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Abstract

A multivariate generalized ridge (MGR) regression provides a shrinkage estimator of the
multivariate linear regression by multiple ridge parameters. Since the ridge parameters which
adjust the amount of shrinkage of the estimator are unknown, their optimization is an important
task to obtain a better estimator. For the univariate case, a fast algorithm has been proposed
for optimizing ridge parameters based on minimizing a model selection criterion (MSC) and
the algorithm can be applied to various MSCs. In this paper, we extend this algorithm to MGR
regression. We also describe the relationship between the MGR estimator which is not sparse
and a multivariate adaptive-Lasso estimator which is sparse, under orthogonal explanatory
variables.
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1. Introduction

We consider n pairs of data {y;,x;} (i = 1,...,n), where y; is a p-dimensional vector
of response variables, x; is a k-dimensional vector of explanatory variables, and n satisfies
n > max{p, k + 1}. A multivariate linear regression model is a statistical model for multiple re-
sponse variables (e.g., Srivastava, 2002, Chap. 9; Timm, 2002, Chap. 4). Let Y = (yi,...,y,)
be an n X p matrix of response variables, X = (xy,..., ;)" be an n X k matrix of explanatory
variables, and & = (g4,...,€&,) be an n X p matrix of error variables. Then, the multivariate

linear regression model is given by
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Y =14 +XE+8, (1.1)

where 1, is an n-dimensional vector of ones, p is a p-dimensional vector of location param-
eters, and E = (&1,...,&) is a k X p matrix of regression coefficients. We assume that X is
centralized and has full column rank, i.e., X’1, = O; and rank(X) = k, and that €4, ..., €, are
independently and identically distributed according to mean vector 0, and covariance matrix
3}, where Oy is a k-dimensional vector of zeros. One of the most basic methods for estimating
the unknown parameters g and = in (1.1) is the least squares (LS) method. The LS estimators

of p and = are given by

1 N
p=9g=-Y'1,, E=M'XY M =X'X). (1.2)
n
These estimators are equal to the maximum likelihood estimators (MLEs) of @ and = under

normality, i.e., the assumption that
E1,...,&p ~ Lid. Np(0,, X).

The LS estimators can be obtained as simple forms as per (1.2) regardless of having good the-
oretical properties, e.g., unbiasedness and asymptotic normality. Unfortunately, it cannot be
said that = is a good estimator, in the sense that the variance of the estimator becomes large
when multicollinearity occurs.

For the univariate case, i.e., when p = 1, a generalized ridge (GR) regression was proposed
by Hoerl & Kennard (1970) to avoid the problem posed by multicollinearity. The GR regres-
sion can be expected to overcome this problem by shrinking an estimator of regression coeffi-
cients. The GR estimator can be obtained as closed form and the amount of shrinkage of the
estimator is adjusted by k regularization parameters called ridge parameters. However, since
the ridge parameters are unknown, to obtain a better estimator, we have a new problem to ad-
dress, namely ridge parameters optimization. A model selection criterion (MSC) minimization
method is one approach to solve the problem of ridge parameters optimization, which selects
ridge parameters minimizing the MSC as the optimal ridge parameters. Most MSCs consist of
a residual sum of squares (RSS) and generalized degrees of freedom (GDF). In other words,
they account for model fit and model complexity. Salient examples include the C, criterion
(Mallows, 1973), Akaike’s information criterion (AIC; Akaike, 1973) under normality, and the
generalized cross-validation (GCV) criterion (Craven & Wahba, 1979). Usually, the optimal
parameters selected by an MSC minimization method cannot be obtained as closed forms and
iterative calculation is often required. This presents difficulties in terms of the validity and
applicability of such method. Fortunately, Nagai ef al. (2012) showed that the optimal ridge

parameters based on minimizing a generalized C, (GC),) criterion (Atkinson, 1980) which is
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a generalization of the C), criterion can be obtained as closed forms and Yanagihara (2018)
showed that the optimal ridge parameters based on minimizing the GCV criterion can be ob-
tained as closed forms. There are various MSCs having wide class like the GC,, criterion; for
example, there are the generalized information criterion (GIC; Nishii, 1984), which includes
AIC, and the extended GCV (EGCYV) criterion (Ohishi et al., 2020a), which includes the GCV
criterion. All these criteria can be regarded as bivariate functions of the RSS and GDF. Ohishi
et al. (2020a) defined a MSC having a wider class as the bivariate function and proposed an
algorithm to minimize it rapidly. Since the ridge parameters can be easily optimized by using
various MSCs, the GR regression is a useful method to avoid problems arising from multi-
collinearity.

Ohishi ef al. (2020a) also clarified a class of ridge parameters optimized by the MSC mini-
mization method. From the results, under orthogonal explanatory variables, the GR estimator
which was previously non-sparse is now characterized by sparsity, i.e., includes 0, after the
ridge parameters are optimized. On the other hand, Lasso regression (Tibshirani, 1996) and
adaptive-Lasso (AL) regression (Zou, 2006) which is an extension of the Lasso regression are
well-known methods for providing a sparse estimator. They also give shrinkage estimators
like the GR regression. Although the amount of shrinkage and extent of sparsity of the AL
estimator (including the Lasso estimator) are adjusted by a regularization parameter called a
tuning parameter, since this parameter is unknown, its optimization is required. Moreover,
the AL estimator cannot usually be obtained without iterative calculation. However, Ohishi
et al. (2020b) showed that the AL estimator can be obtained as closed form under orthog-
onal explanatory variables and the GR and AL estimators are equivalent after regularization
parameters are optimized by the MSC minimization method.

Yanagihara et al. (2009) and Nagai et al. (2012) naturally extended the GR regression to
a multivariate GR (MGR) regression. The MGR estimator is also a shrinkage estimator by k
ridge parameters like the GR estimator and we have to consider the ridge parameters optimiza-
tion. In the MSC minimization method for the MGR regression, although the ridge parameters
optimized by the GC,, criterion minimization method can be obtained as closed forms (Nagai
et al., 2012), whether this is the case for other criteria is unclear. Recently, Mori & Suzuki
(2018) proposed ZMC,, criterion and ZKLIC which are modified versions of the modified C,,
(MC)) criterion (Fujikoshi & Satoh, 1997) and the bias-corrected AIC (AICc; Hurvich & Tsai,
1989) for MGR regression. However, these MSCs are designed for selecting explanatory vari-
ables, not for optimizing ridge parameters. In this paper, we extend the algorithm proposed
by Ohishi et al. (2020a) to MGR regression. Furthermore, we describe the relationship be-
tween MGR regression and multivariate AL (MAL) regression under orthogonal explanatory

variables.
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The remainder of the paper is organized as follows. In Section 2, we describe the MGR es-
timator and MSCs for optimizing ridge parameters, and define a MSC class. In Section 3, we
extend the algorithm proposed by Ohishi et al. (2020a) to optimize ridge parameters in MGR
regression by the MSC minimization method. In Section 4, the MSC class defined in Section
2 is extended, corresponding to various distances. Moreover, we propose an algorithm for
minimizing the extended MSC. In Section 5, we propose a new method for optimizing ridge
parameters by using MSCs. In Section 6, we describe the MAL estimator and an equivalence
between the MGR and MAL estimators under the regularization parameters optimized by the
MSC minimization method. In Section 7, the performance of the ridge parameters optimized
by the MSC minimization methods is compared by simulation. Technical details are provided

in the Appendix.

2. Preliminaries

By a singular value decomposition, n X n and k X k orthogonal matrices P and @) and a k X k
diagonal matrix D = diag(d,,...,d;) express X as

12

X:P[ ]Q'=P1D1/2Q’, 2.1)

n—k,k
where O, is an n X k matrix of zeros, P; is an n X k matrix obtained from the partition
P = (P, P,), which satisfies P/1, = Oy and P/ P, = I, and dj, ..., d are eigenvalues of
M (= X'’ X) satisfying dy > --- > di > 0. Then, the MGR estimators of p and E are given
by

f=9, Ee=M,'X'Y (My=M+QOQ), (2.2)

where 0 = (6,...,6;), © = diag(f;,...,6)and §; e R, ={#eR[|0=>20}(j=1,...,kisa
regularization parameter called a ridge parameter. Since Mg = M when 0 = 0y, Eg coincides
with = in (1.2) when 0 = 0; and the MGR estimators coincide with the GR estimators when
p = 1. The MGR estimators in (2.2) denote the minimizers of the following penalized RSS
(PRSS):

w{(Y - Ly - XYY - Ly - XE) + ZQOQ'E)}. (2.3)

Although the ridge parameters adjust the amount of shrinkage of the MGR estimator of =,
since they are unknown, their optimization is an important task to obtain a better estimator. To
simplify calculation, following Yanagihara (2018) and Ohishi et al. (2020a), we transform the

ridge parameters as
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0‘
5= —2 0,1 i=1,....k).
J dj+9j€[ 1 G )

Since this transformation is a one-to-one correspondence, the optimization of 6; is equal to that
of ¢;. Hence, we optimize ¢; instead of 6; and we also call 6; a ridge parameter in this paper.
Let 6 and A be a k-dimensional vector and a k X k diagonal matrix of the ridge parameters
defined by 6 = (61, ...,6r) and A = diag(dy,.. ., 6;), respectively, and let Z be a k X p matrix
defined by

Z = (z1,...,z) = P)Y. 2.4)
Then, the MGR estimator of = in (2.2) can be rewritten as
Es=QU,-A)D'"?’Z=2-QAD'?Z. (2.5)

In this paper, we optimize the ridge parameter & by using the MSC minimization method.
The MGR estimator in (2.5) gives a predictive matrix of Y as

Ys =10 + X85 = H;Y, Hs=J,+P,- AP/,

where J,, = 1,1/ /n and H is an n X n matrix called a hat matrix. Most MSCs consist of the
predictive matrix and the hat matrix. The predictive matrix is used to evaluate model fit. We

define an estimator and an unbiased estimator of the covariance matrix X as
- 1 A . la /a4 .
$@) = (v -V (Y - ¥5). §=% (20 =300, b=1-(k+1)/n).  (2.6)

Under normality, 2(5) is a penalized MLE of X and f)o is an MLE of . Then, model fit, i.e.,
the distance between Y and Yj is defined by

r {$3(6)S7'}.

On the other hand, the hat matrix is used to evaluate model complexity and it is defined by the
following GDF:

df(d) = ptr(Hy). 2.7

The GC,, and EGCYV criteria for optimizing ridge parameters consist of tr{33(8)S '} and df(d).
Similar to Yanagihara (2018), we have the following lemma about 33(6) and df(d).

Lemma 1. Let Bs and W be p X p matrices defined by

Bs=Z'A’Z, W =n3,.
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Then, ﬁ](é) and df(8) can be partitioned into terms which do and do not include 8 as follows:

k
. 1 1
38 = (W + Bg) =30 + - 263
@) =-(W+B5) =S+ > zz

i
=1

k
df(d) = p(1 + k) — ptr A = p(1 +k)—Z(5,- .

j=1

From Lemma 1, we have

w{$(8)S™"} =bu(B;)+bp. By =W '2B;W.

Then, the GC), and EGCV criteria for optimizing ridge parameters are defined by

GCp(6) = nbtr(Bj) + nbp + a df(9),
btr(Bj) + bp

©O) = T at®)/np)

where « is a positive value adjusting the strength of the penalty for model complexity. Existing
criteria are expressed by changing the value of «, for example, the GC,, and EGCV criteria co-
incide with the C, and GCV criteria, respectively, when a = 2 and the GC), criterion coincides
with the MC,, criterion (Yanagihara et al., 2009) when o = 2{1 + (p + 1)/(n — k — p — 2)}.
From the above, MSCs for optimizing ridge parameters can be regarded as bivariate functions
of tr(Bj) and df(d). Lemma 1 gives ranges of tr(Bj) and df(J).

Lemma 2. The tr(Bj) and df(d) are included in the following ranges:
w(Bj) € [0,tr(2°Z7)],  df(d) € [p. p(1 +K)],

where Z* = ZW ™12,

Moreover, let f be a bivariate function defined by the following class.

Definition 1. (Class of the bivariate function ) For a positive value r,, f satisfies the fol-

lowing conditions:
(A1) For any (r,u) € [0, r] X [p,np), f(r,u) is continuous.

(A2) Forany (r,u) € [0, ri]1X[p,np), f(r, u) is first order partially differentiable and its partial

derivatives are positive.

We define MSC for optimizing ridge parameters by using f in Definition 4 as
MSC(8) = f (tr(B}), df(8)). (2.8)

6
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For the GC,, and EGCYV criteria, f is given by

foc,(r,u) = nb(r + p) + au (GC,, criterion)

flrou) = :

Sfeaev(r,u) = b(r + p)/(1 —u/np)* (EGCV criterion)

and r, is given by
ro=tw(Z*Z").

Then, the optimal ridge parameters based on minimizing the MSC in (2.8) are given by

8 =(51,...,6:) =arg min MSC(J).
5€[0,17%

3. Fast Optimization of Ridge Parameters

In this section, to obtain § minimizing the MSC in (2.8), we extend the algorithm for op-
timizing ridge parameters in the GR regression proposed by Ohishi et al. (2020a). First, we
define the following class of ridge parameters.

Definition 2. (Class of ridge parameters) For & € R, a class of ridge parameters is de-
fined by

’
>

8(hy = (8u(h)......8um)) . 8;(h) =1 —soft(1,h/;S7"2;).

where z; is the p-dimensional vector defined by (2.4). Furthermore, soft(x,a) is a soft-
thresholding operator (e.g., Donoho & Johnstone, 1994), i.e., soft(x,a) = sign(x)(|x| — @)+,

and (x), = max{x, 0}.

When § = I, and p = 1, the class of ridge parameters in Definition 2 corresponds to that
for the GR regression defined by Ohishi et al. (2020a). Using this class, the MGR estimator in

(2.5) is given as a function of A:
Esm = QVIDQ'E,

where @ is the k X k orthogonal matrix defined by (2.1) and V' (k) is a k X k diagonal matrix

which has the following diagonal elements:
vi(h)=1-5,(h) = soft(l,h/z}S’lzj) (=1,....k).

The V (h) rewrites the predictive matrix of Y as
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}%(h) = {Jn + Pl V(h)Pll} Y,

where P is the n X k matrix defined by (2.1). Then, the ridge parameters optimized by the
MSC minimization method are given by the following theorem (the proof is given in Appendix
A.l).

Theorem 1. We define r.. as
ry =tr(Z*Z").
For f with the class in Definition 4, let ¢(h) (h € R, \{0}) be a function defined by
¢(h) = MSC(S()),

and suppose that v > 0 s.t. p(v) < limy_o ¢(h). Then, the ridge parameters optimized by the
MSC minimization method are given by 8(h) and h is given by
h = arg he%GO} o(h).
From this theorem, the class of ridge parameters in Definition 2 is the class of the “optimal”
ridge parameters.
Lets;(j = 1,...,k) be the jth order statistic of 2/ S™"'zy,..., 2,8 'z and R; (j = 0,1,...,k)
be a range defined by

©O,n1  (G=0
Rj: (l‘j,l‘j+|] (]= 1,....,k=1). 3.1
(tr, 0] (j=k)

Then, similar to Ohishi et al. (2020a), we have the following proposition.
Proposition 1. The ¢(h) in Theorem 1 satisfies the following properties:
(P1) Forall h € R, \{0}, ¢(h) is continuous.
(P2) Forallh > ty, p(h) = f(ry, p).
(P3) The ¢(h) can be expressed as the following piecewise function:
$(h) = $a(h) = f (10 + c2ah™)/nb, p(1 + k—a=cr2h))  (h€Ry; a=0,1,....k),

where c1 4 and ¢, 4 are nonnegative constants given by

k

0  (a=0) Zl @=0,1,....k=1)

Cla = < s C2a =1 j=a tj
T @=107 T
=1 0 (a=k)
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From the results, the MSC minimization problem for optimizing ridge parameters in the MGR
regression can be solved by applying the fast algorithm for the GR regression proposed by
Ohishi et al. (2020a). That is, we have the following theorem.

Theorem 2. Suppose that the derivative of ¢,(h) in Proposition 1 is expressed as

%%(’l) = Xa(WWa(h) (h€R,;; a=0,1,....k-1),

and Yy(h) = Y,(h) (h € R,) is continuous for all h € R, \{0}, where x,(h) is a positive function
and Y, (h) is a polynomial. Moreover, suppose that v > 0 s.t. $(v) < lim,_o ¢(h) and let h,
be a root of Y,(h) = 0 satisfying

de, > 0 s5.t. Ve € (0, ¢,), Yu(h, —€) <O. 3.2)

Then, minimizer candidates of ¢(h) are given by

S= {U{ha}}Ufr,

acA
{tr) W) <0)

A={ac{0,1,....k=1}|h, €R,}, T = .
0 W-1(®) 2 0)

Hence, the ridge parameters optimized by the MSC minimization method are given by 8(h) and
I is given by
h = arg r}{lelg o(h).

Although the range of 4 is a set of positive values, Theorem 2 can reduce a search range of & to
S which is a set of discrete points. Furthermore, each element of S is given as closed form and
#(S) < k + 1; hence we can quickly optimize the ridge parameters. In the theorem, although
¥,(h) is implicitly supposed as a linear or quadratic function, the theorem can naturally be ex-
tended to higher order polynomial functions. In particular, roots of ¢,(h) = O can be obtained
as closed forms when ¢,(h) is a cubic or a quartic function, by using Cardano’s formula (e.g.,
David, 2004, Chap. 1) or Ferrari’s method (e.g., Tignol, 2001, Chap. 3). Hence, if the degree
of ¥, (h) is four or less, we can quickly optimize the MSC.

3.1. Examples

In this subsection, we provide specific examples of the MSC minimization methods for
optimizing ridge parameters in the MGR regression. To emphasize that the optimal ridge pa-

rameters depend on @, we specify that « is given.

9
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3.1.1. The GC, criterion

Although the ridge parameters optimized by the GC,, criterion minimization method have
already been given by Nagai et al. (2012), here we show how to derive them by applying
Theorem 2. The GC,, criterion for optimizing ridge parameters is given by

GCy(8 | @) = foc, (r(B}). df(5) | a).
Whenh e R, (a=0,1,...,k), ¢ and its derivative are given by
¢(h| @) = ga(h| @) = crah® — @pcrah + nbp + c14 + ap(l + k - a),
d
%‘Z’a(h | (I) = C2,a(2h - OZP)

Hence, the ridge parameters optimized by the GC,, criterion minimization method are given as
the following closed form:

3 = S(ila)a iloz = -

3.1.2. The EGCY criterion

The EGCYV criterion for optimizing ridge parameters is given by
EGCV(3 | ) = fecey (tr(Bj), df(d) | @).

Whenh e R, (a=0,1,...,k), ¢ and its derivative are given by

bp + (14 + c2ah?)/n
{b+(a+crgh)/n)’

C2a
n*{b + (a + caqh)/n}et! Yalh] @),

voh|a)=—(a- 2)c‘2,ah2 + 2(a + nb)h — a(nbp + c14).

ph|a)=¢a(h|a)=

d
a1 @) =

When a = 2, i.e., using the GCV criterion minimization method, we have
Wa(h|2) = 2{(a + nb)h — nbp — c1 4},

and aroot of ,(h|2) =0is

nbp + ¢y 4
“T a+nb

Moreover, similar to Yanagihara (2018), the following statement is true:
Ala* €{0,1,...,k— 1} s.t. hy € Ry,

10
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Hence, the ridge parameters optimized by the GCV criterion minimization method are given
by the following closed forms: 6 =6(hy).

When o > 2, since y,(h | @) is a concave quadratic function, a root of ¢,(h | @) = 0
satisfying the condition (3.2) is given by

_ (a+nb)- V(@ + nb)? — a(a - 2)ca4(nbp + ¢1,4)

o (@ —2)c2q

Therefore, candidates of fz,y are given by

where A, and 7, are sets given by

1, r >21—n71[ a/b_
Ay=1{aec{0,1,....k—1} | heg €R}, Tou= Uy (+ ( i/ p)-

0 (r+ <2(1 —n YHn/ab —p)

Hence, the ridge parameters optimized by the EGCV criterion minimization method are given
by

6 =b(hy), hy =argming(h|a).
heS,
In the EGCYV criterion minimization method, the number of minimizer candidates is only k + 1

at most.

3.2. Relationships between the Optimal Ridge Parameters

This subsection provides some theoretical properties concerning the relationships between

the optimal ridge parameters. The class of the optimal ridge parameters satisfies
Yhi,hy € Ry by <y = §;(h) <6j(hy)  (j=1,....k),

with equality only when h; > f;. This fact yields some relationships concerning the ridge
parameters optimized by the GC, and EGCV criteria minimization methods. Immediately, we

have the following result which is similar to Nagai ef al. (2012).

Proposition 2. For positive values ay and a,, we define the ridge parameters optimized by

the GC, criterion minimization method as
61 =0i(ha)), 62 =0j(hay) (j=1,....k),
where fza = ap/2. Then, we have

a <y = (51’j < (524.

1
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This proposition states that the stronger the penalty for model complexity, the larger the amount
of shrinkage of the estimator, when using the GC), criterion minimization method. Next, we
consider the ridge parameters optimized by the GC, and the GCV criteria minimization meth-
ods. Similar to Yanagihara (2018), we have the following lemma.

Lemma 3. The h, obtained by the GCV criterion minimization method satisfies h, < p.

This lemma leads to the following result which is similar to the case when p = 1 (Yanagihara,
2018).

Proposition 3. Let 335” and S?CV (j = 1,...,k) be the ridge parameters optimized by the

GC, and GCV criteria minimization methods, respectively. Then, we have
AGCV _ 2GC)
a>2=0 PR 6@3}. .

The value of @ in the MSC is often 2 or more. This means that the ridge parameters optimized
by the GC, criterion minimization method shrink the estimator more than the GCV criterion
minimization method in most cases. Finally, we consider the ridge parameters optimized by
the EGCV criterion minimization method. We express ¢(h | @) = EGCV(S(h) | @) as

¢(h| @) = &*(hmh | @),
where

62(h) = bp +bte(B}), n(h|a)= df(h) = df(3(hy),

{1 —df(h)/np}e”

and let &, be the minimizer of ¢(h | @). Then, n(h | @) has the following property (the proof is
given in Appendix A.2).

Lemma 4. Suppose that O < hy < hy. Then, we have

nhy [ @) < n(hy | @).
This lemma leads to the following proposition (the proof is given in Appendix A.3).
Proposition 4. The EGCV criterion minimization method has the following properties:

(1) Suppose that a) < ay. Then, we have

~

]’lm =1t = haz = Ix.

(2) For positive values «) and a,, we define the ridge parameters optimized by the EGCV

criterion minimization method as

12
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A

61, =0i(ha)), 82 =08;(ha) (i=1,....k),
and suppose that fzaz # ty. Then, we have

a1 <@y = 3171' < 52,j,
with equality only when flal > z}S" zj.

This proposition states that the stronger the penalty for model complexity, the larger the amount
of shrinkage of the estimator, when using the EGCV criterion minimization method.

4. Extending the MSC Class

In the previous section, we showed that the algorithm for the GR regression can be applied
to minimize the MSC in (2.8), where the distance between Y and fﬂs is defined by tr{ﬁ](é)S’l}
and the MSC is defined by using tr(Bj) obtained from the distance. In this section, we focus
on how to measure the distance.

Let g be a real-valued function defined by the following class.

Definition 3. (Class of the function g) For any p X p positive definite matrix A, the ¢ sat-
isfies the following conditions:

(A1) The g(A) is positive.
(A2) The dg(A)/dA is a positive definite.

Using the function g, we extend the MSC in (2.8) to

MSC(S | g) = f (9(Bj). df(®)). @.1)
where f is the bivariate function given by Definition 4. For example, g includes the following
functions:

gLu(A) = tr(A) (LH-distance)
gir(A) = log|T, + A (LR-distance)
9(A) = {ganp(A) = tr {AI, + A)'] (BNP-distance) -
gmL(A) = tr{(Ip + A)‘l} +log|I, + Al— p (ML-distance)
goLs(A) = tr(A?)/2 (GLS-distance)

The MSC in (4.1) is equal to that in (2.8) when g(A) = gru(A) and the following equation
holds:

13
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-1
gun(Bj) = tr(BsW™').

Since we can regard Bj as a between-group variation matrix and W as a within-group varia-
tion matrix, gy y(Bj) is a Lawley-Hotelling trace criterion (LH-statistic; €.g., Anderson, 2003,
Chap. 8) which is a well-known statistic in multivariate analysis. That is, the MSC in (2.8)
measures the distance between Y and Y based on the LH-statistic. Similarly, regarding the
LR-distance and the BNP-distance, the following equations hold:

gLr(Bj) =log|(W + Bs)W™'|,  gpnp(Bj) = tr{B(;(W + BJ)_I}-

They are a Likelihood-Ratio criterion and a Bartlett-Nanda-Pillai trace criterion, respectively,
which are also well-known statistics (e.g., Anderson, 2003, Chap. 8). MSC based on the LR-
distance includes the GIC and the AIC¢ under normality. The above three distances based on
the three statistics pertain to the mean structure of a model. In contrast, there are distances with
respect to the covariance structure of a model, e.g., the ML-distance and the GLS-distance. Re-

garding these distances, the following equations hold:
gmL(B;) = log [5(8)| + tr {2(8)™' Eo} - log [£o| - p,

(80— 2@) ']

1
goLs(By) = 3 tr

They are distances between 33(8) and 3 called a maximum likelihood fitting function and
a generalized least square fitting function, respectively (e.g., Bollen, 1989, Chap. 4). Using
g(A), the GC, and EGCYV criteria, and the GIC and the AICc under normality are given by

GCp(6) = nbgLu(Bj) + nbp + a df(9),
bgLu(Bj) + bp

{1 —df(d)/np}e’

GIC(8) = ngir(BY) + nplogh + a df(6),

_ . _npln + di©)
AICc(6) = ngir(Bjy) + nplogh + n—p-1-df()

EGCV(9) =

Using the GIC, it is also possible to adjust the strength of the penalty for model complexity,
and for example, the GIC coincides with the AIC when a = 2, the HQC (Hannan & Quinn,
1979) when @ = 2loglogn, and the BIC (Schwarz, 1978) when a = logn. For the GIC and
AlCc, the bivariate function f(r, u) is given by

Jfoic(r,u) = n(r + plogb) + au (GIC)

Sflrou) = np(n + u)

faree(ru) = n(r + plogh) + —— Py (AICc)

The following subsections describe two algorithms to minimize the MSC in (4.1).

14
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4.1. Minimizing MSC via Iterative Method

This subsection describes an algorithm for solving the MSC minimization method via an
iterative method with an iterative function. That is, we derive the iterative function. Notice
that

k
* % _wt &2 * -1/2_, .
B(;—szzj (5j, zj—W zj.
J=1

Therefore, the following partial derivatives can be obtained:

0 * * */ a
(T;jB‘s:zszj 6]', B_(S]df(é):_p

We express the (i, £) element of a matrix A as a;; = (A);, and define

0 . 0
git(B) = —g(A , GB)= —g(A
0lB) = 59| . GB)= o)

By is a symmetric matrix, thus we have

a )4 )4 6 .
—qg(B}) = —(BYir - gie(B) =227 G(B3)z%6 ;.
a&,-g( s) ;;6@( )it - 9ie(Bg) = 2z, G(Bg)z 6

Hence, a partial derivative of the MSC is given by

0 . . .
75~ MSC(3 | g) = 22 G(B;)=;; (9(B;). dt(8)) 6; - pf (9(Bj). df(8)).
J

where

: 0
’ fu(x,!/) = a_f(n M)
u

: 0
f;’(x»y) = a_f(ra M)
r

(ru)=(x.y) (ru)=(xy)

By solving d MSC(9 | g)/36 = 0y, we can obtain the following iterative method:

8D = ¢(89) = (0(0"),....4(d)  (=0.1,..),

£i() = 1= soft(1,7(8)/ 2} G(B})z}), 4.2)
where (i) is the iteration number, 6 is a given initial vector, and 7(6) is given by

5 - pf (9(Bj), df()) o
2/, (9(By). df(5))

By repeating the update of 8 with the iterative function ¢, we can obtain the optimal 8. This
iterative method has the following property (the proof is given in Appendix A.4).

15
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Proposition 5. For a k-dimensional vector € wherein all elements are nonnegative, suppose
that

(6) <16 +e), z/G(Byz; 2z G(B;, )z 4.3)

Then, the iterative method with iterative function (4.2) converges if Vj € {1,...,k}, 5;.1) > 6(1.0).
Furthermore, the iterative method also converges if Vj e {1,...,k}, 65.1) < 6;.0).

From this proposition, when assumption (4.3) holds, the iterative method with iterative func-

tion (4.2) converges if the initial vector is Oy or 1;.

4.1.1. LR-distance
For the MSC based on the LR-distance, the following equation holds:

0 d _
6—AgLR(A) = log|I, + Al = (I, + A)™".

Therefore, we have
. 1.
W RGBHW ™2 = (W + Bs)™' = =3(8) ™"
n
Hence, the iterative function for solving the MSC minimization method based on the LR-
distance is given by

£j(8) = 1 = soft (1,n7(8)/z/2(8) " 2)). (4.4)

Furthermore, from Lemma 1, for € in Proposition 5 and for any p-dimensional vector a, the

following equation holds:
a¥)a<a3O+eac aS®) 'a>aSé+e a.
Let 'R be a solution obtained by the iterative method with iterative function (4.4). Then,
SR = (M.

The ridge parameters optimized by the MSC minimization method based on the LR-distance

are given by
B =1 = soft (1,n7(8™)/ 2188 ' 2))  (i=1.....h).

On the other hand, the ridge parameters optimized by the MSC minimization method based on

the LH-distance are given by the following form:
S =1-soft(1,h/287'2)) (j=1,....k).

16



Ohishi, M.

The SI;H includes S~! and S is an estimator of the covariance matrix for the full model. Thus,
S?H has a disadvantage because S~! is unstable when k is large. Whereas, (ASIJTR does not include
S~!, but rather 33(8"%)! and 33(8™R) is an estimator of the covariance matrix adjusted by SR,

Thus, S?R has an advantage because $2(8™%)! is stable even when k is large.

Example 1
We derive an iterative function for solving the GIC minimization method. From f(r,u) =

foie(r,u), we have

frwy =n,  fulru) = a,
and therefore, 7(6) = ap/2n. Hence, the iterative function for the GIC minimization method
is given by

£j(®) =1 —soft(1,ap/22/2(0)'2;) (j=1.....h. 4.5)

Moreover, since 7(d) does not depend on §, from Proposition 5, the iterative method for solving

the GIC minimization method converges under an appropriate initial vector.

Example 2
We derive an iterative function for solving the AICc minimization method. From f(r,u) =

Jarce(r, u), we have

. B . _npCn—-p-1)
fr(r,u)—n, fu(r,u)_(}’l—p—l—u)z,
and therefore, we have
p*Qn—p-1)

7(6) =

2{n—p—1-df(d))*
Hence, the iterative function for the AICc minimization method is given by

np*2n—p-1)

(0) =1 —soft| 1, 3
Z;(9) s0 2n-p-1- df(é)}zz}z((s)_lzj

Moreover, for € in Proposition 5, the following equation holds:
df(d) > df(é + €).
Therefore
7(8) > 7(0 + €),

and thus, the iterative method for solving the AIC: minimization method does not satisfy

Proposition 5.

17
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4.1.2. BNP-distance
For the MSC based on the BNP-distance, the following equation holds:

(@, + 7 =, + 47

0 o B 9
ﬂgBNP(A) =34 tr{A(Ip +A) } =g

Therefore, we have
. . 1. A
W RGBHW ™2 = (W + Bs) 'W(W + Bs) ™' = 22(5)4202(5)4.

Hence, the iterative function for solving the MSC minimization method based on the BNP-

distance is given by

nt(0)

i(0)=1-soft] 1, — — .
4@ 2/3(8) ' £03(8) ' 2

Accordingly, using the BNP-distance, the optimal ridge parameters are stable even when £ is
large.

Example
As an example of MSC based on the BNP-distance, we consider the following criterion:
BNPC(d) = nggne(Bj) + o df(9).
Then, since
frwy=n,  furu)=a

we have 7(6) = ap/2n. Hence, the iterative function for solving the BNPC minimization
method is given by

ap

(0) =1—soft] 1, — — .
g 22/5(0) ' 508 (0) ' 2

(4.6)

4.1.3. ML-distance
For the MSC based on the ML-distance, the following equation holds:

9 _ 4 -1 _ -2 -1
FAMLA) = e {(@, + A7} +logII, + Al| = =L, + A2 + (I, + A"
Therefore, we have
W PGBHW ™2 = (W + Bs)™' — (W + Bs) 'W(W + Bs)™!
= 1ﬁ:(&)‘l - lﬁ:(é)—lﬁloﬁi(a)-‘.
n n

18
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Hence, the iterative function for solving the MSC minimization method based on the ML-

distance is given by

nt(d)
z;{i(a)fl - 33(0)133(0) )z, )

i) = 1 —soft|1,

Accordingly, using the ML-distance, the optimal ridge parameters are stable even when k is

large.

4.1.4. GLS-distance
For the MSC based on the GLS-distance, the following equation holds:

0 1 0
— A== -—1u(A?) = A,
8AgGLS( ) 2 0A tr( )
Therefore, we have

W IPGBHW 2 =W IB;W = —371(2(6) - Z0)3; "

S| =

Hence, the iterative function for solving the MSC minimization method based on the GLS-
distance is given by

nt(d)
2 35136) - Bo}35' 2 '

£i(0) = 1 —soft|1,

Since 32 is an estimator of the covariance matrix for the full model, the optimal ridge param-
eters are unstable when £ is large.

4.2. Minimizing MSC via Coordinate Descent

In the previous subsection, we described an algorithm to minimize the MSC via the iterative
method with an iterative function obtained by solving dMSC(d | g)/dd = 0. In this subsec-
tion, we update dy, . . ., 6 individually, not simultaneously. That is, we minimize the MSC via

a coordinate descent algorithm.

4.2.1. LR-distance
We partition W + Bg and df(d) into

k
W + B5 = W] + ZjZ’~62~ Wj =W + Z z[z{,,&%,

177’
t£j

k
df(d) = g1, - ps;, qij = P{(l +k) - 2‘5"}'

t#]
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Then, the following equations hold:
I,+Bs=W'"W+Bs)W 2 = W 2(W, + 2,2/6 )W /2, (4.7)

W, + zjz;-éﬂ = |WJ| (1 + z;-Wj_lzjéi).

Therefore, we have
gLr(Bj) =log|I, + Bj| = log (1 + 2;W; " 2;67) + log|W,W ™|
=log(1 + q2,j6%) + q3.»
where ¢, ; and g3 ; are constants which do not depend on ¢; given by
42 =2 W'z, qa;=log|W,W™'|.

Hence, the following partial derivative is obtained:

2q2,]‘5j

d
—gir(Bj) = ———.
Y 1+ g8

a5,

Example 1
The partial derivative of the GIC is given by

: 0
f8)) = 55 GIC(6) = (—apq2 6 + 242,56, = ap).
J

1+ C]Z,jé%

An update equation of the coordinate descent algorithm for solving the GIC minimization
method is given by the following theorem (the proof is given in Appendix A.5).

Theorem 3. Let f;(0) be a function for 6 € [0, 1] and suppose that the derivative of f(5) is
given by the following form:

: 1, .
fi(0) = mfjl(é) (fj1(6) > 0),

; >
fi2(6) = —¢j26” +2cj 16 —cjo  (cjo,cj1,cjo > 0),

and we define §; as

P v
1- \/1 - CJ,2CJ,0/CJ;1

5=
J
cialcii

Then, 3‘,~ = arg minge(o,1] f(0) is given by
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(1) Caseof 1 = cjacjo/c’y = 0:

5 {Sj (Cj,z >cjror(cjp<cjy ande < 1))
j= .

1 (cj,z <cji andgj > 1)

(2) Caseof1- Cj,ZCj,O/Cil <O

Example 2
The partial derivative of the AIC¢ is given by

1

(I+ Q2,j6§)(n -p—1—qij+péj)?/n

£i200) = 2p%q2 ;6% + pgo, {4(n — p — 1 — q1.;) — p(2n — p — 1)}6”
+2g2,(n—p—1-q )6 - p*n—p-1).

. d ,
1i6)) = 2, AlCc(d) = Ji2(6)),

An update equation of the coordinate descent algorithm for solving the AICc minimization
method is given by the following theorem (the proof is given in Appendix A.6).

Theorem 4. Let f;(0) be a function for § € [0, 1] and suppose that the derivative of fi(5) is
given by the following form:

. 1, .
1i0) = mfj,z(é) (fj1(6) > 0),

fj‘,z(é) = Cj,353 + Cj’252 + Cj,lé —Cjo (Cj,() > 0),

and let m (0 < m < 3) be the number of stationary points of f'j,z(é) which is included in (0, 1)
and 3,;1, .. ,Sj,m (m = 1) be the stationary points satisfying 5,;1 < e < Sj,m. Moreover, we

define a set S; as
Sj={1} m=0); {51} (m =1); {61, 1} (m = 2); {6;1,6,3} (m = 3).
Then, & j = arg mingeo,17 f7(6) is given by

A

0j = arg min £i(0).
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4.2.2. BNP-distance
Equation (4.7) leads to

#\71 1/2 r 2 -lyxrl/2
(I, + By) = W'AW, + z;2/6%)" W',
and the following holds:
1 .7 -12 -1, .7 —-152
(Wt 2,260 = Wl — Wi ziziWi o o WizEWo
SRR T+ Wz / 1+ ¢2,;6°
Therefore, we have

B I,+ B wor o Wi BEWI
Y= p—tr +B) {=p-tr e R
gene(Bs) = p {( P s) } p j 1+ quéi

614,j5§

=—Q7 qS s
2 5]
1+ quéj

where ¢4 ; and gs ; are constants which do not depend on ¢; given by
qs,; = Z;Wj_IWWj_IZj, gsj=p-—tr (W171W).
Hence, the following partial derivative is obtained:

0 244,j6;
——gpnp(Bs) = ———.
(9(5/ (1 + 6]2,1'5%)2

Example
The partial derivative of the BNPC is given by

: 9
f(6) = 5 BNPC(8) =

j (1 + ¢2,j6%)? (—apg3 6} = 2apq2,16] + 2144, j6; = ap).
JY g

An update equation of the coordinate descent algorithm for solving the BNPC minimization

method is given by the following theorem obtained which is similar to Theorem 4.
Theorem 5. Let f;(0) be a function for 6§ € [0, 1] and suppose that the derivative of f;(0) is
given by the following form:

1
£i1(6)

fi2(6) = cjad* + ¢;36° + ¢jp6” + cj16 —cjo  (cjo > 0),

£ = Fi200)  (f;1(6) > 0),

and let m (0 < m < 4) be the number of stationary points of f'j,z(d) which is included in (0, 1)
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and 8j1,...,8;m (m > 1) be the stationary points satisfying 8,1 < -++ < 0j,. Moreover, we

define a set S as

S _{{1} (m=0); {61} (m=1); {6;1,1} (m=2)
J

{671,030 (m=3); {0;1,0;3,1} (m=4)
Then, 3j = arg minge(o,1] f(0) is given by

0 = arg {SIEI}SIJI fi(0).

4.2.3. ML-distance
Notice that

gmL(A) = gLr(A) — genpe(A).

Hence, we have

2
44,j07

B%) =log(1 + g :6%) —
guL(By) g(1 + q2,;67) 1+qz,j6§

T 43495,

and the following partial derivative is obtained:

2q2,j6 _ 26]451'6
1+q 0> 1+ qz,jéz)z'

9 .
%ngL(B(s) =

4.2.4. GLS-distance
We have
BsW ™' =z 2ZW s+ WW ™' - I,
and therefore
B; —lt{B W-”}—1 64+ 207 6% + g3,
goLs(Bj) = S (Bs )= 5(%,] 1 +247,/07 + qs,))s
where g, ; (£ = 6,7, 8) are constants which do not depend on §; given by
2
Goj= W 2P, grj= ZW AW - W)Wz, g5, = tr{(W,-W—‘ -1,) }
Hence, the following partial derivative is obtained:

a *
y;ngLs(B,;) = 2ge, jé:; +2q7,;6;.
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5. Plug-in Iteration

In the previous section, we described the minimization of MSC extended to general distance.
For MSC based on the LH-distance, the class of the optimal ridge parameters is obtained and
since the minimizer is given as closed form and is unique, or minimizer candidates are given
as closed forms and finite points, MSC can be minimized quickly. In contrast, since the opti-
mal ridge parameters include the inverse of the estimator of the covariance matrix for the full
model, those parameters are unstable when £ is large. On the other hand, for MSC based on
general distance, in particular the LR-distance, the BNP-distance, and the ML-distance, since
the estimator of the covariance matrix which is included in the optimal ridge parameters is an
adjusted estimator, the optimal ridge parameters are stable even when k is large. In contrast,
such MSC cannot be minimized quickly. As above, MSC based on the LH-distance and MSC
based on another distance have contrasting properties. We propose a new approach, called the
Plug-in Iteration Method (PIM) which is a hybrid method drawing on the merits of the various
MSCs. The PIM optimizes ridge parameters by repeating the following procedure: first, the
ridge parameters are optimized by the MSC minimization method based on the LH-distance;
next, the ridge parameters are optimized again by using the ridge parameters optimized in the
previous step.

The ridge parameters optimized by the MSC minimization method based on the LH-distance
include S, and this derives from the fact that the original distance tr{3(8)S "} includes S. Al-
though the MSC was hitherto defined by using tr(Bj) obtained from the original distance, we
now redefine it using the original distance. For any p X p positive definite matrix A, we define

- 1
ro(A) = tr(EoA‘l) ¥ - tr(ZA-lz’),
n
and let f7 be a bivariate function defined by the following class.

Definition 4. (Class of the bivariate function ') The f' satisfies the following condi-

tions:
(A1) For any (r,u) € (0,7,(A)] X [p,np), f1(r,u) is continuous.
(A2’) For any (r,u) € (0, r.(A)] X [p,np), f1(r,u) is positive.

(A3’) Forany (r,u) € (0,r,(A)] X [p,np), f1(r,u) is first order partially differentiable and its
partial derivatives are positive.

Using the bivariate function f7, we redefine the MSC based on the LH-distance as
MSC'(3 ] A) = £ (ir {$(8)A7"}, df(9)). (5.1
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This MSC covers a wider class than the MSC in (2.8) and is equal to the MSC in (2.8) when
A = S. For the GC,, and EGCYV criteria, f7 is given by

: nr+ au (GC,, criterion)
r/(1 —u/np)* (EGCYV criterion) .

Similar to Theorem 1, the optimal § minimizing the MSC in (5.1) is given by the following

corollary.

Corollary 1. We define a function ¢(h | A) (h € R \{0}) as
¢(h| A)=MSC'(3(h| A) | A),

and suppose that Av > 0 s.t. ¢(v | A) < lim,op(h | A), where S(h | A) = 61(h |
A),...,6u(h | A)Y is a class of ridge parameters given by

8i(h| A) =1-soft(1,h/z;A™'z)).
Then, we have the following:

(1) The optimal ridge parameters based on minimizing MSC(8 | A) are given by §(ha | A)
and h 4 is given by

ha = arg pan p(h| A).

(2) The ¢(h | A) has the following properties:

(P1) Forall h e R,\{0}, ¢(h | A) is continuous.
(P2) Forallh>t, ¢(h| A) = fT(r,(A), p).
(P3) The ¢(h | A) can be expressed as the following piecewise function:

o(h| A) = gu(h| A) (heR:a=0.1,....0
— f+ (tr(ﬁ]oA_l) + (Cl,a + C2,ah2)/n’ p(l +k—a- C2,ah))’

where R, ¢1, and c,, are range and nonnegative constants similar to (3.1) and Propo-
sition 1, respectively. However, t; (j = 1,...,k) is the jth order statistic of z}A‘I zj(j=
1,...,k).

Corollary 1 is an extension of Theorem 1 and Proposition 1 and they are equivalent when
A = S. Furthermore, 14 can be obtained by applying Theorem 2.
Using Corollary 1, we describe the PIM algorithm. Let S© = S and we define 8Oy =
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(3(10)(}1), et (ASI(CO)(h))’ as 6O(h) = §(h | S©) and define the optimal ridge parameters based on
minimizing MSC(d | S©) as

$0) _ (R0 20)) 20) _ 2(0)/7(0)
80 =(50,....60), 8D =800,

h® =arg min ¢O(h), ¢O(h) =MSC'(6O(h) | S©).
heR.,\{0}
Therefore 35.0) is given by
8 =1 = soft (1,h0/ 2SOy ' 2;). (5.2)
Furthermore, by substituting 8, we define S as

S(l) — WI/ZG(BE(O))—I W1/2’

and let V(h) be a class of ridge parameters wherein the jth element (j = 1, ..., k) is given by
(1) _ 7 Q-1
8y =1 = soft (1,h/ /1Sy ' 2;).
Then, we optimize the ridge parameters again as
() _ (A(D )Y S _ s pa
50 =(80,....80), &P =DM,
Y =arg min ¢P(h), ¢ (h) =MSC'(EP(h) | SV).
heR,\{0}
The 2V can be obtained quickly by applying Theorem2. Since the optimal ridge parameter

0© includes S, it is unstable when k is large. Whereas, since S is adjusted by substituting
8©®, 8 is stable even when k is large. The PIM algorithm is summarized as follows.

PIM Algorithm

Step 1. Let the initial vector 0© be the ridge parameters optimized by the MSC minimiza-

tion method based on the LH-distance and i « 0.
Step 2. Define SV and ¢+ (h) as

S(i+l) - WI/ZG.(B}“))_IWUZ, ¢(l+l)(h) — MSCT (8(l+1)(h) | S(i+l)) ,

where the class of ridge parameters is given by
’

84Dy = (87, ... 8 V) . 8Py =1 = soft (1,h/z}{ST V) z)).

Step 3. By using Theorem 2, update the ridge parameters as
SUHD = FEHDRU+DY  jaHD : D p).
) arg min ¢ (h)
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Step 4. If §%*1 converges, the algorithm is complete. If not, let i « i + 1 and return to Step
2.

Since the MSC minimized at each iteration is based on the LH-distance, the minimization
is fast. Furthermore, an estimator of the covariance matrix which is included in 8D is stable
by substituting the ridge parameters optimized in the previous step. Thus, the PIM is a hybrid
method which leverages the merits of the various MSCs.

The PIM algorithm is similar to the iterative method. In particular, when using the GC,
criterion, for all i (=0, 1,...,), we have

Aoy ap
h = >
Therefore, the PIM is the following iterative method:

30D =1 —soft(1,ap/2z] G(Bj,)z})

and this is equal to the iterative method wherein the initial vector is the ridge parameters opti-
mized by the GC,, criterion minimization method, the iterative function is equation (4.2), and
7(6) = ap/2. That is, when using the GC), criterion, the PIM with the GIC is equal to the GIC
minimization method and the PIM with the BNPC is equal to the BNPC minimization method.

6. Relationship with Multivariate Adaptive-Lasso Regression

In this section, we describe a relationship between the MGR and MAL estimators after the
regularization parameters are optimized by the MSC minimization method based on the LH-
distance. The MAL estimator cannot usually be obtained as closed form. However, it can be
obtained as closed form under orthogonal explanatory variables. Although we use general X
until the previous section, this section deals with orthogonal explanatory variables. Further-
more, instead of using the transformed ridge parameters o1, ..., d;, we approach this via the
original ridge parameters 6y, ..., 6.

6.1. Estimators with Optimal Regularization Parameters under Orthogonality
The orthogonality of X means @ = I} in (2.1). Therefore, the LS and the MGR estimators

of Zin (1.2) and (2.2), respectively, are rewritten as

E=(b,...&) =DP7, §=—z,

\d;

. . v . d;
E‘é:(gg,l,...,sg’k) =D'*(D+0)'2, & = d.‘/:’g'zj, (6.1)
J J
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where D = diag(d,,...,dy) and Z = (z,..., zx)" are the k X k diagonal matrix and the k X p
matrix given by (2.1) and (2.4), respectively. The ridge parameters are optimized using the
following MSC based on the LH-distance:

MSCr(0 | A) = £ (ir{Sr(0) A"}, dfr(9)), (6.2)

where 33r(0) and dfg(0) are given by transforming the parameter from § to 6 in $3(8) and
df(d), which are given by (2.6) and (2.7), respectively, as

k 2
. 1 9;
SR(O) =3 -§ J ,  dfr(0) =
R() 0+nj1’z]zj(dj+9j) R() 14

Thus, the MSC in (6.2) is the parameter-transformed version of the MSC in (5.1). Furthermore,
since the transformation is a one-to-one correspondence, Corollary 1 gives the following class
of ridge parameters optimized by minimizing MSCgr(0 | A):
dh
0| A) = (0i(h )| A)..... 01 A) . B(h| A)y={ZA =z —h .
00 (h> z}A" zj)

(h < z;A‘lzj)

Notice that for all x € R,,
MSCr(@(x | A)| A) = MSC(8(x | A) | A).

Then, from Corollary 1, the optimal ridge parameters based on minimizing the MSC in (6.2)

are given by

i =0halA) (j=1,....h),

ha = arg i (1 A), - ¢(h | A) = MSC'(5(h| A) | A), ©3)

and using these optimal ridge parameters, the optimal MGR estimator based on minimizing
the MSC in (6.2) is given by

R = L soft(1,ha/z' A7 2;) 2. 6.4
& | 7 (1.ha/z/A™'2)) 2 (6.4)
Since §R = 0, when ha > zZ; A~ z;, we found that the non-sparse MGR estimator is sparse
after the rldge parameters are optlrmzed

Next, we describe the MAL estimator of =. Ohishi et al. (2020b) derived the AL estima-
tor as closed form under orthogonality of X . As a natural extension of this result, the MAL
estimator can be obtained as closed form. Let L, be a k X k diagonal matrix of which the jth

diagonal element is given by
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I .
ti=g soft(],dwj/\/;j||zj||) (=1 k),

where A € R, is a regularization parameter called a tuning parameter and w; is a weight. Then,
the MAL estimator of = is given by

I

o _( [T g}k) =L,X'Y=L,D"*Z,
6.5)
&= a2 = soft(l A/ \Jd i) 2.

Since L, = D~ when A = 0, the MAL estimator coincides with the LS estimator when A = 0,
and the MAL estimator coincides with the AL estimator given in Ohishi et al. (2020b) when
p = 1. The MAL estimator is sparse in the sense that éf{j = 0, when Aw; > \/d_jllz jll. The éﬁ
in (6.5) denotes the minimizer of the following PRSS:

k
w{(Y - L' = XE)(Y - L' - XE)}+22 ) wligl. (6.6)
j=1

The MGR estimator in (6.1) depends on k regularization parameters. Whereas, the MAL esti-
mator in (6.5) depends on only one regularization parameter. Furthermore, although the MGR
estimator is not sparse, the MAL estimator is characterized by sparsity. Hence, it can be stated
that the MGR and MAL estimators have different properties.

The MAL estimator in (6.5) gives a predictive matrix of Y for the MAL regression as fol-

lows:
}Af/lelnﬂ'+Xé];=H/I{Y, H/]{ZJ,1+XL,1X,.
Using Y- and HY, we define an estimator of ¥ and a GDF as

Y -YOY-YH Y, -J-XLX)Y
n n ’

3L =

df () = ptr(HY).
Similar to Ohishi et al. (2020b), we have the following lemma concerning $3L(A) and dfy ().

Lemma 5. The 3,.() and dfy. () are expressed as

k
. o 1., & 1 I >
EL(/l) =0+ ;Z (Ik - DLA)ZZ =3+ ; FZ]{l - SOft(l,/le/ dj“Zj”)} Zij,

k
L =p+p soft(l, Aw;/ @||zj||).
=
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Then, the MSC for optimizing the tuning parameter in the MAL regression is given by

MSCL( | A) = f (r(BL)A™), dfL(D), 6.7)
and the tuning parameter optimized by the MSC minimization method is given by
Aa = argmin MSCy (1| A).
ARy

Regarding the weight w;, in general, an inverse of a norm of an estimator of &; is used. When
using the weight w; = 1/ IIé jll based on the LS estimator, the optimal MAL estimator based on
minimizing the MSC in (6.7) is given by

. 1 R
b= ——soft(1,Aa/llzjI) 2. (6.8)

T
Asj \/d_j
6.2. Equivalence between MGR and MAL estimators

This subsection investigates a relationship between the MGR and MAL estimators under the
regularization parameters optimized by the MSC minimization method. Although the optimal
MGR estimator in (6.4) and the optimal MAL estimator in (6.8) have similar forms, the op-
timal MGR estimator does not include ||z j||2, but rather z jA"z j normalized by A. First, we
focus on the difference.

Let T be an n X p matrix defined by T = Y A2, U and T be k x p matrices defined by
U=(u,...,wp)) =ZA V2 = P/Tand T = (71,...,7) = EA™/2 respectively, and v be
a p-dimensional vector defined by v = A~"/2p. Then, we normalize the PRSS for the MGR

regression as
w{(Y - 1,0 - XB)(Y - L - XE)A + 2QOQEA™
=tr{(T-1v - XI)V(T-1,v - XIN+I"QOQ'T}.

This normalized PRSS provides the MGR estimator of ~; as

& _ V4

057 ™ dj + 01‘

uj.

Therefore, the MGR normalized estimator of §; is given by

ERT _ A1/245R \/d_J

0. = 00T g,

Zj

and this is equal to the MGR estimator in (6.1). That is, the MGR estimator in (6.1) is a nor-

malized estimator in spite of the fact that it is obtained from non-normalized PRSS in (2.3).
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Thus, the optimal MGR normalized estimator is given by (6.4). On the other hand, based on
Xin et al. (2017), we normalize the PRSS for the MAL regression as

k
w{(Y -1,/ - XB)(Y - 1L, - XE)A} + uz w A7V |

=

k
=tr{(T - 1,0 - XTY(T - 1,0’ — XT)} + 21 Z ;I
=1
When using the general weight w; = 1/[|4;l| (%, is the LS estimator of <), this normalized
PRSS provides the MAL estimator of -, as

R 1

Vd;

Therefore, the MAL normalized estimator of §; is given by

A 1
53*. = Al/z"yi =— soft(l,/l/z"A’lzj) zj,
J J \/d_] J
and this is different from the MAL estimator in (6.5) obtained as the minimizer of the PRSS in
(6.6) with the weight w; = 1/ ||é Jll. Hence, the difference between the two optimal estimators
(6.4) and (6.8) is whether the estimator is normalized or not. If ha = A4, the two optimal
normalized estimators are equivalent. The equivalence is given by the following theorem (the

proof is given in Appendix A.7).

Theorem 6. Suppose that w; = 1/||%,|| and let @j (G=1,....k) and A be the regularization
parameters optimized by the MSC minimization method based on the LH-distance defined by

6;=0j(halA). ha=agminMSCr(@(h| A)| A).
€Ry
A=A4 = arg min MSCL (1 | A).
A€R

Then, the following equation holds:

R G (=1 k
6(9,,;’ Iy (j oo k).

In Theorem 6, the normalized estimators derived the equivalence. Next, we focus on the
MSC to investigate the equivalence. The optimal MAL estimator in (6.8) includes ||z j||2 and
this originates from the non-normalized PRSS in (6.6). In contrast, z;.A‘1 zj which is included
in the optimal MGR estimator in (6.4) originates from the distance tr{ EMGR(B)A‘I} normal-

ized by A. This leads to the following equivalence (the proof is given in Appendix A.8).
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Theorem 7. Suppose that w; = 1/|Iéj|| and let 9j (G=1,...,k) and A be the regularization
parameters optimized by the MSC minimization method based on the LH-distance defined by

6;=0j(hr, 1 1), hy, = argminMSCr(O(h | 1,)| 1),
A=1g, = arg ?61%1&1} MSCy(4 | Ip).

Then, the following equation holds:

7. Numerical Studies

In this section, we explore the performance of the MSC minimization methods for optimiz-
ing ridge parameters by evaluating prediction accuracies of predictive matrices via simulation.
This simulation is executed using R (ver. 3.6.0) on a computer with a Windows 10 Pro operat-
ing system, Intel (R) Core i7-7700 processor, and 16 GB of RAM. Let R; = diag(1,...,k) and
let ©4(p) be a k x k matrix of which the (i, j) element is given by p‘i‘f'. Then, the simulation
data are generated from the following model:

Y ~Nop(XE. B0 IL), X =,-J)Xo¥(099)'%, 3 =R)*Q,p)R,)>,

where = and X are k X p and n X k matrices wherein all the elements are identically and inde-
pendently distributed according to U(—1, 1) and ¥(p) is a correlation matrix of X defined by
¥(p) = R,i/ 2Qk(p)R,i/ 2. Furthermore, p = 0.99 and thus this simulation is a highly correlated
setting. Finally, 2 and X, are fixed throughout the simulation iterations.

Let YS be the predictive matrix of Y obtained from the optimal MGR estimator based on
minimizing the MSC and Y be the predictive matrix of Y obtained from the LS estimator,
ie,Y = f’ok. Then, we evaluate the prediction accuracy of YS by the following relative mean
square error (RMSE):

RMSE[Y;] = MSELYs] 100(%), MSE[Y;] = E[r{(XE - ¥;)(XE - Yp=u'}].
ptk+1)
In this setting, MSE[Y'] = p(k + 1). This means that the prediction accuracies are evalu-
ated in terms of the amount of improvement of the prediction accuracy of Y. Specifically,
RMSE < 100 means the prediction accuracy of YS is superior to that of ¥ and RMSE > 100
means the prediction accuracy of YS is inferior to that of Y. The smaller the RMSE value, the
better the prediction accuracy. The expectation of the MSE is evaluated by Monte Carlo sim-

ulation with 10,000 iterations. Furthermore, it can be considered that the MSE value strongly

32



Ohishi, M.

relates to the amount of shrinkage of the MGR estimator, in particular, more shrinkage is re-
quired when there are highly correlated variables in X. When & ; = 1, the amount of shrinkage
of the MGR estimator is maximized and this means that the jth eigenvalue (and corresponding
eigenvector) is removed from the model. From this, we measure the amount of shrinkage of the
MGR estimator by calculating the following relative number of removed eigenvalues (RNRE):

~

#{jell,....,k} 1o, =1}
k

RNRE()) = x 100 (%).

The RNRE expresses the ratio of the number of removed eigenvalues. If the RNRE value is
small (large), then the amount of shrinkage is also small (large).

In this simulation, we estimate the mean structure of model. Thus, we use the LH-, LR-, and
BNP-distances as the distance in the MSC. RMSE comparison 1 explores the prediction accu-
racies of predictive matrices where ridge parameters are optimized by the following methods:

e GCp: GC, criterion minimization method.

e EGCV: EGCYV criterion minimization method.

e GIC: GIC minimization method via the iterative method with the initial vector Oy.

e BNPC: BNPC minimization method via the iterative method with the initial vector Oy.
o PIM1: PIM with EGCV criterion and GIC.

o PIM2: PIM with EGCV criterion and BNPC.

For all MSCs, we use @ = 2,2loglogn,logn, and they are labeled as 1, 2, and 3, respec-
tively. Furthermore, the quartic equation in the BNPC minimization method is solved by the R
function “polyroot”.

Table 1 summarizes the RMSE and RNRE values for p, = 0.2,0.5,0.9 and k =
0.11n,0.3n,0.5n when p = 5 and n = 50. From this table, it can be discerned that the pre-
diction accuracy of Yg is greater than that of ¥ in most cases. We also found that although the
RNRE values increase as « increases, i.e., as the amount of shrinkage increases, the prediction
accuracies deteriorate because the amount of shrinkage is too large. Although the RMSE val-
ues tend to increase with increasing p, or k, this is caused by decreasing shrinkage. Table 2
summarizes the results when p = 5 and n = 200. Overall, tends are similar to those in Table 1.
However, when n = 50 the amount of shrinkage substantially decreases. Table 3 summarizes
the results when p = 5 and n = 500. In this case, the optimal ridge parameters often do not
lead to improvements in prediction accuracies. This is because the amount of shrinkage is too
large for the BNPC and too small for the methods. Tables 4 — 6 show the results when p = 10,
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Table 1. RMSE comparison 1 when p = 5 and n = 50

Py 02 05 0.9
k 5 15 25 5 15 25 5 15 25

| RMSE [[49.40 4752 48945143 5044 52186517 6674 7124
RNRE || 3622 31.99 28.52(34.80 2995 2640|2402 19.03 1469

Gc, 2 RMSE[[4530 4406 4524 [47.60 4754 49206396 6623 7153
RNRE || 50.10 4539 41.63 | 4826 42.82 3877 |3474 2839 2235

, RMSE 4319 43.60 44274565 4803 4931|6618 6991 7691
RNRE || 6497 60.97 5801|6332 57.91 5472|4783 40.62 3331

| RMSE [[49.59 4821 5037|5160 5101 5333|6521 6688 7140
RNRE || 3572 30.11 25.18 (3427 2831 2349|2380 1835 13.68

EGey o RMSE (452904400 4499 [47.57 4747 4897 | 6395 6628 7202
RNRE || 50.34 4571 4300|4850 4329 4047|3508 2925 2439

, RMSE 4312 4408 4502[4560 4870 5101[6652 7198 8635
RNRE || 66.00 64.46 66.79 | 6436 61.71 64.07 |49.11 4460 4372

| RMSE [[5002 5080 5771|5208 5359 6048|6578 69.00 7644
RNRE || 37.11 27.27 1650|3557 2532 14.83 | 2439 1491 6382

Glc o RMSE|[[4521 4474 47424760 4828 5131|6438 6666 7230
RNRE || 53.65 4623 3821|5177 4342 3476|3731 27.15 1571

, RMSE|[[4288 4454 4542|4551 49.67 5173|6794 7238 8341
RNRE | 7030 68.78 70.97 | 69.00 66.07 68.09 | 5381 46.64 42.07

| RMSE [[48.17 4560 5084|5042 49.82 6145|6545 68.53 14594
RNRE || 46.53 5476 85.12|44.61 5170 8447|3115 2932 5738

Bnpe o RMSE (4373 4899 59004639 576 75946625 10230  xx+
RNRE || 6623 79.62 91.35|64.70 78.68 9140|4952 62.36 91.06

, RMSE (/4280 6604 8959|4560 7982 118067670 «xx  xxx
RNRE || 78.76 88.69 92.94 | 7834 8857 93.34|69.75 8594 9479

| RMSE [[48.84 4734 4891|5094 5030 5211|6506 6678 7146
RNRE || 30.93 3480 3091|3820 3279 29.01 | 2684 21.69 1751

pivi o RMSE (4459 4359 4428 [4701 4743 4884|6438 6736 7572
RNRE || 56.00 52.84 52.60 | 5431 5029 50.00 | 39.97 3509 32.80

, RMSE 4280 4539 4658|4543 5105 5390 | 68.89 7746 10347
RNRE || 7171 7221 7651|7049 69.92 7435|5597 5299 56.55

| RMSE |[48.02 4650 47.93 5022 4978 5197|6502 6728 7835
RNRE || 4541 42.84 44.79 | 4357 4082 4286|3125 2798 3058

vy o RMSE 4390 4434 4632|4649 4930 5271[6552 7254 10373
RNRE || 6343 63.54 67.10 | 6189 6148 6529 |47.13 4620 5224

, RMSE 4264 49.52 50004546 5784 5965 7392 11398 s
RNRE || 77.31 80.65 84.19 | 76.70 79.66 8299 | 6595 67.35 7337

Note: Emboldened entries represent the minimum of the RMSE values in each column; * * * denotes values greater
than 150.

and we can see that tends are similar compared to the case where p = 5.
In RMSE comparison 1, the iteration method was used to optimize the ridge parameters us-
ing the GIC and BNPC minimization methods. However, these optimal ridge parameters can
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Table 2. RMSE comparison 1 when p = 5 and n = 200

Py 0.2 0.5 0.9
k 20 60 100 20 60 100 20 60 100
1 RMSE || 68.57 7592 8139 | 7354 8032 8451 | 89.94 9230 94.24
RNRE 19.37  13.63 9.84 | 1586 10.71 7.94 5.17 3.77 2.56
6, 2 RMSE || 73.88 8270 89.17 | 80.85 88.41 9248 | 97.35 9859 99.68
RNRE || 37.35 26.81 20.12| 31.19 2143 1644 | 12.30 7.62 5.63
3 RMSE || 89.84 101.56 110.81 | 100.53 110.59 114.55 | 117.17 116.58 115.30
RNRE || 55.56 41.74 3245 | 4838 3431 27.06 | 21.37 12.67 9.73
1 RMSE || 68.56 75.88 81.27 | 73.52 80.25 84.39| 89.93 9227 94.20
RNRE 19.16 1323 934 15773 1045 7.62 5.16 3.74 2.52
EGCY 2 RMSE || 7432 8471 95.15| 8145 90.81 9834 | 97.81 99.70 101.84
RNRE || 38.18 29.04 2451 | 31.99 2336 20.07| 12.62 8.08 6.43
3 RMSE || 92.62 115.19 wxk | 10426 129.24 s %% | 12070 128.37 148.20
RNRE || 57.77 4888 48.61 | 50.87 42.05 4290 | 2252 15.02 14.72
| RMSE || 68.76 7645 83.20| 73.60 80.41 8579 | 89.66 91.89 94.34
RNRE 18.08 9.19 357 | 14.79 7.07 2.79 4.57 2.29 0.75
GIc 2 RMSE || 7421 80.60 83.03 | 81.29 8567 8572| 96.60 94.62 94.11
RNRE || 38.07 2425 1293 | 31.78 18.89 9.73 | 1191 5.69 2.35
3 RMSE || 94.07 110.50 136.68 | 106.84 123.88 141.34 | 120.95 114.66 103.06
RNRE || 59.24 47.18 42.03 | 5274 4057 3523 | 2257 12.38 6.67
, RMSE || 68.88 7624 82.13 | 73.89 8043 85.06| 89.88 9192 94.25
RNRE || 2041 1245 5711 1651 9.24 4.03 5.01 2.61 0.87
BNPC 2 RMSE || 78.89 119.39 sk | 87.55 147.83 wx% | 99.54  99.52 * ok %
RNRE || 4523 51.28 9439 | 3844 4956 95.01 | 14.02 8.05 5.59
3 RMSE || 110.61 * ok k =% % | 130.66 * % % * % % * % % ok % * % %
RNRE | 68.76 8354 97.03| 6539 8589 97.02| 30.66 94.16 97.15
! RMSE || 68.67 76.04 81.62| 73.68 80.49 8480 | 90.06 9244 9441
RNRE 19.83  13.84 10.06 | 16.28 10.99 8.23 5.39 3.93 2.72
PIMI 2 RMSE || 75.29 86.59 101.64 | 82.87 9371 106.56 | 98.83 101.75 105.66
RNRE || 39.87 3098 2791 | 33.62 2536 2346| 1340 8.83 7.37
5 RMSE || 95.74 121.86 %% | 109.29  141.32 %k | 12693 147.81 * % ok
RNRE | 60.36 5226 53779 | 54.14 47.10 50.12| 24.11 1830 25.30
1 RMSE || 68.80 76.32 8279 | 73.88 80.89 86.11 | 90.21 92.67 94.78
RNRE || 20.62 14.67 11.50| 1691 11.76 9.49 5.64 4.17 3.01
PIM2 2 RMSE || 76.58 90.23 122.20 | 84.85 100.37 140.97 | 100.18 106.38 * % %
RNRE || 4195 34.07 3528 | 3568 29.12 32.68| 1436 10.24 1598
3 RMSE || 100.12 133.69 =%k | 116.54 * %k s % | 139.98 * %k * %k
RNRE || 63.44 5630 59.23 | 58.54 53.67 5834 | 2659 3439 67.16

Note: Emboldened entries represent the minimum of the RMSE values in each column; * * * denotes values greater
than 150.

also be calculated by using the coordinate descent algorithm or the PIM with the GC,, crite-
rion. RMSE comparison 2 confirms whether the three algorithms minimize the MSC or not
by comparing the results obtained from these algorithms. Although the initial vector used in
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Table 3. RMSE comparison 1 when p = 5 and n = 500

Py 0.2 0.5 0.9
k 50 150 250 50 150 250 50 150 250
1 RMSE || 8742 9449 9498 | 89.93 9584 96.11 | 97.21 99.19 98.84
RNRE 6.75 2.27 2.14 5.23 1.58 1.56 1.11 0.11 0.40
6, 2 RMSE || 9840 104.50 103.78 | 100.49 105.05 104.03 | 103.37 103.50 102.07
RNRE 15.90 6.95 571 | 1245 5.07 4.13 3.62 0.60 1.07
3 RMSE || 130.30 131.79 129.36 | 130.42 130.22 127.53 | 120.89 116.88 112.61
RNRE || 2647 1469 1148 | 2195 11.59 8.63 7.77 1.97 2.09
1 RMSE || 8740 9447 9495| 8992 9583 96.08 | 97.20 99.19 98.84
RNRE 6.72 2.26 2.11 5.21 1.57 1.55 1.11 0.11 0.40
EGCY 2 RMSE || 99.18 106.79 108.56 | 101.17 106.90 107.68 | 103.57 103.84 102.57
RNRE 16.33 7.79 7.05 | 12.76 5.66 4.97 3.70 0.63 1.14
3 RMSE || 137.37 * % K %k | 13636 149.81 w0k | 122.82 12141 121.10
RNRE | 2793 19.22 2361 | 2331 1538 18.15 8.11 2.38 2.66
| RMSE || 87.10 93.58 94.63| 89.59 9493 9570 | 96.92 98.70 98.62
RNRE 5.94 1.17 0.60 4.59 0.78 0.44 0.92 0.04 0.10
GIc 2 RMSE || 97.08 98.71 9524 | 99.03 99.46 96.23 | 102.06 100.40 98.76
RNRE 15.27 4.64 232 11.84 3.19 1.62 3.24 0.25 0.37
3 RMSE || 134.11 129.57 115.52 | 132.87 12622 111.41 | 119.31 108.82 101.60
RNRE || 2737 1424 870 | 22.65 10.65 5.69 7.62 1.20 1.00
, RMSE || 87.22 93.62 94.55| 89.70 9498 95.65| 9696 98.71 98.62
RNRE 6.28 1.30 0.67 4.82 0.86 0.48 0.95 0.04 0.11
BNPC 2 RMSE || 100.13 103.66 sk | 101.56  102.85 97.88 | 102.71 100.70  98.84
RNRE 17.00 6.77 432 | 13.10 4.41 2.34 3.51 0.29 0.41
3 RMSE % % % 5k % P K% % * %k %% | 12439 114.88 5% %
RNRE || 32.58 98.69 100" | 27.14  99.36 100* 8.64 1.85 143
! RMSE || 8744 9454 95.05| 89.97 9589 96.19| 97.23 99.21 98.86
RNRE 6.83 2.31 2.19 5.29 1.61 1.60 1.13 0.12 0.41
PIMI 2 RMSE || 99.66 107.65 111.08 | 101.67 107.89 110.47 | 103.83 104.11 103.06
RNRE 16.66 8.14 7.67 | 13.06 5.96 5.49 3.82 0.68 1.21
5 RMSE || 140.71 * % % s %k | 139.49 * ok k wxox | 12429 12455 132.50
RNRE || 28.64 2044 2829 | 2408 16.84 24.37 8.46 2.66 3.24
1 RMSE || 87.49 9461 9520 | 90.01 9597 9634 | 97.26 99.23 98.89
RNRE 6.94 2.38 2.28 5.38 1.66 1.67 1.16 0.12 043
PIMD 2 RMSE || 100.23 108.98 119.90 | 102.25 109.44 121.35| 104.11 104.46 103.86
RNRE 17.03 8.64 9.25 | 13.37 6.39 7.14 3.97 0.73 1.31
3 RMSE || 145.66 * ok ok =%k | 143.99 ok ok w%% | 126.11 131.62 * % %
RNRE || 29.54 23.09 3564 | 2503 20.81 38.87 8.88 3.19  59.05

Note: Emboldened entries represent the minimum of the RMSE values in each column; * * * denotes values greater
than 150; * denotes an exact value.

the iterative method is O, the PIM with the GC,, criterion is the iterative method by changing
the initial vector from Oy, to the ridge parameters optimized by the GC,, criterion minimization
method. Hence, by comparing the results obtained from the two methods, we can confirm

36



Ohishi, M.

Table 4. RMSE comparison 1 when p = 10 and n = 50

Py 0.2 05 0.9
k 5 15 25 5 15 25 515 25
| RMSE [[4725 4385 48374921 4654 5165|6162 6252 68.72
RNRE || 2478 19.56 1283 [23.24 1820 1148|1452 10.18 572
Gc, 2 RMSE[[4271 3881 4217|4495 4182 4606|5932 €016 6584
RNRE || 4272 3507 2476 [4042 3290 22.35|27.17 1976 11.70
, RMSE 4061 37.16 38434307 40.62 43246065 6173 6631
RNRE || 63.05 5528 4357 |60.99 5236 39.81 |43.92 3458 2226
| RMSE [[47.36 4427 4905 [49.30 4690 5221|6165 62.63 6887
RNRE || 2449 1868 11.86 2294 1740 1071 | 1444 994 553
EGey o RMSE (4260 3834 4039 [4485 4140 4455|5930 60.09 6550
RNRE || 4350 37.75 31.19 [4125 3554 2833|2792 2171 14.89
, RMSE 4055 37.68 38504303 4141 4497 6108 63.98 7376
RNRE || 64.88 6277 6323|6291 59.69 59.41|46.10 4177 37.62
| RMSE |[4661 4601 5858 4871 4885 6180|6173 6521 7691
RNRE || 32.68 21.04 686 3068 1921 569 |1944 933 196
Glc o RMSE[[4150 37.85 4088 |44.02 4108 4591|5974 61.02  69.04
RNRE || 5842 5097 40.64 [56.12 47.47 3449 | 30.19 2744 1041
, RMSE|[40.14 4011 4084|4293 4433 4930|6566 6882 8102
RNRE || 77.07 7859 8257|7624 7506 78.72|60.97 57.74 5156
| RMSE 4271 4112 51.02[4539 4533 6820 [61.06 68.18 s«
RNRE || 6479 79.62 9159 [62.73 7573 9138 |44.03 5431 78.60
BNpe o RMSE 3983 5283 72674290 6250 9741|6837 9106  xx
RNRE || 79.04 89.89 9329 [ 78.69 87.98 93.56 | 67.08 73.92 9237
, RMSE|[[4121 6196 111454332 79.90 138428295 «xx  xxx
RNRE || 80.03 93.12 9521 [79.99 92.84 9538 | 78.97 83.33 9438l
| RMSE [[4528 4115 43.12 [4742 4400 4692|6075 6149  66.64
RNRE || 36.96 3241 27.88 |34.84 30.58 25.62|23.15 1880 14.55
pivi o RMSE[[4101 3702 37714357 4032 4317|5985 6200 70.16
RNRE || 61.72 5962 61.03 [59.60 5679 5730 | 43.06 39.97 37.79
, RMSE (4020 4142 42054299 4622 5206|6720 7352 10237
RNRE || 7791 81.02 8584 7725 77.75 83.09 | 63.07 6421 65.64
| RMSE [[4204 3922 4139 [4549 4237 4738 |60.56 64.27 8077
RNRE || 6128 61.61 6439 [5920 59.00 61.61 |43.11 4450 4622
vy o RMSE (3090 4128 42224297 4611 5202|6613 7327 11118
RNRE || 78.32 81.28 83.70 | 77.78 7842 81.46 | 64.66 6539 67.05
, RMSE 4045 5345 4840 [43.14 6321 6307 8184 9555 s
RNRE || 79.99 90.19 9141 [79.97 8832 90.86 [ 78.23 7529 80.91

Note: Emboldened entries represent the minimum of the RMSE values in each column; * * * denotes values greater
than 150.

whether the iterative method depends on the initial vector or not.
Table 7 compares the three algorithms for solving the GIC minimization method in terms
of the RMSE, i.e., from the iterative method (GIC_IM), the coordinate descent algorithm
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Table 5. RMSE comparison 1 when p = 10 and n = 200

Py 0.2 0.5 0.9
k 20 60 100 20 60 100 20 60 100
1 RMSE || 57.38 67.35 7247 | 62.60 72.10 76.68 | 8329 8844 90.86
RNRE 1640 10.25 7.31 | 13.21 8.01 5.61 3.39 2.11 1.34
6, 2 RMSE || 61.78 7326 7822 | 68.67 7880 82.61 | 90.30 93.85 95.20
RNRE || 40.86 27.18 2049 | 3381 21.51 1627 | 11.54 6.27 4.25
3 RMSE || 76.54 92.15 98.54 | 87.31 100.35 103.24 | 111.52 111.78 110.88
RNRE || 63.02 4594 36.23 | 5535 38.00 2993 | 2344 13.10 8.85
1 RMSE || 5739 67.37 7249 | 62.61 7210 76.68 | 83.29 88.44 90.86
RNRE 16.24  10.00 6.98 | 13.11 7.86 5.43 3.38 2.10 1.33
EGCY 2 RMSE || 6235 76.04 8574 | 6943 81.88 89.90| 9091 9527 97.88
RNRE || 4232 31.11 2798 | 35.16 2474 2249 | 12.08 6.98 5.29
3 RMSE || 79.09 107.06 149.90 | 90.91 119.41 %% | 11599 126.01 * %k
RNRE || 6546 5449 5501 | 5839 47.89 4846 | 2520 17.08 17.74
| RMSE || 57.70 68.76 77.17 | 62.88 7326 80.71 | 83.29 88.83 9249
RNRE 16.01 6.06 1.54 | 12.75 4.55 1.09 3.03 0.98 0.18
GIc 2 RMSE || 6340 7348 7493 | 70.68 7853 7836 | 90.51 90.67 90.93
RNRE || 45.18 2799 1535| 37.62 2140 10.36| 12.30 4.58 1.37
3 RMSE || 83.94 110.14 144.62 | 97.64 122.96 s | 121.44  118.06 105.65
RNRE || 6991 56.63 54.61 | 6436 5124 47.69| 27.74 15.57 7.72
, RMSE || 57.66 68.03 87.36| 63.06 72770 78.78 | 83.50 88.68 92.23
RNRE | 21.14 1284 13.01 | 16.82 8.71 3.12 3.88 1.36 0.26
BNPC 2 RMSE 71.91 * % % =%k | 82,22 * %k %% | 96.74 * ok ok * % %
RNRE || 59.59 71.87 9254 | 5243 69.76 93.04| 17.72 1524 77.56
3 RMSE || 105.05 * ok k s %% | 126,17 ok ok * % % ok % ok * % %
RNRE || 82.08 8721 9567 | 8044 87.80 96.30| 50.65 91.06 99.96
! RMSE || 5743 6750 7273 | 6273 7231 77.03 | 8347 88.61 91.07
RNRE 18.23  11.71 8.94 | 14.77 9.26 7.03 391 2.48 1.72
PIMI 2 RMSE || 6442 80.28 96.26 | 72.19 87.80 103.49 | 93.06 99.03 107.22
RNRE || 47.27 36.70 3558 | 39.83 30.17 3040 | 14.29 8.93 8.09
5 RMSE || 85.21 120.90 x| 9944  136.43 %% | 128.16 * %k * % %
RNRE | 70.72 60.15 6332 | 6558 56.05 59.38| 29.66 2398 33.96
| RMSE || 57.59 68.00 74.63 | 6299 7297 79.46| 83.71 88.93 91.81
RNRE || 20.71 1432 13.19| 1693 1142 10.84 4.60 3.02 2.49
PIM2 2 RMSE || 67.66 88.23 118.06 | 76.73 100.31 140.80 | 96.47 110.29 * % %
RNRE || 53.40 4446 4576 | 46.19 39.71 4274 | 1745 13.81 23.59
RMSE 95.20 * ok ok w5k | 112.90 ok ok * % % * ok ok * % % * %k
} RNRE | 77.46 6898 71.41| 7439 65.19 70.63 | 3843 49.73 67.58

Note: Emboldened entries represent the minimum of the RMSE values in each column; * * * denotes values greater
than 150.

(GIC_CD), and the PIM with the GC), criterion (PIM_GC),). Settings are as per RMSE com-
parison 1, where « is only @ = 2. From these results, it can be discerned that there is equivalent
performance among the three algorithms. Although there is a bit of error, it can be considered
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Table 6. RMSE comparison 1 when p = 10 and n = 500

Py 0.2 0.5 0.9
k 50 150 250 50 150 250 50 150 250
1 RMSE || 81.19 8894 90.00 | 85.14 9151 92.14| 9537 97.82 97.67
RNRE 432 1.56 1.66 2.93 0.89 1.12 0.38 0.03 0.20
6, 2 RMSE || 93.28 9848 97.82 | 9638 100.05 99.03 | 100.55 101.06 100.33
RNRE 15.09 7.32 6.46 | 10.64 4.69 4.47 2.03 0.27 0.77
3 RMSE || 131.47 12821 124.25 | 13240 127.22 122.64 | 119.74 11393 111.01
RNRE || 28.73 17.16 13.68 | 22.07 12.58 10.26 4.66 1.06 1.63
1 RMSE || 81.19 8893 8999 | 8514 9151 9214 | 9536 97.82 97.67
RNRE 431 1.55 1.64 2.93 0.89 1.11 0.38 0.03 0.20
EGCY 2 RMSE || 94.53 101.57 103.97 | 97.40 102.38 103.49 | 100.75 101.35 100.85
RNRE 15.80 8.72 8.72 | 11.11 5.54 5.89 2.07 0.29 0.83
3 RMSE || 142.15 * ok ok =%k | 141.78 ok ok =% % | 122.24  118.84 122.10
RNRE || 3145 2346 3084 | 2422 17.55 2235 4.93 1.35 243
1 RMSE || 81.06 8896 9145 | 8498 9145 9326/| 9524 97.75 97.99
RNRE 3.66 0.59 0.22 2.44 0.32 0.14 0.28 0.01 0.02
GIC 2 RMSE || 9292 9359 9043 | 9560 9522 9238 | 99.36 98.62 97.64
RNRE 15.10 4.93 2.18 | 10.48 2.82 1.33 1.83 0.10 0.19
3 RMSE || 14539 144.66 131.69 | 143.38 137.46 119.42 | 118.85 106.79 100.25
RNRE || 32.53 2022 1490 | 24.88 14.36 9.51 4.75 0.68 0.77
. RMSE || 81.18 88.85 91.17 | 85.07 91.39 93.08| 9526 97.75 97.98
RNRE 4.18 0.76 0.29 2.75 0.39 0.18 0.31 0.01 0.02
BNPC 2 RMSE || 99.64 ok % %% | 100.71  106.53 =% % | 100.06 98.92  97.71
RNRE 18.76  16.06  99.59 | 13.00 6.64  69.70 2.09 0.14 0.23
3 RMSE % % % 5k % P K% % * %k %% | 127.85 % % % Kk %
RNRE || 50.52  96.67 99.90 | 4025 96.76 100.00 599 3740 90.00
! RMSE || 81.27 89.05 90.15| 8521 91.62 9229 | 9539 97.84 97.70
RNRE 4.55 1.70 1.85 3.09 0.98 1.25 0.41 0.04 0.22
PIMI 2 RMSE || 96.06 104.80 111.93 | 98.81 105.66 111.48 | 101.12 101.89 101.90
RNRE 16.79 10.01 1084 | 11.94 6.62 7.83 2.24 0.35 0.95
RMSE EE R * ok % EE R EE ® %k #xx | 125.33  127.66 * ok %
3 RNRE || 3426 2855 38.11| 26.62 2241 34.55 5.45 1.94 5.85
1 RMSE || 81.36 89.21 90.51 | 8530 91.78 92.62| 9541 97.86 97.73
RNRE 4.82 1.90 2.18 3.27 1.09 1.46 0.44 0.04 0.25
PIMD 2 RMSE || 98.10 111.58 137.23 | 100.68 113.05 147.94 | 101.54 102.68 104.57
RNRE 18.01 12.06 1523 | 1295 8.61 12.78 243 0.45 1.18
RMSE * %k * % % * % * % % * ok k % | 129.75 EEE * %k
} RNRE || 3848 38.87 46.20| 3039 36.78 48.39 6.17 724  65.25

Note: Emboldened entries represent the minimum of the RMSE values in each column; * * * denotes values greater
than 150.

that the error is made when convergence judgment. Thus, the three algorithms all converge
and achieve minimization of the GIC. Furthermore, we found that the iterative method does
not depend on the initial vector.
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Table 7. RMSE comparison 2 (GIC; a = 2)

p=5 p=10
nopy k| GICIM GIC.CD PIM.GC, || GICIM GICCD PIM.GC,
50 0.2 5 50.02 50.02 50.01 46.61 46.60 46.61
15 50.80 50.79 50.78 46.01 45.99 45.97
25 57.71 57.69 57.66 58.58 58.54 58.47
0.5 5 52.08 52.08 52.07 48.71 48.70 48.70
15 53.59 53.58 53.57 48.85 48.33 48.81
25 60.48 60.46 60.43 61.80 61.77 61.71
0.9 5 65.78 65.78 65.77 61.73 61.73 61.73
15 69.00 68.99 68.99 65.21 65.20 65.18
25 76.44 76.44 76.43 76.91 76.90 76.89
200 0.2 20 68.76 68.76 68.76 57.70 57.70 57.70

60 76.45 76.45 76.45 68.76 68.76 68.76
100 83.20 83.19 83.19 77.17 77.16 77.16
05 20 73.60 73.60 73.60 62.88 62.88 62.88
60 80.41 80.41 80.41 73.26 73.26 73.25
100 85.79 85.79 85.79 80.71 80.71 80.70
09 20 89.66 89.66 89.67 83.29 83.29 83.29
60 91.89 91.89 91.89 88.83 88.83 88.83
100 94.34 94.34 94.34 92.49 92.49 92.49
500 0.2 50 87.10 87.10 87.10 81.06 81.06 81.06
150 93.58 93.58 93.58 88.96 88.96 88.96
250 94.63 94.63 94.63 91.45 91.45 91.45
05 50 89.59 89.59 89.59 84.98 84.98 84.98
150 94.93 94.93 94.93 91.45 91.45 91.45

250 95.70 95.70 95.70 93.26 93.26 93.26
09 50 96.92 96.92 96.92 95.24 95.24 95.24
150 98.70 98.70 98.70 97.75 97.75 97.75
250 98.62 98.62 98.62 97.99 97.99 97.99

Table 8 shows a runtime comparison of the three algorithms for the GIC minimization
method in terms of time (s) per repeat, where the reported values are 10,000 times the ac-
tual values. The PIM is the fastest algorithm in most cases. Although sometimes the iterative
method is faster than the PIM, this is related the initial vector and the amount of shrinkage.
The difference between the PIM and the iterative method is the initial vector, and the iterative
method is faster when the amount of shrinkage is small, i.e., the optimal ridge parameters are
close to the initial vector O;. On the other hand, the coordinate descent algorithm is over-
whelmingly slowest of all. Hence, the best option for solving the GIC minimization method is
to use the PIM with the GC,, criterion.

Table 9 compares the three algorithms for solving the BNPC minimization method, in terms
of RMSE as similar to Table 7. It can be discerned that the three algorithms converge and
achieve minimization of the BNPC, and the iterative method does not depend on the initial
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Table 8. Runtime comparison (GIC; x1/10,000 (s))

p=5 p=10

nopy k| GICIM GIC.CD PIM.GC, || GICIM GICCD PIM.GC,
50 0.2 5 3.04 10.81 2.30 4.57 12.46 3.48
15 5.15 43.41 3.76 8.78 52.13 6.10

25 8.06 95.43 5.87 13.65 122.30 10.74

0.5 5 3.40 10.97 2.09 4.65 12.41 3.53
15 6.04 46.88 3.66 8.86 52.57 6.45

25 8.48 104.61 5.87 13.57 124.52 11.11

0.9 5 3.52 12.28 2.23 5.70 12.36 4.05
15 6.04 46.51 3.80 8.97 52.90 6.70

25 8.74 104.99 6.15 13.61 121.29 11.77

200 0.2 20 4.00 52.16 2.76 4.99 57.31 3.62
60 751  205.03 5.26 9.66  228.49 6.95

100 1520  443.87 12.82 2092 489.25 18.33

05 20 3.96 52.96 2.75 4.92 58.35 3.43
60 7.64  207.20 5.77 1024  227.12 7.16

100 1574 450.99 13.95 22.31 504.68 20.00

09 20 3.74 49.59 2.53 4.69 54.66 3.40
60 6.12 174.76 448 9.25 197.91 7.01

100 930 30343 9.91 16.13  379.86 13.15

500 0.2 50 4.70 128.49 3.16 5.86 137.78 4.05
150 13.66  456.75 10.85 23.53 52858 20.47

250 41.80  851.61 38.38 81.79 1051.05 54.42

05 50 4.50 126.82 3.24 5.87 134.42 3.99
150 13.52  440.54 11.35 22.19  521.07 18.68

250 3472 798.15 37.24 67.56  986.76 47.96

09 50 391 109.08 2.66 5.13 112.50 3.37
150 10.16 34891 10.19 15.00  360.90 14.80

250 21.28  559.92 26.01 32.38 607.38 37.82

Note: Emboldened entries represent the fastest time in each column.

vector.

Table 10 shows a runtime comparison of the three algorithms for the BNPC minimization
method in terms of time (s) as per Table 8. Similar to what was noted above regarding the GIC
minimization method, to solve the BNPC minimization method, using the PIM with the GC,

criterion is the best option.
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Table 9. RMSE comparison 2 (BNPC; a = 2)

p=>5 p=10

n.o py k || BNPC.IM BNPC_CD PIM,GCI, BNPC_IM BNPC_CD PIM,GCI,
50 0.2 5 48.17 48.15 48.16 42.71 42.67 42.71
15 45.60 45.58 45.60 41.12 47.36 41.12

25 50.84 60.14 50.83 51.02 602.41 51.02

0.5 5 50.42 50.41 50.42 45.39 45.36 45.39

15 49.82 49.83 49.82 45.33 5591 4533

25 61.45 87.35 61.45 68.20 1127.10 68.20

0.9 5 65.45 65.45 65.45 61.06 61.12 61.06

15 68.53 68.56 68.52 68.18 138.36 68.18

25 145.94 510.55 146.63 193.23 9745.56 193.62

200 0.2 20 68.88 68.88 68.88 57.66 57.67 57.66
60 76.24 76.24 76.24 68.03 68.04 68.03

100 82.13 82.13 82.12 87.36 89.21 87.41

05 20 73.89 73.89 73.89 63.06 63.06 63.06
60 80.43 80.44 80.44 72.70 72.70 72.69

100 85.06 85.06 85.05 78.78 78.77 78.74

09 20 89.88 89.88 89.88 83.50 83.51 83.50
60 91.92 91.92 91.92 88.68 88.68 88.68

100 94.25 94.24 94.24 92.23 92.23 92.22

500 0.2 50 87.22 87.22 87.22 81.18 81.18 81.18
150 93.62 93.62 93.62 88.85 88.85 88.85

250 94.55 94.55 94.55 91.17 91.17 91.17

0.5 50 89.70 89.70 89.70 85.07 85.08 85.08
150 94.98 94.98 94.98 91.39 91.39 91.39

250 95.65 95.65 95.65 93.08 93.08 93.08

09 50 96.96 96.96 96.96 95.26 95.26 95.27
150 98.71 98.71 98.71 97.75 97.75 97.75

250 98.62 98.62 98.62 97.98 97.98 97.98
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Appendix

A.1. Proof of Theorem 1

Let r(§) = t(Bj) and u(d) = df(d). From Lemma 2, the domain of f is included in
[0, 7] X [p,np). We define 7(J) as
nbp(r(9), u(d))

2£,(r(8), u(8))
It is straightforward that 7(§) > O from f satisfies Definition 4. Then, we have

7(d) =

ﬁ MSC(J) = ir((s) . gf(r, i) + iu(é) . ﬁf(r, i)
or ou

96, 96, =@ u@)  00; (r)=(r(8)u(8))
2 . .
= —25712,0,1,0r(9), u(9)) = pfu(r(8), u(d))
2 o 7(d)
= Ezjs ijr(r(é),u(é)) (51' - m] >
i MSC(9) <0
‘951 §=0; .

Let 6* = (0},...,06;)" be the minimizer of MSC(4). Then, 6}* #0( =1,...,k), and the
necessary condition of 6}* is given by
7(0*)
Ty
5; — sz z;

1 (T(6™) > z.’].S‘lzj)

(T(6™) < z}S‘lzj)
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Let G be a set defined by
G=1{0€10.1°16 = 8(h). Vh e R,\{0}},
where §(h) is a k-dimensional vector of which the jth element is given by

h
. —a1s (h<z87z)
5.y ={ %57 % G=1,...,k).
1 (h > z}S’lzj)
Then, from 6* is the minimizer of MSC(d), the following equation holds:

MSC(6*)= min MSC() < minMSC(8) = min MSC(8(h)).
8€[0,11:\{0} G heR,\{0}

Whereas, because 6* € G the following equation holds:
MSC(8*) > minMSC(8) = min MSC(§(h)).
8€G heR, \{0}
These results lead to
*\ . N
MSC(8*) = i MSC(a(h)),

and hence, we have

~

(; = (5 h h = alg min MS(: (As h .
C()nSunently, The()rem l 1S pr()\/ed.

A.2. Proof of Lemma 4

To prove Lemma 4, it is sufficient to prove df(h;) > df(h;). From Lemma 1, df(k) is ex-

pressed as

k
df(hy = p+ p Z soft(1, h/;8 ™" z)).
j=1

Therefore, we have
k
df(hy) — df(hy) = p Z {soft(1, 1 /2}87" 2)) - soft(1, hy/2}S ™' 2},
j=1

and regarding the RHS of the above equation, the following equation holds:
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0 (z;.S‘lzj <h)
hy
soft(1, hy /S 2) - soft(1, ho /2 2 = {1 25z
hy = hy
z}S‘lzj

>0 (h] < z;S’lzj < ]’lz)
>0 (hy < z;S‘lzj)

Hence, df(h;) > df(h,) holds with quality only when #, < h;. Consequently, Lemma 4 is
proved.
A.3. Proof of Proposition 4

First, we prove (1) by reductio ad absurdum. Let izal = 1; and suppose that ftaz # t;. Then,

the definition }Azw gives

Pha, | @1) = ¢t | @), dtx | @2) = lha, | @2),

and we have /Azaz *t = /Azdz < 1 from (P2) in Proposition 1. Furthermore, ¢(h | @) = n(h |
a — ag)@(h | ap) holds from the definition of ¢(/ | @). Therefore, from Lemma 4, we have

Pt | @) = nty | @2 — @)ty | @1) < n(ha, | @2 = @)pha, | @1) = P(ha, | @2).

However, this contradicts ¢(# | @) > qﬁ(fz(Zz | @»). Hence, (1) is proved.

Next, regarding (2), it is sufficient to prove fz(,l < fzaz. We approach this via reductio ad ab-
surdum again. Let @ < @, and suppose that fzaz < fzal. Now, we have ilag <ty from fzaz £ .
Therefore,

P(ha, | @2) = qhe, | @2 — a))$(he, | @1) < (ha, | @2 — @)(ha, | @1) = $(h, | @2).

However, this contradicts the definition of ilaz. Hence, (2) is proved.
Consequently, Proposition 4 is proved.

A.4. Proof of Proposition 5

First, we prove that the sequence {6;”} (i=0,1,...)is a monotonically increasing sequence
when 631) > 65.0) (j=1,...,k). Suppose that 6;0 > 6§i_1) (j=1,...,k). Then, 65” is updated as

55?'“) =i(6M) =1~ soft(l,T(5<f))/z;’G(B*(,))z}),

5
and we have
(69 2 76 Y), 2 G(Bj,)z; < 2 G(Bj)z).
This gives 6;”1) > 635) for all j = 1,...,k, and hence the sequence {6;”} is a mono-

tonically increasing sequence. Moreover, the sequence is bounded. Hence, the iterative
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method converges. In contrast, the sequence is bounded and monotonically decreasing when
6;1) < 65.0) (j =1,...,k), and hence, the iterative method converges. Consequently, Proposition
5 is proved.
A.5. Proof of Theorem 3
Now, we have

ci0lc?
1+ /1- cj,zcj,o/cj’1

cja/cji

Cjo

f31(0)

fi0) = - <0, fi(6)=0e=6=
Therefore, & ; # 0 and the smaller of the two real distinct roots or the double root of the
quadratic equation fj,z(é) = 0 is the local minimizer. Notice that § € [0, 1]. Then, to obtain the
minimizer of f;(6), it is sufficient to confirm whether the local minimizer is included in [0, 1]
or not.

When 1 —cjscjo/ c?l > 0, there is one local minimizer, and let this be & 1€,

P v
1- \/1 - CJ,2CJ,0/Cj,1

cjnlcji

Sj =
This is positive and the following equation holds when ¢, > ¢;;:

Sj <1- 1[1 —Cj’zc‘j’()/cil < 1.

Hence, we can obtain (1) in Theorem 3.

When 1 - cjacjo/ cil < 0, there are no stationary points, and therefore f;(0) is a monotoni-
cally decreasing function. Hence, we can obtain (2) in Theorem 3.

Consequently, Theorem 3 is proved.

A.6. Proof of Theorem 4
Now, we have

€j0

fi1(0)

£i0) = - <0, fi(0)=0 f2(0)=0.

Thus 6 j # 0. Moreover, from ¢ € [0, 1], minimizer candidates are local minimizers of f'j,z(é) in-
cluded in (0, 1) and the right end point of the range. Hence, we can obtain the set of minimizer
candidates S; by calculating stationary points of the cubic function f'j,z(é) and by confirming

whether each stationary point is included in (0, 1) or not. Consequently, Theorem 4 is proved.
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A.7. Proof of Theorem 6

To prove the equivalence between the two estimators, it is sufficient to prove 14 = A4. The
two terms which constitute the MSC for optimizing ridge parameters are

k
tr{f]R(é(h | A)A~ } btr EOA + 1 Z l—soft 1, h/z A~ zj)} z}A‘lzj,
j=1

n

dfr@(h | A)) = p + pz soft (1,4/2}A™' 2)).
j=1

On the other hand, when w; = 1/||%;l|, from Lemma 5, the two terms which constitute the MSC

for optimizing the tuning parameter are given by

r{SLAT = bt (oA +

S

k
Z l—soft(l /l/zA zj)} zA zj,
j=1

k
dfL() = p + pz soft (1,1/2,A47'2)).
j=1

Hence, for all x € R, the following equation holds:
MSCr(d(x | A) | A) = MSCy(x | A).

Thus h4 = A4 and consequently, Theorem 6 is proved.

A.8. Proof of Theorem 7

From (6.3), the MGR estimator under the ridge parameters optimized by minimizing
MSCg(0 | I,) is given by
A 1 A
R _ 1) 2.
& .= T soft (1, hr, /12l 2,

iup = arg hernr{li{}o} oh|1,), o1, = MSCgr(O(h | I,)]|1,).

Therefore, it is sufficient to prove h I, = ;11,). Similar to Appendix A.7, for all x € R,, the
following equations hold:

k
tr {SrO()} = tr{SL(0)] = r(Bo) + % {1 = soft(1, x/||z,~||2)}2 ll;I1%,

=1
k
dfx(0(x)) = dfi.(x) = p+p > soft (1, x/l1z/).
j=1
Hence, h I, = A 1, holds and consequently, Theorem 7 is proved.
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