ and search points set Λ2

Output: Optimal solutions of µ and λ2

Step 1: (descent cycle) Fix λ2, update µ̂λ2,i by using (3.4) for i ∈ {1, . . . ,m}, and define b.
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Step 2: (fusion cycle) If b < m in Step 1, update η̂λ2,i by using (3.8) for i ∈ {1, . . . , b} and

repeat until the following statement is not satisfied.

∃(i1, i2) s.t. η̂λ2,i1 = η̂λ2,i2 (i1 , i2).

Step 3: Repeat Steps 1 and 2 for fixed λ2 until µ̂λ2 converges.

Step 4: Repeat Steps 1, 2, and 3 for all λ2 ∈ Λ2.

Step 5: Select the optimal λ2.

Λ2 can be decided by defining λ2,max and splitting the range [0, λ2,max] as with Λ1. As an exam-
ple of λ2,max, we use the λ2 that satisfies µ̂λ2 = µ̂∞1m, where µ̂∞ = 1′nỹ2/n. From the descent
cycle, λ2,max satisfies

∀ j ∈ {1, . . . ,m}, µ̂∞ ∈ [v j,r j , v j,0].

Thus, we have

λ2,max = max
 max

j∈{1,...,m}

µ̂∞n j − ỹ′2, j1n j∑
ℓ∈D j
w2, jℓ

, max
j∈{1,...,m}

ỹ′2, j1n j − µ̂∞n j∑
ℓ∈D j
w2, jℓ

 . (3.9)

The optimal solutions of β and µ can be obtained by using the Alternate Optimization Algo-
rithm with CDAβ and CDAµ for the objective function (2.1).

4. Numerical Studies

In this section, we present numerical simulations, discuss estimation accuracy, and consider
an illustrative application to an actual data set. We use a computer with a Windows 10 Pro
operating system, an Intel (R) Core (TM) i7-7700 processor, and 16 GB of RAM and R (ver.
3.6.0).

4.1. Simulation

In this subsection, we compare the estimation accuracies of the following Method 1 and
Method 2 by simulation.

Method 1: The Alternate Optimization Algorithm using CDAµ to optimize µ.

Method 2: The Alternate Optimization Algorithm using the genlasso package (ver. 1.4) to
optimize µ.

11
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Figure 1. Simulation spaces and adjacent relationship

In applying both methods, we use the same CDAβ to optimize β. The number of split spaces
is m = 10, 20, the correlation between explanatory variables is ρ = 0.5, 0.8, and the sample
sizes of split small spaces are n1 = · · · = nm = n0. Then, total sample size is n = mn0

and we use n0 = 100, 200, 500, 1,000. Figure 1 shows simulation spaces when m = 10, 20
with adjacent relationships indicated by lines. We generated data from the simulation model
Nn(Xβ +Rµ, In) with the following X:

X = (a1, . . . ,a8,A9, . . . ,A13),

where column vectors a1, . . . ,a8 and block matrices A9, . . . ,A13 are calculated as using
the following procedure. Let u1, . . . ,u14 be independent n-dimensional vectors that the el-
ements are identically and independently distributed according to U(0, 1) and v1, . . . ,v13 be
n-dimensional vectors defined by

v j = ωu14 + (1 − ω)u j,

where ω is the parameter determining the correlation of vi and v j (i , j) as ρ, defined by

ω =


ρ ±

√
ρ2 − ρ(2ρ − 1)
2ρ − 1

(ρ , 1/2)

1
2

(ρ = 1/2)
.

By using these vectors v1, . . . ,v13, we define the blocks in X as follows: Let a j = v j for
j = 1, . . . , 5; let a j ( j = 6, 7, 8) be dummy variables that take the value 1 or 0 defined by

12
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a j,i =

1 (v j,i > 0.6)

0 (v j,i ≤ 0.6)
(i ∈ {1, . . . , n}) ;

and let A j ( j = 9, . . . , 13) be ( j−7)-dimensional dummy variables that are categorized, defined
by

(The ith row vector of A j) =

e j−7,ℓ (v j,i ∈ Q j−6,ℓ, ℓ , j − 6)

0 j−7 (v j,i ∈ Q j−6, j−6)
(i = 1, . . . , n),

where e j,ℓ is a j-dimensional vector in which the ℓth element is 1 and the others are 0 and Q j,ℓ

is the ℓth range when [0, 1] is split into j ranges. The following 2 cases are used as β and µ.

Case 1: Let the number of true explanatory variables be k∗ = 9 and the number of true
joins of spaces be

m∗ =

3 (m = 10)

6 (m = 20)
,

and we use the following β and µ:

β =
(
1, 2, 3, 0, 0, 1, 1, 2,1′2,0

′
3, 2 × 1′4,0′5, 3 × 1′6

)′
,

∀ j ∈ Eℓ, µ j = ℓ (ℓ = 1, . . . ,m∗).

Case 2: Let the number of true explanatory variables be k∗ = 3 and the number of true
joins of spaces be

m∗ =

6 (m = 10)

12 (m = 20)
,

and we use the following β and µ:

β =
(
1, 0, 0, 0, 0, 1, 0, 0,0′2,0

′
3, 2 × 1′4,0′5,0′6

)′
,

∀ j ∈ Eℓ, µ j = ℓ (ℓ = 1, . . . ,m∗).

Figures 2 and 3 show true joins of spaces when m = 10, 20, respectively. Estimation accuracy
is evaluated by the selection probabilities of true variables and true joins by Monte Carlo sim-
ulation with 1,000 iterations. One hundred search points of tuning parameters λ1 and λ2 are
split by λmax(3/4) j−1 ( j = 1, . . . , 100) using λ1,max and λ2,max in (2.5) and (3.9), respectively.
In terms of selecting of the optimal tuning parameters, we use the following Extended GCV
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Figure 2. True joins when m = 10
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Figure 3. True joins when m = 20

(EGCV) criterion (Ohishi et al., 2020) minimization method:

EGCV =
(residual sum of squares)/n
{1 − (degrees of freedom)/n}α ,

where α is some positive value expressing the strength of the model complexity penalty. The
EGCV criterion coincides with the GCV criterion (Craven & Wahba, 1979) when α = 2.
Moreover, we use the following general weights for penalty terms:

14
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w1, j =
1

∥β̂ j∥2
( j ∈ {1, . . . , k}), w2, jℓ =

1
|µ̂ j − µ̂ℓ |

( j ∈ {1, . . . ,m}, ℓ ∈ D j),

where β̂ j and µ̂ j are the least-squares estimators of β j and µ j, respectively. Tables 1 and 2
show the selection probabilities (SP) of true variables and true joins and running times (RT)
of programs in Cases 1 and 2, respectively. The SP is displayed as the combined probability
and separate probability about variables and joins. From the tables, since the SP of Method 1
approaches 100% as sample size increases, we found that Method 1 has high estimation accu-
racy. On the other hand, Method 2 struggles to select the true variables and true joins and its
SP is 7.4% (when m = 10, ρ = 0.8, and n = 5,000 in Case 1) at most. In particular, it struggles
to select the true joins and its SP is only 7.8% (when m = 10, ρ = 0.8, and n = 5,000 in Case 1)
at most. Moreover, in terms of running time, Method 1 is about 134 times faster than Method
2 (when m = 20, ρ = 0.5, and n = 20,000 in Case 1) at most.

Table 1. Selection probabilities and running times in Case 1

Method 1 Method 2
m ρ n SP (combined) SP (β) SP (µ) RT (s) SP (combined) SP (β) SP (µ) RT (s)

10 0.5 1,000 74.20 92.40 79.90 0.65 4.30 92.10 5.00 0.39
2,000 88.60 97.60 91.00 0.60 4.10 97.60 4.10 0.68
5,000 93.80 98.50 95.20 0.58 6.00 98.50 6.10 4.14

10,000 95.00 97.30 97.60 0.64 3.90 97.30 4.00 14.27
0.8 1,000 59.60 73.70 79.90 1.01 3.20 73.60 5.10 0.53

2,000 82.60 92.40 89.90 0.86 4.80 92.20 5.20 0.91
5,000 91.40 95.40 95.80 0.82 7.40 95.40 7.80 4.68

10,000 93.20 95.30 97.90 0.67 3.70 95.30 3.80 14.70

20 0.5 2,000 72.70 98.60 73.80 1.21 0.00 98.60 0.00 1.48
4,000 85.20 98.80 86.30 1.23 0.00 98.70 0.00 6.14

10,000 93.80 99.10 94.70 1.22 0.00 99.00 0.00 27.01
20,000 97.60 98.90 98.70 1.10 0.10 98.90 0.10 148.04

0.8 2,000 69.20 92.90 74.40 1.60 0.30 92.90 0.30 1.77
4,000 83.30 95.90 86.80 1.47 0.00 96.00 0.00 6.63

10,000 90.00 95.30 94.30 1.23 0.10 95.40 0.10 29.64
20,000 94.10 95.30 98.70 1.18 0.00 95.40 0.00 146.24

4.2. A Real Data Example

In this subsection, we present an illustrative application of the proposed method (Method
1 in subsection 4.1) to an actual data set. Search points of tuning parameters and the model
selection criterion are as per subsection 4.1. Since the applied data have a large sample and
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Table 2. Selection probabilities and running times in Case 2

Method 1 Method 2
m ρ n SP (combined) SP (β) SP (µ) RT (s) SP (combined) SP (β) SP (µ) RT (s)

10 0.5 1,000 74.00 91.60 81.20 1.39 2.90 91.20 3.20 0.41
2,000 87.30 97.20 89.90 0.84 0.90 97.10 0.90 0.52
5,000 94.80 98.80 95.90 0.76 4.50 98.80 4.50 3.15

10,000 95.90 98.50 97.30 0.71 1.40 98.40 1.40 11.41
0.8 1,000 55.10 69.10 80.30 2.35 1.80 69.20 2.80 0.66

2,000 81.20 91.30 89.40 1.05 1.80 91.50 2.00 0.61
5,000 92.40 96.00 96.10 0.81 2.80 96.00 2.80 3.24

10,000 94.10 96.60 97.40 0.87 2.20 96.60 2.30 12.62

20 0.5 2,000 63.40 97.90 65.00 1.53 0.10 97.90 0.10 1.06
4,000 80.90 98.50 81.90 1.37 0.00 98.60 0.00 3.97

10,000 92.70 99.20 93.40 1.32 0.40 99.20 0.40 20.63
20,000 96.40 99.30 97.10 1.32 0.10 99.40 0.10 144.11

0.8 2,000 59.60 91.20 66.20 1.77 0.30 91.20 0.30 1.20
4,000 80.10 96.70 82.80 1.43 0.00 96.60 0.00 4.38

10,000 90.70 97.00 93.50 1.47 0.70 97.00 0.70 27.11
20,000 94.80 97.50 97.10 1.41 0.00 97.60 0.00 148.19

because the genlasso package causes memory shortage, Method 2 in subsection 4.1 cannot run
the program. We compare the proposed method, which discretely evaluates spatial effects, with
the GWR, which continuously evaluates spatial effects. Details of the estimation method by the
GWR are described in Appendix A.4. The data pertain to studio apartment rents and environ-
mental conditions in Tokyo’s 23 wards collected by Tokyo Kantei Co., Ltd. Here, n = 61,999
and all data were collected between April 2014 and April 2015 (Table 3). In this application,
let the response variable be monthly rent with the remainder set as explanatory variables. We
estimate regional effects at 852 areas split Tokyo’s 23 wards using the proposed method and at
all sample points using the GWR. Figure 4 (a) and (b) show respectively the split of Tokyo’s
23 wards into 852 areas and all sample points. Figure 5 shows that estimation results in the
form of choropleth maps are similar using the proposed method and the GWR. Moreover, as
Figure 6 shows, the proposed method can perform clustering of regional effects and the GWR
can draw the contours. In terms of the former, as with Figure 6, the 852 areas in Tokyo’s 23
wards are clustered to form 190 areas. Table 4 summarizes estimates of regression coefficients.
As a result of variable selection, the proposed method did not select B5 and C1 and the GWR
did not select C1. Figures 7 and 8 are residual plots for quantitative variables according to the
proposed method and the GWR, respectively. Table 5 provides information concerning coef-
ficients of determination (R2), median error rate (MER), and running time. From the results,
R2 is more than 0.8, MER is less than 10%, and the residual plots are unproblematic. Thus,
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Table 3. Data items

Y Monthly rent of an apartment (yen)
A Land area of an apartment (m2)

B1 Whether an apartment has a parking lot
B2 Whether an apartment is a condominium
B3 Whether an apartment is a corner apartment
B4 Whether an apartment is a fixed-term tenancy agreement
B5 Whether an apartment is on the top floor

C1 Facing direction
base: South C1a: North C1b: Northeast
C1c: East C1d: Southeast C1e: Southwest
C1f: West C1g: Northwest

C2 Building structure
base: Reinforced concrete C2a: Wooden C2b: Light steel frame
C2c: Steel frame C2d: Steel framed rein-forced concrete C2e: ALC
C2f: Steel framed precast concrete C2g: Precast concrete C2h: Reinforced block
C2i: Other

C3 Building age (years)
base: 0 (new-build) C3a: 1 – 5 C3b: 6 – 10
C3c: 11 – 15 C3d: 16 – 20 C3e: 21 – 25
C3f: 26 – 30 C3g: 31 – 35 C3h: 36 – 40
C3i: 41 – 45 C3j: 46 – 50

C4 Iteration of logarithmic transformations of the top floor and a room floor
base: 0 C4a: 0 – 1 C4b: 1 – 2
C4c: 2 – 3 C4d: 3 – 4 C4e: 4 – 5
C4f: 5 <

C5 Walking time (min) to the nearest station
base: 1 – 5 C5a: 6 – 10 C5b: 11 – 15
C5c: 16 – 20 C5d: 21 ≤

Y and A are continuous variables. B1 to B5 are dummy variables that take the value of 1 or 0. C1 to C5 are
multidimensional dummy variables. C3 to C5 were transformed from continuous variables to categorical variables.

the proposed method and the GWR both perform well. Although we have applied large sam-
ple data, because the data exhibit low sparseness and contour line spread concentrically, we
were able to obtain a good result using the GWR. However, there was a high calculation cost
involved. Specifically, the GWR took about 126 times longer to run than the proposed method
(Table 5). Since the proposed method discretely evaluates spatial effects and strongly depends
on the number of split spaces rather than the sample size, the proposed method is a viable and
practical option in large sample data.
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(a) 852 areas (b) All sample points

Figure 4. Tokyo’s 23 wards
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Figure 5. Regional effects estimation results I

5. Conclusion

In this paper, we proposed an algorithm for solving the optimization problem of the spatial-
fused Lasso. This algorithm discretely evaluates and estimates spatial effects. Although the
optimization problem can be solved using the genlasso package in R, since there are problems
in terms of calculation cost and accuracy, we provided an update equation of the coordinate de-
scent algorithm for the spatial-fused Lasso in closed form. From numerical studies, we found
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Figure 6. Regional effects estimation results II

Table 4. Regression coefficient estimates

estimate estimate estimate
Proposed method GWR Proposed method GWR Proposed method GWR

A 0.67942 0.67774 C2b -0.01053 -0.01144 C3g -0.04101 -0.04716
B1 0.00666 0.00757 C2c -0.00844 -0.00938 C3h -0.03809 -0.04243
B2 -0.00925 -0.01021 C2d -0.00675 -0.00686 C3i -0.03330 -0.03732
B3 -0.00954 -0.01118 C2e -0.00689 -0.00748 C3j -0.02307 -0.02579
B4 0.00468 0.00632 C2f -0.00016 -0.00021 C4a 0.01151 0.01192
B5 0.00000 -0.00336 C2g -0.00211 -0.00195 C4b 0.02015 0.02026
C1a 0.00000 0.00000 C2h -0.00012 -0.00011 C4c 0.01583 0.01531
C1b 0.00000 0.00000 C2i -0.00297 -0.00312 C4d 0.01803 0.01752
C1c 0.00000 0.00000 C3a 0.00596 -0.00342 C4e 0.02212 0.02161
C1d 0.00000 0.00000 C3b -0.00286 -0.01307 C4f 0.03702 0.03700
C1e 0.00000 0.00000 C3c -0.01729 -0.02610 C5a -0.00774 -0.00805
C1f 0.00000 0.00000 C3d -0.02185 -0.02910 C5b -0.01239 -0.01262
C1g 0.00000 0.00000 C3e -0.03560 -0.04395 C5c -0.00708 -0.00709
C2a -0.01291 -0.01413 C3f -0.04550 -0.05479 C5d -0.00422 -0.00427

that our proposed method exhibits higher calculation accuracy than the genlasso package and
it is also much faster. Importantly, our proposed method is viable and practical in large sample
data, unlike the genlasso package. Although the determination of adjacent relationships may
be a non-trivial endeavor, we were able to obtain valuable results.

Moreover, although the spatial-fused Lasso was used herein for overcoming disadvantages
associated with continuous evaluation of spatial effects, since it can be easily applied even in
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(a) Land area (A) (b) Age (C3)

(c) Iteration (C4) (d) Walking time (C5)

Figure 7. Residual plots (proposed method)

Table 5. Model fit and run time

R2 MER (%) run time (min)

Proposed method 0.835 6.720 2.406
GWR 0.832 6.717 303.350

a large sample data and offers high accuracy, we can expect it to extend as spatial statistics
method. In addition, since estimates are obtained at each joined space, our method also has ad-
vantages in prediction problem. Furthermore, since we can obtain clustering of spatial effects
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(a) Land area (A) (b) Age (C3)

(c) Iteration (C4) (d) Walking time (C5)

Figure 8. Residual plots (GWR)

by joining small spaces, our method could have secondary uses in business practice.
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Appendix

A.1. Proof of Theorem 1

First, we present (i) and (ii) concerning a∗ and a⋆. The (i) is proved as follows:

a⋆ does not exist⇔ ∀a ∈ {1, . . . , q}, ta < [va, va−1)
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⇔



∀a ∈ {1, . . . , q}, va−1 ≤ ta

∀a ∈ {1, . . . , q}, ta < va

∃!a0 ∈ {1, . . . , q − 1} s.t.

ta < va0 (a ≤ a0 − 1)

va0 ≤ ta (a0 ≤ a)

⇔


v0 ∈ R0 (a∗ = 0)

vk ∈ Rq (a∗ = q)

va0 ∈ Ra0 (a∗ = a0 ∈ {1, . . . , q − 1})

⇔ ∃a∗ ∈ {0, . . . , q} s.t. va∗ ∈ Ra∗

⇔ a∗ exists.

Regarding the uniqueness of a∗ in (ii), assume that a (∈ {0, . . . , q}) and b (∈ {0, . . . , q}) exist
such that va ∈ Ra and vb ∈ Rb, and they satisfy a + 1 ≤ b without loss of generality. Then,
although ta < va ≤ ta+1 ≤ tb < vb ≤ tb+1 holds, this is in conflict with vb < va. Thus, we have
a = b.

Regarding the uniqueness of a⋆ in (ii), assume that a (∈ {1, . . . , q}) and b (∈ {1, . . . , q}) exist
such that ta ∈ [va, va−1) and tb ∈ [vb, vb−1) and they satisfy a + 1 ≤ b without loss of generality.
Then, although va ≤ ta ≤ tb < vb−1 holds, this is in conflict with vb−1 ≤ va. Thus, we have
a = b.

The (i) and (ii) mean that either a∗ or a⋆ uniquely exists and va∗ or ta⋆ is a local minimizer.
In addition, from ϕ(x) is a continuous function, the local minimizer is the minimizer of ϕ(x).
Consequently, Theorem 1 is proved.

A.2. Transformations to Piecewise Function

A.2.1. Descent Cycle

To minimize (2.6) with respect to µi (i ∈ {1, . . . ,m}), we rewrite (2.6) as a function of µi.
This function is given by the following lemma (the proof is given in Appendix A.3.1):

Lemma A.1. The equation (2.6) can be expressed as the following function of µi (i ∈
{1, . . . ,m}):

ϕ1(µi | λ2) = niµ
2
i − 2ỹ′2,i1niµi + 2λ2

∑
j∈Di

w2,i j|µi − µ̂ j| + ui, (A.1)

where ui is the term that does not depend on µi.

Moreover, we rewrite (A.1) in non-absolute form. By using the order statistics ti,1, . . . , ti,ri and
the range Ri,a (a ∈ {0, . . . , ri}, ti,0 = −∞) defined by (3.1) and (3.5), respectively, the piecewise
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function of µi for (2.6) is given by the following lemma (the proof is given in Appendix A.3.2):

Lemma A.2. The equation (A.1) can be expressed as the following piecewise function:

ϕ1(µi | λ2) = ϕ1,a(µi | λ2)

= niµ
2
i − 2(ỹ′2,i1ni − λ2w̃i,a)µi + ui,a (µi ∈ Ri,a, a ∈ {0, . . . , ri}),

(A.2)

where w̃i,a is defined by (3.3) and ui,a is the term that does not depend on µi. Moreover,

ϕ1,a(µi | λ2) satisfies the following properties:

• The ϕ1(µi | λ2) is continuous in µi ∈ R, i.e., ϕ1,a(ta+1 | λ2) = ϕ1,a+1(ta+1 | λ2) (a =
0, . . . , ri − 1).

• The vi,a, the µi-coordinate of the vertex of ϕ1,a(µi | λ2), is a monotonically decreasing

sequence with respect to a.

A.2.2. Fusion Cycle

To minimize (2.6) with respect to ηi (i ∈ {1, . . . , b}), we rewrite (2.6) as a function of ηi. This
function is given by the following lemma (the proof is given in Appendix ap lem3):

Lemma A.3. The equation (2.6) can be expressed as the following function of ηi (i ∈
{1, . . . , b}):

ϕ2(ηi | λ2) = c2,iη
2
i − 2c1,iηi + 2λ2

∑
j∈Ei

∑
ℓ∈D j\Ei

w2, jℓ |ηi − µ̂ℓ | + ui, (A.3)

where c1,i and c2,i are constants defined by (3.7) and ui is the term that does not depend on ηi.

Moreover, by using the order statistics ti,0, . . . , ti,qi and the range Ri,a (a ∈ {0, . . . , qi}) defined by
using the order statistics, a piecewise function of ηi for (2.6) is given by the following lemma
(the proof is given in Appendix A.3.4):

Lemma A.4. The (A.3) can be expressed as the following piecewise function:

ϕ2(ηi | λ2) = ϕ2,a(ηi | λ2)

= c2,iη
2
i − 2(c1,i − λw̃i,a)ηi + ui,a (ηi ∈ Ri,a, a ∈ {0, . . . , qi}),

(A.4)

where w̃i,a is defined by (3.6) and ui,a is the term that does not depend on ηi. Moreover,

ϕ2,a(ηi | λ2) satisfies the following properties:

• The ϕ2(ηi | λ2) is continuous in ηi ∈ R, i.e., ϕ2,a(ta+1 | λ2) = ϕ2,a+1(ta+1 | λ2) (a =
0, . . . , qi − 1).

• The vi,a, the ηi-coordinate of the vertex of ϕ2,a(ηi | λ2), is a monotonically decreasing

sequence with respect to a.
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A.3. Proofs of Lemmas

A.3.1. Proof of Lemma A.1

We partition (2.6) into terms that do and do not depend on µi. The first term in (2.6) can be
partitioned as follows:

∥ỹ2 −Rµ∥22 = ỹ′2ỹ2 − 2ỹ′2Rµ + µ′R′Rµ

= ỹ′2ỹ2 − 2

 m∑
j,i

µ̂ jỹ
′
2, j1n j + µiỹ

′
2,i1ni

 + m∑
j,i

n jµ̂
2
j + niµ

2
i

= niµ
2
i − 2ỹ′2,i1niµi +

m∑
j,i

(n jµ̂
2
j − 2ỹ′2, j1n j µ̂ j) + ỹ′2ỹ2.

Moreover, since w2, jℓ = w2,ℓ j and |µ j−µℓ | = |µℓ−µ j|, the second term in (2.6) can be partitioned
as follows:

m∑
j=1

∑
ℓ∈D j

w2, jℓ |µ j − µℓ | =
m∑
j,i

∑
ℓ∈D j

w2, jℓ |µ j − µℓ | +
∑
ℓ∈Di

w2,iℓ |µi − µℓ |

=

m∑
j,i

∑
ℓ∈D j\{i}

w2, jℓ |µ̂ j − µ̂ℓ | + 2
∑
ℓ∈Di

w2,iℓ |µi − µ̂ℓ |.

Consequently, since Di = {di,1, . . . , di,ri }, Lemma A.1 is proved and ui is given by

ui =

m∑
j,i

(n jµ̂
2
j − 2ỹ′2, j1n j µ̂ j) + ỹ′2ỹ2 + λ2

m∑
j,i

∑
ℓ∈D j\{i}

w2, jℓ |µ̂ j − µ̂ℓ |.

A.3.2. Proof of Lemma A.2

First, we prove (A.2). Since t1, . . . , tri are the order statistics of µ̂di,1 , . . . , µ̂di,ri
, the following

equation holds when µi ∈ Ri,a:∑
j∈Di

w2,i j|µi − µ̂ j| =
∑
j∈J+i,a

w2,i j(µi − µ̂ j) +
∑
j∈J−i,a

w2,i j(µ̂ j − µi)

= w̃i,aµi −

∑
j∈J+i,a

w2,i jµ̂ j −
∑
j∈J−i,a

w2,i jµ̂ j

 ,
where J+i,a and J−i,a are index sets defined by (3.2) and w̃i,a is defined by (3.3). Thus, we have
(A.2) and ui,a is given by

ui,a = ui − 2λ2

∑
j∈J+i,a

w2,i jµ̂ j −
∑
j∈J−i,a

w2,i jµ̂ j

 .
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Next, we prove that vi,a is a monotonically decreasing sequence. The following equation
with respect to w̃i,a holds:

w̃i,a =
∑
j∈J+i,a

w2,i j −
∑
j∈J−i,a

w2,i j

=

 ∑
j∈J+i,a+1

w2,i j − w2,i j∗

 −
 ∑

j∈J−i,a+1

w2,i j + w2,i j∗


= w̃i,a+1 − 2w2,i j∗ ,

where j∗ = arg min j∈J−i,a µ̂ j = arg max j∈J+i,a+1
µ̂ j. Since w2,i j > 0, w̃i,a is a monotonically increas-

ing sequence with respect to a. Thus, vi,a is a monotonically decreasing sequence with respect
to a.

Finally, we prove that ϕ1(µi | λ2) is a continuous function. The following equation holds
about the term of ϕ1,a(ti,a+1 | λ2) that depends on a:

2λ2w̃i,ati,a+1 − 2λ2

∑
j∈J+i,a

w2,i jµ̂ j −
∑
j∈J−i,a

w2,i jµ̂ j


= 2λ2w̃i,a+1ti,a+1 − 4λ2w2,i j∗ ti,a+1 − 2λ2

 ∑
j∈J+i,a+1

w2,i jµ̂ j −
∑

j∈J−i,a+1

w2,i jµ̂ j − 2w2,i j∗ ti,a+1


= 2λ2w̃i,a+1ti,a+1 − 2λ2

 ∑
j∈J+i,a+1

w2,i jµ̂ j −
∑

j∈J−i,a+1

w2,i jµ̂ j

 .
Thus, we have ϕ1,a(ta+1 | λ2) = ϕ1,a+1(ta+1 | λ2). Consequently, Lemma A.3.2 is proved.

A.3.3. Proof of Lemma A.3

We partition (2.6) into terms that do and do not depend on ηi. Then, the first term in (2.6)
can be partitioned as follows:

∥ỹ2 −Rµ∥22 = ỹ′2ỹ2 − 2ỹ′2Rµ + µ′R′Rµ

= ỹ′2ỹ2 − 2

∑
j<Ei

µ̂ jỹ
′
2, j1n j +

∑
j∈Ei

µ jỹ
′
2, j1n j

 +∑
j<Ei

n jµ̂
2
j +

∑
j∈Ei

n jµ
2
j

= c2,iη
2
i − 2c1,iηi +

∑
j<Ei

(n jµ̂
2
j − 2ỹ′2, j1n j µ̂ j) + ỹ′2ỹ2.

Moreover, the second term in (2.6) can be partitioned as follows:
m∑

j=1

∑
ℓ∈D j

w2, jℓ |µ j − µℓ | =
∑
j<Ei

∑
ℓ∈D j

w2, jℓ |µ j − µℓ | +
∑
j∈Ei

∑
ℓ∈D j

w2, jℓ |µ j − µℓ |
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=
∑
j<Ei

∑
ℓ∈D j\Ei

w2, jℓ |µ̂ j − µ̂ℓ | +
∑
j<Ei

∑
ℓ∈D j∩Ei

w2, jℓ |µ̂ j − µℓ |

+
∑
j∈Ei

∑
ℓ∈D j\Ei

w2, jℓ |µ j − µ̂ℓ | +
∑
j∈Ei

∑
ℓ∈D j∩Ei

w2, jℓ |µ j − µℓ |

=
∑
j<Ei

∑
ℓ∈D j\Ei

w2, jℓ |µ̂ j − µ̂ℓ | +
∑
j<Ei

∑
ℓ∈D j∩Ei

w2, jℓ |µ̂ j − ηi|

+
∑
j∈Ei

∑
ℓ∈D j\Ei

w2, jℓ |ηi − µ̂ℓ | +
∑
j∈Ei

∑
ℓ∈D j∩Ei

w2, jℓ |ηi − ηi|

=
∑
j<Ei

∑
ℓ∈D j\Ei

w2, jℓ |µ̂ j − µ̂ℓ | + 2
∑
j∈Ei

∑
ℓ∈D j\Ei

w2, jℓ |ηi − µ̂ℓ |.

Consequently, Lemma A.3 is proved and ui is given by

ui =
∑
j<Ei

(n jµ̂
2
j − 2ỹ′2, j1n j µ̂ j) + ỹ′2ỹ2 + λ2

∑
j<Ei

∑
ℓ∈D j\Ei

w2, jℓ |µ̂ j − µ̂ℓ |.

A.3.4. Proof of Lemma A.4

We omit details of the proof because Lemma A.4 can be proved as was Lemma A.2.

A.4. Estimation method using the GWR

With the GWR, spatial effects are estimated for each sample point. Let ξi (i = 1, . . . , n) be
the spatial effect for the ith sample. Then, we consider the following model for yi:

yi = x′iβ + ξi + εi,

where xi is the ith row vector of X and εi is the ith element of ε. The estimators of β and ξi
are given by

β̂ = arg min
β

∥∥∥y −Xβ − ξ̂
∥∥∥2
, ξ̂i = arg min

ξ

∥∥∥W 1/2
i (y −Xβ̂ − ξ1n)

∥∥∥2
, (A.5)

where ξ = (ξ1, . . . , ξn)′, Wi = diag(wi,1, . . . , wi,n) is a diagonal matrix of order n, and wi, j is the
weight of the jth sample for the ith sample. By solving (A.5), the estimators of β and ξ are
expressed as

β̂ = (X ′X −X ′WX)−1X ′(In −W )y,

ξ̂ =W
{
In −X(X ′X −X ′WX)−1X ′(In −W )

}
y,

where W = ({tr(W1)}−1w1, . . . , {tr(Wn)}−1wn)′ and wi = (wi,1, . . . , wi,n)′. In this simulation,
we use following weight:
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wi, j =


cos(θi, j) + 1

2
(0 ≤ θi, j < π)

0 (π ≤ θi, j)
, θi, j =

πdi, j

dmax
,

where di, j is the distance between the ith sample point and the jth sample point and we de-
fine dmax by the following procedure. Let di,( j) be the jth-smallest of di,1, . . . , di,n and we
decide rmin and rmax. Then, we calculate an n × rmax distance matrix where the ith row
vector is (di,(1), . . . , di,(rmax)). By using the distance matrix, we define the distance dmax so
that the number of sample points used as weights is at least rmin. In this simulation, let
rmax = 50, 100, 300, 500, 1,000, 1,500, 2,000, 2,500 and let rmin increase in steps of 50 up
to 1,000 and then steps of 100 from 1,000. For example, rmin = 50, 100, . . . , 250, 300
when rmax = 300 and rmin = 50, 100, . . . , 950, 1,000, 1,100, 1,200, 1,300, 1,400, 1,500 when
rmax = 1,500. The result from subsection 4.2 is that we estimate β and ξ for all pairs (rmax, rmin)
and optimize the pairs (rmax, rmin) based on the EGCV criterion minimization method. The
reason for calculating the n × rmax distance matrix is that since the sample size is very large
(n = 61,999), the full-size (n × n) distance matrix cannot be calculated. Moreover, because of
calculation cost, we set rmax up to 2,500.
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