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Abstract

This paper deals with a sample measure of multivariate kurtosis, which is used as a test statistic

in multivariate normality testing problems. We define a new multivariate sample kurtosis measure

to provide a multivariate normality test for data with a two-step monotone missing structure.

Furthermore, we derive its expectation and variance using a perturbation method. To evaluate the

accuracy of a normal approximation, we conducted a Monte Carlo simulation for certain parameters.

Finally, we present a numerical example to illustrate the proposed procedure.

Key Words and Phrases. Asymptotic expansion, Moment, Monte Carlo simulation, Multivariate
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1 Introduction

In a multivariate analysis, the assessment of whether multidimensional data follow a multivariate

normal distribution is an important task, and many test procedures have been proposed and discussed

for multivariate normality (MVN) tests (for related studies, see Farrel et al. [3], Hanusz et al. [5],

Henze and Zirkler [8], Kollo [12], Rao et al. [15], Thode [18], and Zhou and Shao [22]). Among the test

statistics used in MVN tests are those based on multivariate skewness or multivariate kurtosis, which

are defined by Koziol [13], Mardia [14], and Srivastava [17], and their distributions are given for a large

sample. In addition, Henze [7] discussed the asymptotic distribution of Mardia’s kurtosis test statistic

under nonnormality. An MVN test using a normalizing transformation for Mardia’s multivariate

kurtosis was recently given by Enomoto et al. [2]. Moreover, Yamada et al. [21] discussed a test for an

MVN with two-step monotone missing data. By considering a case in which the data contain missing

values, this study extends the sample measure of multivariate kurtosis defined by Mardia [14]. In this

1



paper, we define a sample measure of multivariate kurtosis when the data have a two-step monotone

pattern of missing observations. We also consider an MVN test under the assumption of a two-step

monotone missing data. In particular, we focus on an MVN test statistic using multivariate kurtosis.

For two-step monotone missing data, the maximum likelihood estimators (MLEs) of the mean vector

and covariance matrix are given (see Kanda and Fujikoshi [9]). Tests of the mean vectors or covariance

matrix using these MLEs were discussed by Hao and Krishnamoorthy [6], Tsukada [19], and Yagi et

al. [20]. The sample measure of multivariate kurtosis discussed in this paper is also based on MLEs

developed by Kanda and Fujikoshi [9]. By decomposing the multivariate kurtosis, the sample analogue

of multivariate kurtosis with two-step monotone missing data can be defined, and asymptotic results of

the expectation and variance are given using a perturbation method. For references partially related to

the perturbation method described in this paper, see Kawasaki and Seo [10] and Kawasaki et al. [11].

The rest of this paper is organized as follows. Section 2 introduces two-step monotone missing data

and provides a definition of the sample measure of multivariate kurtosis using such data. In Section

3, we derive the expectation and variance of the sample measure of multivariate kurtosis defined in

Section 2, where the result is partly an approximation through an asymptotic expansion. In Section 4,

some simulation results for two-step monotone missing data are presented to investigate the accuracy

of the normal approximation of the test statistics proposed in this paper. We also provide a numerical

example to illustrate the method in Section 4. Finally, we give some concluding remarks in Section 5.

2 Multivariate kurtosis with two-step monotone missing data

Let x be a p-dimensional random vector with mean vector µ and covariance matrix Σ. The population

measure of multivariate kurtosis is defined as

β2,p = E[{(x− µ)⊤Σ−1(x− µ)}2].

Under multivariate normality, we note that β2,p = p(p + 2). Before defining the sample measure of

multivariate kurtosis in the case of two-step monotone missing data, we provide a definition of the

multivariate sample kurtosis under complete data for comparison and correspondence. Let x1, . . . ,xN

be N random sample vectors from a p-variate population with mean vector µ and covariance matrix
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Σ. Then, as a sample analogue of multivariate kurtosis, we define the following:

b2,p =
1

N

N∑
i=1

{(xi − x)⊤S−1(xi − x)}2, (1)

where x = N−1
∑N

i=1 xi and S = N−1
∑N

i=1(xi−x)(xi−x)⊤. The definition in (1) is from Mardia [14],

and has been applied as a test statistic for an MVN test by deriving the expectation and variance of

b2,p under multivariate normality.

As a type of foreshadowing, in the case of the population multivariate kurtosis, let Z = (x −

µ)⊤Σ−1(x− µ), and thus β2,p = E[Z2]; in addition, we can write Z = Z1 + Z2·1, where

Z1 = (x1 − µ1)
⊤Σ−1

11 (x1 − µ1), Z2·1 = (x2·1 − µ2·1)
⊤Σ−1

22·1(x2·1 − µ2·1),

and

x =

(
x1

x2

)
, µ =

(
µ1

µ2

)
, Σ =

(
Σ11 Σ12

Σ21 Σ22

)
,

x2·1 = x2 −Σ21Σ
−1
11 x1, µ2·1 = µ2 −Σ21Σ

−1
11 µ1, Σ22·1 = Σ22 −Σ21Σ

−1
11 Σ12.

Under multivariate normality, we note that E[Z2
1 ] = p1(p1 + 2), and E[Z2

2·1] = p2(p2 + 2). Because

Z1 and Z2·1 are independent, it also indicates that β2,p = p(p + 2). Similar to this decomposition,

consider the sample analogue of the multivariate kurtosis under two-step monotone missing data.

Let x1, . . . ,xN1 be N1 p-variate random sample vectors and x1,N1+1, . . . ,x1,N be N2 p1-variate

random sample vectors. Two-step monotone missing data can then be written as follows:

x⊤
1,1 x⊤

2,1
...

...
x⊤
1,N1

x⊤
2,N1

x⊤
1,N1+1 ∗
...

...
x⊤
1,N ∗


,

where xi = (x⊤
1,i,x

⊤
2,i)

⊤, i ∈ {1, . . . , N1}, and “∗” indicates a missing p2-dimensional vector (Kanda

and Fujikoshi [9]; Kawasaki and Seo [10]). Furthermore, we assume a multivariate normal distribution

for two-step monotone missing data, i.e.,

x1, . . . ,xN1

i.i.d.∼ Np(µ,Σ), x1,N1+1, . . . ,x1,N
i.i.d.∼ Np1(µ1,Σ11).
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The sample measure of multivariate kurtosis can be defined as follows:

b2,p1,p2 = R1 +R2 +R3, (2)

where

R1 =
1

N

N∑
i=1

U2
1,i, R2 =

1

N1

N1∑
i=1

U2
2·1,i, R3 =

2

N1

N1∑
i=1

U1,iU2·1,i,

and

U1,i = (x1,i − µ̂1)
⊤Σ̂

−1

11 (x1,i − µ̂1); U2·1,i = (x2·1,i − µ̂2·1)
⊤Σ̂

−1

22·1(x2·1,i − µ̂2·1);

x2·1,i = x2,i − Σ̂21Σ̂
−1

11 x1,i; µ̂1, Σ̂11, µ̂2·1, and Σ̂22·1 are MLEs of µ1, Σ11, µ2·1 = µ2 −Σ21Σ
−1
11 µ1,

and Σ22·1 = Σ22 −Σ21Σ
−1
11 Σ12, respectively. The MLEs of µ and Σ were derived by Anderson and

Olkin [1] for two-step monotone missing data. For k-step monotone missing data, including the case

of two-step monotone missing data, see Jinadasa and Tracy [4] and Kanda and Fujikoshi [9]. Kanda

and Fujikoshi [9] also provides the properties of their distributions. In addition, we use the following

definition as a notation.

x(1) =
1

N1

N1∑
i=1

xi =

(
x(1),1

x(1),2

)
, S(1) =

1

N1

N1∑
i=1

(xi − x(1))(xi − x(1))
⊤ =

(
S(1),11 S(1),12

S(1),21 S(1),22

)
,

x(2) =
1

N2

N∑
i=N1+1

x1,i, S(2) =
1

N2

N∑
i=N1+1

(x1,i − x(2))(x1,i − x(2))
⊤,

xT =
1

N

N∑
i=1

x1,i, ST =
1

N

N∑
i=1

(x1,i − xT )(x1,i − xT )
⊤.

We note that

xT = rx(1),1 + (1− r)x(2), ST = rS(1),11 + (1− r)S(2) + r(1− r)(x(1),1 − x(2))(x(1),1 − x(2))
⊤,

where r is a constant such that N1 = rN, 0 < r < 1. By substituting these MLEs into U1,i and U2·1,i,

we can write

U1,i = (x1,i − xT )
⊤S−1

T (x1,i − xT ), (3)

U2·1,i = (x2·1,i − µ̂2·1)
⊤Σ̂

−1

22·1(x2·1,i − µ̂2·1), (4)
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respectively, where x2·1,i = x2,i − S(1),21S
−1
(1),11x1,i, µ̂2·1 = x(1),2 − S(1),21S

−1
(1),11x(1),1, and Σ̂22·1 =

S(1),22 − S(1),21S
−1
(1),11S(1),12. In the next section, we consider the expectation and variance of b2,p1,p2

in (2).

3 Moments of multivariate sample kurtosis

In this section, we consider the first and second moments of b2,p1,p2 under multivariate normality.

Before that, the expectation and variance of b2,p in (1), i.e., the multivariate sample kurtosis under

complete data, is given by Mardia [14] as follows:

E[b2,p] = p(p+ 2)
N − 1

N + 1
, (5)

Var[b2,p] = 8p(p+ 2)
(N − 3)(N − p− 1)(N − p+ 1)

(N + 1)2(N + 3)(N + 5)
. (6)

For further details, see Siotani et al. [16]. Using this result in (5), we obtain

E[R1] = p1(p1 + 2)
N − 1

N + 1
. (7)

For E[Ri], i ∈ {2, 3}, although it is difficult to provide an exact expectation ofRi, we give an asymptotic

expansion of E[Ri] using the perturbation expansion method, where N1 and N → ∞ with r (= N1/N)

→ δ ∈ (0, 1]. As a result, we obtain

E[R2] = p2(p2 + 2)− 2

rN
p2(p2 + 2) + O(N− 3

2 ), E[R3] = 2p1p2 −
4

rN
p1p2 +O(N− 3

2 ). (8)

See Appendix A for details of the derivation. Therefore, the expectation of b2,p1,p2 is given by

E[b2,p1,p2 ] = p(p+ 2) +
c

N
+O(N− 3

2 ), c = −2

{
1

r
p(p+ 2) +

(
1− 1

r

)
p1(p1 + 2)

}
.

From this result, we propose an approximate asymptotic expansion given by

m1 = p(p+ 2) +
c

N
. (9)

Furthermore, because the exact expectations of R1 is given by (7), as a nearly equal approximation

of E[b2,p1,p2 ], we can also propose the following:

m2 = p(p+ 2)− 2

N + 1
p1(p1 + 2)− 2

rN
p2(2p1 + p2 + 2). (10)
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Next, we consider the variance of b2,p1,p2 , which is given by

Var[b2,p1,p2 ] =
3∑

i=1

Var[Ri] + 2
3∑

i=1

3∑
j=1

i ̸=j

Cov[Ri, Rj ].

From (6), which is the result of Mardia [14], we obtain

Var[R1] = 8p1(p1 + 2)
(N − 3)(N − p1 − 1)(N − p1 + 1)

(N + 1)2(N + 3)(N + 5)
. (11)

The variances of R2 and R3 also provide asymptotic results using the same method as the derivation

of the expectation. To summarize these results, Var[R2] and Var[R3] are given by the following:

Var[R2] =
1

N
σ2
2 +O(N− 3

2 ), Var[R3] =
1

N
σ2
3 +O(N− 3

2 ), (12)

respectively, where

σ2
2 =

8

r
p2(p2 + 2), σ2

3 = 8p1p2

{(
1

r
− 1

)
p2 +

2

r

}
.

See Appendix B for details of the derivation. Noting that the covariances between Ri and Rj , where

1 ≤ i < j ≤ 3, are O(N−3/2), the variance of b2,p1,p2 is given by the following:

Var(b2,p1,p2) =
1

N
σ2 +O(N− 3

2 ), σ2 = 8

[
p1(p1 + 2) +

1

r
p2(p2 + 2) + p1p2

{(
1

r
− 1

)
p2 +

2

r

}]
. (13)

Because the exact variance is given as in (11) for R1, a nearly equal approximation of Var[b2,p1,p2 ] can

be proposed:

ν2 = ν21 +
8

rN
p2{(1− r)p1p2 + 2p1 + p2 + 2}, (14)

where

ν21 = 8p1(p1 + 2)
(N − 3)(N − p1 − 1)(N − p1 + 1)

(N + 1)2(N + 3)(N + 5)
.
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Thus, we propose the following three test statistics:

ZMM =
b2,p1,p2 − p(p+ 2)√

σ2

N

, (15)

Z∗
MM =

b2,p1,p2 −
{
p(p+ 2) +

c

N

}
√

σ2

N

, (16)

Z∗∗
MM =

b2,p1,p2 −
{
p(p+ 2)− 2

N + 1
p1(p1 + 2)− 2

rN
p2(2p1 + p2 + 2)

}
√

ν21 +
8

rN
p2
{
(1− r)p1p2 + 2p1 + p2 + 2

} . (17)

Note that these test statistics are asymptotically distributed as N(0, 1), where N1 and N → ∞ with

r → δ ∈ (0, 1].

4 Simulation studies and an example

In this section, the normal approximation for the three test statistics ZMM , Z∗
MM , and Z∗∗

MM in (15),

(16), and (17) is assessed based on a Monte Carlo simulation. Figure 1 presents histograms for ZMM ,

Z∗
MM , and Z∗∗

MM from the results of 100,000 simulations. The random multidimensional data follow a

multivariate standard normal distribution, and the histograms shown in Figure 1 are for the following

parameter sets: (p1, p2) = (2, 2), (5, 5), and (N1, N2) = (40, 10), (100, 10), (400, 10). To show whether

the histograms have a standard normal distribution, a standard normal density curve is also included

in Figure 1. It can be seen from the figure that the shape of the histogram approaches that of the

density function of a standard normal distribution as sample size N1 increases. In particular, the

histogram of Z∗∗
MM is fit to a standard normal density curve even when the sample size is moderately

small.

Table 1 lists the simulation values and theoretical results for the expectation and variance of

b2,p1,p2 , respectively. For the simulations, 100,000 experiments were conducted for certain combinations

of parameters. The parameter settings for the simulation are (p1, p2) = (2, 2), (3, 3), (5, 5) for the

dimensions and (N1, N2) = (m,n), m ∈ {20, 30, 40, 100, 200, 400}, n ∈ {10, 20} for the sample sizes.

For the theoretical results, the expectation is given based on the value of the expansion at up to N−1,
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m1, and the approximate value, m2. It can be seen from Table 1 that both the empirical value and

theoretical results m1 and m2 converge to p(p+2), and in particular, the approximation m2 is highly

accurate for all cases. Regarding the variance, Table 1 shows that the empirical value of the variance

multiplied by N converges to 8p(p+2) as N1 increases. It can also be seen that the variance through

the approximation ν2 is an extremely good approximation for the majority of cases.

Next, as shown in Table 2, the empirical expectation, variance, skewness, and kurtosis of the

three test statistics, ZMM , Z∗
MM , and Z∗∗

MM are given. The settings for the simulation parameters

are the same as those in Table 1. From Table 2, we can see that as the sample size increases, the

expectation, variance, skewness, and kurtosis of any test statistics approach the corresponding values

of the standard normal distribution of 0, 1, 0, and 3, respectively. In particular, it can be seen that

the empirical expectation and variance of Z∗∗
MM converge to 0 and 1 more quickly than those of ZMM

and Z∗
MM . Note that, because these three test statistics differ only in terms of location and scale,

their skewness and kurtosis are the same.

In Table 3, we give a type I error for the three test statistics. The parameter settings are the

same as before, where α = 0.05. From the results in Table 3, we can see that the type I errors of

test statistics are closer to 0.05 as N1 increases. In particular, it can be seen that the type I error of

Z∗∗
MM is closer to 0.05 than the those of Z∗

MM and ZMM in most cases. It can be seen that this result

follows the same trend as Mardia’s ZM and Z∗
M for the complete data in Enomoto et al.’s study [2].

Note that, because ZMM and Z∗
MM statistics differ only in terms of location, their type I errors are

the same.

Finally, in this paper, we consider Fisher’s Iris data to illustrate the proposed method. The Iris

data handled here presents the measurements of the sepal length and width, and the pedal length

and width, in centimeters of 50 Iris virginica plants. To make the dataset with two-step monotone

missing data, we artificially selected 10 plants at random from the 50 plants, and from the data of

these 10 plants, we excluded the data on the pedal length and width, leaving only the data on the

sepal length and width. That is, we created a dataset in which 40 of the plants consisted of 4 variables,

and 10 plants consisted of 2 variables. The dataset has (p1, p2) = (2, 2) and (N1, N2) = (40, 10). From
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these data, the values of b2,p1,p2 are calculated as b2,p1,p2 = 24.09, and the values of the test statistics

are ZMM = 0.043, Z∗
MM = 0.554, and Z∗∗

MM = 0.574. Thus, it can be seen that the multivariate

normality is not rejected at the 5% level of significance. Incidentally, in the case of complete data

(p = 4, N = 50) for Iris virginica, Mardia’s multivariate sample kurtosis, b2,p = 24.30, and the value

of the test statistic Z∗
M is 0.782, where the Z∗

M statistic is defined for the complete data. Therefore,

the case of complete data is also not rejected.

5 Conclusion

In this paper, we defined a new sample measure of multivariate kurtosis when the type of data has a

two-step monotone pattern of missing observations. This approach is based on Mardia’s multivariate

kurtosis, and we considered its sample version by decomposing the multivariate kurtosis. We then

developed test statistics for an MVN test by asymptotically evaluating the expectation and variance

using an asymptotic expansion procedure. In particular, in some parts of the decomposition of multi-

variate kurtosis, we also provide the exact expectations and variances in their sample version. Hence,

it was possible to give a test statistic with a better approximation even when the sample size is mod-

erately small. Future studies will involve extending the method to cases with more than a three-step

monotone pattern and deriving a normalizing transformation statistic for the test statistic given in

this paper.
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Figure 1: Histogram of the three test statistics ZMM , Z∗
MM , and Z∗∗

MM in (15), (16), and (17) for dimensions

(p1, p2) = (2, 2), (5, 5) and sample sizes (N1, N2) = (40, 10), (100, 10), and (400, 10).
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Table 1: Expectations and variances of b2,p1,p2 for (p1, p2) = (2, 2), (3, 3), and (5, 5).

Simulation Approximation

p1 p2 N1 N2 E[b2,p1,p2
] NVar[b2,p1,p2

] m1 m2 σ2 Nν2

2 2 20 10 21.97 124.99 21.87 21.88 288.00 260.57

30 22.58 140.31 22.53 22.54 256.00 234.02

40 22.91 149.50 22.88 22.89 240.00 221.68

100 23.54 172.61 23.53 23.54 211.20 202.07

200 23.76 180.12 23.76 23.76 201.60 196.63

400 23.88 187.08 23.88 23.88 196.80 194.20

2 2 20 20 22.11 182.90 22.00 22.01 384.00 362.02

30 22.67 188.44 22.61 22.62 320.00 301.68

40 22.95 187.83 22.93 22.94 288.00 272.31

100 23.55 190.68 23.55 23.55 230.40 221.98

200 23.77 191.34 23.77 23.77 211.20 206.45

400 23.88 192.64 23.88 23.88 201.60 199.06

3 3 20 10 43.92 242.12 43.70 43.73 624.00 567.75

30 45.16 273.74 45.05 45.07 544.00 498.69

40 45.81 294.54 45.75 45.76 504.00 466.12

100 47.07 339.47 47.07 47.07 432.00 412.99

200 47.53 360.61 47.53 47.53 408.00 397.63

400 47.76 374.28 47.76 47.76 396.00 390.57

3 3 20 20 44.18 385.05 43.95 43.97 864.00 818.69

30 45.30 386.79 45.20 45.21 704.00 666.12

40 45.90 381.78 45.85 45.86 624.00 591.48

100 47.10 382.23 47.09 47.09 480.00 462.45

200 47.53 384.59 47.53 47.53 432.00 422.08

400 47.77 383.67 47.76 47.76 408.00 402.70

5 5 20 10 109.72 576.25 109.17 109.24 1800.00 1647.50

30 112.84 648.28 112.58 112.63 1520.00 1395.94

40 114.50 692.16 114.35 114.38 1380.00 1275.65

100 117.68 833.96 117.66 117.67 1128.00 1074.91

200 118.82 890.34 118.82 118.82 1044.00 1014.88

400 119.40 926.47 119.40 119.41 1002.00 986.71

5 5 20 20 110.32 1063.99 109.75 109.79 2640.00 2515.94

30 113.19 1028.54 112.93 112.96 2080.00 1975.65

40 114.72 1009.71 114.58 114.60 1800.00 1710.04

100 117.75 984.64 117.72 117.72 1296.00 1246.94

200 118.82 979.23 118.83 118.83 1128.00 1100.14

400 119.40 961.76 119.41 119.41 1044.00 1029.06

Note. m1 and m2 are approximate values of E[b2,p1,p2 ] given in (9) and (10), respectively. For the

variance, σ2 is an asymptotic variance of NVar[b2,p1,p2 ] in (13) , and Nν2 is an approximate variance

in (14) multiplied by N .
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Table 2: Expectations, variances, skewness, and kurtosis for the ZMM , Z∗
MM , and Z∗∗

MM test statistics

given in (15), (16), and (17).

Expectation Variance
Skewness Kurtosis

p1 p2 N1 N2 ZMM Z∗
MM Z∗∗

MM ZMM , Z∗
MM Z∗∗

MM

2 2 20 10 -0.655 0.034 0.030 0.434 0.480 0.674 3.821

30 -0.560 0.019 0.016 0.548 0.600 0.684 3.904

40 -0.500 0.011 0.009 0.623 0.674 0.644 3.801

100 -0.334 0.002 0.001 0.817 0.854 0.576 3.753

200 -0.247 -0.006 -0.006 0.893 0.916 0.434 3.395

400 -0.169 0.003 0.003 0.951 0.963 0.329 3.252

20 20 -0.611 0.034 0.032 0.476 0.505 0.666 3.859

30 -0.527 0.021 0.019 0.589 0.625 0.671 3.933

40 -0.477 0.010 0.008 0.652 0.690 0.658 3.916

100 -0.322 0.005 0.005 0.828 0.859 0.551 3.624

200 -0.238 -0.001 -0.001 0.906 0.927 0.437 3.429

400 -0.174 -0.003 -0.004 0.956 0.968 0.341 3.249

3 3 20 10 -0.894 0.049 0.044 0.388 0.426 0.476 3.377

30 -0.771 0.029 0.025 0.503 0.549 0.519 3.478

40 -0.689 0.019 0.016 0.584 0.632 0.496 3.437

100 -0.469 0.001 0.000 0.786 0.822 0.445 3.434

200 -0.339 0.000 0.000 0.884 0.907 0.360 3.273

400 -0.242 0.000 0.000 0.945 0.958 0.268 3.169

3 3 20 20 -0.823 0.049 0.046 0.446 0.470 0.460 3.328

30 -0.719 0.027 0.024 0.549 0.581 0.481 3.448

40 -0.653 0.014 0.012 0.612 0.645 0.473 3.423

100 -0.451 0.004 0.003 0.796 0.827 0.431 3.397

200 -0.332 0.001 0.000 0.890 0.911 0.344 3.237

400 -0.235 0.005 0.005 0.940 0.953 0.250 3.131

5 5 20 10 -1.327 0.072 0.065 0.320 0.350 0.284 3.099

30 -1.162 0.041 0.036 0.427 0.464 0.328 3.167

40 -1.047 0.029 0.024 0.502 0.543 0.335 3.167

100 -0.725 0.004 0.002 0.739 0.776 0.345 3.242

200 -0.528 0.002 0.002 0.853 0.877 0.278 3.174

400 -0.385 -0.004 -0.004 0.927 0.942 0.219 3.124

20 20 -1.191 0.070 0.067 0.403 0.423 0.286 3.148

30 -1.055 0.040 0.037 0.494 0.521 0.297 3.161

40 -0.965 0.024 0.021 0.561 0.590 0.321 3.187

100 -0.685 0.010 0.009 0.760 0.790 0.322 3.182

200 -0.520 -0.004 -0.005 0.868 0.890 0.274 3.169

400 -0.378 -0.003 -0.003 0.921 0.935 0.197 3.084
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Table 3: Empirical type I error of the ZMM , Z∗
MM , and Z∗∗

MM test statistics given in (15), (16), and

(17) for (p1, p2) = (2, 2), (3, 3), (5, 5), and α = 0.05.

Empirical type I error

p1 p2 N1 N2 ZMM Z∗
MM Z∗∗

MM

2 2 20 10 0.0075 0.0088 0.0110

30 0.0132 0.0141 0.0169

40 0.0176 0.0174 0.0206

100 0.0328 0.0307 0.0337

200 0.0394 0.0375 0.0397

400 0.0459 0.0445 0.0459

2 2 20 20 0.0095 0.0103 0.0116

30 0.0162 0.0160 0.0183

40 0.0206 0.0197 0.0219

100 0.0331 0.0322 0.0350

200 0.0409 0.0386 0.0406

400 0.0461 0.0448 0.0461

3 3 20 10 0.0274 0.0048 0.0060

30 0.0297 0.0096 0.0121

40 0.0332 0.0140 0.0170

100 0.0408 0.0279 0.0309

200 0.0448 0.0369 0.0392

400 0.0469 0.0432 0.0445

3 3 20 20 0.0278 0.0068 0.0078

30 0.0322 0.0122 0.0135

40 0.0337 0.0152 0.0176

100 0.0394 0.0288 0.0315

200 0.0449 0.0371 0.0390

400 0.0471 0.0432 0.0446

5 5 20 10 0.1274 0.0015 0.0019

30 0.1039 0.0046 0.0062

40 0.0909 0.0073 0.0093

100 0.0667 0.0237 0.0269

200 0.0587 0.0333 0.0357

400 0.0555 0.0408 0.0423

5 5 20 20 0.1086 0.0038 0.0045

30 0.0922 0.0072 0.0085

40 0.0833 0.0104 0.0121

100 0.0651 0.0247 0.0275

200 0.0598 0.0352 0.0376

400 0.0539 0.0406 0.0419
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Appendix A. Derivation of E[R2] and E[R3]

We derive asymptotic expansions of E[R2] and E[R3] using the perturbation method as follows. To

avoid the dependency between x1,i and xT and between x1,i and ST in (3), we use

x
(i)
T =

1

N − 1

N∑
α=1
α ̸= i

x1,α, S
(i)
T =

1

N − 1

N∑
α=1
α ̸= i

(x1,α − x
(i)
T )(x1,α − x

(i)
T )⊤.

For i ∈ {1, . . . , N1}, we can then write

x1,i − xT =

(
1− 1

N

)
(x1,i − x

(i)
T ),

S−1
T =

(
1 +

1

N

)
{S(i)

T }−1 − 1

N
{S(i)

T }−1(x1,i − x
(i)
T )(x1,i − x

(i)
T )⊤{S(i)

T }−1 +Op(N
−2).

Then, x
(i)
T and S

(i)
T can be written as

x
(i)
T =

N1 − 1

N − 1
x
(i)
(1),1 +

N2

N − 1
x(2),

S
(i)
T =

N1 − 1

N − 1
S

(i)
(1),11 +

N1 − 1

N − 1
(x

(i)
(1),1 − x

(i)
T )(x

(i)
(1),1 − x

(i)
T )⊤

+
N2

N − 1
S(2) +

N2

N − 1
(x(2) − x

(i)
T )(x(2) − x

(i)
T )⊤.

Herein, we use the perturbation method to expand the statistic U1,i in (3). Without a loss of generality,

we can assume that µ = 0 and Σ = Ip. Let

x
(i)
(1) =

x
(i)
(1),1

x
(i)
(1),2

 =
1√

N1 − 1

(
z1

z2

)
,

S
(i)
(1) =

 S
(i)
(1),11 S

(i)
(1),12

S
(i)
(1),21 S

(i)
(1),22

 =

(
1− 1

N1 − 1

){( Ip1 0

0 Ip2

)
+

1√
N1 − 1

(
V 11 V 12

V 21 V 22

)}
,

x(2) =
1√
N2

z3, S(2) =

(
1− 1

N2

)(
Ip1 +

1√
N2

Z

)
,

where

x
(i)
(1) =

1

N1 − 1

N1∑
α=1
α ̸= i

xα, S
(i)
(1) =

1

N1 − 1

N1∑
α=1
α ̸= i

(xα − x
(i)
(1))(xα − x

(i)
(1))

⊤.
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Then, U1,i, i ∈ {1, . . . , N1}, in (3) can be expanded as

U1,i = x⊤
1,ix1,i −

1√
N

A1 +
1

N
A2 +Op(N

− 3
2 ), (18)

where

A1 =
√
r(2x⊤

1,iz1 + x⊤
1,iV 11x1,i) +

√
1− r(2x⊤

1,iz3 + x⊤
1,iZx1,i),

A2 = x⊤
1,ix1,i − (x⊤

1,ix1,i)
2

+
√
r(1− r)(2z⊤

1 z3 + 2x⊤
1,iz1z

⊤
3 x1,i + 2x⊤

1,iV 11z3 + 2x⊤
1,iZz1 + 2x⊤

1,iV 11Zx1,i)

+ r

{
z⊤
1 z1 − (x⊤

1,iz3)
2 + 2x⊤

1,iV 11z1 + x⊤
1,iV

2
11x1,i

}
+ (1− r)

{
z⊤
3 z3 − (x⊤

1,iz1)
2 + 2x⊤

1,iZz3 + x⊤
1,iZ

2x1,i

}
.

Next, we consider a stochastic expansion of U2·1,i in (4). Expanding in the same way as the

perturbation expansion of U1,i, we obtain the following:

U2·1,i = x⊤
2,ix2,i −

1√
N

B1 +
1

N
B2 +Op(N

− 3
2 ), (19)

where

B1 =
1√
r
(2x⊤

2,iz2 + 2x⊤
1,iV 12x2,i + x⊤

2,iV 22x2,i),

B2 =
1

r

{
z⊤
2 z2 − 2x⊤

1,ix1,ix
⊤
2,ix2,i − (x⊤

2,ix2,i)
2 + 2x⊤

1,iV 12z2 + 2x⊤
2,iV 21z1 + 2x⊤

2,iV 22z2

+ 2x⊤
1,iV 11V 12x2,i + x⊤

1,iV 12V 21x1,i + 2x⊤
1,iV 12V 22x2,i + x⊤

2,iV 21V 12x2,i + x⊤
2,iV

2
22x2,i

}
.

Calculating the expectations of the expansion of U1,i squared in (18) and the product of two expanded

results in (18) and (19) with respect to x1,i, x2,i, zj , j ∈ {1, 2, 3}, Z, and V , we obtain (8).

Appendix B. Derivation of Var[R2] and Var[R3]

First, for i ̸= j, the second moments of R2 and R3 can be written as

E[R2
2] =

1

N1
E[U4

2·1,i] +

(
1− 1

N1

)
E[U2

2·1,iU
2
2·1,j ], (20)

E[R2
3] =

4

N1
E[U2

1,iU
2
2·1,i] + 4

(
1− 1

N1

)
E[U1,iU2·1,iU1,jU2·1,j ]. (21)
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For first terms on the right side of (20) and (21), we obtain

E[U4
2·1,i] = p2(p2 + 2)(p2 + 4)(p2 + 6) + O(N−1), E[U2

1,iU
2
2·1,i] = p1p2(p1 + 2)(p2 + 2) + O(N−1).

Furthermore, in the second terms on the right side of (20) and (21), to avoid dependence among

random variables, let

x
(i,j)
T =

1√
N − 2

N∑
α=1
α ̸= i
α ̸= j

x1,α, S
(i,j)
T =

1

N − 2

N∑
α=1
α ̸= i
α ̸= j

(x1,α − x
(i,j)
T )(x1,α − x

(i,j)
T )⊤.

That is, x
(i,j)
T and S

(i,j)
T are the sample mean vector and sample covariance matrix with x1,i and x1,j

removed from x1,1, . . . ,x1,N . Therefore, we can write

x1,i − xT =

(
1− 1

N

)
(x1,i − x

(i,j)
T )− 1

N
(x1,j − x

(i,j)
T ),

S−1
T = {S(i,j)

T }−1 +
1

N

[
2{S(i,j)

T }−1 − {S(i,j)
T }−1(x1,j − x

(i,j)
T )(x1,j − x

(i,j)
T )⊤{S(i,j)

T }−1

− {S(i,j)
T }−1(x1,j − x

(i,j)
T )(x1,j − x

(i,j)
T )⊤{S(i,j)

T }−1

]
+Op(N

−2).

Furthermore, x
(i,j)
T and S

(i,j)
T can be written as

x
(i,j)
T =

N1 − 2

N − 2
x
(i,j)
(1),1 +

N2

N − 1
x(2),

S
(i,j)
T =

N1 − 2

N − 2
S

(i,j)
(1),11 +

N1 − 2

N − 2
(x

(i,j)
(1),1 − x

(i,j)
T )(x

(i,j)
(1),1 − x

(i,j)
T )⊤

+
N2

N − 2
S(2) +

N2

N − 2
(x(2) − x

(i,j)
T )(x(2) − x

(i,j)
T )⊤,

and by using

x
(i,j)
(1) =

x
(i,j)
(1),1

x
(i,j)
(1),2

 =
1√

N1 − 2

(
u1

u2

)
,

S
(i,j)
(1) =

 S
(i,j)
(1),11 S

(i,j)
(1),12

S
(i,j)
(1),21 S

(i,j)
(1),22

 =

(
1− 1

N1 − 2

){( Ip1 0

0 Ip2

)
+

1√
N1 − 2

(
W 11 W 12

W 21 W 22

)}
,

where

x
(i,j)
(1) =

1

N1 − 2

N1∑
α=1
α ̸= i
α ̸= j

xα, S
(i,j)
(1) =

1

N1 − 2

N1∑
α=1
α ̸= i
α ̸= j

(xα − x
(i,j)
(1) )(xα − x

(i,j)
(1) )⊤,
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U1,i and U2·1,i are expanded as

U1,i = x⊤
1,ix1,i −

1√
N

C1 +
1

N
C2 +Op(N

− 3
2 ), U2·1,i = x⊤

2,ix2,i −
1√
N

D1 +
1

N
D2 +Op(N

− 3
2 ),

where

C1 =
√
r(2x⊤

1,iu1 + x⊤
1,iW 11x1,i) +

√
1− r(2x⊤

1,iz3 + x⊤
1,iZx1,i),

C2 = 2x⊤
1,ix1,i − 2x⊤

1,ix1,j − (x⊤
1,ix1,i)

2 − (x⊤
1,ix1,j)

2

+
√

r(1− r)(2u⊤
1 z3 + 2x⊤

1,iu1z
⊤
3 x1,i + 2x⊤

1,iW 11z3 + 2x⊤
1,iZu1 + 2x⊤

1,iW 11Zx1,i)

+ r

{
u⊤
1 u1 − (x⊤

1,iz3)
2 + 2x⊤

1,iW 11u1 + x⊤
1,iW

2
11x1,i

}
+ (1− r)

{
z⊤
3 z3 − (x⊤

1,iu1)
2 + 2x⊤

1,iZz3 + x⊤
1,iZ

2x1,i

}
,

D1 =
1√
r
(2x⊤

2,iu2 + 2x⊤
1,iW 12x2,i + x⊤

2,iW 22x2,i),

D2 =
1

r
{x⊤

2,ix2,i − 2x⊤
2,ix2,j + u⊤

2 u2 − 2x⊤
1,ix1,ix

⊤
2,ix2,i − 2x⊤

1,ix1,jx
⊤
2,jx2,i − (x⊤

2,ix2,i)
2 − (x⊤

2,ix2,j)
2

+ 2x⊤
1,iW 12u2 + 2x⊤

2,iW 21u1 + 2x⊤
2,iW 22u2 + 2x⊤

1,iW 11W 12x2,i + x⊤
1,iW 12W 21x1,i

+ 2x⊤
1,iW 12W 22x2,i + x⊤

2,iW 21W 12x2,i + x⊤
2,iW

2
22x2,i}.

Expansions of U1,j and U2·1,j are obtained by replacing the subscript i in U1,i and U2·1,j with the

subscript j, respectively. Therefore, calculating the expectation of U2
2·1,iU

2
2·1,j with respect to x1,i,

x1,j , x2,i, x2,j , u1, u2, and W , and the expectation of U1,iU1,jU2·1,iU2·1,j with respect to x1,i, x1,j ,

x2,i, x2,j , u1, u2, z3, W , and Z, we obtain

E[U2
2·1,iU

2
2·1,j ] = p22(p2 + 2)2 − 4

rN
p2(p2 + 2)3 +O(N− 3

2 ),

E[U1,iU1,jU2·1,iU2·1,j ] = p21p
2
2 −

2

N
p1p

2
2 −

2

rN
p21p2(2p2 + 1) + O(N− 3

2 ).

Thus, we obtain (12).
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