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Abstract

Group fused Lasso is an extension of the fused Lasso to problems involving grouped vari-
ables; it has the advantage of allowing consideration of mergers for grouped variables with
adjacency relations. To date, however, studies of group fused Lasso have been restricted to
handling only a limited adjacency relations. In this paper, we discuss generalized group fused
Lasso (GGFL), an extension of group fused Lasso designed to accommodate more general
adjacency relations. For example, in cases where models are defined separately for individual
groups, GGFL allows groups with similar characteristics to be joined together, thus facilitating
the classification of groups. This makes GGFL a powerful technique, but to date there has been
no effective algorithm for obtaining the solutions. Here we propose an algorithm for obtaining
GGFL solutions based on the method of coordinate descent algorithm.
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1. Introduction

We consider a problem involving m groups and assume that, for the jth group ( j ∈
{1, . . . ,m}), we are given a dataset {y j,X j}, where y j is an n j-dimensional vector of a re-
sponse variable and X j is an n j × k matrix of explanatory variables. Then a linear regression
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model for group j may be expressed in the form

y j =X jβ j + ε j, (1)

where β j is a k-dimensional vector of regression coefficients and ε j is an n j-dimensional vector
of error variable. We assume that n j > k and that the first column of X j is an intercept—that
is, the first column of X j is 1n j , where 1n denotes the n-dimensional vector with all elements
equal to 1. The simplest strategy for estimating the m unknown parameter vectors β1, . . . ,βm is
the least squares method; applying this method individually to each group j, the least-squares
estimator (LSE) for β j takes the form

β̂ j =M−1
j c j; M j =X ′

jX j, c j =X ′
jy j. (2)

When the modeling procedure is carried out separately for each group, it is of interest
to determine which groups have (or do not have) similar characteristics. For example, al-
though equation (1) describes a group-by-group modeling approach involving m distinct mod-
els, groups 1 and 2 may have similar characteristics, in which case we would like the models
for these two groups to agree—that is, we would like the estimates obtained for β1 and β2 to
be equal. The fused Lasso proposed in Tibshirani et al. (2005) is a technique for establishing
this sort of relationship between pairs of unknown parameters with adjacent subscripts. For
equation (1), we may apply the group fused Lasso, an extension of fused Lasso in which the
solution is obtained as the minimizer of a penalized residual sum of squares (PRSS) of the
form

m∑
j=1

∥y j −X jβ j∥2 + λ
m−1∑
j=1

∥β j − β j+1∥,

where λ is a non-negative tuning parameter. The optimization problem for group fused Lasso
may, by a suitable transformation of penalty terms, be reduced to the optimization problem
for the ordinary group Lasso (Yuan & Lin, 2006), and can then be solved (Bleakley & Vert,
2011). However, although group fused Lasso is capable of addressing one-to-one relationships
between groups—such as relationships between groups 1 and 2, or between groups 2 and 3—it
has no provision for taking into account one-to-many relationships, such as a relationship ex-
isting between group 1 and groups 2, 3, and 4. Here we fill this gap by generalized group fused
Lasso (GGFL), an extension of group fused Lasso that we use to estimate β j ( j = 1, . . . ,m).
Specifically, the GGFL estimators of β1, . . . ,βm are obtained as the minimizer of the following
PRSS:

m∑
j=1

∥y j −X jβ j∥2 + λ
m∑

j=1

∑
ℓ∈D j

w jℓ∥β j − βℓ∥, (3)
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where D j ⊂ {1, . . . ,m}\{ j} is the index set and w jℓ is a penalty weight based on adaptive Lasso
(Zou, 2006). When D j = { j + 1} ( j = 1, . . . ,m − 1), Dm = ∅, and w jℓ = 1, GGFL coin-
cides with group fused Lasso. GGFL may also be viewed as an extension of generalized fused
Lasso (e.g., Xin et al., 2014; Ohishi et al., 2019) for use with grouped variables. The GGFL
optimization problem, like that of group fused Lasso, may be reduced to the group Lasso op-
timization problem by a suitable transformation of penalty terms; however, the inverse of this
transformation is not uniquely defined in GGFL, and for that reason, it is not possible to obtain
a unique solution. Thus, in this work, we propose a GGFL optimization strategy based on the
coordinate descent algorithm—that is, we give an objective function for β j ( j ∈ {1, . . . ,m})
and derive the minimizer of the objective function. Because GGFL involves multiple non-
differentiable points, we first derive a condition for the objective function to attain minimum at
a non-differentiable point. When there are no non-differentiable points at which the objective
function attains a minimum, we may proceed to search for the minimizer to this condition.

The remainder of this paper is organized as follows. In Section 2, we first derive condition
for the objective function to exhibit minimum at a non-differentiable point, and then discuss
a method for finding solutions in the absence of such pathologies and propose a coordinate
descent algorithm for GGFL. In Section 3, we conduct simulations to characterize the perfor-
mance of GGFL, and then present an application case study involving actual data. Technical
detail is provided in the Appendix.

2. Main Result

In this section, we discuss a coordinate descent algorithm for minimizing the PRSS (3). The
coordinate descent algorithm computes the minimizer by repeatedly minimizing the following
objective function for β j ( j ∈ {1, . . . ,m}), in which all terms that do not depend on β j are
neglected:

f j(β j) = β′jM jβ j − 2c′jβ j +
∑
ℓ∈D j

λ jℓ∥β j − βℓ∥, (4)

where λ jℓ = 2λw jℓ. We note that f j(β j) fails to be differentiable at β j = βℓ (ℓ ∈ D j). In this
work, we use the following procedure to achieve minimization of the objective function (4).
First, we determine whether the objective function attains a minimum at a non-differentiable
point. If not, we proceed to seek the minimizer to this condition.

2.1. Conditions indicating the presence of groups to be joined

Let f (z) (z ∈ Rq) be a convex function that is differentiable for z , z0 and consider the
set Aq defined by Aq = {α ∈ Rq | ∥α∥ = 1}. Letting δ denote a non-negative real number, a
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necessary and sufficient condition for f (z) to attain a minimum at the non-differentiable point
z = z0 is

∀α ∈ Aq, lim
δ→+0

{
∂

∂δ
f (z0 + δα)

}
≥ 0. (5)

We now use this condition to derive a condition for the objective function (4) to achieve a
minimum at a non-differentiable point.

For an arbitrary vector α ∈ Ak and s ∈ D j, we consider the function defined by

g js(δ) = f j(βs + δα) = α′M jαδ
2 + 2(M jβs − c j)′αδ + β′sM jβs − 2c′jβs

+ λ js|δ| +
∑
ℓ∈D j\{s}

λ jℓ∥δα + βs − βℓ∥.

The g js(δ) is not differentiable at δ = 0. For δ , 0, the first derivative of g js(δ) may be
expressed as

ġ js(δ) =
d
dδ
g js(δ) = 2α′M jαδ + 2(M jβs − c j)′α

+ λ js sign(δ) +
∑
ℓ∈D j\{s}

λ jℓ
δ + (βs − βℓ)′α
∥δα + βs − βℓ∥

.

Thus, we have

lim
δ→+0
ġ js(δ) = 2(M jβs − c j)′α + λ js +

∑
ℓ∈D j\{s}

λ jℓ
(βs − βℓ)′α
∥βs − βℓ∥

,

and hence, from (5),

f j(β j) attains minimum for β j = βs (s ∈ D j)

⇔ ∀α ∈ Rk, λ js ≥ −v j(βs)′α,

where

v j(βs) = 2(M jβs − c j) +
∑
ℓ∈D j\{s}

λ jℓ
βs − βℓ
∥βs − βℓ∥

.

Also, noting that ∥α∥ = 1, from the Cauchy–Schwarz inequality, we find

−v j(βs)′α ≤
∥∥∥v j(βs)

∥∥∥ ,
with equality holding only for α = v j(βs)/∥v j(βs)∥. From these results, we obtain the follow-
ing theorem.
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Theorem 1. The function f j(β j) defined by (4) attains a minimum at the non-differentiable
point β j = βs if there exists s ∈ D j for which the following inequality holds:

λ js ≥
∥∥∥v j(βs)

∥∥∥ .
Repeatedly applying Theorem 1 for j ∈ {1, . . . ,m} allows us to determine whether the objec-
tive function f j(β j) attains a minimum at each non-differentiable point. If there exists s ∈ D j

for which the inequality of Theorem 1 holds, then the estimates for β j and βs will be exactly
equal, indicating that groups j and s are joined.

2.2. Searching minimizer in the absence of groups to be joined

We now assume that the objective function f j(β j) of equation (4) does not attain a minimum
at any non-differentiable point β j = βs (s ∈ D j)—that is, that the inequality in Theorem 1 does
not hold for any s ∈ D j—and consider the task of seeking solution under this condition. Then
f j(β j) is a differentiable convex function and hence, we may search for solution by computing
its gradient that takes the form

∂

∂β j
f j(β j) = 2M jβ j − 2c j +

∑
ℓ∈D j

λ jℓ
β j − βℓ
∥β j − βℓ∥

.

From this expression, it follows that

∂

∂β j
f j(β j) = 0k ⇐⇒

2M j +
∑
ℓ∈D j

λ jℓ

∥β j − βℓ∥
Ik

β j = 2c j +
∑
ℓ∈D j

λ jℓβℓ

∥β j − βℓ∥
,

and we derive the following update equation:

βnew
j = Q(βold

j )−1h(βold
j ), (6)

where

Q(β j) = 2M j +
∑
ℓ∈D j

λ jℓ

∥β j − βℓ∥
Ik, h(β j) = 2c j +

∑
ℓ∈D j

λ jℓβℓ

∥β j − βℓ∥
.

2.3. Coordinate descent algorithm for GGFL

Friedman et al. (2007) and Ohishi et al. (2019) respectively proposed coordinate descent
algorithms for ordinary fused Lasso and generalized fused Lasso. These papers note the fol-
lowing phenomenon. When several groups are joined together at intermediate stages of the
algorithm, the optimization process gets stuck: the corresponding objective-function values
stagnate—ceasing to improve on subsequent iterations—and the algorithm fails to achieve
minimization. To avoid this difficulty, as similar to the two papers, our coordinate descent
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algorithm incorporates two cycles: a descent cycle and a fusion cycle.
The descent cycle repeatedly minimizes f j(β j) in (4) for j ∈ {1, . . . ,m}. More specifically,

for GGFL, the descent cycle proceeds as follows:

Algorithm 1.（Descent cycle for GGFL）

Step 1. Apply Theorem 1 to f j(β j). If the condition holds, proceed to Step 2; otherwise
proceed to Step 3.

Step 2. For s satisfying the condition of Theorem 1, update the solution as β j = βs.

Step 3. Use equation (6) to seek a solution.

Step 4. Repeat steps 1–3 for all j ∈ {1, . . . ,m}.

Step 5. Repeat step 4 until the solution converges.

The fusion cycle is designed to avoid the phenomenon in which the joining of groups dur-
ing the descent cycle causes the optimization process to founder, obstructing the progress of
the algorithm. Suppose that, following a descent cycle, we have solutions β̂1, . . . , β̂m and that
some groups have been joined. Let ξ̂1, . . . , ξ̂t (t < m) be the distinct vectors of β̂1, . . . , β̂m and
define an index set Eℓ (ℓ = 1, . . . , t) according to

Eℓ =
{
j ∈ {1, . . . ,m} | ξ̂ℓ = β̂ j

}
,

where Eℓ , ∅ and Eℓ ∩ E j = ∅ (ℓ , j). The two terms in the PRSS (3) may respectively be
rewritten as follows (see Ohishi et al., 2019):

m∑
j=1

∥y j −X jβ j∥2 =
t∑
ℓ=1

∑
j∈Eℓ

∥y j −X jξℓ∥2,

m∑
j=1

∑
ℓ∈D j

w jℓ∥β j − βℓ∥ = 2
∑
j∈Eℓ

∑
i∈D j\Eℓ

w ji∥β j − βi∥ +
∑
j<Eℓ

∑
i∈D j\Eℓ

w ji∥β j − βi∥. (7)

Note that the first term in (7) is the sum with respect to the elements in the set∪
j∈Eℓ

{ j} × (D j\Eℓ).

Next define D∗ℓ ⊆ {1, . . . , t}\{ℓ} (ℓ ∈ {1, . . . , t}) and w∗ℓi (ℓ ∈ {1, . . . , t}; i ∈ D∗ℓ) as follows:

D∗ℓ = {s ∈ {1, . . . , t}\{ℓ} | Es ∩ Fℓ , ∅} , Fℓ =
∪
j∈Eℓ

D j\Eℓ,

w∗ℓi =
∑

( j,s)∈Jℓi

w js, Jℓi =
∪
j∈Eℓ

{ j} × (Ei ∩ D j),
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where D∗ℓ satisfies ℓ < D∗ℓ , D∗ℓ , ∅, and s ∈ D∗ℓ ⇔ ℓ ∈ D∗s. In words, D∗ℓ is the set of fused-group
indexes that have an adjacency relationship with fused group ℓ. Then we have the following
lemma (the proof is given in Appendix A.1).

Lemma 1. An equality of sets exists:∪
j∈Eℓ

{ j} × (D j\Eℓ) =
∪
i∈D∗

ℓ

Jℓi.

As a consequence, we find∑
j∈Eℓ

∑
i∈D j\Eℓ

w ji∥β j − βi∥ =
∑
i∈D∗

ℓ

∑
( j,s)∈Jℓi

w js∥β j − βs∥ =
∑
i∈D∗

ℓ

w∗ℓi∥ξℓ − ξi∥.

Thus, excluding from the PRSS (3) all terms that do not depend on ξℓ, we may express the
objective function for the fusion cycle as

f ∗ℓ (ξℓ) =
∑
j∈Eℓ

(ξ′ℓM jξℓ − 2c′jξℓ) +
∑
i∈D∗

ℓ

λ∗ℓi∥ξℓ − ξi∥,

where λ∗ℓi = 2λw∗ℓi. In the fusion cycle, we execute the descent cycle for f ∗ℓ (ξℓ). In analogy
to what we found above for the descent cycle, we may formulate a theorem expressing the
condition for f ∗ℓ (ξℓ) to be minimized at ξℓ = ξs (s ∈ D∗ℓ) as follows.

Theorem 2. If there exists s ∈ D∗ℓ such that the following inequality holds, then f ∗ℓ (ξℓ) attains
a minimum at the non-differentiable point ξℓ = ξs:

λ∗ℓs ≥ ∥v∗ℓ(ξs)∥, v∗ℓ(ξs) = 2
∑
j∈Eℓ

(M jξs − c j) +
∑

i∈D∗
ℓ
\{s}
λ∗ℓi

ξs − ξi

∥ξs − ξi∥
.

Assembling the steps discussed above yields the following coordinate descent algorithm for
GGFL.

Algorithm 2.（Coordinate descent algorithm for GGFL）

Step 1. Choose initial vectors for β1, . . . ,βm.

Step 2. Execute the descent cycle.

Step 3. If any groups were joined, execute the fusion cycle.

Step 4. Repeat steps 2 and 3 until the solution converges.

When executing Algorithm 1, the condition of Theorem 1 cannot be evaluated if there are
any fused groups within D j. To avoid this situation, we revise the objective function (4) before
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executing the algorithm. For ℓ1, ℓ2 ∈ D j, we set βℓ1 = βℓ2 , and then make the transformations

λ jℓ1 ← λ jℓ1 + λ jℓ2 , D j ← D j\{ℓ2}.

Because GGFL depends on the tuning parameter λ, for practical applications, it is important
to optimize the value of λ. Let β̂max denote the solution with all groups joined; that is, β̂max is
the LSE for β j obtained by setting β1 = · · · = βm. Then we define λmax as follows:

λmax = max
j=1,...,m

∥M jβ̂max − c j∥∑
ℓ∈D j
w jℓ

.

The significance of λmax may be seen by noting that the solution obtained for λ = λmax satisfies
β̂1 = · · · = β̂m = β̂max. Thus, for each candidate λ value in the range (0, λmax], we execute
Algorithm 2 and select the optimal λ value.

3. Numerical Studies

3.1. Simulation

For this simulation, we construct simulation spaces similar to those used in Ohishi et al.

(2019). We consider two problem sizes, with group counts m = 10 and m = 20 and the adja-
cency relationships depicted in Figure 1. Thus, for the m = 10 problem, group 1 is adjacent to
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(b) m = 20

Figure 1. Adjacency relationships among groups.

groups 2, 3, 4, 5, and 6, i.e., D1 = {2, 3, 4, 5, 6}. For each m value, we consider two possible
cases of group-join configurations; each configuration is specified by enumerating the true sets
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Eℓ (ℓ = 1, . . . ,m∗) of joined groups (here m∗ is the true number of sets of joined groups), as
follows:

• m = 10, case 1:

E1 = {1, 2, 3}, E2 = {4, 5, 6, 9, 10}, E3 = {7, 8}.

• m = 10, case 2:

E1 = {1, 3}, E2 = {2}, E3 = {4, 6, 10}, E4 = {5}, E5 = {7, 8}, E6 = {9}.

• m = 20, case 1:

E1 = {1, 2, 3}, E2 = {4, 5, 6}, E3 = {7, 8, 19, 20},
E4 = {9, 10, 12, 13}, E5 = {11, 14, 15, 16}, E6 = {17, 18}.

• m = 20, case 2:

E1 = {1}, E2 = {2, 3}, E3 = {4}, E4 = {5, 6},
E5 = {7, 8}, E6 = {9, 10}, E7 = {11}, E8 = {12, 13},
E9 = {14, 15, 16}, E10 = {17, 18}, E11 = {19}, E12 = {20}.

These group-join configurations are illustrated in Figures 2 and 3. In this section, we use
simulation data to assess whether our GGFL technique successfully determines the true join
configuration in each case.

The model from which our simulation data are generated takes the following form:

y j ∼ Nn j (X jβ j, In j ) ( j = 1, . . . ,m),

where X j is an n j × k matrix whose the first column is 1n j and whose all remaining elements
are identically and independently distributed according to U(−1, 1), and β j is a k-dimensional
vector defined by

∀ j ∈ Eℓ, β j = ℓ1k (ℓ = 1, . . . ,m∗).

In our simulation, we characterize not only the selection probability (SP) of the true join con-
figuration but also the mean square error (MSE). For β̂ = (β̂′1, . . . , β̂

′
m)′ and ŷ = (ŷ′1, . . . , ŷ

′
m)′,

we compute the following two MSEs:

MSEβ[β̂] = E

 m∑
j=1

∥β j − β̂ j∥2
 /(km), MSEy[ŷ] = E

 m∑
j=1

∥y j − ŷ j∥2
 /n,
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Figure 2. True join configurations for m = 10.
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Figure 3. True join configurations for m = 20.

where β̂ j is an estimator of β j and ŷ j is given by ŷ j =X jβ̂ j. The expected value of the MSE is
characterized by 1,000 repetitions of a Monte Carlo simulation. We consider three estimators
for β j:

• GGFL: The estimator produced by the GGFL method proposed in this paper.

• LSE 1: The LSEs defined by (2), i.e., β̂ j =M−1
j c j.

• LSE 2: The LSE for a common set β1 = · · · = βm, i.e., β̂ j = β̂max.

Actually, instead of MSE, we use the following relative MSE (RMSE).
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RMSE = 100 ×

(MSE for GGFL)/(MSE for LSE 2) (for GGFL)

(MSE for LSE 1)/(MSE for LSE 2) (for LSE 1)
.

Denoting estimators for LSE 1 by β̃1, . . . , β̃m, we use the following weights for GGFL penal-
ties:

w jℓ =
1

∥β̃ j − β̃ℓ∥
( j = 1, . . . ,m, ℓ ∈ D j).

We use the EGCV criterion (Ohishi et al., 2020) to determine the optimal tuning parameter
and set the penalty strength to log n. The RMSE and SP values for cases 1 and 2 are tabulated

Table 1. Simulation results

case 1 case2
RMSEy RMSEβ RMSEy RMSEβ

m k n GGFL LSE 1 GGFL LSE 1 SP GGFL LSE 1 GGFL LSE 1 SP

10 20 500 2.67 4.44 5.07 26.54 95.52 0.69 0.85 1.86 5.00 97.09
1,000 0.97 2.36 2.45 11.07 99.85 0.29 0.44 0.92 2.10 99.91
2,000 0.39 1.15 1.30 5.26 100.00 0.13 0.22 0.48 0.99 100.00

40 500 6.02 4.28 9.53 67.93 53.51 9.80 0.82 12.60 12.61 56.31
1,000 0.88 2.11 2.40 14.18 99.99 0.25 0.40 0.99 2.71 99.99
2,000 0.37 1.09 1.30 5.86 100.00 0.12 0.20 0.52 1.14 100.00

20 20 1,000 0.44 0.93 1.03 5.83 62.12 0.14 0.23 0.44 1.46 73.81
2,000 0.16 0.45 0.49 2.35 98.95 0.06 0.11 0.22 0.58 99.10
4,000 0.07 0.22 0.26 1.05 99.99 0.03 0.05 0.12 0.26 99.99

40 1,000 0.67 0.84 1.58 19.30 30.65 4.11 0.20 4.65 4.56 12.12
2,000 0.15 0.42 0.52 3.17 99.72 0.06 0.11 0.24 0.77 99.79
4,000 0.07 0.22 0.26 1.19 100.00 0.03 0.05 0.13 0.29 100.00

in Table 1. As this table demonstrates, in most case, our proposed method achieves the small-
est RMSE values of all the estimation methods considered for both predicted and estimated
values. The table also indicate a possibility that our GGFL method have a consistency for the
selection of true join configurations.

3.2. A Real Data Example

In this section, we present an application of the method proposed in this paper to actual data.
The dataset we use is similar to that used in Ohishi et al. (2019); it consists of rental prices—
and additional data describing environmental conditions—for studio apartments in Tokyo’s 23
wards as observed between April 2014 and April 2015. The dataset, compiled by Tokyo Kantei
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Co., Ltd., has a sample size of n = 61,999 and contains m = 852 groups; the specific data items
it covers are listed in Table 2. For this dataset, the territory covered by Tokyo’s 23 wards was

Table 2. Data items

Y Monthly rent of an apartment (yen)
A1 Floor area of an apartment (m2)
A2 Building age (years)
A3 Interaction of logarithmic transformations of the top floor and a room floor
A4 Walking time (min) to the nearest station

B1 Whether an apartment has a parking lot
B2 Whether an apartment is a condominium
B3 Whether an apartment is a corner apartment
B4 Whether an apartment is a fixed-term tenancy agreement
B5 Whether a facing direction is south
B6 Whether a building structure is a reinforced concrete

Y and A1 through A4 are continuous variables. B1 through B6 are dummy variables that take the value of 1 or 0.

Figure 4. The 852 subregions in Tokyo’s 23 wards.

divided into 852 geographical subregions, corresponding to the 852 groups in the dataset (Fig-
ure 4). In our analysis, we take the monthly apartment rent to be the response variable, using
all other data items as explanatory variables; however, problems arise when dummy variables
are modeled on a group-by-group basis. For this reason, our dummy variables are common to
all groups. More specifically, our modeling proceeds as follows. Let y j be an n j-dimensional
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vector of a response variable for group j. Let X j be an n j × 5 matrix of explanatory variables
for group j, whose first column is 1n j and whose remaining 4 columns correspond to items A1
through A4. Let Z j be an additional n j × 6 matrix of explanatory variables for group j, whose
columns correspond to items B1 through B6. Then we consider the following model:

y j =X jβ j +Z jγ + ε j ( j = 1, . . . ,m),

where β j and γ are five- and six-dimensional vectors of regression coefficients. This means
that Tokyo’s 23 wards are expressed by m (= 852) submodels. We estimate regression coeffi-
cients as follows:

β̂λ = (β̂′λ,1, . . . , β̂
′
λ,m)′ = arg min

β


m∑

j=1

∥y j −X jβ j −Z jγ̂λ∥2 + λ
m∑

j=1

∑
ℓ∈D j

w jℓ∥β j − βℓ∥

 ,
γ̂λ = arg min

γ

m∑
j=1

∥y j −X jβ̂λ, j −Z jγ∥2.

We estimate β (= (β′1, . . . ,β
′
m)′) and γ for each λ value, and then select the optimal λ value

by minimizing the EGCV criterion, where candidate λ values are given by λmax(3/4)( j−1) ( j =

1, . . . , 100). Figures 5 and 6 are choropleth maps illustrating the estimates of the regres-

1500

2000

2500

3000

(a) Floor area (A1)

−700

−600

−500

−400

(b) Building age (A2)

Figure 5. Estimation results 1

sion coefficients for the continuous variables (A1–A4). In these maps, the 852 subregions are
covered by 189 subregions. In other words, Tokyo’s 23 wards can be expressed by just the 189-
submodels. Moreover, for this model, the coefficient of determination is 0.86 and the MER is

13
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Figure 6. Estimation results 2

0.065, confirming that our modeling approach successfully captures key features of the data.
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Appendix

A.1. The proof of Lemma 1

First, we show that ∪
j∈Eℓ

{ j} × (D j\Eℓ) ⊂
∪
i∈D∗

ℓ

Jℓi.

Let (i, s) be an element of the above LHS. Then, the following statement is true:

(i, s) ∈
∪
j∈Eℓ

{ j} × (D j\Eℓ)⇔ ∃ j0 ∈ Eℓ s.t. (i, s) ∈ { j0} × (D j0\Eℓ)

⇔ ∃ j0 ∈ Eℓ s.t. i = j0 ∧ s ∈ D j0\Eℓ.

The s ∈ D j0\Eℓ leads s ∈ Fℓ and

s ∈ D j0 ∧ s < Eℓ ⇔ s ∈ D j0 ∧ ∃!i0 ∈ {1, . . . , b}\{ℓ} s.t. s ∈ Ei0 .

These results say s ∈ Ei0 ∩ Fℓ and hence i0 ∈ D∗ℓ . Notice that (i, s) ∈ { j0} × Ei0 ∩ D j0 . Hence,
we have

(i, s) ∈
∪
i∈D∗

ℓ

Jℓi.

Next, we show that ∪
j∈Eℓ

{ j} × (D j\Eℓ) ⊃
∪
i∈D∗

ℓ

Jℓi.

Let (i, s) be an element of the above RHS. Then, the following statement is true:

(i, s) ∈
∪
i∈D∗

ℓ

Jℓi ⇔ ∃i0 ∈ D∗ℓ s.t.
(
∃ j0 ∈ Eℓ s.t. (i, s) ∈ { j0} × Ei0 ∩ D j0

)
15
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⇒ i = j0 ∧ s ∈ Ei0 ∩ D j0 .

Moreover, we found that s < Eℓ because i0 ∈ D∗ℓ . Hence, we have

(i, s) ∈
∪
j∈Eℓ

{ j} × (D j\Eℓ).

Consequently, Lemma 1 is proved.
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