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Abstract

In a linear regression, a non-linear structure can be naturally considered by trans-

forming quantitative explanatory variables to categorical variables. Moreover, smaller

categories make estimation more flexible. However, a trade-off between flexibility of

estimation and estimation accuracy occurs because the number of parameters increases

for smaller categorizations. We propose an estimation method wherein parameters for

categories with equal effects are equally estimated via generalized fused Lasso. By

such a method, it can be expected that the degrees of freedom for the model decreases,

flexibility of estimation and estimation accuracy are maintained, and categories of ex-

planatory variables are optimized. We apply the proposed method to modeling of

apartment rents in Tokyo’s 23 wards.
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1. Introduction

For a given n-dimensional vector y of a response variable and a given n×k matrix A
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of explanatory variables, a linear regression model simply describes their relationship

as follows:

y = µ1n +Aθ + ε, (1)

where µ is a location parameter, 1n is an n-dimensional vector of ones, θ is a k-

dimensional vector of regression coefficients, and ε is an n-dimensional vector of an

error variable with mean vector 0k and covariance matrix σ2In. Here, 0k is a k-

dimensional vector of zeros. Although a linear regression model is a simple statistical

model, many researchers study estimation methods for unknown model parameters µ

and θ. If a response variable and each explanatory variable have a strong linear re-

lationship, the linear regression model is appropriate. If not, the model does not fit

well. To improve fitting in such a situation, we transform quantitative variables in

explanatory variables to categorical variables by splitting into ranges. Through this

transformation, a non-linear structure can be considered in a framework of a linear re-

gression model. Although it is desirable to use smaller categories to allow more flexible

estimation, the estimation accuracy declines as the number of parameters increases.

Then, to maintain flexibility of estimation and estimation accuracy, we propose an

estimation method via a generalized fused Lasso (GFL; e.g., Xin et al., 2014; Ohishi

et al., 2019).

As the name suggests, the GFL is a generalized version of fused Lasso (FL) proposed

by Tibshirani et al. (2005). It estimates model parameters by a penalized estimation

method with the following penalty term:

k∑
j=1

∑
ℓ∈Dj

|βj − βℓ|,

where Dj ⊆ {1, . . . , k}\{j} is an index set. When Dj = {j + 1} (j = 1, . . . , k − 1) and

Dk = ∅, the GFL coincides with the original FL. The GFL shrinks the difference of two

parameters and the two parameters are equally estimated when the difference is zero.

That is, the GFL reduces the degrees of freedom for the model. We apply the GFL to

parameter estimation for categorical variables with 3 or more categories. The GFL can

maintain flexibility of estimation and estimation accuracy. Furthermore, when several

parameters are equally estimated, it means that corresponding categories are consid-

ered as the same category. Hence, we can approach the optimization of categories for

categorical variables via the GFL. We describe a model and an estimation method via

the GFL, and apply the method to modeling apartment rent data covering Tokyo’s 23

wards.
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The remainder of the paper is organized as follows. In Section 2, we describe a model

and its estimation method. Section 3 shows a real data example.

2. Model & Estimation

2.1. Model

First, we rewrite model (1) by transforming quantitative variables in A. Each quan-

titative variable is transformed to a categorical variable with 3 or more categories by

splitting into small ranges. Then, we define an n × p matrix X = (X1, . . . ,Xm) and

an n × q matrix Z. The Xi is an n × pi matrix (pi ≥ 3) of a categorical variable

with pi categories that is obtained from a quantitative variable or that is originally a

qualitative categorical variable, where p =
∑m

i=1 pi and each Xi includes a baseline.

Note that an element of Xi takes the value of 1 or 0, and Xi1pi
= 1n holds. The

Z consists of remainder variables. Then, we consider the following linear regression

model:

y = Xβ +Zγ + ε, (2)

where β and γ are p- and q-dimensional vectors of regression coefficients, respectively,

and β = (β′
1, . . . ,β

′
m)′, corresponding to the split of X. Moreover, an intercept is

not included in model (2) since each Xi includes a baseline. Note that β1, . . . ,βm

are vectors of regression coefficients for categorical variables with 3 or more categories.

Hence, they are estimated by the GFL. Accordingly, we estimate β and γ based on

minimizing the following penalized residual sum of squares (PRSS):

∥y −Xβ −Zγ∥2 + λ

m∑
i=1

pi∑
j=1

∑
ℓ∈Di,j

wi,jℓ|βi,j − βi,ℓ|, (3)

where λ is a non-negative tuning parameter, Di,j ⊆ {1, . . . , pi}\{j} is an index set,

wi,jℓ is a positive penalty weight, and βi,j is the jth element of βi. Actually, a tuning

parameter is required for each penalty term. That is, m tuning parameters are needed

for the PRSS (3). However, it is complex to optimize multiple tuning parameters.

Hence, we seek unification of tuning parameters by using penalty weights.

The Di,j is an important set to decide pairs to shrink differences with βi,j , and must

be appropriately defined from data. For example, when Xi is a matrix of a categorical

variable obtained from a quantitative variable, the indexes 1, . . . , pi are naturally or-

dered, and hence Di,j is defined as Di,j = {j+1} (j = 1, . . . , pi−1) and Di,pi = ∅. This
means that parameters for a categorical variable obtained from a quantitative variable
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are estimated by the FL. In this paper, such Di,j is called the FL-index. On the other

hand, the penalty weight wi,jℓ is used based on the idea of adaptive-Lasso proposed by

Zou (2006), and a general penalty weight is the inverse of the estimate corresponding

to a form of the penalty term. It is reasonable to calculate the least squares estimator

(LSE) β̃i,j of βi,j and to use the following weight:

wi,jℓ =
1

|β̃i,j − β̃i,ℓ|
. (4)

However, since each Xi is a dummy variable matrix including a baseline, they are rank

deficient and the LSEs cannot be calculated. To solve this problem, we calculate LSEs

for the following model wherein baselines are removed from each Xi and an intercept

is added:

y = µ1n +

m∑
i=1

X
(−)
i β

(−)
i +Zγ + ε, (5)

where (−) denotes that a column vector or an element for a baseline is removed from the

original matrix or vector. If the first column is a baseline, X
(−)
i is the n×(pi−1) matrix

obtained by removing the first column from Xi and β
(−)
i is the (pi − 1)-dimensional

vector obtained by removing the first element from βi, i.e., β
(−)
i = (βi,2, . . . , βi,pi

)′.

By removing the baselines, we can calculate LSEs for model (5). Then, let µ̃ and

β̃i,j (j = 2, . . . , pi) be LSEs of µ and βi,j , and we define β̃i,1 = µ̃ and calculate the

penalty weight (4).

2.2. Estimation

We minimize the PRSS (3) to estimate β and γ via a coordinate descent algorithm

(CDA). This algorithm can obtain the optimal solution by repeating minimization

along the coordinate direction. Broadly speaking, the CDA for (3) consists of two

steps: a minimization step with respect to β1, . . . ,βm and a minimization step with

respect to γ. It is also important how to optimize the GFL and, fortunately, there

are algorithms available for this purpose (e.g., Tibshirani & Taylor, 2011; Xin et al.,

2014; Ohishi et al., 2019). In this paper, we solve the optimization problem by using

the CDA for the GFL (GFL-CDA) proposed by Ohishi et al. (2019). An algorithm to

estimate β and γ is summarized as follows:

Algorithm 1.

input: Initial vectors for β and γ, and λ.

Step 1. For all i ∈ {1, . . . ,m}, fix βj (j ̸= i) and γ, and calculate the GFL estimates

of βi via the GFL-CDA.
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Step 2. Fix β, and calculate the LSE of γ.

Step 3. If all parameters converge, the algorithm terminates. If not, return to Step 1.

Let θ = (β′,γ′)′ = (θ1, . . . , θr)
′ (r = p+ q). The following criterion is used for conver-

gence judgment in the algorithm:

maxj∈{1,...,r}(θ
new
j − θoldj )2

maxj∈{1,...,r}(θ
old
j )2

≤ 1

100000
.

Since the tuning parameter adjusts the strength of the penalties, the selection of

this parameter is key to obtain better estimates. Following Ohishi et al. (2019), we

calculate λi,max when the estimate of βi is given by β̂i = β̂i,max1pi
and select the

optimal tuning parameter in 100 points given by λmax(3/4)
j−1 (j = 1, . . . , 100), where

λmax = maxi∈{1,...,m}{λi,max}. By executing Algorithm 1 for each λ, the optimal tun-

ing parameter is selected based on minimizing the EGCV criterion (Ohishi et al., 2020)

with the strength of the penalty being log n. To calculate each λi,max, β̂i,max satisfying

β̂i,1 = · · · = β̂i,pi
= β̂i,max is required. When βi = βi1pi

(i = 1, . . . ,m), model (2) is

rewritten as

y =

m∑
i=1

βiXi1pi
+Zγ + ε =

m∑
i=1

βi1n +Zγ + ε. (6)

Although β̂i,max is given as the LSE of βi for this model, such a solution cannot be

obtained in closed form. Then, we use a CDA to search for the solution. That is,

using an algorithm like Algorithm 1, we minimize the (non-penalized) residual sum of

squares for model (6).

3. Application to Modeling Apartment Rents

3.1. Data & Model

In this section, we apply the method described in the previous section to real data

covering studio apartment rents in Tokyo’s 23 wards. The data were collected by

Tokyo Kantei Co., Ltd. between April 2014 and April 2015, and consist of rent data

for n = 61,913 apartments, with 12 items for each case. Table 1 shows data items.

A1 to A5 are quantitative variables and are transformed to categorical variables when

modeling. B1 to B4 are dummy variables that take the value of 1 or 0, and C1 and C2

are qualitative categorical variables with 3 or more categories. Moreover, this dataset

specifies the location of each apartment in terms of the 852 areas demarcated in figure

1. Figure 2 is a bar graph of monthly rents for each area, and we can find that there
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Table 1. Data items

Y Monthly apartment rent (yen)

A1 Land area of apartment (m2)

A2 Building age (years)

A3 Top floor

A4 Room floor

A5 Walking time (min) to the nearest station

B1 Whether the apartment has a parking lot

B2 Whether the apartment is a condominium

B3 Whether the apartment is a corner apartment

B4 Whether the apartment is a fixed-term tenancy agreement

C1 Facing direction (one of the following 8 categories)

N; NE; E; SE; S; SW; W; NW

C2 Building structure (one of the following 10 categories)

Wooden; Light-SF; SF; RF-C; SF-RF-C; ALC; SF-PC;

PC; RF-Block; other

Y and A1 to A5 are quantitative variables. B1 to B4 are dummy variables that take

the value of 1 or 0. C1 and C2 are dummy variables with multiple categories.

Regarding C2, SF is steel frame, RF is reinforced, C is concrete, PC is precast C.

Figure 1. The 852 areas in Tokyo’s 23

wards
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Figure 2. Apartment rents for each area
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Figure 3. Floor type categories

are regional differences in the rents. In this application, let the response variable be

monthly rent with the remainder set as explanatory variables. First, we describe the

transformations of quantitative variables. Land area is logarithm-transformed and di-

vided into 100 ranges by using each 1% quantile point. Note that 15% and 16% quantile

points and 27% to 29% quantile points are equal. Hence, land area is transformed to a

categorical variable with 97 categories. Next, since building age is a discrete quantita-

tive variable that ranges from 0 years to 50 years, we regard it as a categorical variable

with 51 categories. Similarly, we regard walking time as a categorical variable with 25

categories because the range is 1 minute to 25 minutes. Finally, top floor and room

floor are dealt with as a combined variable named floor type. Top floor is a discrete

quantitative variable and data are sparse beyond the 16th floor. Hence, we conflate

data for 16 or more floors into the same category and regard top floor as a categorical

variable with 16 categories. Room floor is also a discrete quantitative variable and

34 and 38 to 42 are missing. Hence, we regard 34 and 35, and 38 to 43 as the same

categories and regard room floor as a categorical variable with 37 categories. Then, by

plotting top floor and room floor on a scatter plot, we can find 157 categories in figure

3. Hence, we regard floor type (which is a combined variable of top floor and room

floor) as a categorical variable with 157 categories.

The above data are formulated as follows. Let X1, z1 and z2 be the n × p1 matrix

and the n-dimensional vectors, for land area, respectively, where p1 = 96, X1 expresses

the dummy variables for the first 96 categories, z1 expresses the dummy variable for

the last category, and z2 expresses logarithm-transformed land area for the last cate-

gory. That is, land area is evaluated by constants for the first 96 categories and by a

linear function for the last category. Let Xi (i = 2, . . . , 5) be n×pi matrices of dummy
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Figure 4. Estimation results for the two effects

variables for building age, walking time, facing direction, and building structure, where

p2 = 51, p3 = 25, p4 = 8, and p5 = 10. Let X6 be an n×p6 matrix of dummy variables

for floor type, where p6 = 157. Moreover, since monthly rent depends on location,

we consider regional effects according to Ohishi et al. (2019). Let X7 be an n × p7

matrix of dummy variables expressing the location of each apartment, where p7 = 852.

Note that all X1, . . . ,X7 include baselines. Furthermore, let zj (j = 3, . . . , 6) be the

n-dimensional vectors of dummy variables for B1 to B4. Then, p = 1205, q = 6, and

m = 7.

Index setsDi,j (i = 1, . . . ,m) are defined as follows. For i = 1, . . . , 4, indexes 1, . . . , pi

are naturally ordered. Since land area, building age, and walking time are quantitative

variables, Di,j (i = 1, 2, 3) is defined by the FL-index. On the other hand, the facing

direction has the following order: N → NE → E → · · · → NW → N. Hence, D4,j is

defined by the FL-index with D4,p4
= {1}. In contrast, since building structure has

no order, D5,j is defined by D5,j = {1, . . . , p5}\{j} (j = 1, . . . , p5). This means that

differences of parameters for all pairs are shrunken. Floor type and areas have adjacent

relationships; see figures 1 and 3. Hence, D6,j and D7,j are defined according to the

adjacent relationships.

3.2. Results

Figure 4 shows estimation results for floor effects and regional effects by choropleth
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(a) Log-transformed land area (b) Building age

(c) Walking time

Figure 5. Residual plots for quantitative variables
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Figure 6. Estimation results for qualitative variables
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Table 2. Regression coefficients for B1 to B4

B1 B2 B3 B4

25145.49 -2046.31 293.21 -786.10

Table 3. Model fit and run time

R2 MER (%) run time (min)

0.861 6.064 4.96

maps. Figure 4a shows that floor type and floor effect tend to increase as top floor

or room floor increases. Moreover, floor types with 157 categories are clustered to 55

types. Figure 4b displays the results for regional effects and we can find that these

effects are higher for central areas compared to peripheral areas. Moreover, 852 areas

are clustered to 188 areas.

Figure 5 shows residual plots for quantitative variables: land area, building age, and

walking time. The residual plots are unproblematic. Since there are non-linear struc-

tures for all variables, it can be considered that transforming the quantitative variables

was beneficial. Land area has 97 categories and the first 96 categories are clustered to

48 categories as per figure 5a. Building age has 51 categories and they are clustered to

31 categories as per figure 5b. Walking time has 25 categories and they are clustered

to 14 categories as per figure 5c.

Figure 6 shows estimation results for the qualitative variables with 3 or more cate-

gories: facing direction and building structure. Both of these variables are clustered to

4 categories; see figures 6a and 6b, respectively.

Table 2 summarizes estimates for dummy variables that take the value of 1 or 0. Fi-

nally, table 3 summarizes model fit and run time, and reveals that the results obtained

are reasonable.
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