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Abstract

A multivariate generalized ridge (MGR) regression provides a shrinkage estimator of the
multivariate linear regression by multiple ridge parameters. Since the ridge parameters which
adjust the amount of shrinkage of the estimator are unknown, their optimization is an important
task to obtain a better estimator. For the univariate case, a fast algorithm has been proposed
for optimizing ridge parameters based on minimizing a model selection criterion (MSC) and
the algorithm can be applied to various MSCs. In this paper, we extend this algorithm to MGR
regression. We also describe the relationship between the MGR estimator which is not sparse
and a multivariate adaptive-Lasso estimator which is sparse, under orthogonal explanatory
variables.
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1. Introduction

We consider n pairs of data {yi,xi} (i = 1, . . . , n), where yi is a p-dimensional vector
of response variables, xi is a k-dimensional vector of explanatory variables, and n satisfies
n > max{p, k + 1}. A multivariate linear regression model is a statistical model for multiple re-
sponse variables (e.g., Srivastava, 2002, Chap. 9; Timm, 2002, Chap. 4). Let Y = (y1, . . . ,yn)′

be an n × p matrix of response variables, X = (x1, . . . ,xn)′ be an n × k matrix of explanatory
variables, and E = (ε1, . . . , εn)′ be an n × p matrix of error variables. Then, the multivariate
linear regression model is given by
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Y = 1nµ
′ +XΞ + E, (1.1)

where 1n is an n-dimensional vector of ones, µ is a p-dimensional vector of location param-
eters, and Ξ = (ξ1, . . . , ξk)′ is a k × p matrix of regression coefficients. We assume that X is
centralized and has full column rank, i.e., X ′1n = 0k and rank(X) = k, and that ε1, . . . , εn are
independently and identically distributed according to mean vector 0p and covariance matrix
Σ, where 0k is a k-dimensional vector of zeros. One of the most basic methods for estimating
the unknown parameters µ and Ξ in (1.1) is the least squares (LS) method. The LS estimators
of µ and Ξ are given by

µ̂ = ȳ =
1
n
Y ′1n, Ξ̂ =M−1X ′Y (M =X ′X). (1.2)

These estimators are equal to the maximum likelihood estimators (MLEs) of µ and Ξ under
normality, i.e., the assumption that

ε1, . . . , εn ∼ i.i.d. Np(0p,Σ).

The LS estimators can be obtained as simple forms as per (1.2) regardless of having good the-
oretical properties, e.g., unbiasedness and asymptotic normality. Unfortunately, it cannot be
said that Ξ̂ is a good estimator, in the sense that the variance of the estimator becomes large
when multicollinearity occurs.

For the univariate case, i.e., when p = 1, a generalized ridge (GR) regression was proposed
by Hoerl & Kennard (1970) to avoid the problem posed by multicollinearity. The GR regres-
sion can be expected to overcome this problem by shrinking an estimator of regression coeffi-
cients. The GR estimator can be obtained as closed form and the amount of shrinkage of the
estimator is adjusted by k regularization parameters called ridge parameters. However, since
the ridge parameters are unknown, to obtain a better estimator, we have a new problem to ad-
dress, namely ridge parameters optimization. A model selection criterion (MSC) minimization
method is one approach to solve the problem of ridge parameters optimization, which selects
ridge parameters minimizing the MSC as the optimal ridge parameters. Most MSCs consist of
a residual sum of squares (RSS) and generalized degrees of freedom (GDF). In other words,
they account for model fit and model complexity. Salient examples include the Cp criterion
(Mallows, 1973), Akaike’s information criterion (AIC; Akaike, 1973) under normality, and the
generalized cross-validation (GCV) criterion (Craven & Wahba, 1979). Usually, the optimal
parameters selected by an MSC minimization method cannot be obtained as closed forms and
iterative calculation is often required. This presents difficulties in terms of the validity and
applicability of such method. Fortunately, Nagai et al. (2012) showed that the optimal ridge
parameters based on minimizing a generalized Cp (GCp) criterion (Atkinson, 1980) which is
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a generalization of the Cp criterion can be obtained as closed forms and Yanagihara (2018)
showed that the optimal ridge parameters based on minimizing the GCV criterion can be ob-
tained as closed forms. There are various MSCs having wide class like the GCp criterion; for
example, there are the generalized information criterion (GIC; Nishii, 1984), which includes
AIC, and the extended GCV (EGCV) criterion (Ohishi et al., 2020a), which includes the GCV
criterion. All these criteria can be regarded as bivariate functions of the RSS and GDF. Ohishi
et al. (2020a) defined a MSC having a wider class as the bivariate function and proposed an
algorithm to minimize it rapidly. Since the ridge parameters can be easily optimized by using
various MSCs, the GR regression is a useful method to avoid problems arising from multi-
collinearity.

Ohishi et al. (2020a) also clarified a class of ridge parameters optimized by the MSC mini-
mization method. From the results, under orthogonal explanatory variables, the GR estimator
which was previously non-sparse is now characterized by sparsity, i.e., includes 0, after the
ridge parameters are optimized. On the other hand, Lasso regression (Tibshirani, 1996) and
adaptive-Lasso (AL) regression (Zou, 2006) which is an extension of the Lasso regression are
well-known methods for providing a sparse estimator. They also give shrinkage estimators
like the GR regression. Although the amount of shrinkage and extent of sparsity of the AL
estimator (including the Lasso estimator) are adjusted by a regularization parameter called a
tuning parameter, since this parameter is unknown, its optimization is required. Moreover,
the AL estimator cannot usually be obtained without iterative calculation. However, Ohishi
et al. (2020b) showed that the AL estimator can be obtained as closed form under orthog-
onal explanatory variables and the GR and AL estimators are equivalent after regularization
parameters are optimized by the MSC minimization method.

Yanagihara et al. (2009) and Nagai et al. (2012) naturally extended the GR regression to
a multivariate GR (MGR) regression. The MGR estimator is also a shrinkage estimator by k

ridge parameters like the GR estimator and we have to consider the ridge parameters optimiza-
tion. In the MSC minimization method for the MGR regression, although the ridge parameters
optimized by the GCp criterion minimization method can be obtained as closed forms (Nagai
et al., 2012), whether this is the case for other criteria is unclear. Recently, Mori & Suzuki
(2018) proposed ZMCp criterion and ZKLIC which are modified versions of the modified Cp

(MCp) criterion (Fujikoshi & Satoh, 1997) and the bias-corrected AIC (AICC; Hurvich & Tsai,
1989) for MGR regression. However, these MSCs are designed for selecting explanatory vari-
ables, not for optimizing ridge parameters. In this paper, we extend the algorithm proposed
by Ohishi et al. (2020a) to MGR regression. Furthermore, we describe the relationship be-
tween MGR regression and multivariate AL (MAL) regression under orthogonal explanatory
variables.
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The remainder of the paper is organized as follows. In Section 2, we describe the MGR es-
timator and MSCs for optimizing ridge parameters, and define a MSC class. In Section 3, we
extend the algorithm proposed by Ohishi et al. (2020a) to optimize ridge parameters in MGR
regression by the MSC minimization method. In Section 4, the MSC class defined in Section
2 is extended, corresponding to various distances. Moreover, we propose an algorithm for
minimizing the extended MSC. In Section 5, we propose a new method for optimizing ridge
parameters by using MSCs. In Section 6, we describe the MAL estimator and an equivalence
between the MGR and MAL estimators under the regularization parameters optimized by the
MSC minimization method. In Section 7, the performance of the ridge parameters optimized
by the MSC minimization methods is compared by simulation. Technical details are provided
in the Appendix.

2. Preliminaries

By a singular value decomposition, n× n and k× k orthogonal matrices P and Q and a k× k

diagonal matrix D = diag(d1, . . . , dk) express X as

X = P

 D1/2

On−k,k

Q′ = P1D
1/2Q′, (2.1)

where On,k is an n × k matrix of zeros, P1 is an n × k matrix obtained from the partition
P = (P1,P2), which satisfies P ′11n = 0k and P ′1P1 = Ik, and d1, . . . , dk are eigenvalues of
M (= X ′X) satisfying d1 ≥ · · · ≥ dk > 0. Then, the MGR estimators of µ and Ξ are given
by

µ̂ = ȳ, Ξ̂θ =M−1
θ X ′Y (Mθ =M +QΘQ′), (2.2)

where θ = (θ1, . . . , θk)′, Θ = diag(θ1, . . . , θk) and θ j ∈ R+ = {θ ∈ R | θ ≥ 0} ( j = 1, . . . , k) is a
regularization parameter called a ridge parameter. Since Mθ =M when θ = 0k, Ξ̂θ coincides
with Ξ̂ in (1.2) when θ = 0k and the MGR estimators coincide with the GR estimators when
p = 1. The MGR estimators in (2.2) denote the minimizers of the following penalized RSS
(PRSS):

tr
{
(Y − 1nµ

′ −XΞ)′(Y − 1nµ
′ −XΞ) +Ξ′QΘQ′Ξ

}
. (2.3)

Although the ridge parameters adjust the amount of shrinkage of the MGR estimator of Ξ,
since they are unknown, their optimization is an important task to obtain a better estimator. To
simplify calculation, following Yanagihara (2018) and Ohishi et al. (2020a), we transform the
ridge parameters as
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δ j =
θ j

d j + θ j
∈ [0, 1] ( j = 1, . . . , k).

Since this transformation is a one-to-one correspondence, the optimization of θ j is equal to that
of δ j. Hence, we optimize δ j instead of θ j and we also call δ j a ridge parameter in this paper.
Let δ and ∆ be a k-dimensional vector and a k × k diagonal matrix of the ridge parameters
defined by δ = (δ1, . . . , δk)′ and ∆ = diag(δ1, . . . , δk), respectively, and let Z be a k× p matrix
defined by

Z = (z1, . . . , zk)′ = P ′1Y . (2.4)

Then, the MGR estimator of Ξ in (2.2) can be rewritten as

Ξ̂δ = Q(Ik −∆)D−1/2Z = Ξ̂ −Q∆D−1/2Z. (2.5)

In this paper, we optimize the ridge parameter δ by using the MSC minimization method.
The MGR estimator in (2.5) gives a predictive matrix of Y as

Ŷδ = 1nµ̂
′ +XΞ̂δ =HδY , Hδ = Jn + P1(Ik −∆)P ′1 ,

where Jn = 1n1
′
n/n and Hδ is an n × n matrix called a hat matrix. Most MSCs consist of the

predictive matrix and the hat matrix. The predictive matrix is used to evaluate model fit. We
define an estimator and an unbiased estimator of the covariance matrix Σ as

Σ̂(δ) =
1
n

(Y − Ŷδ)′(Y − Ŷδ), S =
1
b
Σ̂0

(
Σ̂0 = Σ̂(0k), b = 1 − (k + 1)/n

)
. (2.6)

Under normality, Σ̂(δ) is a penalized MLE of Σ and Σ̂0 is an MLE of Σ. Then, model fit, i.e.,
the distance between Y and Ŷδ is defined by

tr
{
Σ̂(δ)S−1

}
.

On the other hand, the hat matrix is used to evaluate model complexity and it is defined by the
following GDF:

df(δ) = p tr(Hδ). (2.7)

The GCp and EGCV criteria for optimizing ridge parameters consist of tr{Σ̂(δ)S−1} and df(δ).
Similar to Yanagihara (2018), we have the following lemma about Σ̂(δ) and df(δ).

Lemma 1. Let Bδ and W be p × p matrices defined by

Bδ = Z′∆2Z, W = nΣ̂0.
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Then, Σ̂(δ) and df(δ) can be partitioned into terms which do and do not include δ as follows:

Σ̂(δ) =
1
n

(W +Bδ) = Σ̂0 +
1
n

k∑
j=1

z jz
′
jδ

2
j ,

df(δ) = p(1 + k) − p tr∆ = p

(1 + k) −
k∑

j=1

δ j

 .
From Lemma 1, we have

tr
{
Σ̂(δ)S−1

}
= b tr

(
B∗δ

)
+ bp, B∗δ =W −1/2BδW

−1/2.

Then, the GCp and EGCV criteria for optimizing ridge parameters are defined by

GCp(δ) = nb tr(B∗δ) + nbp + α df(δ),

EGCV(δ) =
b tr(B∗δ) + bp
{1 − df(δ)/np}α ,

where α is a positive value adjusting the strength of the penalty for model complexity. Existing
criteria are expressed by changing the value of α, for example, the GCp and EGCV criteria co-
incide with the Cp and GCV criteria, respectively, when α = 2 and the GCp criterion coincides
with the MCp criterion (Yanagihara et al., 2009) when α = 2{1 + (p + 1)/(n − k − p − 2)}.
From the above, MSCs for optimizing ridge parameters can be regarded as bivariate functions
of tr(B∗δ) and df(δ). Lemma 1 gives ranges of tr(B∗δ) and df(δ).

Lemma 2. The tr(B∗δ) and df(δ) are included in the following ranges:

tr(B∗δ) ∈ [
0, tr

(
Z∗Z∗′

)]
, df(δ) ∈ [p, p(1 + k)],

where Z∗ = ZW −1/2.

Moreover, let f be a bivariate function defined by the following class.

Definition 1.（Class of the bivariate function f） For a positive value r+, f satisfies the fol-
lowing conditions:

(A1) For any (r, u) ∈ [0, r+] × [p, np), f (r, u) is continuous.

(A2) For any (r, u) ∈ [0, r+]×[p, np), f (r, u) is first order partially differentiable and its partial
derivatives are positive.

We define MSC for optimizing ridge parameters by using f in Definition 4 as

MSC(δ) = f
(
tr(B∗δ), df(δ)

)
. (2.8)
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For the GCp and EGCV criteria, f is given by

f (r, u) =

 fGCp (r, u) = nb(r + p) + αu (GCp criterion)

fEGCV(r, u) = b(r + p)/(1 − u/np)α (EGCV criterion)
,

and r+ is given by

r+ = tr
(
Z∗Z∗′

)
.

Then, the optimal ridge parameters based on minimizing the MSC in (2.8) are given by

δ̂ = (δ̂1, . . . , δ̂k)′ = arg min
δ∈[0,1]k

MSC(δ).

3. Fast Optimization of Ridge Parameters

In this section, to obtain δ minimizing the MSC in (2.8), we extend the algorithm for op-
timizing ridge parameters in the GR regression proposed by Ohishi et al. (2020a). First, we
define the following class of ridge parameters.

Definition 2.（Class of ridge parameters） For h ∈ R+, a class of ridge parameters is de-
fined by

δ̂(h) =
(
δ̂1(h), . . . , δ̂k(h)

)′
, δ̂ j(h) = 1 − soft

(
1, h/z′jS

−1z j

)
,

where z j is the p-dimensional vector defined by (2.4). Furthermore, soft(x, a) is a soft-
thresholding operator (e.g., Donoho & Johnstone, 1994), i.e., soft(x, a) = sign(x)(|x| − a)+,
and (x)+ = max{x, 0}.

When S = Ip and p = 1, the class of ridge parameters in Definition 2 corresponds to that
for the GR regression defined by Ohishi et al. (2020a). Using this class, the MGR estimator in
(2.5) is given as a function of h:

Ξ̂δ̂(h) = QV (h)Q′Ξ̂,

where Q is the k × k orthogonal matrix defined by (2.1) and V (h) is a k × k diagonal matrix
which has the following diagonal elements:

v j(h) = 1 − δ̂ j(h) = soft
(
1, h/z′jS

−1z j

)
( j = 1, . . . , k).

The V (h) rewrites the predictive matrix of Y as
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Ŷδ̂(h) =
{
Jn + P1V (h)P ′1

}
Y ,

where P1 is the n × k matrix defined by (2.1). Then, the ridge parameters optimized by the
MSC minimization method are given by the following theorem (the proof is given in Appendix
A.1).

Theorem 1. We define r+ as

r+ = tr
(
Z∗Z∗′

)
.

For f with the class in Definition 4, let ϕ(h) (h ∈ R+\{0}) be a function defined by

ϕ(h) = MSC(δ̂(h)),

and suppose that ∃ν > 0 s.t. ϕ(ν) < limh→0 ϕ(h). Then, the ridge parameters optimized by the

MSC minimization method are given by δ̂(ĥ) and ĥ is given by

ĥ = arg min
h∈R+\{0}

ϕ(h).

From this theorem, the class of ridge parameters in Definition 2 is the class of the “optimal”
ridge parameters.

Let t j ( j = 1, . . . , k) be the jth order statistic of z′1S
−1z1, . . . , z

′
kS
−1zk and R j ( j = 0, 1, . . . , k)

be a range defined by

R j =


(0, t1] ( j = 0)

(t j, t j+1] ( j = 1, . . . , k − 1)

(tk,∞] ( j = k)

. (3.1)

Then, similar to Ohishi et al. (2020a), we have the following proposition.

Proposition 1. The ϕ(h) in Theorem 1 satisfies the following properties:

(P1) For all h ∈ R+\{0}, ϕ(h) is continuous.

(P2) For all h ≥ tk, ϕ(h) = f (r+, p).

(P3) The ϕ(h) can be expressed as the following piecewise function:

ϕ(h) = ϕa(h) = f
(
(c1,a + c2,ah2)/nb, p(1 + k − a − c2,ah)

)
(h ∈ Ra; a = 0, 1, . . . , k),

where c1,a and c2,a are nonnegative constants given by

c1,a =


0 (a = 0)

a∑
j=1

t j (a = 1, . . . , k)
, c2,a =


k∑

j=a+1

1
t j

(a = 0, 1, . . . , k − 1)

0 (a = k)

.
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From the results, the MSC minimization problem for optimizing ridge parameters in the MGR
regression can be solved by applying the fast algorithm for the GR regression proposed by
Ohishi et al. (2020a). That is, we have the following theorem.

Theorem 2. Suppose that the derivative of ϕa(h) in Proposition 1 is expressed as

d
dh
ϕa(h) = χa(h)ψa(h) (h ∈ Ra; a = 0, 1, . . . , k − 1),

and ψ(h) = ψa(h) (h ∈ Ra) is continuous for all h ∈ R+\{0}, where χa(h) is a positive function

and ψa(h) is a polynomial. Moreover, suppose that ∃ν > 0 s.t. ϕ(ν) < limh→0 ϕ(h) and let ha

be a root of ψa(h) = 0 satisfying

∃ϵa > 0 s.t. ∀ϵ ∈ (0, ϵa), ψa(ha − ϵ) < 0. (3.2)

Then, minimizer candidates of ϕ(h) are given by

S =
⋃

a∈A
{ha}

⋃
T ,

A = {a ∈ {0, 1, . . . , k − 1} | ha ∈ Ra}, T =

{tk} (ψk−1(tk) < 0)

∅ (ψk−1(tk) ≥ 0)
.

Hence, the ridge parameters optimized by the MSC minimization method are given by δ̂(ĥ) and

ĥ is given by

ĥ = arg min
h∈S

ϕ(h).

Although the range of h is a set of positive values, Theorem 2 can reduce a search range of h to
S which is a set of discrete points. Furthermore, each element of S is given as closed form and
#(S) ≤ k + 1; hence we can quickly optimize the ridge parameters. In the theorem, although
ψa(h) is implicitly supposed as a linear or quadratic function, the theorem can naturally be ex-
tended to higher order polynomial functions. In particular, roots of ψa(h) = 0 can be obtained
as closed forms when ψa(h) is a cubic or a quartic function, by using Cardano’s formula (e.g.,
David, 2004, Chap. 1) or Ferrari’s method (e.g., Tignol, 2001, Chap. 3). Hence, if the degree
of ψa(h) is four or less, we can quickly optimize the MSC.

3.1. Examples

In this subsection, we provide specific examples of the MSC minimization methods for
optimizing ridge parameters in the MGR regression. To emphasize that the optimal ridge pa-
rameters depend on α, we specify that α is given.
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3.1.1. The GCp criterion

Although the ridge parameters optimized by the GCp criterion minimization method have
already been given by Nagai et al. (2012), here we show how to derive them by applying
Theorem 2. The GCp criterion for optimizing ridge parameters is given by

GCp(δ | α) = fGCp

(
tr(B∗δ), df(δ)

∣∣∣ α) .
When h ∈ Ra (a = 0, 1, . . . , k), ϕ and its derivative are given by

ϕ(h | α) = ϕa(h | α) = c2,ah2 − αpc2,ah + nbp + c1,a + αp(1 + k − a),

d
dh
ϕa(h | α) = c2,a(2h − αp).

Hence, the ridge parameters optimized by the GCp criterion minimization method are given as
the following closed form:

δ̂ = δ̂(ĥα), ĥα =
αp
2
.

3.1.2. The EGCV criterion

The EGCV criterion for optimizing ridge parameters is given by

EGCV(δ | α) = fEGCV

(
tr(B∗δ), df(δ)

∣∣∣ α) .
When h ∈ Ra (a = 0, 1, . . . , k), ϕ and its derivative are given by

ϕ(h | α) = ϕa(h | α) =
bp + (c1,a + c2,ah2)/n
{b + (a + c2,ah)/n}α ,

d
dh
ϕa(h | α) =

c2,a

n2{b + (a + c2,ah)/n}α+1ψa(h | α),

ψa(h | α) = −(α − 2)c2,ah2 + 2(a + nb)h − α(nbp + c1,a).

When α = 2, i.e., using the GCV criterion minimization method, we have

ψa(h | 2) = 2{(a + nb)h − nbp − c1,a},

and a root of ψa(h | 2) = 0 is

ha =
nbp + c1,a

a + nb
.

Moreover, similar to Yanagihara (2018), the following statement is true:

∃!a∗ ∈ {0, 1, . . . , k − 1} s.t. ha∗ ∈ Ra∗ .
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Hence, the ridge parameters optimized by the GCV criterion minimization method are given
by the following closed forms: δ̂ = δ̂(ha∗ ).

When α > 2, since ψa(h | α) is a concave quadratic function, a root of ψa(h | α) = 0
satisfying the condition (3.2) is given by

hα,a =
(a + nb) −

√
(a + nb)2 − α(α − 2)c2,a(nbp + c1,a)

(α − 2)c2,a
.

Therefore, candidates of ĥα are given by

Sα =
 ⋃

a∈Aα

{hα,a}
⋃

Tα,

whereAα and Tα are sets given by

Aα =
{
a ∈ {0, 1, . . . , k − 1} | hα,a ∈ Ra

}
, Tα =

{tk}
(
r+ > 2(1 − n−1)tk/αb − p

)
∅

(
r+ ≤ 2(1 − n−1)tk/αb − p

) .
Hence, the ridge parameters optimized by the EGCV criterion minimization method are given
by

δ̂ = δ̂(ĥα), ĥα = arg min
h∈Sα

ϕ(h | α).

In the EGCV criterion minimization method, the number of minimizer candidates is only k+ 1
at most.

3.2. Relationships between the Optimal Ridge Parameters

This subsection provides some theoretical properties concerning the relationships between
the optimal ridge parameters. The class of the optimal ridge parameters satisfies

∀h1, h2 ∈ R+, h1 < h2 ⇒ δ̂ j(h1) ≤ δ̂ j(h2) ( j = 1, . . . , k),

with equality only when h1 ≥ tk. This fact yields some relationships concerning the ridge
parameters optimized by the GCp and EGCV criteria minimization methods. Immediately, we
have the following result which is similar to Nagai et al. (2012).

Proposition 2. For positive values α1 and α2, we define the ridge parameters optimized by

the GCp criterion minimization method as

δ̂1, j = δ̂ j(ĥα1 ), δ̂2, j = δ̂ j(ĥα2 ) ( j = 1, . . . , k),

where ĥα = αp/2. Then, we have

α1 < α2 ⇒ δ̂1, j ≤ δ̂2, j.
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This proposition states that the stronger the penalty for model complexity, the larger the amount
of shrinkage of the estimator, when using the GCp criterion minimization method. Next, we
consider the ridge parameters optimized by the GCp and the GCV criteria minimization meth-
ods. Similar to Yanagihara (2018), we have the following lemma.

Lemma 3. The ha∗ obtained by the GCV criterion minimization method satisfies ha∗ ≤ p.

This lemma leads to the following result which is similar to the case when p = 1 (Yanagihara,
2018).

Proposition 3. Let δ̂GCp

α, j and δ̂GCV
j ( j = 1, . . . , k) be the ridge parameters optimized by the

GCp and GCV criteria minimization methods, respectively. Then, we have

α ≥ 2⇒ δ̂GCV
j ≤ δ̂GCp

α, j .

The value of α in the MSC is often 2 or more. This means that the ridge parameters optimized
by the GCp criterion minimization method shrink the estimator more than the GCV criterion
minimization method in most cases. Finally, we consider the ridge parameters optimized by
the EGCV criterion minimization method. We express ϕ(h | α) = EGCV(δ̂(h) | α) as

ϕ(h | α) = σ̂2(h)η(h | α),

where

σ̂2(h) = bp + b tr(B∗δ), η(h | α) =
1

{1 − df(h)/np}α , df(h) = df(δ̂(h)),

and let ĥα be the minimizer of ϕ(h | α). Then, η(h | α) has the following property (the proof is
given in Appendix A.2).

Lemma 4. Suppose that 0 < h1 < h2. Then, we have

η(h2 | α) ≤ η(h1 | α).

This lemma leads to the following proposition (the proof is given in Appendix A.3).

Proposition 4. The EGCV criterion minimization method has the following properties:

(1) Suppose that α1 < α2. Then, we have

ĥα1 = tk ⇒ ĥα2 = tk.

(2) For positive values α1 and α2, we define the ridge parameters optimized by the EGCV

criterion minimization method as

12
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δ̂1, j = δ̂ j(ĥα1 ), δ̂2, j = δ̂ j(ĥα2 ) ( j = 1, . . . , k),

and suppose that ĥα2 , tk. Then, we have

α1 < α2 ⇒ δ̂1, j ≤ δ̂2, j,

with equality only when ĥα1 ≥ z′jS
−1z j.

This proposition states that the stronger the penalty for model complexity, the larger the amount
of shrinkage of the estimator, when using the EGCV criterion minimization method.

4. Extending the MSC Class

In the previous section, we showed that the algorithm for the GR regression can be applied
to minimize the MSC in (2.8), where the distance between Y and Ŷδ is defined by tr{Σ̂(δ)S−1}
and the MSC is defined by using tr(B∗δ) obtained from the distance. In this section, we focus
on how to measure the distance.

Let g be a real-valued function defined by the following class.

Definition 3.（Class of the function g） For any p × p positive definite matrix A, the g sat-
isfies the following conditions:

(A1) The g(A) is positive.

(A2) The ∂g(A)/∂A is a positive definite.

Using the function g, we extend the MSC in (2.8) to

MSC(δ | g) = f
(
g(B∗δ), df(δ)

)
, (4.1)

where f is the bivariate function given by Definition 4. For example, g includes the following
functions:

g(A) =



gLH(A) = tr(A) (LH-distance)

gLR(A) = log
∣∣∣Ip +A

∣∣∣ (LR-distance)

gBNP(A) = tr
{
A(Ip +A)−1

}
(BNP-distance)

gML(A) = tr
{
(Ip +A)−1

}
+ log |Ip +A| − p (ML-distance)

gGLS(A) = tr(A2)/2 (GLS-distance)

.

The MSC in (4.1) is equal to that in (2.8) when g(A) = gLH(A) and the following equation
holds:

13
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gLH(B∗δ) = tr
(
BδW

−1
)
.

Since we can regard Bδ as a between-group variation matrix and W as a within-group varia-
tion matrix, gLH(B∗δ) is a Lawley-Hotelling trace criterion (LH-statistic; e.g., Anderson, 2003,
Chap. 8) which is a well-known statistic in multivariate analysis. That is, the MSC in (2.8)
measures the distance between Y and Ŷδ based on the LH-statistic. Similarly, regarding the
LR-distance and the BNP-distance, the following equations hold:

gLR(B∗δ) = log
∣∣∣(W +Bδ)W −1

∣∣∣ , gBNP(B∗δ) = tr
{
Bδ(W +Bδ)−1

}
.

They are a Likelihood-Ratio criterion and a Bartlett-Nanda-Pillai trace criterion, respectively,
which are also well-known statistics (e.g., Anderson, 2003, Chap. 8). MSC based on the LR-
distance includes the GIC and the AICC under normality. The above three distances based on
the three statistics pertain to the mean structure of a model. In contrast, there are distances with
respect to the covariance structure of a model, e.g., the ML-distance and the GLS-distance. Re-
garding these distances, the following equations hold:

gML(B∗δ) = log
∣∣∣Σ̂(δ)

∣∣∣ + tr
{
Σ̂(δ)−1Σ̂0

}
− log

∣∣∣Σ̂0
∣∣∣ − p,

gGLS(B∗δ) =
1
2

tr
[{(

Σ̂0 − Σ̂(δ)
)
Σ̂−1

0

}2
]
.

They are distances between Σ̂(δ) and Σ̂0 called a maximum likelihood fitting function and
a generalized least square fitting function, respectively (e.g., Bollen, 1989, Chap. 4). Using
g(A), the GCp and EGCV criteria, and the GIC and the AICC under normality are given by

GCp(δ) = nbgLH(B∗δ) + nbp + α df(δ),

EGCV(δ) =
bgLH(B∗δ) + bp
{1 − df(δ)/np}α ,

GIC(δ) = ngLR(B∗δ) + np log b + α df(δ),

AICC(δ) = ngLR(B∗δ) + np log b +
np{n + df(δ)}

n − p − 1 − df(δ)
.

Using the GIC, it is also possible to adjust the strength of the penalty for model complexity,
and for example, the GIC coincides with the AIC when α = 2, the HQC (Hannan & Quinn,
1979) when α = 2 log log n, and the BIC (Schwarz, 1978) when α = log n. For the GIC and
AICC, the bivariate function f (r, u) is given by

f (r, u) =


fGIC(r, u) = n(r + p log b) + αu (GIC)

fAICC (r, u) = n(r + p log b) +
np(n + u)

n − p − 1 − u
(AICC)

.

The following subsections describe two algorithms to minimize the MSC in (4.1).

14
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4.1. Minimizing MSC via Iterative Method

This subsection describes an algorithm for solving the MSC minimization method via an
iterative method with an iterative function. That is, we derive the iterative function. Notice
that

B∗δ =
k∑

j=1

z∗jz
∗
j
′δ2

j , z∗j =W −1/2z j.

Therefore, the following partial derivatives can be obtained:

∂

∂δ j
B∗δ = 2z∗jz

∗
j
′δ j,

∂

∂δ j
df(δ) = −p.

We express the (i, ℓ) element of a matrix A as aiℓ = (A)iℓ and define

ġiℓ(B) =
∂

∂aiℓ
g(A)

∣∣∣∣∣
A=B

, Ġ(B) =
∂

∂A
g(A)

∣∣∣∣∣
A=B

.

B∗δ is a symmetric matrix, thus we have

∂

∂δ j
g(B∗δ) =

p∑
i=1

p∑
ℓ=i

∂

∂δ j
(B∗δ)iℓ · ġiℓ(B∗δ) = 2z∗j

′Ġ(B∗δ)z∗jδ j.

Hence, a partial derivative of the MSC is given by

∂

∂δ j
MSC(δ | g) = 2z∗j

′Ġ(B∗δ)z∗j ḟr
(
g(B∗δ), df(δ)

)
δ j − p ḟu

(
g(B∗δ), df(δ)

)
,

where

ḟr(x, y) =
∂

∂r
f (r, u)

∣∣∣∣∣
(r,u)=(x,y)

, ḟu(x, y) =
∂

∂u
f (r, u)

∣∣∣∣∣
(r,u)=(x,y)

.

By solving ∂MSC(δ | g)/∂δ = 0k, we can obtain the following iterative method:

δ(i+1) = ζ(δ(i)) =
(
ζ1(δ(i)), . . . , ζk(δ(i))

)′
(i = 0, 1, . . .),

ζ j(δ) = 1 − soft
(
1, τ(δ)/z∗j

′Ġ(B∗δ)z∗j
)
, (4.2)

where (i) is the iteration number, δ(0) is a given initial vector, and τ(δ) is given by

τ(δ) =
p ḟu

(
g(B∗δ), df(δ)

)
2 ḟr

(
g(B∗

δ
), df(δ)

) > 0.

By repeating the update of δ(i) with the iterative function ζ, we can obtain the optimal δ. This
iterative method has the following property (the proof is given in Appendix A.4).
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Proposition 5. For a k-dimensional vector ϵ wherein all elements are nonnegative, suppose

that

τ(δ) ≤ τ(δ + ϵ), z∗j
′Ġ(B∗δ)z∗j ≥ z∗j

′Ġ(B∗δ+ϵ)z∗j . (4.3)

Then, the iterative method with iterative function (4.2) converges if ∀ j ∈ {1, . . . , k}, δ(1)
j ≥ δ

(0)
j .

Furthermore, the iterative method also converges if ∀ j ∈ {1, . . . , k}, δ(1)
j ≤ δ

(0)
j .

From this proposition, when assumption (4.3) holds, the iterative method with iterative func-
tion (4.2) converges if the initial vector is 0k or 1k.

4.1.1. LR-distance

For the MSC based on the LR-distance, the following equation holds:

∂

∂A
gLR(A) =

∂

∂A
log |Ip +A| = (Ip +A)−1.

Therefore, we have

W −1/2Ġ(B∗δ)W −1/2 = (W +Bδ)−1 =
1
n
Σ̂(δ)−1.

Hence, the iterative function for solving the MSC minimization method based on the LR-
distance is given by

ζ j(δ) = 1 − soft
(
1, nτ(δ)/z′jΣ̂(δ)−1z j

)
. (4.4)

Furthermore, from Lemma 1, for ϵ in Proposition 5 and for any p-dimensional vector a, the
following equation holds:

a′Σ̂(δ)a ≤ a′Σ̂(δ + ϵ)a⇐⇒ a′Σ̂(δ)−1a ≥ a′Σ̂(δ + ϵ)−1a.

Let δ̂LR be a solution obtained by the iterative method with iterative function (4.4). Then,

δ̂LR = ζ(δ̂LR).

The ridge parameters optimized by the MSC minimization method based on the LR-distance
are given by

δ̂LR
j = 1 − soft

(
1, nτ(δ̂LR)/z′jΣ̂(δ̂LR)−1z j

)
( j = 1, . . . , k).

On the other hand, the ridge parameters optimized by the MSC minimization method based on
the LH-distance are given by the following form:

δ̂LH
j = 1 − soft

(
1, ĥ/z′jS

−1z j

)
( j = 1, . . . , k).
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The δ̂LH
j includes S−1 and S is an estimator of the covariance matrix for the full model. Thus,

δ̂LH
j has a disadvantage because S−1 is unstable when k is large. Whereas, δ̂LR

j does not include
S−1, but rather Σ̂(δ̂LR)−1 and Σ̂(δ̂LR) is an estimator of the covariance matrix adjusted by δ̂LR.
Thus, δ̂LR

j has an advantage because Σ̂(δ̂LR)−1 is stable even when k is large.

Example 1

We derive an iterative function for solving the GIC minimization method. From f (r, u) =
fGIC(r, u), we have

ḟr(r, u) = n, ḟu(r, u) = α,

and therefore, τ(δ) = αp/2n. Hence, the iterative function for the GIC minimization method
is given by

ζ j(δ) = 1 − soft
(
1, αp/2z′jΣ̂(δ)−1z j

)
( j = 1, . . . , k). (4.5)

Moreover, since τ(δ) does not depend on δ, from Proposition 5, the iterative method for solving
the GIC minimization method converges under an appropriate initial vector.

Example 2

We derive an iterative function for solving the AICC minimization method. From f (r, u) =
fAICC (r, u), we have

ḟr(r, u) = n, ḟu(r, u) =
np(2n − p − 1)
(n − p − 1 − u)2 ,

and therefore, we have

τ(δ) =
p2(2n − p − 1)

2{n − p − 1 − df(δ)}2 .

Hence, the iterative function for the AICC minimization method is given by

ζ j(δ) = 1 − soft

1, np2(2n − p − 1)

2{n − p − 1 − df(δ)}2z′jΣ̂(δ)−1z j

 ( j = 1, . . . , k).

Moreover, for ϵ in Proposition 5, the following equation holds:

df(δ) ≥ df(δ + ϵ).

Therefore

τ(δ) ≥ τ(δ + ϵ),

and thus, the iterative method for solving the AICC minimization method does not satisfy
Proposition 5.
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4.1.2. BNP-distance

For the MSC based on the BNP-distance, the following equation holds:

∂

∂A
gBNP(A) =

∂

∂A
tr

{
A(Ip +A)−1

}
= − ∂

∂A
tr

{
(Ip +A)−1

}
= (Ip +A)−2.

Therefore, we have

W −1/2Ġ(B∗δ)W −1/2 = (W +Bδ)−1W (W +Bδ)−1 =
1
n
Σ̂(δ)−1Σ̂0Σ̂(δ)−1.

Hence, the iterative function for solving the MSC minimization method based on the BNP-
distance is given by

ζ j(δ) = 1 − soft

1, nτ(δ)

z′jΣ̂(δ)−1Σ̂0Σ̂(δ)−1z j

 .
Accordingly, using the BNP-distance, the optimal ridge parameters are stable even when k is
large.

Example

As an example of MSC based on the BNP-distance, we consider the following criterion:

BNPC(δ) = ngBNP(B∗δ) + α df(δ).

Then, since

ḟr(r, u) = n, ḟu(r, u) = α,

we have τ(δ) = αp/2n. Hence, the iterative function for solving the BNPC minimization
method is given by

ζ j(δ) = 1 − soft

1, αp

2z′jΣ̂(δ)−1Σ̂0Σ̂(δ)−1z j

 . (4.6)

4.1.3. ML-distance

For the MSC based on the ML-distance, the following equation holds:

∂

∂A
gML(A) =

∂

∂A

[
tr

{
(Ip +A)−1

}
+ log |Ip +A|

]
= −(Ip +A)−2 + (Ip +A)−1.

Therefore, we have

W −1/2Ġ(B∗δ)W −1/2 = (W +Bδ)−1 − (W +Bδ)−1W (W +Bδ)−1

=
1
n
Σ̂(δ)−1 − 1

n
Σ̂(δ)−1Σ̂0Σ̂(δ)−1.
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Hence, the iterative function for solving the MSC minimization method based on the ML-
distance is given by

ζ j(δ) = 1 − soft

1, nτ(δ)

z′j{Σ̂(δ)−1 − Σ̂(δ)−1Σ̂0Σ̂(δ)−1}z j

 .
Accordingly, using the ML-distance, the optimal ridge parameters are stable even when k is
large.

4.1.4. GLS-distance

For the MSC based on the GLS-distance, the following equation holds:

∂

∂A
gGLS(A) =

1
2
· ∂

∂A
tr

(
A2

)
= A.

Therefore, we have

W −1/2Ġ(B∗δ)W −1/2 =W −1BδW
−1 =

1
n
Σ̂−1

0 {Σ̂(δ) − Σ̂0}Σ̂−1
0 .

Hence, the iterative function for solving the MSC minimization method based on the GLS-
distance is given by

ζ j(δ) = 1 − soft

1, nτ(δ)

z′jΣ̂
−1
0 {Σ̂(δ) − Σ̂0}Σ̂−1

0 z j

 .
Since Σ̂0 is an estimator of the covariance matrix for the full model, the optimal ridge param-
eters are unstable when k is large.

4.2. Minimizing MSC via Coordinate Descent

In the previous subsection, we described an algorithm to minimize the MSC via the iterative
method with an iterative function obtained by solving ∂MSC(δ | g)/∂δ = 0k. In this subsec-
tion, we update δ1, . . . , δk individually, not simultaneously. That is, we minimize the MSC via
a coordinate descent algorithm.

4.2.1. LR-distance

We partition W +Bδ and df(δ) into

W +Bδ =W j + z jz
′
jδ

2
j , W j =W +

k∑
ℓ, j

zℓz
′
ℓδ

2
ℓ ,

df(δ) = q1, j − pδ j, q1, j = p

(1 + k) −
k∑
ℓ, j

δℓ

 .
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Then, the following equations hold:

Ip +B
∗
δ =W −1/2(W +Bδ)W −1/2 =W −1/2(W j + z jz

′
jδ

2
j )W

−1/2, (4.7)∣∣∣W j + z jz
′
jδ

2
j

∣∣∣ = ∣∣∣W j

∣∣∣ (1 + z′jW −1
j z jδ

2
j

)
.

Therefore, we have

gLR(B∗δ) = log |Ip +B
∗
δ | = log

(
1 + z′jW

−1
j z jδ

2
j

)
+ log

∣∣∣W jW
−1

∣∣∣
= log(1 + q2, jδ

2
j ) + q3, j,

where q2, j and q3, j are constants which do not depend on δ j given by

q2, j = z′jW
−1
j z j, q3, j = log

∣∣∣W jW
−1

∣∣∣ .
Hence, the following partial derivative is obtained:

∂

∂δ j
gLR(B∗δ) =

2q2, jδ j

1 + q2, jδ
2
j

.

Example 1

The partial derivative of the GIC is given by

ḟ j(δ j) =
∂

∂δ j
GIC(δ) =

1
1 + q2, jδ

2
j

(−αpq2, jδ
2
j + 2nq2, jδ j − αp).

An update equation of the coordinate descent algorithm for solving the GIC minimization
method is given by the following theorem (the proof is given in Appendix A.5).

Theorem 3. Let f j(δ) be a function for δ ∈ [0, 1] and suppose that the derivative of f j(δ) is

given by the following form:

ḟ j(δ) =
1

ḟ j,1(δ)
ḟ j,2(δ) ( ḟ j,1(δ) > 0),

ḟ j,2(δ) = −c j,2δ
2 + 2c j,1δ − c j,0 (c j,0, c j,1, c j,2 > 0),

and we define δ̃ j as

δ̃ j =

1 −
√

1 − c j,2c j,0/c2
j,1

c j,2/c j,1
.

Then, δ̂ j = arg minδ∈[0,1] f j(δ) is given by
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(1) Case of 1 − c j,2c j,0/c2
j,1 ≥ 0:

δ̂ j =

δ̃ j

(
c j,2 > c j,1 or (c j,2 ≤ c j,1 and δ̃ j < 1)

)
1

(
c j,2 ≤ c j,1 and δ̃ j ≥ 1

) .

(2) Case of 1 − c j,2c j,0/c2
j,1 < 0:

δ̂ j = 1.

Example 2

The partial derivative of the AICC is given by

ḟ j(δ j) =
∂

∂δ j
AICC(δ) =

1
(1 + q2, jδ

2
j )(n − p − 1 − q1, j + pδ j)2/n

ḟ j,2(δ j),

ḟ j,2(δ) = 2p2q2, jδ
3 + pq2, j{4(n − p − 1 − q1, j) − p(2n − p − 1)}δ2

+ 2q2, j(n − p − 1 − q1, j)2δ − p2(2n − p − 1).

An update equation of the coordinate descent algorithm for solving the AICC minimization
method is given by the following theorem (the proof is given in Appendix A.6).

Theorem 4. Let f j(δ) be a function for δ ∈ [0, 1] and suppose that the derivative of f j(δ) is

given by the following form:

ḟ j(δ) =
1

ḟ j,1(δ)
ḟ j,2(δ) ( ḟ j,1(δ) > 0),

ḟ j,2(δ) = c j,3δ
3 + c j,2δ

2 + c j,1δ − c j,0 (c j,0 > 0),

and let m (0 ≤ m ≤ 3) be the number of stationary points of ḟ j,2(δ) which is included in (0, 1)
and δ̃ j,1, . . . , δ̃ j,m (m ≥ 1) be the stationary points satisfying δ̃ j,1 < · · · < δ̃ j,m. Moreover, we

define a set S j as

S j = {1} (m = 0); {δ̃ j,1} (m = 1); {δ̃ j,1, 1} (m = 2); {δ̃ j,1, δ̃ j,3} (m = 3).

Then, δ̂ j = arg minδ∈[0,1] f j(δ) is given by

δ̂ j = arg min
δ∈S j

f j(δ).
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4.2.2. BNP-distance

Equation (4.7) leads to(
Ip +B

∗
δ

)−1
=W 1/2(W j + z jz

′
jδ

2
j )
−1W 1/2,

and the following holds:

(W j + z jz
′
jδ

2
j )
−1 =W −1

j −
W −1

j z jz
′
jW

−1
j δ2

j

1 + z′jW
−1
j z jδ

2
j

=W −1
j −

W −1
j z jz

′
jW

−1
j δ2

j

1 + q2, jδ
2
j

.

Therefore, we have

gBNP(B∗δ) = p − tr
{
(Ip +B

∗
δ)−1

}
= p − tr


W −1

j −
W −1

j z jz
′
jW

−1
j δ2

j

1 + q2, jδ
2
j

W


=
q4, jδ

2
j

1 + q2, jδ
2
j

+ q5, j,

where q4, j and q5, j are constants which do not depend on δ j given by

q4, j = z′jW
−1
j WW −1

j z j, q5, j = p − tr
(
W −1

j W
)
.

Hence, the following partial derivative is obtained:

∂

∂δ j
gBNP(Bδ) =

2q4, jδ j

(1 + q2, jδ
2
j )

2
.

Example

The partial derivative of the BNPC is given by

ḟ j(δ j) =
∂

∂δ j
BNPC(δ) =

1
(1 + q2, jδ

2
j )

2
(−αpq2

2, jδ
4
j − 2αpq2, jδ

2
j + 2nq4, jδ j − αp).

An update equation of the coordinate descent algorithm for solving the BNPC minimization
method is given by the following theorem obtained which is similar to Theorem 4.

Theorem 5. Let f j(δ) be a function for δ ∈ [0, 1] and suppose that the derivative of f j(δ) is

given by the following form:

ḟ j(δ) =
1

ḟ j,1(δ)
ḟ j,2(δ) ( ḟ j,1(δ) > 0),

ḟ j,2(δ) = c j,4δ
4 + c j,3δ

3 + c j,2δ
2 + c j,1δ − c j,0 (c j,0 > 0),

and let m (0 ≤ m ≤ 4) be the number of stationary points of ḟ j,2(δ) which is included in (0, 1)
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and δ̃ j,1, . . . , δ̃ j,m (m ≥ 1) be the stationary points satisfying δ̃ j,1 < · · · < δ̃ j,m. Moreover, we

define a set S j as

S j =

 {1} (m = 0); {δ̃ j,1} (m = 1); {δ̃ j,1, 1} (m = 2)
{δ̃ j,1, δ̃ j,3} (m = 3); {δ̃ j,1, δ̃ j,3, 1} (m = 4)

.

Then, δ̂ j = arg minδ∈[0,1] f j(δ) is given by

δ̂ j = arg min
δ∈S j

f j(δ).

4.2.3. ML-distance

Notice that

gML(A) = gLR(A) − gBNP(A).

Hence, we have

gML(B∗δ) = log(1 + q2, jδ
2
j ) −

q4, jδ
2
j

1 + q2, jδ
2
j

+ q3, j − q5, j,

and the following partial derivative is obtained:

∂

∂δ j
gML(B∗δ) =

2q2, jδ

1 + q2, jδ2 −
2q4, jδ

(1 + q2, jδ2)2 .

4.2.4. GLS-distance

We have

BδW
−1 = z jz

′
jW

−1δ2
j +W jW

−1 − Ip,

and therefore

gGLS(B∗δ) =
1
2

tr
{
(BδW

−1)2
}
=

1
2

(q6, jδ
4
j + 2q7, jδ

2
j + q8, j),

where qℓ, j (ℓ = 6, 7, 8) are constants which do not depend on δ j given by

q6, j = (z′jW
−1z j)2, q7, j = z′jW

−1(W j −W )W −1z j, q8, j = tr
{(
W jW

−1 − Ip

)2
}
.

Hence, the following partial derivative is obtained:

∂

∂δ j
gGLS(B∗δ) = 2q6, jδ

3
j + 2q7, jδ j.
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5. Plug-in Iteration

In the previous section, we described the minimization of MSC extended to general distance.
For MSC based on the LH-distance, the class of the optimal ridge parameters is obtained and
since the minimizer is given as closed form and is unique, or minimizer candidates are given
as closed forms and finite points, MSC can be minimized quickly. In contrast, since the opti-
mal ridge parameters include the inverse of the estimator of the covariance matrix for the full
model, those parameters are unstable when k is large. On the other hand, for MSC based on
general distance, in particular the LR-distance, the BNP-distance, and the ML-distance, since
the estimator of the covariance matrix which is included in the optimal ridge parameters is an
adjusted estimator, the optimal ridge parameters are stable even when k is large. In contrast,
such MSC cannot be minimized quickly. As above, MSC based on the LH-distance and MSC
based on another distance have contrasting properties. We propose a new approach, called the
Plug-in Iteration Method (PIM) which is a hybrid method drawing on the merits of the various
MSCs. The PIM optimizes ridge parameters by repeating the following procedure: first, the
ridge parameters are optimized by the MSC minimization method based on the LH-distance;
next, the ridge parameters are optimized again by using the ridge parameters optimized in the
previous step.

The ridge parameters optimized by the MSC minimization method based on the LH-distance
include S, and this derives from the fact that the original distance tr{Σ̂(δ)S−1} includes S. Al-
though the MSC was hitherto defined by using tr(B∗δ) obtained from the original distance, we
now redefine it using the original distance. For any p× p positive definite matrix A, we define

r+(A) = tr
(
Σ̂0A

−1
)
+

1
n

tr
(
ZA−1Z′

)
,

and let f † be a bivariate function defined by the following class.

Definition 4.（Class of the bivariate function f †） The f † satisfies the following condi-
tions:

(A1’) For any (r, u) ∈ (0, r+(A)] × [p, np), f †(r, u) is continuous.

(A2’) For any (r, u) ∈ (0, r+(A)] × [p, np), f †(r, u) is positive.

(A3’) For any (r, u) ∈ (0, r+(A)]× [p, np), f †(r, u) is first order partially differentiable and its
partial derivatives are positive.

Using the bivariate function f †, we redefine the MSC based on the LH-distance as

MSC†(δ | A) = f †
(
tr

{
Σ̂(δ)A−1

}
, df(δ)

)
. (5.1)
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This MSC covers a wider class than the MSC in (2.8) and is equal to the MSC in (2.8) when
A = S. For the GCp and EGCV criteria, f † is given by

f † =

nr + αu (GCp criterion)

r/(1 − u/np)α (EGCV criterion)
.

Similar to Theorem 1, the optimal δ minimizing the MSC in (5.1) is given by the following
corollary.

Corollary 1. We define a function ϕ(h | A) (h ∈ R+\{0}) as

ϕ(h | A) = MSC†(δ̂(h | A) | A),

and suppose that ∃ν > 0 s.t. ϕ(ν | A) < limh→0 ϕ(h | A), where δ̂(h | A) = (δ̂1(h |
A), . . . , δ̂k(h | A))′ is a class of ridge parameters given by

δ̂ j(h | A) = 1 − soft
(
1, h/z′jA

−1z j

)
.

Then, we have the following:

(1) The optimal ridge parameters based on minimizing MSC†(δ | A) are given by δ̂(ĥA | A)
and ĥA is given by

ĥA = arg min
h∈R+\{0}

ϕ(h | A).

(2) The ϕ(h | A) has the following properties:

(P1) For all h ∈ R+\{0}, ϕ(h | A) is continuous.

(P2) For all h ≥ tk, ϕ(h | A) = f †(r+(A), p).

(P3) The ϕ(h | A) can be expressed as the following piecewise function:

ϕ(h | A) = ϕa(h | A) (h ∈ Ra; a = 0, 1, . . . , k)

= f †
(
tr(Σ̂0A

−1) + (c1,a + c2,ah2)/n, p(1 + k − a − c2,ah)
)
,

where Ra, c1,a and c2,a are range and nonnegative constants similar to (3.1) and Propo-

sition 1, respectively. However, t j ( j = 1, . . . , k) is the jth order statistic of z′jA
−1z j ( j =

1, . . . , k).

Corollary 1 is an extension of Theorem 1 and Proposition 1 and they are equivalent when
A = S. Furthermore, ĥA can be obtained by applying Theorem 2.

Using Corollary 1, we describe the PIM algorithm. Let S(0) = S and we define δ̂(0)(h) =
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(δ̂(0)
1 (h), . . . , δ̂(0)

k (h))′ as δ̂(0)(h) = δ̂(h | S(0)) and define the optimal ridge parameters based on
minimizing MSC†(δ | S(0)) as

δ̂(0) =
(
δ̂(0)

1 , . . . , δ̂(0)
k

)′
, δ̂(0)

j = δ̂
(0)
j (ĥ(0)),

ĥ(0) = arg min
h∈R+\{0}

ϕ(0)(h), ϕ(0)(h) = MSC†(δ̂(0)(h) | S(0)).

Therefore δ̂(0)
j is given by

δ̂(0)
j = 1 − soft

(
1, ĥ(0)/z′j{S(0)}−1z j

)
. (5.2)

Furthermore, by substituting δ̂(0), we define S(1) as

S(1) =W 1/2Ġ(B∗
δ̂(0) )

−1W 1/2,

and let δ̂(1)(h) be a class of ridge parameters wherein the jth element ( j = 1, . . . , k) is given by

δ̂(1)
j (h) = 1 − soft

(
1, h/z′j{S(1)}−1z j

)
.

Then, we optimize the ridge parameters again as

δ̂(1) =
(
δ̂(1)

1 , . . . , δ̂(1)
k

)′
, δ̂(1)

j = δ̂
(1)
j (ĥ(1)),

ĥ(1) = arg min
h∈R+\{0}

ϕ(1)(h), ϕ(1)(h) = MSC†(δ̂(1)(h) | S(1)).

The ĥ(1) can be obtained quickly by applying Theorem2. Since the optimal ridge parameter
δ̂(0) includes S, it is unstable when k is large. Whereas, since S(1) is adjusted by substituting
δ̂(0), δ̂(1) is stable even when k is large. The PIM algorithm is summarized as follows.

PIM Algorithm

Step 1. Let the initial vector δ̂(0) be the ridge parameters optimized by the MSC minimiza-
tion method based on the LH-distance and i← 0.

Step 2. Define S(i+1) and ϕ(i+1)(h) as

S(i+1) =W 1/2Ġ(B∗
δ̂(i) )
−1W 1/2, ϕ(i+1)(h) = MSC†

(
δ̂(i+1)(h) | S(i+1)

)
,

where the class of ridge parameters is given by

δ̂(i+1)(h) =
(
δ̂(i+1)

1 (h), . . . , δ̂(i+1)
k (h)

)′
, δ̂(i+1)

j (h) = 1 − soft
(
1, h/z′j{S(i+1)}−1z j

)
.

Step 3. By using Theorem 2, update the ridge parameters as

δ̂(i+1) = δ̂(i+1)(ĥ(i+1)), ĥ(i+1) = arg min
h∈R+\{0}

ϕ(i+1)(h).
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Step 4. If δ̂(i+1) converges, the algorithm is complete. If not, let i ← i + 1 and return to Step
2.

Since the MSC minimized at each iteration is based on the LH-distance, the minimization
is fast. Furthermore, an estimator of the covariance matrix which is included in δ̂(i) is stable
by substituting the ridge parameters optimized in the previous step. Thus, the PIM is a hybrid
method which leverages the merits of the various MSCs.

The PIM algorithm is similar to the iterative method. In particular, when using the GCp

criterion, for all i (= 0, 1, . . . , ), we have

ĥ(i) =
αp
2
.

Therefore, the PIM is the following iterative method:

δ̂(i+1)
j = 1 − soft

(
1, αp/2z∗j

′Ġ(B∗
δ̂(i) )z

∗
j

)
,

and this is equal to the iterative method wherein the initial vector is the ridge parameters opti-
mized by the GCp criterion minimization method, the iterative function is equation (4.2), and
τ(δ) = αp/2. That is, when using the GCp criterion, the PIM with the GIC is equal to the GIC
minimization method and the PIM with the BNPC is equal to the BNPC minimization method.

6. Relationship with Multivariate Adaptive-Lasso Regression

In this section, we describe a relationship between the MGR and MAL estimators after the
regularization parameters are optimized by the MSC minimization method based on the LH-
distance. The MAL estimator cannot usually be obtained as closed form. However, it can be
obtained as closed form under orthogonal explanatory variables. Although we use general X
until the previous section, this section deals with orthogonal explanatory variables. Further-
more, instead of using the transformed ridge parameters δ1, . . . , δk, we approach this via the
original ridge parameters θ1, . . . , θk.

6.1. Estimators with Optimal Regularization Parameters under Orthogonality

The orthogonality of X means Q = Ik in (2.1). Therefore, the LS and the MGR estimators
of Ξ in (1.2) and (2.2), respectively, are rewritten as

Ξ̂ =
(
ξ̂1, . . . , ξ̂k

)′
=D−1/2Z, ξ̂ j =

1√
d j
z j,

Ξ̂R
θ =

(
ξ̂R
θ1,1, . . . , ξ̂

R
θk ,k

)′
=D1/2(D +Θ)−1Z, ξ̂R

θ j, j =

√
d j

d j + θ j
z j, (6.1)
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where D = diag(d1, . . . , dk) and Z = (z1, . . . , zk)′ are the k × k diagonal matrix and the k × p

matrix given by (2.1) and (2.4), respectively. The ridge parameters are optimized using the
following MSC based on the LH-distance:

MSCR(θ | A) = f †
(
tr{Σ̂R(θ)A−1}, dfR(θ)

)
, (6.2)

where Σ̂R(θ) and dfR(θ) are given by transforming the parameter from δ to θ in Σ̂(δ) and
df(δ), which are given by (2.6) and (2.7), respectively, as

Σ̂R(θ) = Σ̂0 +
1
n

k∑
j=1

z jz
′
j

(
θ j

d j + θ j

)2

, dfR(θ) = p(1 + k) − p
k∑

j=1

θ j

d j + θ j
.

Thus, the MSC in (6.2) is the parameter-transformed version of the MSC in (5.1). Furthermore,
since the transformation is a one-to-one correspondence, Corollary 1 gives the following class
of ridge parameters optimized by minimizing MSCR(θ | A):

θ̂(h | A) =
(
θ̂1(h | A), . . . , θ̂k(h | A)

)′
, θ̂ j(h | A) =


d jh

z′jA
−1z j − h

(h < z′jA
−1z j)

∞ (h ≥ z′jA
−1z j)

.

Notice that for all x ∈ R+,

MSCR(θ̂(x | A) | A) = MSC†(δ̂(x | A) | A).

Then, from Corollary 1, the optimal ridge parameters based on minimizing the MSC in (6.2)
are given by

θ̂ j = θ̂ j(ĥA | A) ( j = 1, . . . , k),

ĥA = arg min
h∈R+\{0}

ϕ(h | A), ϕ(h | A) = MSC†(δ̂(h | A) | A),
(6.3)

and using these optimal ridge parameters, the optimal MGR estimator based on minimizing
the MSC in (6.2) is given by

ξ̂R
θ̂ j, j
=

1√
d j

soft
(
1, ĥA/z′jA

−1z j

)
z j. (6.4)

Since ξ̂R
θ̂ j, j
= 0p when ĥA ≥ z′jA

−1z j, we found that the non-sparse MGR estimator is sparse
after the ridge parameters are optimized.

Next, we describe the MAL estimator of Ξ. Ohishi et al. (2020b) derived the AL estima-
tor as closed form under orthogonality of X . As a natural extension of this result, the MAL
estimator can be obtained as closed form. Let Lλ be a k × k diagonal matrix of which the jth
diagonal element is given by
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ℓλ, j =
1
d j

soft
(
1, λw j/

√
d j∥z j∥

)
( j = 1, . . . , k),

where λ ∈ R+ is a regularization parameter called a tuning parameter and w j is a weight. Then,
the MAL estimator of Ξ is given by

Ξ̂L
λ =

(
ξ̂L
λ,1, . . . , ξ̂

L
λ,k

)′
= LλX

′Y = LλD
1/2Z,

ξ̂L
λ, j =

√
d jℓλ, jz j =

1√
d j

soft
(
1, λw j/

√
d j∥z j∥

)
z j.

(6.5)

Since Lλ =D−1 when λ = 0, the MAL estimator coincides with the LS estimator when λ = 0,
and the MAL estimator coincides with the AL estimator given in Ohishi et al. (2020b) when
p = 1. The MAL estimator is sparse in the sense that ξ̂L

λ, j = 0p when λw j ≥
√

d j∥z j∥. The Ξ̂L
λ

in (6.5) denotes the minimizer of the following PRSS:

tr
{
(Y − 1nµ

′ −XΞ)′(Y − 1nµ
′ −XΞ)

}
+ 2λ

k∑
j=1

w j∥ξ j∥. (6.6)

The MGR estimator in (6.1) depends on k regularization parameters. Whereas, the MAL esti-
mator in (6.5) depends on only one regularization parameter. Furthermore, although the MGR
estimator is not sparse, the MAL estimator is characterized by sparsity. Hence, it can be stated
that the MGR and MAL estimators have different properties.

The MAL estimator in (6.5) gives a predictive matrix of Y for the MAL regression as fol-
lows:

Ŷ L
λ = 1nµ̂

′ +XΞ̂L
λ =HL

λY , HL
λ = Jn +XLλX

′.

Using Ŷ L
λ and HL

λ , we define an estimator of Σ and a GDF as

Σ̂L(λ) =
(Y − Ŷ L

λ )′(Y − Ŷ L
λ )

n
=

Y ′(In − Jn −XLλX
′)2Y

n
,

dfL(λ) = p tr(HL
λ ).

Similar to Ohishi et al. (2020b), we have the following lemma concerning Σ̂L(λ) and dfL(λ).

Lemma 5. The Σ̂L(λ) and dfL(λ) are expressed as

Σ̂L(λ) = Σ̂0 +
1
n
Z′(Ik −DLλ)2Z = Σ̂0 +

1
n

k∑
j=1

{
1 − soft

(
1, λw j/

√
d j∥z j∥

)}2
z jz

′
j,

dfL(λ) = p + p
k∑

j=1

soft
(
1, λw j/

√
d j∥z j∥

)
.
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Then, the MSC for optimizing the tuning parameter in the MAL regression is given by

MSCL(λ | A) = f †
(
tr(Σ̂L(λ)A−1), dfL(λ)

)
, (6.7)

and the tuning parameter optimized by the MSC minimization method is given by

λ̂A = arg min
λ∈R+

MSCL(λ | A).

Regarding the weight w j, in general, an inverse of a norm of an estimator of ξ j is used. When
using the weight w j = 1/∥ξ̂ j∥ based on the LS estimator, the optimal MAL estimator based on
minimizing the MSC in (6.7) is given by

ξ̂L
λ̂A, j
=

1√
d j

soft
(
1, λ̂A/∥z j∥2

)
z j. (6.8)

6.2. Equivalence between MGR and MAL estimators

This subsection investigates a relationship between the MGR and MAL estimators under the
regularization parameters optimized by the MSC minimization method. Although the optimal
MGR estimator in (6.4) and the optimal MAL estimator in (6.8) have similar forms, the op-
timal MGR estimator does not include ∥z j∥2, but rather z jA

−1z j normalized by A. First, we
focus on the difference.

Let T be an n × p matrix defined by T = Y A−1/2, U and Γ be k × p matrices defined by
U = (u1, . . . ,uk)′ = ZA−1/2 = P ′1T and Γ = (γ1, . . . ,γk)′ = ΞA−1/2, respectively, and υ be
a p-dimensional vector defined by υ = A−1/2µ. Then, we normalize the PRSS for the MGR
regression as

tr
{
(Y − 1nµ

′ −XΞ)′(Y − 1nµ
′ −XΞ)A−1 +Ξ′QΘQ′ΞA−1

}
= tr

{
(T − 1nυ

′ −XΓ)′(T − 1nυ
′ −XΓ) + Γ′QΘQ′Γ

}
.

This normalized PRSS provides the MGR estimator of γ j as

γ̂R
θ j, j =

√
d j

d j + θ j
u j.

Therefore, the MGR normalized estimator of ξ j is given by

ξ̂R†
θ j, j
= A1/2γ̂R

θ j, j =

√
d j

d j + θ j
z j,

and this is equal to the MGR estimator in (6.1). That is, the MGR estimator in (6.1) is a nor-
malized estimator in spite of the fact that it is obtained from non-normalized PRSS in (2.3).
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Thus, the optimal MGR normalized estimator is given by (6.4). On the other hand, based on
Xin et al. (2017), we normalize the PRSS for the MAL regression as

tr
{
(Y − 1nµ

′ −XΞ)′(Y − 1nµ
′ −XΞ)A−1

}
+ 2λ

k∑
j=1

w j∥A−1/2ξ j∥

= tr
{
(T − 1nυ

′ −XΓ)′(T − 1nυ
′ −XΓ)

}
+ 2λ

k∑
j=1

w j∥γ j∥.

When using the general weight w j = 1/∥γ̂ j∥ (γ̂ j is the LS estimator of γ j), this normalized
PRSS provides the MAL estimator of γ j as

γ̂L
λ, j =

1√
d j

soft
(
1, λ/∥u j∥2

)
u j.

Therefore, the MAL normalized estimator of ξ j is given by

ξ̂L†
λ, j = A1/2γ̂L

λ, j =
1√
d j

soft
(
1, λ/z′jA

−1z j

)
z j,

and this is different from the MAL estimator in (6.5) obtained as the minimizer of the PRSS in
(6.6) with the weight w j = 1/∥ξ̂ j∥. Hence, the difference between the two optimal estimators
(6.4) and (6.8) is whether the estimator is normalized or not. If ĥA = λ̂A, the two optimal
normalized estimators are equivalent. The equivalence is given by the following theorem (the
proof is given in Appendix A.7).

Theorem 6. Suppose that w j = 1/∥γ̂ j∥ and let θ̂ j ( j = 1, . . . , k) and λ̂ be the regularization

parameters optimized by the MSC minimization method based on the LH-distance defined by

θ̂ j = θ̂ j(ĥA | A), ĥA = arg min
h∈R+

MSCR(θ̂(h | A) | A),

λ̂ = λ̂A = arg min
λ∈R+

MSCL(λ | A).

Then, the following equation holds:

ξ̂R†
θ̂ j, j
= ξ̂L†

λ̂, j
( j = 1, . . . , k).

In Theorem 6, the normalized estimators derived the equivalence. Next, we focus on the
MSC to investigate the equivalence. The optimal MAL estimator in (6.8) includes ∥z j∥2 and
this originates from the non-normalized PRSS in (6.6). In contrast, z′jA

−1z j which is included
in the optimal MGR estimator in (6.4) originates from the distance tr{Σ̂MGR(θ)A−1} normal-
ized by A. This leads to the following equivalence (the proof is given in Appendix A.8).
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Theorem 7. Suppose that w j = 1/∥ξ̂ j∥ and let θ̂ j ( j = 1, . . . , k) and λ̂ be the regularization

parameters optimized by the MSC minimization method based on the LH-distance defined by

θ̂ j = θ̂ j(ĥIp | Ip), ĥIp = arg min
h∈R+

MSCR(θ̂(h | Ip) | Ip),

λ̂ = λ̂Ip = arg min
λ∈R+

MSCL(λ | Ip).

Then, the following equation holds:

ξ̂R
θ̂ j, j
= ξ̂L

λ̂, j
( j = 1, . . . , k).

7. Numerical Studies

In this section, we explore the performance of the MSC minimization methods for optimiz-
ing ridge parameters by evaluating prediction accuracies of predictive matrices via simulation.
This simulation is executed using R (ver. 3.6.0) on a computer with a Windows 10 Pro operat-
ing system, Intel (R) Core i7-7700 processor, and 16 GB of RAM. Let Rk = diag(1, . . . , k) and
let Ωk(ρ) be a k × k matrix of which the (i, j) element is given by ρ|i− j|. Then, the simulation
data are generated from the following model:

Y ∼ Nn×p(XΞ,Σ ⊗ In), X = (In − Jn)X0Ψ(0.99)1/2, Σ = R1/2
p Ωp(ρy)R1/2

p ,

where Ξ and X0 are k× p and n× k matrices wherein all the elements are identically and inde-
pendently distributed according to U(−1, 1) and Ψ(ρ) is a correlation matrix of X defined by
Ψ(ρ) = R1/2

k Ωk(ρ)R1/2
k . Furthermore, ρ = 0.99 and thus this simulation is a highly correlated

setting. Finally, Ξ and X0 are fixed throughout the simulation iterations.
Let Ŷδ̂ be the predictive matrix of Y obtained from the optimal MGR estimator based on

minimizing the MSC and Ŷ be the predictive matrix of Y obtained from the LS estimator,
i.e., Ŷ = Ŷ0k . Then, we evaluate the prediction accuracy of Ŷδ̂ by the following relative mean
square error (RMSE):

RMSE[Ŷδ̂] =
MSE[Ŷδ̂]
p(k + 1)

× 100(%), MSE[Ŷδ̂] = E
[
tr

{
(XΞ − Ŷδ̂)′(XΞ − Ŷδ̂)Σ−1

}]
.

In this setting, MSE[Ŷ ] = p(k + 1). This means that the prediction accuracies are evalu-
ated in terms of the amount of improvement of the prediction accuracy of Ŷ . Specifically,
RMSE < 100 means the prediction accuracy of Ŷδ̂ is superior to that of Ŷ and RMSE > 100
means the prediction accuracy of Ŷδ̂ is inferior to that of Ŷ . The smaller the RMSE value, the
better the prediction accuracy. The expectation of the MSE is evaluated by Monte Carlo sim-
ulation with 10,000 iterations. Furthermore, it can be considered that the MSE value strongly
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relates to the amount of shrinkage of the MGR estimator, in particular, more shrinkage is re-
quired when there are highly correlated variables in X . When δ̂ j = 1, the amount of shrinkage
of the MGR estimator is maximized and this means that the jth eigenvalue (and corresponding
eigenvector) is removed from the model. From this, we measure the amount of shrinkage of the
MGR estimator by calculating the following relative number of removed eigenvalues (RNRE):

RNRE(δ̂) =
#({ j ∈ {1, . . . , k} | δ̂ j = 1})

k
× 100 (%).

The RNRE expresses the ratio of the number of removed eigenvalues. If the RNRE value is
small (large), then the amount of shrinkage is also small (large).

In this simulation, we estimate the mean structure of model. Thus, we use the LH-, LR-, and
BNP-distances as the distance in the MSC. RMSE comparison 1 explores the prediction accu-
racies of predictive matrices where ridge parameters are optimized by the following methods:

• GCp: GCp criterion minimization method.

• EGCV: EGCV criterion minimization method.

• GIC: GIC minimization method via the iterative method with the initial vector 0k.

• BNPC: BNPC minimization method via the iterative method with the initial vector 0k.

• PIM1: PIM with EGCV criterion and GIC.

• PIM2: PIM with EGCV criterion and BNPC.

For all MSCs, we use α = 2, 2 log log n, log n, and they are labeled as 1, 2, and 3, respec-
tively. Furthermore, the quartic equation in the BNPC minimization method is solved by the R
function “polyroot”.

Table 1 summarizes the RMSE and RNRE values for ρy = 0.2, 0.5, 0.9 and k =

0.1n, 0.3n, 0.5n when p = 5 and n = 50. From this table, it can be discerned that the pre-
diction accuracy of Ŷδ̂ is greater than that of Ŷ in most cases. We also found that although the
RNRE values increase as α increases, i.e., as the amount of shrinkage increases, the prediction
accuracies deteriorate because the amount of shrinkage is too large. Although the RMSE val-
ues tend to increase with increasing ρy or k, this is caused by decreasing shrinkage. Table 2
summarizes the results when p = 5 and n = 200. Overall, tends are similar to those in Table 1.
However, when n = 50 the amount of shrinkage substantially decreases. Table 3 summarizes
the results when p = 5 and n = 500. In this case, the optimal ridge parameters often do not
lead to improvements in prediction accuracies. This is because the amount of shrinkage is too
large for the BNPC and too small for the methods. Tables 4 – 6 show the results when p = 10,
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Table 1. RMSE comparison 1 when p = 5 and n = 50
ρy 0.2 0.5 0.9
k 5 15 25 5 15 25 5 15 25

GCp

1
RMSE 49.40 47.52 48.94 51.43 50.44 52.18 65.17 66.74 71.24
RNRE 36.22 31.99 28.52 34.80 29.95 26.40 24.02 19.03 14.69

2
RMSE 45.30 44.06 45.24 47.60 47.54 49.20 63.96 66.23 71.53
RNRE 50.10 45.39 41.63 48.26 42.82 38.77 34.74 28.39 22.35

3
RMSE 43.19 43.69 44.27 45.65 48.03 49.31 66.18 69.91 76.91
RNRE 64.97 60.97 58.01 63.32 57.91 54.72 47.83 40.62 33.31

EGCV

1
RMSE 49.59 48.21 50.37 51.60 51.01 53.33 65.21 66.88 71.40
RNRE 35.72 30.11 25.18 34.27 28.31 23.49 23.80 18.35 13.68

2
RMSE 45.29 44.00 44.99 47.57 47.47 48.97 63.95 66.28 72.02
RNRE 50.34 45.71 43.00 48.50 43.29 40.47 35.08 29.25 24.39

3
RMSE 43.12 44.08 45.02 45.60 48.70 51.01 66.52 71.98 86.35
RNRE 66.00 64.46 66.79 64.36 61.71 64.07 49.11 44.60 43.72

GIC

1
RMSE 50.02 50.80 57.71 52.08 53.59 60.48 65.78 69.00 76.44
RNRE 37.11 27.27 16.50 35.57 25.32 14.83 24.39 14.91 6.82

2
RMSE 45.21 44.74 47.42 47.60 48.28 51.31 64.38 66.66 72.30
RNRE 53.65 46.23 38.21 51.77 43.42 34.76 37.31 27.15 15.71

3
RMSE 42.88 44.54 45.42 45.51 49.67 51.73 67.94 72.38 83.41
RNRE 70.30 68.78 70.97 69.00 66.07 68.09 53.81 46.64 42.07

BNPC

1
RMSE 48.17 45.60 50.84 50.42 49.82 61.45 65.45 68.53 145.94
RNRE 46.53 54.76 85.12 44.61 51.70 84.47 31.15 29.32 57.38

2
RMSE 43.73 48.99 59.09 46.39 57.16 75.94 66.25 102.30 ∗ ∗ ∗
RNRE 66.23 79.62 91.35 64.70 78.68 91.40 49.52 62.36 91.06

3
RMSE 42.80 66.04 89.59 45.60 79.82 118.06 76.70 ∗ ∗ ∗ ∗ ∗ ∗
RNRE 78.76 88.69 92.94 78.34 88.57 93.34 69.75 85.94 94.79

PIM1

1
RMSE 48.84 47.34 48.91 50.94 50.30 52.11 65.06 66.78 71.46
RNRE 39.93 34.80 30.91 38.20 32.79 29.01 26.84 21.69 17.51

2
RMSE 44.59 43.59 44.28 47.01 47.43 48.84 64.38 67.36 75.72
RNRE 56.00 52.84 52.60 54.31 50.29 50.00 39.97 35.09 32.80

3
RMSE 42.80 45.39 46.58 45.43 51.05 53.90 68.89 77.46 103.47
RNRE 71.71 72.21 76.51 70.49 69.92 74.35 55.97 52.99 56.55

PIM2

1
RMSE 48.02 46.50 47.93 50.22 49.78 51.97 65.02 67.28 78.35
RNRE 45.41 42.84 44.79 43.57 40.82 42.86 31.25 27.98 30.58

2
RMSE 43.90 44.34 46.32 46.49 49.30 52.71 65.52 72.54 103.73
RNRE 63.43 63.54 67.10 61.89 61.48 65.29 47.13 46.20 52.24

3
RMSE 42.64 49.52 50.09 45.46 57.84 59.65 73.92 113.98 ∗ ∗ ∗
RNRE 77.31 80.65 84.19 76.70 79.66 82.99 65.95 67.35 73.37

Note: Emboldened entries represent the minimum of the RMSE values in each column; ∗ ∗ ∗ denotes values greater
than 150.

and we can see that tends are similar compared to the case where p = 5.
In RMSE comparison 1, the iteration method was used to optimize the ridge parameters us-

ing the GIC and BNPC minimization methods. However, these optimal ridge parameters can
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Table 2. RMSE comparison 1 when p = 5 and n = 200
ρy 0.2 0.5 0.9
k 20 60 100 20 60 100 20 60 100

GCp

1
RMSE 68.57 75.92 81.39 73.54 80.32 84.51 89.94 92.30 94.24
RNRE 19.37 13.63 9.84 15.86 10.71 7.94 5.17 3.77 2.56

2
RMSE 73.88 82.70 89.17 80.85 88.41 92.48 97.35 98.59 99.68
RNRE 37.35 26.81 20.12 31.19 21.43 16.44 12.30 7.62 5.63

3
RMSE 89.84 101.56 110.81 100.53 110.59 114.55 117.17 116.58 115.30
RNRE 55.56 41.74 32.45 48.38 34.31 27.06 21.37 12.67 9.73

EGCV

1
RMSE 68.56 75.88 81.27 73.52 80.25 84.39 89.93 92.27 94.20
RNRE 19.16 13.23 9.34 15.73 10.45 7.62 5.16 3.74 2.52

2
RMSE 74.32 84.71 95.15 81.45 90.81 98.34 97.81 99.70 101.84
RNRE 38.18 29.04 24.51 31.99 23.36 20.07 12.62 8.08 6.43

3
RMSE 92.62 115.19 ∗ ∗ ∗ 104.26 129.24 ∗ ∗ ∗ 120.70 128.37 148.20
RNRE 57.77 48.88 48.61 50.87 42.05 42.90 22.52 15.02 14.72

GIC

1
RMSE 68.76 76.45 83.20 73.60 80.41 85.79 89.66 91.89 94.34
RNRE 18.08 9.19 3.57 14.79 7.07 2.79 4.57 2.29 0.75

2
RMSE 74.21 80.60 83.03 81.29 85.67 85.72 96.60 94.62 94.11
RNRE 38.07 24.25 12.93 31.78 18.89 9.73 11.91 5.69 2.35

3
RMSE 94.07 110.50 136.68 106.84 123.88 141.34 120.95 114.66 103.06
RNRE 59.24 47.18 42.03 52.74 40.57 35.23 22.57 12.38 6.67

BNPC

1
RMSE 68.88 76.24 82.13 73.89 80.43 85.06 89.88 91.92 94.25
RNRE 20.41 12.45 5.71 16.51 9.24 4.03 5.01 2.61 0.87

2
RMSE 78.89 119.39 ∗ ∗ ∗ 87.55 147.83 ∗ ∗ ∗ 99.54 99.52 ∗ ∗ ∗
RNRE 45.23 51.28 94.39 38.44 49.56 95.01 14.02 8.05 5.59

3
RMSE 110.61 ∗ ∗ ∗ ∗ ∗ ∗ 130.66 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
RNRE 68.76 83.54 97.03 65.39 85.89 97.02 30.66 94.16 97.15

PIM1

1
RMSE 68.67 76.04 81.62 73.68 80.49 84.80 90.06 92.44 94.41
RNRE 19.83 13.84 10.06 16.28 10.99 8.23 5.39 3.93 2.72

2
RMSE 75.29 86.59 101.64 82.87 93.71 106.56 98.83 101.75 105.66
RNRE 39.87 30.98 27.91 33.62 25.36 23.46 13.40 8.83 7.37

3
RMSE 95.74 121.86 ∗ ∗ ∗ 109.29 141.32 ∗ ∗ ∗ 126.93 147.81 ∗ ∗ ∗
RNRE 60.36 52.26 53.79 54.14 47.10 50.12 24.11 18.30 25.30

PIM2

1
RMSE 68.80 76.32 82.79 73.88 80.89 86.11 90.21 92.67 94.78
RNRE 20.62 14.67 11.50 16.91 11.76 9.49 5.64 4.17 3.01

2
RMSE 76.58 90.23 122.20 84.85 100.37 140.97 100.18 106.38 ∗ ∗ ∗
RNRE 41.95 34.07 35.28 35.68 29.12 32.68 14.36 10.24 15.98

3
RMSE 100.12 133.69 ∗ ∗ ∗ 116.54 ∗ ∗ ∗ ∗ ∗ ∗ 139.98 ∗ ∗ ∗ ∗ ∗ ∗
RNRE 63.44 56.30 59.23 58.54 53.67 58.34 26.59 34.39 67.16

Note: Emboldened entries represent the minimum of the RMSE values in each column; ∗ ∗ ∗ denotes values greater
than 150.

also be calculated by using the coordinate descent algorithm or the PIM with the GCp crite-
rion. RMSE comparison 2 confirms whether the three algorithms minimize the MSC or not
by comparing the results obtained from these algorithms. Although the initial vector used in
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Table 3. RMSE comparison 1 when p = 5 and n = 500
ρy 0.2 0.5 0.9
k 50 150 250 50 150 250 50 150 250

GCp

1
RMSE 87.42 94.49 94.98 89.93 95.84 96.11 97.21 99.19 98.84
RNRE 6.75 2.27 2.14 5.23 1.58 1.56 1.11 0.11 0.40

2
RMSE 98.40 104.50 103.78 100.49 105.05 104.03 103.37 103.50 102.07
RNRE 15.90 6.95 5.71 12.45 5.07 4.13 3.62 0.60 1.07

3
RMSE 130.30 131.79 129.36 130.42 130.22 127.53 120.89 116.88 112.61
RNRE 26.47 14.69 11.48 21.95 11.59 8.63 7.77 1.97 2.09

EGCV

1
RMSE 87.40 94.47 94.95 89.92 95.83 96.08 97.20 99.19 98.84
RNRE 6.72 2.26 2.11 5.21 1.57 1.55 1.11 0.11 0.40

2
RMSE 99.18 106.79 108.56 101.17 106.90 107.68 103.57 103.84 102.57
RNRE 16.33 7.79 7.05 12.76 5.66 4.97 3.70 0.63 1.14

3
RMSE 137.37 ∗ ∗ ∗ ∗ ∗ ∗ 136.36 149.81 ∗ ∗ ∗ 122.82 121.41 121.10
RNRE 27.93 19.22 23.61 23.31 15.38 18.15 8.11 2.38 2.66

GIC

1
RMSE 87.10 93.58 94.63 89.59 94.93 95.70 96.92 98.70 98.62
RNRE 5.94 1.17 0.60 4.59 0.78 0.44 0.92 0.04 0.10

2
RMSE 97.08 98.71 95.24 99.03 99.46 96.23 102.06 100.40 98.76
RNRE 15.27 4.64 2.32 11.84 3.19 1.62 3.24 0.25 0.37

3
RMSE 134.11 129.57 115.52 132.87 126.22 111.41 119.31 108.82 101.60
RNRE 27.37 14.24 8.70 22.65 10.65 5.69 7.62 1.20 1.00

BNPC

1
RMSE 87.22 93.62 94.55 89.70 94.98 95.65 96.96 98.71 98.62
RNRE 6.28 1.30 0.67 4.82 0.86 0.48 0.95 0.04 0.11

2
RMSE 100.13 103.66 ∗ ∗ ∗ 101.56 102.85 97.88 102.71 100.70 98.84
RNRE 17.00 6.77 4.32 13.10 4.41 2.34 3.51 0.29 0.41

3
RMSE ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 124.39 114.88 ∗ ∗ ∗
RNRE 32.58 98.69 100∗ 27.14 99.36 100∗ 8.64 1.85 1.43

PIM1

1
RMSE 87.44 94.54 95.05 89.97 95.89 96.19 97.23 99.21 98.86
RNRE 6.83 2.31 2.19 5.29 1.61 1.60 1.13 0.12 0.41

2
RMSE 99.66 107.65 111.08 101.67 107.89 110.47 103.83 104.11 103.06
RNRE 16.66 8.14 7.67 13.06 5.96 5.49 3.82 0.68 1.21

3
RMSE 140.71 ∗ ∗ ∗ ∗ ∗ ∗ 139.49 ∗ ∗ ∗ ∗ ∗ ∗ 124.29 124.55 132.50
RNRE 28.64 20.44 28.29 24.08 16.84 24.37 8.46 2.66 3.24

PIM2

1
RMSE 87.49 94.61 95.20 90.01 95.97 96.34 97.26 99.23 98.89
RNRE 6.94 2.38 2.28 5.38 1.66 1.67 1.16 0.12 0.43

2
RMSE 100.23 108.98 119.90 102.25 109.44 121.35 104.11 104.46 103.86
RNRE 17.03 8.64 9.25 13.37 6.39 7.14 3.97 0.73 1.31

3
RMSE 145.66 ∗ ∗ ∗ ∗ ∗ ∗ 143.99 ∗ ∗ ∗ ∗ ∗ ∗ 126.11 131.62 ∗ ∗ ∗
RNRE 29.54 23.09 35.64 25.03 20.81 38.87 8.88 3.19 59.05

Note: Emboldened entries represent the minimum of the RMSE values in each column; ∗ ∗ ∗ denotes values greater
than 150; ∗ denotes an exact value.

the iterative method is 0k, the PIM with the GCp criterion is the iterative method by changing
the initial vector from 0k to the ridge parameters optimized by the GCp criterion minimization
method. Hence, by comparing the results obtained from the two methods, we can confirm
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Table 4. RMSE comparison 1 when p = 10 and n = 50
ρy 0.2 0.5 0.9
k 5 15 25 5 15 25 5 15 25

GCp

1
RMSE 47.25 43.85 48.37 49.21 46.54 51.65 61.62 62.52 68.72
RNRE 24.78 19.56 12.83 23.24 18.20 11.48 14.52 10.18 5.72

2
RMSE 42.71 38.81 42.17 44.95 41.82 46.06 59.32 60.16 65.84
RNRE 42.72 35.07 24.76 40.42 32.90 22.35 27.17 19.76 11.70

3
RMSE 40.61 37.16 38.43 43.07 40.62 43.24 60.65 61.73 66.31
RNRE 63.05 55.28 43.57 60.99 52.36 39.81 43.92 34.58 22.26

EGCV

1
RMSE 47.36 44.27 49.05 49.30 46.90 52.21 61.65 62.63 68.87
RNRE 24.49 18.68 11.86 22.94 17.40 10.71 14.44 9.94 5.53

2
RMSE 42.60 38.34 40.39 44.85 41.40 44.55 59.30 60.09 65.50
RNRE 43.50 37.75 31.19 41.25 35.54 28.33 27.92 21.71 14.89

3
RMSE 40.55 37.68 38.50 43.03 41.41 44.97 61.08 63.98 73.76
RNRE 64.88 62.77 63.23 62.91 59.69 59.41 46.10 41.77 37.62

GIC

1
RMSE 46.61 46.01 58.58 48.71 48.85 61.80 61.73 65.21 76.91
RNRE 32.68 21.04 6.86 30.68 19.21 5.69 19.44 9.33 1.96

2
RMSE 41.50 37.85 40.88 44.02 41.08 45.91 59.74 61.02 69.04
RNRE 58.42 50.97 40.64 56.12 47.47 34.49 39.19 27.44 10.41

3
RMSE 40.14 40.11 40.84 42.93 44.33 49.30 65.66 68.82 81.02
RNRE 77.07 78.59 82.57 76.24 75.06 78.72 60.97 57.74 51.56

BNPC

1
RMSE 42.71 41.12 51.02 45.39 45.33 68.20 61.06 68.18 ∗ ∗ ∗
RNRE 64.79 79.62 91.59 62.73 75.73 91.38 44.03 54.31 78.60

2
RMSE 39.83 52.83 72.67 42.90 62.50 97.41 68.37 91.06 ∗ ∗ ∗
RNRE 79.04 89.89 93.29 78.69 87.98 93.56 67.08 73.92 92.37

3
RMSE 41.21 61.96 111.45 43.32 79.90 138.42 82.95 ∗ ∗ ∗ ∗ ∗ ∗
RNRE 80.03 93.12 95.21 79.99 92.84 95.38 78.97 83.33 94.81

PIM1

1
RMSE 45.28 41.15 43.12 47.42 44.00 46.92 60.75 61.49 66.64
RNRE 36.96 32.41 27.88 34.84 30.58 25.62 23.15 18.80 14.55

2
RMSE 41.01 37.02 37.71 43.57 40.32 43.17 59.85 62.00 70.16
RNRE 61.72 59.62 61.03 59.60 56.79 57.30 43.06 39.97 37.79

3
RMSE 40.20 41.42 42.05 42.99 46.22 52.06 67.20 73.52 102.37
RNRE 77.91 81.02 85.84 77.25 77.75 83.09 63.07 64.21 65.64

PIM2

1
RMSE 42.94 39.22 41.39 45.49 42.37 47.38 60.56 64.27 80.77
RNRE 61.28 61.61 64.39 59.20 59.00 61.61 43.11 44.50 46.22

2
RMSE 39.90 41.28 42.22 42.97 46.11 52.02 66.13 73.27 111.18
RNRE 78.32 81.28 83.70 77.78 78.42 81.46 64.66 65.39 67.05

3
RMSE 40.45 53.45 48.40 43.14 63.21 63.07 81.84 95.55 ∗ ∗ ∗
RNRE 79.99 90.19 91.41 79.97 88.32 90.86 78.23 75.29 80.91

Note: Emboldened entries represent the minimum of the RMSE values in each column; ∗ ∗ ∗ denotes values greater
than 150.

whether the iterative method depends on the initial vector or not.
Table 7 compares the three algorithms for solving the GIC minimization method in terms

of the RMSE, i.e., from the iterative method (GIC IM), the coordinate descent algorithm
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Table 5. RMSE comparison 1 when p = 10 and n = 200
ρy 0.2 0.5 0.9
k 20 60 100 20 60 100 20 60 100

GCp

1
RMSE 57.38 67.35 72.47 62.60 72.10 76.68 83.29 88.44 90.86
RNRE 16.40 10.25 7.31 13.21 8.01 5.61 3.39 2.11 1.34

2
RMSE 61.78 73.26 78.22 68.67 78.80 82.61 90.30 93.85 95.20
RNRE 40.86 27.18 20.49 33.81 21.51 16.27 11.54 6.27 4.25

3
RMSE 76.54 92.15 98.54 87.31 100.35 103.24 111.52 111.78 110.88
RNRE 63.02 45.94 36.23 55.35 38.00 29.93 23.44 13.10 8.85

EGCV

1
RMSE 57.39 67.37 72.49 62.61 72.10 76.68 83.29 88.44 90.86
RNRE 16.24 10.00 6.98 13.11 7.86 5.43 3.38 2.10 1.33

2
RMSE 62.35 76.04 85.74 69.43 81.88 89.90 90.91 95.27 97.88
RNRE 42.32 31.11 27.98 35.16 24.74 22.49 12.08 6.98 5.29

3
RMSE 79.09 107.06 149.90 90.91 119.41 ∗ ∗ ∗ 115.99 126.01 ∗ ∗ ∗
RNRE 65.46 54.49 55.01 58.39 47.89 48.46 25.20 17.08 17.74

GIC

1
RMSE 57.70 68.76 77.17 62.88 73.26 80.71 83.29 88.83 92.49
RNRE 16.01 6.06 1.54 12.75 4.55 1.09 3.03 0.98 0.18

2
RMSE 63.40 73.48 74.93 70.68 78.53 78.36 90.51 90.67 90.93
RNRE 45.18 27.99 15.35 37.62 21.40 10.36 12.30 4.58 1.37

3
RMSE 83.94 110.14 144.62 97.64 122.96 ∗ ∗ ∗ 121.44 118.06 105.65
RNRE 69.91 56.63 54.61 64.36 51.24 47.69 27.74 15.57 7.72

BNPC

1
RMSE 57.66 68.03 87.36 63.06 72.70 78.78 83.50 88.68 92.23
RNRE 21.14 12.84 13.01 16.82 8.71 3.12 3.88 1.36 0.26

2
RMSE 71.91 ∗ ∗ ∗ ∗ ∗ ∗ 82.22 ∗ ∗ ∗ ∗ ∗ ∗ 96.74 ∗ ∗ ∗ ∗ ∗ ∗
RNRE 59.59 71.87 92.54 52.43 69.76 93.04 17.72 15.24 77.56

3
RMSE 105.05 ∗ ∗ ∗ ∗ ∗ ∗ 126.17 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
RNRE 82.08 87.21 95.67 80.44 87.80 96.30 50.65 91.06 99.96

PIM1

1
RMSE 57.43 67.50 72.73 62.73 72.31 77.03 83.47 88.61 91.07
RNRE 18.23 11.71 8.94 14.77 9.26 7.03 3.91 2.48 1.72

2
RMSE 64.42 80.28 96.26 72.19 87.80 103.49 93.06 99.03 107.22
RNRE 47.27 36.70 35.58 39.83 30.17 30.40 14.29 8.93 8.09

3
RMSE 85.21 120.90 ∗ ∗ ∗ 99.44 136.43 ∗ ∗ ∗ 128.16 ∗ ∗ ∗ ∗ ∗ ∗
RNRE 70.72 60.15 63.32 65.58 56.05 59.38 29.66 23.98 33.96

PIM2

1
RMSE 57.59 68.00 74.63 62.99 72.97 79.46 83.71 88.93 91.81
RNRE 20.71 14.32 13.19 16.93 11.42 10.84 4.60 3.02 2.49

2
RMSE 67.66 88.23 118.06 76.73 100.31 140.80 96.47 110.29 ∗ ∗ ∗
RNRE 53.40 44.46 45.76 46.19 39.71 42.74 17.45 13.81 23.59

3
RMSE 95.20 ∗ ∗ ∗ ∗ ∗ ∗ 112.90 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
RNRE 77.46 68.98 71.41 74.39 65.19 70.63 38.43 49.73 67.58

Note: Emboldened entries represent the minimum of the RMSE values in each column; ∗ ∗ ∗ denotes values greater
than 150.

(GIC CD), and the PIM with the GCp criterion (PIM GCp). Settings are as per RMSE com-
parison 1, where α is only α = 2. From these results, it can be discerned that there is equivalent
performance among the three algorithms. Although there is a bit of error, it can be considered
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Table 6. RMSE comparison 1 when p = 10 and n = 500
ρy 0.2 0.5 0.9
k 50 150 250 50 150 250 50 150 250

GCp

1
RMSE 81.19 88.94 90.00 85.14 91.51 92.14 95.37 97.82 97.67
RNRE 4.32 1.56 1.66 2.93 0.89 1.12 0.38 0.03 0.20

2
RMSE 93.28 98.48 97.82 96.38 100.05 99.03 100.55 101.06 100.33
RNRE 15.09 7.32 6.46 10.64 4.69 4.47 2.03 0.27 0.77

3
RMSE 131.47 128.21 124.25 132.40 127.22 122.64 119.74 113.93 111.01
RNRE 28.73 17.16 13.68 22.07 12.58 10.26 4.66 1.06 1.63

EGCV

1
RMSE 81.19 88.93 89.99 85.14 91.51 92.14 95.36 97.82 97.67
RNRE 4.31 1.55 1.64 2.93 0.89 1.11 0.38 0.03 0.20

2
RMSE 94.53 101.57 103.97 97.40 102.38 103.49 100.75 101.35 100.85
RNRE 15.80 8.72 8.72 11.11 5.54 5.89 2.07 0.29 0.83

3
RMSE 142.15 ∗ ∗ ∗ ∗ ∗ ∗ 141.78 ∗ ∗ ∗ ∗ ∗ ∗ 122.24 118.84 122.10
RNRE 31.45 23.46 30.84 24.22 17.55 22.35 4.93 1.35 2.43

GIC

1
RMSE 81.06 88.96 91.45 84.98 91.45 93.26 95.24 97.75 97.99
RNRE 3.66 0.59 0.22 2.44 0.32 0.14 0.28 0.01 0.02

2
RMSE 92.92 93.59 90.43 95.60 95.22 92.38 99.36 98.62 97.64
RNRE 15.10 4.93 2.18 10.48 2.82 1.33 1.83 0.10 0.19

3
RMSE 145.39 144.66 131.69 143.38 137.46 119.42 118.85 106.79 100.25
RNRE 32.53 20.22 14.90 24.88 14.36 9.51 4.75 0.68 0.77

BNPC

1
RMSE 81.18 88.85 91.17 85.07 91.39 93.08 95.26 97.75 97.98
RNRE 4.18 0.76 0.29 2.75 0.39 0.18 0.31 0.01 0.02

2
RMSE 99.64 ∗ ∗ ∗ ∗ ∗ ∗ 100.71 106.53 ∗ ∗ ∗ 100.06 98.92 97.71
RNRE 18.76 16.06 99.59 13.00 6.64 69.70 2.09 0.14 0.23

3
RMSE ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 127.85 ∗ ∗ ∗ ∗ ∗ ∗
RNRE 50.52 96.67 99.90 40.25 96.76 100.00 5.99 37.40 90.00

PIM1

1
RMSE 81.27 89.05 90.15 85.21 91.62 92.29 95.39 97.84 97.70
RNRE 4.55 1.70 1.85 3.09 0.98 1.25 0.41 0.04 0.22

2
RMSE 96.06 104.80 111.93 98.81 105.66 111.48 101.12 101.89 101.90
RNRE 16.79 10.01 10.84 11.94 6.62 7.83 2.24 0.35 0.95

3
RMSE ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 125.33 127.66 ∗ ∗ ∗
RNRE 34.26 28.55 38.11 26.62 22.41 34.55 5.45 1.94 5.85

PIM2

1
RMSE 81.36 89.21 90.51 85.30 91.78 92.62 95.41 97.86 97.73
RNRE 4.82 1.90 2.18 3.27 1.09 1.46 0.44 0.04 0.25

2
RMSE 98.10 111.58 137.23 100.68 113.05 147.94 101.54 102.68 104.57
RNRE 18.01 12.06 15.23 12.95 8.61 12.78 2.43 0.45 1.18

3
RMSE ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 129.75 ∗ ∗ ∗ ∗ ∗ ∗
RNRE 38.48 38.87 46.20 30.39 36.78 48.39 6.17 7.24 65.25

Note: Emboldened entries represent the minimum of the RMSE values in each column; ∗ ∗ ∗ denotes values greater
than 150.

that the error is made when convergence judgment. Thus, the three algorithms all converge
and achieve minimization of the GIC. Furthermore, we found that the iterative method does
not depend on the initial vector.
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Table 7. RMSE comparison 2 (GIC; α = 2)
p = 5 p = 10

n ρy k GIC IM GIC CD PIM GCp GIC IM GIC CD PIM GCp

50 0.2 5 50.02 50.02 50.01 46.61 46.60 46.61
15 50.80 50.79 50.78 46.01 45.99 45.97
25 57.71 57.69 57.66 58.58 58.54 58.47

0.5 5 52.08 52.08 52.07 48.71 48.70 48.70
15 53.59 53.58 53.57 48.85 48.83 48.81
25 60.48 60.46 60.43 61.80 61.77 61.71

0.9 5 65.78 65.78 65.77 61.73 61.73 61.73
15 69.00 68.99 68.99 65.21 65.20 65.18
25 76.44 76.44 76.43 76.91 76.90 76.89

200 0.2 20 68.76 68.76 68.76 57.70 57.70 57.70
60 76.45 76.45 76.45 68.76 68.76 68.76

100 83.20 83.19 83.19 77.17 77.16 77.16
0.5 20 73.60 73.60 73.60 62.88 62.88 62.88

60 80.41 80.41 80.41 73.26 73.26 73.25
100 85.79 85.79 85.79 80.71 80.71 80.70

0.9 20 89.66 89.66 89.67 83.29 83.29 83.29
60 91.89 91.89 91.89 88.83 88.83 88.83

100 94.34 94.34 94.34 92.49 92.49 92.49

500 0.2 50 87.10 87.10 87.10 81.06 81.06 81.06
150 93.58 93.58 93.58 88.96 88.96 88.96
250 94.63 94.63 94.63 91.45 91.45 91.45

0.5 50 89.59 89.59 89.59 84.98 84.98 84.98
150 94.93 94.93 94.93 91.45 91.45 91.45
250 95.70 95.70 95.70 93.26 93.26 93.26

0.9 50 96.92 96.92 96.92 95.24 95.24 95.24
150 98.70 98.70 98.70 97.75 97.75 97.75
250 98.62 98.62 98.62 97.99 97.99 97.99

Table 8 shows a runtime comparison of the three algorithms for the GIC minimization
method in terms of time (s) per repeat, where the reported values are 10,000 times the ac-
tual values. The PIM is the fastest algorithm in most cases. Although sometimes the iterative
method is faster than the PIM, this is related the initial vector and the amount of shrinkage.
The difference between the PIM and the iterative method is the initial vector, and the iterative
method is faster when the amount of shrinkage is small, i.e., the optimal ridge parameters are
close to the initial vector 0k. On the other hand, the coordinate descent algorithm is over-
whelmingly slowest of all. Hence, the best option for solving the GIC minimization method is
to use the PIM with the GCp criterion.

Table 9 compares the three algorithms for solving the BNPC minimization method, in terms
of RMSE as similar to Table 7. It can be discerned that the three algorithms converge and
achieve minimization of the BNPC, and the iterative method does not depend on the initial
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Table 8. Runtime comparison (GIC; ×1/10,000 (s))
p = 5 p = 10

n ρy k GIC IM GIC CD PIM GCp GIC IM GIC CD PIM GCp

50 0.2 5 3.04 10.81 2.30 4.57 12.46 3.48
15 5.15 43.41 3.76 8.78 52.13 6.10
25 8.06 95.43 5.87 13.65 122.30 10.74

0.5 5 3.40 10.97 2.09 4.65 12.41 3.53
15 6.04 46.88 3.66 8.86 52.57 6.45
25 8.48 104.61 5.87 13.57 124.52 11.11

0.9 5 3.52 12.28 2.23 5.70 12.36 4.05
15 6.04 46.51 3.80 8.97 52.90 6.70
25 8.74 104.99 6.15 13.61 121.29 11.77

200 0.2 20 4.00 52.16 2.76 4.99 57.31 3.62
60 7.51 205.03 5.26 9.66 228.49 6.95

100 15.20 443.87 12.82 20.92 489.25 18.33
0.5 20 3.96 52.96 2.75 4.92 58.35 3.43

60 7.64 207.20 5.77 10.24 227.12 7.16
100 15.74 450.99 13.95 22.31 504.68 20.00

0.9 20 3.74 49.59 2.53 4.69 54.66 3.40
60 6.12 174.76 4.48 9.25 197.91 7.01

100 9.30 303.43 9.91 16.13 379.86 13.15
500 0.2 50 4.70 128.49 3.16 5.86 137.78 4.05

150 13.66 456.75 10.85 23.53 528.58 20.47
250 41.80 851.61 38.38 81.79 1051.05 54.42

0.5 50 4.50 126.82 3.24 5.87 134.42 3.99
150 13.52 440.54 11.35 22.19 521.07 18.68
250 34.72 798.15 37.24 67.56 986.76 47.96

0.9 50 3.91 109.08 2.66 5.13 112.50 3.37
150 10.16 348.91 10.19 15.00 360.90 14.80
250 21.28 559.92 26.01 32.38 607.38 37.82

Note: Emboldened entries represent the fastest time in each column.

vector.
Table 10 shows a runtime comparison of the three algorithms for the BNPC minimization

method in terms of time (s) as per Table 8. Similar to what was noted above regarding the GIC
minimization method, to solve the BNPC minimization method, using the PIM with the GCp

criterion is the best option.
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Table 9. RMSE comparison 2 (BNPC; α = 2)
p = 5 p = 10

n ρy k BNPC IM BNPC CD PIM GCp BNPC IM BNPC CD PIM GCp

50 0.2 5 48.17 48.15 48.16 42.71 42.67 42.71
15 45.60 45.58 45.60 41.12 47.36 41.12
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200 0.2 20 68.88 68.88 68.88 57.66 57.67 57.66
60 76.24 76.24 76.24 68.03 68.04 68.03

100 82.13 82.13 82.12 87.36 89.21 87.41
0.5 20 73.89 73.89 73.89 63.06 63.06 63.06

60 80.43 80.44 80.44 72.70 72.70 72.69
100 85.06 85.06 85.05 78.78 78.77 78.74

0.9 20 89.88 89.88 89.88 83.50 83.51 83.50
60 91.92 91.92 91.92 88.68 88.68 88.68

100 94.25 94.24 94.24 92.23 92.23 92.22

500 0.2 50 87.22 87.22 87.22 81.18 81.18 81.18
150 93.62 93.62 93.62 88.85 88.85 88.85
250 94.55 94.55 94.55 91.17 91.17 91.17

0.5 50 89.70 89.70 89.70 85.07 85.08 85.08
150 94.98 94.98 94.98 91.39 91.39 91.39
250 95.65 95.65 95.65 93.08 93.08 93.08

0.9 50 96.96 96.96 96.96 95.26 95.26 95.27
150 98.71 98.71 98.71 97.75 97.75 97.75
250 98.62 98.62 98.62 97.98 97.98 97.98
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Appendix

A.1. Proof of Theorem 1

Let r(δ) = tr(B∗δ) and u(δ) = df(δ). From Lemma 2, the domain of f is included in
[0, r+] × [p, np). We define τ(δ) as

τ(δ) =
nbp ḟu(r(δ), u(δ))

2 ḟr(r(δ), u(δ))
.

It is straightforward that τ(δ) > 0 from f satisfies Definition 4. Then, we have

∂

∂δ j
MSC(δ) =

∂

∂δ j
r(δ) · ∂

∂r
f (r, u)

∣∣∣∣∣
(r,u)=(r(δ),u(δ))

+
∂

∂δ j
u(δ) · ∂

∂u
f (r, u)

∣∣∣∣∣
(r,u)=(r(δ),u(δ))

=
2

nb
z′jS

−1z jδ j ḟr(r(δ), u(δ)) − p ḟu(r(δ), u(δ))

=
2

nb
z′jS

−1z j ḟr(r(δ), u(δ))

δ j −
τ(δ)

z′jS
−1z j

 ,
∂

∂δ j
MSC(δ)

∣∣∣∣∣∣
δ=0k

< 0.

Let δ⋆ = (δ⋆1 , . . . , δ
⋆
k )′ be the minimizer of MSC(δ). Then, δ⋆j , 0 ( j = 1, . . . , k), and the

necessary condition of δ⋆j is given by

δ⋆j =


τ(δ⋆)

z′jS
−1z j

(τ(δ⋆) < z′jS
−1z j)

1 (τ(δ⋆) ≥ z′jS
−1z j)

( j = 1, . . . , k).
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Let G be a set defined by

G =
{
δ ∈ [0, 1]k | δ = δ̂(h), ∀h ∈ R+\{0}

}
,

where δ̂(h) is a k-dimensional vector of which the jth element is given by

δ̂ j(h) =


h

z′jS
−1z j

(h < z′jS
−1z j)

1 (h ≥ z′jS
−1z j)

( j = 1, . . . , k).

Then, from δ⋆ is the minimizer of MSC(δ), the following equation holds:

MSC(δ⋆) = min
δ∈[0,1]k\{0k}

MSC(δ) ≤ min
δ∈G

MSC(δ) = min
h∈R+\{0}

MSC(δ̂(h)).

Whereas, because δ⋆ ∈ G the following equation holds:

MSC(δ⋆) ≥ min
δ∈G

MSC(δ) = min
h∈R+\{0}

MSC(δ̂(h)).

These results lead to

MSC(δ⋆) = min
h∈R+\{0}

MSC(δ̂(h)),

and hence, we have

δ⋆ = δ̂(ĥ), ĥ = arg min
h∈R+\{0}

MSC(δ̂(h)).

Consequently, Theorem 1 is proved.

A.2. Proof of Lemma 4

To prove Lemma 4, it is sufficient to prove df(h1) ≥ df(h2). From Lemma 1, df(h) is ex-
pressed as

df(h) = p + p
k∑

j=1

soft(1, h/z′jS
−1z j).

Therefore, we have

df(h1) − df(h2) = p
k∑

j=1

{
soft(1, h1/z

′
jS
−1z j) − soft(1, h2/z

′
jS
−1z j)

}
,

and regarding the RHS of the above equation, the following equation holds:
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soft(1, h1/z
′
jS
−1z j) − soft(1, h2/z

′
jS
−1z j) =



0 (z′jS
−1z j ≤ h1)

1 − h1

z′jS
−1z j

> 0 (h1 < z′jS
−1z j ≤ h2)

h2 − h1

z′jS
−1z j

> 0 (h2 < z′jS
−1z j)

.

Hence, df(h1) ≥ df(h2) holds with quality only when tk ≤ h1. Consequently, Lemma 4 is
proved.

A.3. Proof of Proposition 4

First, we prove (1) by reductio ad absurdum. Let ĥα1 = tk and suppose that ĥα2 , tk. Then,
the definition ĥα gives

ϕ(ĥα2 | α1) ≥ ϕ(tk | α1), ϕ(tk | α2) ≥ ϕ(ĥα2 | α2),

and we have ĥα2 , tk ⇒ ĥα2 < tk from (P2) in Proposition 1. Furthermore, ϕ(h | α) = η(h |
α − α0)ϕ(h | α0) holds from the definition of ϕ(h | α). Therefore, from Lemma 4, we have

ϕ(tk | α2) = η(tk | α2 − α1)ϕ(tk | α1) < η(ĥα2 | α2 − α1)ϕ(ĥα2 | α1) = ϕ(ĥα2 | α2).

However, this contradicts ϕ(tk | α2) ≥ ϕ(ĥα2 | α2). Hence, (1) is proved.
Next, regarding (2), it is sufficient to prove ĥα1 < ĥα2 . We approach this via reductio ad ab-

surdum again. Let α1 < α2 and suppose that ĥα2 ≤ ĥα1 . Now, we have ĥα2 < tk from ĥα2 , tk.
Therefore,

ϕ(ĥα1 | α2) = η(ĥα1 | α2 − α1)ϕ(ĥα1 | α1) < η(ĥα2 | α2 − α1)ϕ(ĥα2 | α1) = ϕ(ĥα2 | α2).

However, this contradicts the definition of ĥα2 . Hence, (2) is proved.
Consequently, Proposition 4 is proved.

A.4. Proof of Proposition 5

First, we prove that the sequence {δ(i)
j } (i = 0, 1, . . .) is a monotonically increasing sequence

when δ(1)
j ≥ δ

(0)
j ( j = 1, . . . , k). Suppose that δ(i)

j ≥ δ
(i−1)
j ( j = 1, . . . , k). Then, δ(i)

j is updated as

δ(i+1)
j = ζ j(δ(i)) = 1 − soft

(
1, τ(δ(i))/z∗j

′Ġ(B∗δ(i) )z∗j
)
,

and we have

τ(δ(i)) ≥ τ(δ(i−1)), z∗j
′Ġ(B∗δ(i) )z∗j ≤ z∗j

′Ġ(B∗δ(i−1) )z∗j .

This gives δ(i+1)
j ≥ δ(i)

j for all j = 1, . . . , k, and hence the sequence {δ(i)
j } is a mono-

tonically increasing sequence. Moreover, the sequence is bounded. Hence, the iterative

47



Ridge Parameters Optimization based on MSC Minimization

method converges. In contrast, the sequence is bounded and monotonically decreasing when
δ(1)

j ≤ δ
(0)
j ( j = 1, . . . , k), and hence, the iterative method converges. Consequently, Proposition

5 is proved.

A.5. Proof of Theorem 3

Now, we have

ḟ j(0) = −
c j,0

ḟ j,1(0)
< 0, ḟ j(δ) = 0⇐⇒ δ =

1 ±
√

1 − c j,2c j,0/c2
j,1

c j,2/c j,1
.

Therefore, δ̂ j , 0 and the smaller of the two real distinct roots or the double root of the
quadratic equation ḟ j,2(δ) = 0 is the local minimizer. Notice that δ ∈ [0, 1]. Then, to obtain the
minimizer of f j(δ), it is sufficient to confirm whether the local minimizer is included in [0, 1]
or not.

When 1 − c j,2c j,0/c2
j,1 ≥ 0, there is one local minimizer, and let this be δ̃ j, i.e.,

δ̃ j =

1 −
√

1 − c j,2c j,0/c2
j,1

c j,2/c j,1
.

This is positive and the following equation holds when c j,2 > c j,1:

δ̃ j < 1 −
√

1 − c j,2c j,0/c2
j,1 < 1.

Hence, we can obtain (1) in Theorem 3.
When 1 − c j,2c j,0/c2

j,1 < 0, there are no stationary points, and therefore f j(δ) is a monotoni-
cally decreasing function. Hence, we can obtain (2) in Theorem 3.

Consequently, Theorem 3 is proved.

A.6. Proof of Theorem 4

Now, we have

ḟ j(0) = −
c j,0

ḟ j,1(0)
< 0, ḟ j(δ) = 0⇐⇒ ḟ j,2(δ) = 0.

Thus δ̂ j , 0. Moreover, from δ ∈ [0, 1], minimizer candidates are local minimizers of ḟ j,2(δ) in-
cluded in (0, 1) and the right end point of the range. Hence, we can obtain the set of minimizer
candidates S j by calculating stationary points of the cubic function ḟ j,2(δ) and by confirming
whether each stationary point is included in (0, 1) or not. Consequently, Theorem 4 is proved.
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A.7. Proof of Theorem 6

To prove the equivalence between the two estimators, it is sufficient to prove ĥA = λ̂A. The
two terms which constitute the MSC for optimizing ridge parameters are

tr
{
Σ̂R(θ̂(h | A))A−1

}
= b tr

(
Σ̂0A

−1
)
+

1
n

k∑
j=1

{
1 − soft

(
1, h/z′jA

−1z j

)}2
z′jA

−1z j,

dfR(θ̂(h | A)) = p + p
k∑

j=1

soft
(
1, h/z′jA

−1z j

)
.

On the other hand, when w j = 1/∥γ̂ j∥, from Lemma 5, the two terms which constitute the MSC
for optimizing the tuning parameter are given by

tr
{
Σ̂L(λ)A−1

}
= b tr

(
Σ̂0A

−1
)
+

1
n

k∑
j=1

{
1 − soft

(
1, λ/z′jA

−1z j

)}2
z′jA

−1z j,

dfL(λ) = p + p
k∑

j=1

soft
(
1, λ/z′jA

−1z j

)
.

Hence, for all x ∈ R+, the following equation holds:

MSCR(θ̂(x | A) | A) = MSCL(x | A).

Thus ĥA = λ̂A and consequently, Theorem 6 is proved.

A.8. Proof of Theorem 7

From (6.3), the MGR estimator under the ridge parameters optimized by minimizing
MSCR(θ | Ip) is given by

ξ̂R
θ̂ j, j
=

1√
d j

soft
(
1, ĥIp/∥z j∥2

)
z j,

ĥIp = arg min
h∈R+\{0}

ϕ(h | Ip), ϕ(h | Ip) = MSCR(θ̂(h | Ip) | Ip).

Therefore, it is sufficient to prove ĥIp = λ̂Ip . Similar to Appendix A.7, for all x ∈ R+, the
following equations hold:

tr
{
Σ̂R(θ̂(x))

}
= tr

{
Σ̂L(x)

}
= tr(Σ̂0) +

1
n

k∑
j=1

{
1 − soft

(
1, x/∥z j∥2

)}2 ∥z j∥2,

dfR(θ̂(x)) = dfL(x) = p + p
k∑

j=1

soft
(
1, x/∥z j∥2

)
.

Hence, ĥIp = λ̂Ip holds and consequently, Theorem 7 is proved.
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