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Abstract

Generalized fused Lasso (GFL) is an extension of fused Lasso and performs multivariate
trend filtering based on adjacent information among parameters. This paper deals with an op-
timization problem for GFL logistic regression. Model parameters for the generalized linear
model including the logistic regression model are usually optimized by minimizing a linear
approximation of an objective function because the minimizer of the objective function cannot
be obtained in closed form. In this paper, we propose an algorithm for solving the optimization
problem for GFL logistic regression without approximating the objective function, for the pur-
pose of optimizing fast and accurately. Specifically, we derive update equations of a coordinate
descent algorithm for solving the optimization problem in closed form. Moreover, we show an
example for spatio-temporal data analysis.
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1. Introduction

We consider the following logistic regression model:

yi ∼ B(mi, πi), πi =
exp(µi)

1 + exp(µi)
(i = 1, . . . , n), (1)
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where µi is an unknown parameter. The maximum likelihood estimation method is one of the
most basic methods for estimating µi, and the estimator is calculated by minimizing a negative
log-likelihood function (NLF):

n∑
i=1

[
mi log{1 + exp(µi)} − yiµi

]
. (2)

Hence, the maximum likelihood estimator (MLE) of µi is given by µ̂i = log{yi/(mi − yi)}. Al-
though an MLE has several good properties, e.g., efficiency, asymptotic normality, and consis-
tency, the MLE for model (1) may induce overfitting because the sample size and the number
of parameters are equal. We can expect to avoid such overfitting by estimating under some
constraint. One of the typical methods is a penalized estimation method that is based on min-
imizing the function obtained by adding a penalty term to an NLF. For example, we can use
ridge regression (Hoerl & Kennard, 1970) or Lasso (Tibshirani, 1996) (e.g., see Cessie & van
Houwelingen, 1992; Shevade & Keerthi, 2003; Pereira et al., 2016, for ridge regression and
Lasso for logistic regression). In this paper, we consider multivariate trend filtering (e.g., Tib-
shirani, 2014) by generalized fused Lasso (GFL; e.g., Tibshirani, 2014; Xin et al., 2014, 2016;
Wang et al., 2016; Ohishi et al., 2021), where multivariate trend filtering is an extension of
trend filtering (e.g., Leser, 1961; Osborne, 1995; Kim et al., 2009) for multiple factors and
GFL is an extension of fused Lasso (Tibshirani et al., 2005) for general adjacent information.
Lee et al. (2014), Xin et al. (2014), Yu et al. (2015), and Yamamura et al. (2021) studied GFL
logistic regression (including the ordinary fused Lasso logistic regression). To estimate the
parameters µi (i = 1, . . . , n) in the model (1), we consider minimizing the GFL-penalized NLF
defined by adding the GFL penalty to NLF (2):

ℓ(µ) =
n∑

i=1

[
mi log{1 + exp(µi)} − yiµi

]
+ λ

n∑
i=1

∑
j∈Di

wi j|µi − µ j|, (3)

where µ = (µ1, . . . , µn)′, λ ≥ 0 is a tuning parameter, Di ⊆ {1, . . . , n}\{i} is an index set ex-
pressing adjacent information among individuals and satisfying j ∈ Di ⇔ i ∈ D j, and wi j > 0
is a penalty weight based on Zou (2006) and satisfies wi j = w ji. Since the purpose of this paper
is to discuss trend filtering, we do not adopt an ℓ1 penalty to shrink µi towards 0, unlike in Lee
et al. (2014), Xin et al. (2014), and Yu et al. (2015).

The ordinary fused Lasso, which performs trend filtering by order relation as adjacent infor-
mation, deals with the following limited adjacent information:

Di =


{2} (i = 1)

{i − 1, i + 1} (i = 2, . . . , n − 1)

{n − 1} (i = n)

.
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Such relations can be seen in variables with respect to time, genomic sequence, and so on. On
the other hand, GFL can deal with general adjacent information. Figure 1 is an example of
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Figure 1. Example for spatial adjacent relationships when n = 4
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Figure 2. Example for spatio-temporal adjacent relationships when n = 8

spatial adjacency when n = 4, and the adjacent information is expressed as

D1 = {2, 3, 4}, D2 = {1, 3}, D3 = {1, 2}, D4 = {1}.

Furthermore, Figure 2 is an example of spatio-temporal adjacency when n = 8, which is by
adding a time factor to the spatial adjacency in Figure 1. The adjacent information in Figure 2
is expressed as
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D1 = {2, 3, 4, 5}, D2 = {1, 3, 6}, D3 = {1, 2, 7}, D4 = {1, 8},
D5 = {1, 6, 7, 8}, D6 = {2, 5, 7}, D7 = {3, 5, 6}, D8 = {4, 5}.

Although Figure 1 expresses an example for only one factor and Figure 2 expresses an exam-
ple for two factors, GFL can deal with the general case of adjacent information based on p

factors. For example, it is possible to consider adjacent information based on the three factors
space, time, and building age when modeling real estate price. GFL can be applied to vari-
ous data analyses. For instance, Lee et al. (2014) and Xin et al. (2014) applied it diagnosing
Alzheimer’s disease, Yu et al. (2015) applied it classifying spectral data, Ohishi et al. (2021)
applied it estimating regional effects on apartment rents, and Yamamura et al. (2021) applied
it estimating spatio-temporal trends in crime rate.

Multivariate trend filtering based on GFL has various advantages, such as that optimizations
of location, number, and bandwidth of basis functions are not required, as opposed to smooth-
ing by splines. On the other hand, in parameter estimation for a generalized linear model
including a logistic regression model, since the estimator cannot usually be obtained in closed
form, the parameters are often estimated by minimizing a simple function transformed from
an objective function, e.g., a linear approximation. Actually, by minimizing a linear approx-
imation of an objective function, Lee et al. (2014) and Yu et al. (2015) estimated parameters
for fused Lasso logistic regression and Xin et al. (2014) and Yamamura et al. (2021) estimated
parameters for GFL logistic regression. However, in such a case, there is the concern that a
gap between the minimizer of the approximation and the true minimizer occurs and that the
minimization is slower. Hence, it is mathematically and practically better to minimize an ob-
jective function without any approximation. Therefore, in this paper, we propose an algorithm
to minimize the objective function (3) without any approximation. Specifically, we focus on
a coordinate descent algorithm and derive the update equations in closed form. Moreover, we
show an example for spatio-temporal data analysis.

The remainder of the paper is organized as follows. In section 2, we describe a coordi-
nate descent algorithm and derive the closed-form update equations of the coordinate descent
algorithm for GFL logistic regression. In section 3, we demonstrate the performance of our
algorithm and apply GFL logistic regression to an actual dataset. Section 4 presents a summary
of the paper.

2. Main Result

2.1. What is a Coordinate Descent Algorithm?

In this section, we describe the optimization problem for GFL logistic regression, specifi-
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cally a coordinate descent algorithm for minimizing the objective function (3). In general, a
coordinate descent algorithm finds the minimizer of an objective function by repeating mini-
mization along each coordinate direction. In our problem, we minimize the objective function
(3) along each µi (i = 1, . . . , n)-direction and repeat this until the solution converges. Friedman
et al. (2007) and Ohishi et al. (2021) proposed coordinate descent algorithms for fused Lasso
and GFL, respectively, in the case of a linear regression model. However, as Friedman et al.

(2007) described, minimizing only along each simple coordinate direction fails in the case of
minimizing the objective function in the GFL optimization problem. GFL shrinks a difference
µi − µ j and the two parameters are often equal. When the current solutions for µi and µ j are
equal, the two solutions get stuck and cannot reach the minimizers in a coordinate descent
algorithm. To avoid such a problem, the coordinate descent algorithms proposed by Friedman
et al. (2007) and Ohishi et al. (2021) consist of two cycles called a descent cycle and a fu-
sion cycle. The descent cycle performs minimization along each simple coordinate direction
as above. Then, the fusion cycle is executed when current solutions for several parameters
are equal in the descent cycle. In the fusion cycle, the descent cycle is executed by regarding
parameters with equal current solutions as a single parameter. By executing the fusion cycle,
we can avoid solutions getting stuck and the objective function can be minimized. Hence, in
this paper, the descent cycle and the fusion cycle are adopted as in a similar way to the two
previous studies and we derive each update equation in closed form.

First, we consider the descent cycle. In the descent cycle, the objective function (3) is mini-
mized along µi-direction. That is, we partially minimize the objective function with respect to
µi. To do this, we extract terms which depend on µi from the objective function. Regarding the
penalty term of the objective function, Ohishi et al. (2021) derived the following equation:

n∑
i=1

∑
j∈Di

wi j|µi − µ j| = 2
∑
j∈Di

wi j|µi − µ j| +
n∑
ℓ,i

∑
j∈Dℓ\{i}

wℓ j|µℓ − µ j|.

From this equation, the following function is the objective function along the µi-direction in
the descent cycle:

ℓi(µ) = mi log{1 + exp(µ)} − yiµ + 2λ
∑
j∈Di

wi j|µ − µ̂ j|, (4)

where the notation µ̂ j ( j ∈ {1, . . . , n}\{i}) means µ j is fixed.
Next, we consider the fusion cycle. In the fusion cycle, the objective function (3) is mini-

mized by regarding parameters with equal current solutions as a single parameter. Now sup-
pose that we have µ̂1, . . . , µ̂n as current solutions of µ1, . . . , µn and that there exist combinations
of parameters with equal solutions. Then, let ξ̂1, . . . , ξ̂b (b < n) be distinct values of µ̂1, . . . , µ̂n

and define the following index sets:
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El =
{
i ∈ {1, . . . , n} | µ̂i = ξ̂l

}
(l = 1, . . . , b).

These index sets express the combinations of parameters with equal solutions, and it is clear
that El , ∅, El ∩ E j = ∅ (l , j), and ∪b

l=1El = {1, . . . , n}. For example, E1 = {1, 2, 3} means
µ̂1 = µ̂2 = µ̂3 = ξ̂1. Then, parameters for individuals in El, that is µi (i ∈ El), are regarded as
a single parameter ξl and the objective function (3) is minimized along the ξl-direction. That
is, we partially minimize the objective function with respect to ξl. To do this, we extract terms
which depend on ξl from the objective function. The first term of the objective function can be
decomposed as

n∑
i=1

[
mi log{1 + exp(µi)} − yiµi

]
=
∑
i∈El

mi log{1 + exp(ξl)} −
∑
i∈El

yiξl +
∑
i<El

[
mi log{1 + exp(µi)} − yiµi

]
,

where i < El in the last term of the above means i ∈ {1, . . . , n}\El. Regarding the penalty term
of the objective function, at the beginning, we define index sets expressing adjacent informa-
tion for El. Let D∗l be the index set defined by

D∗l = { j ∈ {1, . . . , b}\{l} | E j ∩ Fl , ∅}, Fl =
∪
i∈El

Di\El,

where D∗l satisfies D∗l , ∅ and j ∈ D∗l ⇔ l ∈ D∗j , and Fl is an index set expressing individuals
which are adjacent to i ∈ El. The definition of D∗l means El is adjacent to E j ( j ∈ D∗l ). After
that, we transform the weights wi j for |µi − µ j| ( j ∈ Di) to weights for |ξl − ξ j| ( j ∈ D∗l ). For
j ∈ D∗l , we define this as

w∗l j =
∑

(i,s)∈Jl j

wis, Jl j =
∪
i∈El

{i} × (E j ∩ Di).

Then, from Ohishi et al. (2021), the following equation holds:

n∑
i=1

∑
j∈Di

wi j|µi − µ j| = 2
∑
j∈D∗l

w∗l j|ξl − ξ j| +
∑
i<El

∑
j∈Di\El

wi j|µi − µ j|.

From the above, the following function is the objective function along the ξl-direction in the
fusion cycle:

ℓ∗l (ξ) =
∑
i∈El

mi log{1 + exp(ξ)} −
∑
i∈El

yiξ + 2λ
∑
j∈D∗l

w∗l j|ξ − ξ̂ j|, (5)

where the notation ξ̂ j means ξ j is fixed.
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Thus, we have to minimize the two functions (4) and (5) to obtain the update equations for
the descent cycle and the fusion cycle, respectively. Fortunately, the two functions are essen-
tially equal. Hence, it is sufficient to minimize the following function, which is a generalization
of (4) and (5):

f (x) = m log{1 + exp(x)} − yx + 2λ
r∑

j=1

w j|x − z j| (x ∈ R), (6)

where m, y, λ, w j are positive constants, z j is a constant, and m ≥ y.

2.2. Update Equations

In this section, we derive the update equations of the coordinate descent algorithm for GFL
logistic regression by minimizing (6). Since (6) has multiple non-differentiable points, first, we
judge it is minimized at each non-differentiable point or not by considering a subdifferential of
f at each non-differentiable point. A subdifferential of f at x̃ ∈ R is given by

∂ f (x̃) = {u ∈ R | f (x) ≥ f (x̃) + u(x − x̃) (∀x ∈ R)} = [g−(x̃), g+(x̃)
]
,

where g−(x) and g+(x) are left and right derivatives defined by

g−(x) = lim
δ→−0
g(x, δ), g+(x) = lim

δ→+0
g(x, δ), g(x, δ) =

f (x + δ) − f (x)
δ

.

The left and right derivatives at a non-differentiable point z j ( j ∈ {1, . . . , r}) are given by

g−(z j) =
m exp(z j)

1 + exp(z j)
− y − 2λw j + 2λ

r∑
l, j

wl sign(z j − zl),

g+(z j) =
m exp(z j)

1 + exp(z j)
− y + 2λw j + 2λ

r∑
l, j

wl sign(z j − zl).

Then, (6) is minimized at x = z j⋆ if there exists j⋆ ∈ {1, . . . , r} such that 0 ∈ ∂ f (z j⋆ ). Notice that
(6) is convex. Hence, j⋆ is unique if it exists. Next, we consider when j⋆ does not exist. Let
t j ( j = 1, . . . , r) be the jth order statistic of z1, . . . , zr and let s(x) = (sign(g−(x)), sign(g+(x))).
Then, only one of the following statements is true.

(S1) ∀ j ∈ {1, . . . , r}, s(t j) = (1, 1).

(S2) ∀ j ∈ {1, . . . , r}, s(t j) = (−1,−1).

(S3) ∃! j∗ ∈ {1, . . . , r − 1} s.t. ∀ j ∈ {1, . . . , r}, s(t j) =

(−1,−1) ( j ≤ j∗)

(1, 1) ( j > j∗)
.

7



Coordinate Descent of GFL Logistic Regression

The above statements tell us which interval includes the minimum. The interval including the
minimum is given by

I = (IL,IR) =


(−∞, t1) (S1)

(tr,∞) (S2)

(t j∗ , t j∗+1) (S3)

.

Hence, it is sufficient to search the minimizer in the interval I.
When x ∈ I, we can easily rewrite (6) in non-absolute form. That is, x − z j is positive for

j ∈ J+ and negative for j ∈ J−, where J+ and J− are index sets given by

J+ = { j ∈ {1, . . . , r} | z j ≤ IL}, J− = { j ∈ {1, . . . , r} | IR ≤ z j}.

Then, we have

r∑
j=1

w j|x − z j| =
∑
j∈J+

w j(x − z j) +
∑
j∈J−

w j(z j − x) = w̃x − u,

w̃ =
∑
j∈J+

w j −
∑
j∈J−

w j, u =
∑
j∈J+

w jz j −
∑
j∈J−

w jz j.

Hence, when x ∈ I, (6) is expressed as

f (x) = m log{1 + exp(x)} + cx − 2λu, c = 2λw̃ − y,

and we have

d
dx

f (x) =
m exp(x)

1 + exp(x)
+ c (x ∈ I).

From the above, a stationary point which is a point satisfying d f (x)/dx = 0 uniquely exists
and this is the minimizer of (6). That is, (6) is minimized at x = log{−c/(m + c)}.

Consequently, the minimizer of f (x) is given by the following theorem.

Theorem 1. Let x̂ be the minimizer of f (x). Then, x̂ is given by

x̂ =


z j⋆ ( j⋆ exists)

log
−c

m + c
( j⋆ does not exist)

.

Thus, the theorem gives us the minimizer of f (x) in closed form. By applying Theorem 1 to
equations (4) and (5), which are the objective functions for the descent cycle and the fusion
cycle, respectively, we can obtain the update equations of the coordinate descent algorithm for
minimizing (3), both in closed form.
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Here, we give the update equation for the descent cycle; i.e., we apply Theorem 1 to equation
(4). Let ji⋆ be an index defined by

ji⋆ ∈ Di s.t. 0 ∈ ∂ℓi(µ̂ ji⋆ ),

where ∂ℓi(·) is a subdifferential of ℓi. If ji⋆ exists, it is unique. If not, the interval Ii = (IiL,IiR)
including the minimum is defined by checking three statements (S1), (S2), and (S3). Then, the
update equation for the descent cycle is given in closed form as follows:

µ̂i =


µ̂ ji⋆ ( ji⋆ exists)

log
−ci

mi + ci
( ji⋆ does not exist)

,

where ci = 2λw̃i − yi and w̃i is given by

w̃i =
∑
j∈Ji+

wi j −
∑
j∈Ji−

wi j, Ji+ = { j ∈ Di | µ̂ j ≤ IiL}, Ji− = { j ∈ Di | IiR ≤ µ̂ j}.

In the process updating µi, if µi is updated by µ̂ j0 ( j0 ∈ Di), the current solutions for the indi-
viduals i and j0 are equal and the two individuals are joined together. The update equation for
the fusion cycle is obtained in closed form in a similar way.

2.3. Optimization Algorithm

In the previous section, we derived the closed-form update equations of the coordinate de-
scent algorithm for GFL logistic regression. Using these equations, the algorithm for minimiz-
ing the objective function (3) is summarized as

Algorithm 1.

Step 1. (Initialization) Set λ and an initial vector of µ.

Step 2. (Descent cycle) For i = 1, . . . , n, update µi by applying Theorem 1 to (4), and define

b. If b < n, go to Step 3. If not, go to Step 4.

Step 3. (Fusion cycle) For l = 1, . . . , b, update ξl (= µi, i ∈ El) by applying Theorem 1 to

(5).

Step 4. (Convergence judgment) If the solution converges, the algorithm terminates. If not,

return to Step 2.

When executing Algorithm 1, we have to decide a value for λ. The λ is a tuning parameter
to adjust the strength of the penalty term, i.e., the degree of smoothing. For example, if λ is
too small, most parameters will not be joined together and overfitting will not be improved. In
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opposition, if λ is too large, most parameters will be joined together and model fitting will de-
teriorate. Hence, the optimization of λ is an important problem for obtaining better estimates.
One simple strategy is executing Algorithm 1 for each of some candidate set of λ values and
selecting the optimal value by, e.g., minimizing a model selection criterion.

Our idea is to define λmax and to divide an interval (0, λmax]. Here, we give how to define
λmax based on the update equation for the descent cycle. More parameters are joined together
as λ increases and finally, all parameters are equal. It is best that λmax be the value such that
all parameters are equal. Let µ̂max be the estimator when all parameters are equal, which is
given by µ̂max = log{∑n

i=1 yi/
∑n

i=1(mi − yi)}. Then, we define λmax such that all parameters are
updated by µ̂max when all initial values are µ̂max. Such a condition is given by

mi exp(µ̂max)
1 + exp(µ̂max)

− yi − 2λwi ≤ 0 ≤ mi exp(µ̂max)
1 + exp(µ̂max)

− yi + 2λwi (∀i ∈ {1, . . . , n}),

where wi =
∑

j∈Di
wi j. Therefore, a sufficient condition that µi be updated to µ̂max is given by

λ ≥ λi,max =
|(mi − yi) exp(µ̂max) − yi|

2wi{1 + exp(µ̂max)} .

Consequently, we define λmax as

λmax = max
i∈{1,...,n}

λi,max. (7)

3. Numerical Studies

3.1. Simulations

First, we compare our algorithm to an existing algorithm (used in Yamamura et al., 2021; it
minimizes a linear approximation of the objective function) with respect to runtime and mini-
mum. We randomly define adjacent information Di (i = 1, . . . , n) among n individuals and true
joins E∗j ( j = 1, . . . , b∗ = n/10) of the individuals, where maxi∈{1,...,n} ri ≤ 10 and ri = #(Di).
Then, we generate simulation data by

yi ∼ B(mi, π j), π j =
exp(ξ∗j )

1 + exp(ξ∗j )
, ξ∗j = (−1) j/ j (i ∈ E∗j , j = 1, . . . , b∗).

In this simulation, the minimum of the objective function (3) and runtime of an algorithm are
separately compared via Monte Carlo simulation with 1,000 iterations.

Table 1 shows results for n ∈ {300, 1,000}, under a fixed λ, where the numbers of trials
mi (i = 1, . . . , n) were defined by a common setting or a random setting—the common setting
is m1 = · · · = mn = m0 ∈ {1,000, 10,000}; and the random setting (denoted by m0 = “random”)
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Table 1. Minimization and runtime

runtime (s) degrees of freedom
n m0 δ min (%) proposed existing proposed existing

300 1,000 100 100 0.99 0.83 128.45 1.65
1,000 100 0.47 1.21 231.99 8.85

10,000 100 0.14 2.95 277.69 73.68
10,000 100 100 1.02 1.13 82.74 2.20

1,000 100 0.59 1.45 206.40 7.45
10,000 100 0.14 2.33 268.26 41.32

random 100 100 1.10 1.34 98.86 1.91
1,000 100 0.63 2.06 213.79 8.33

10,000 100 0.28 7.94 269.59 56.18

1,000 1,000 100 100 6.90 2.31 310.06 1.17
1,000 100 3.16 2.75 686.90 3.78

10,000 100 0.78 7.44 911.87 44.30
10,000 100 100 6.60 4.40 192.95 1.31

1,000 100 3.81 4.71 603.69 4.54
10,000 100 0.95 6.80 860.66 21.20

random 100 100 7.04 6.54 125.65 1.12
1,000 100 5.73 7.91 530.91 2.97

10,000 100 2.74 16.67 821.38 18.33

is defining mi (i = 1, . . . , n) by sampling without replacement from {100, 101, . . . , 10,000}.
Regarding the value of λ, we set λ = λmax/δ for δ ∈ {100, 1,000, 10,000}, where λmax is given
by (7). The table displays three indexes: min, runtime, and degrees of freedom, where min ex-
presses the ratio (%) that the minimum obtained by our algorithm is smaller than that obtained
by the existing algorithm, runtime expresses the mean value of runtime, and degrees of free-

dom expresses the mean value of the degrees of freedom of the estimates. Since the values of
min are all 100%, we found that our algorithm can better minimize the objective function and
provide better estimates than the existing algorithm. The values of degrees of freedom tell us
that the existing algorithm joins parameters together at smaller λ. In particular, we can guess
that most parameters were equal at δ = 100, 1,000 in the existing algorithm. Moreover, in the
case that degrees of freedom is extremely small, the existing algorithm was fast and sometimes
faster than our algorithm. We can guess the reasons to be as follows: in the existing algorithm,
parameters are easily joined together, all parameters are often equal, and joined parameters
are hardly separated in the descent cycle. Although it can be seen that there are many gaps
between our algorithm and the existing algorithm, we consider that the results by our algo-
rithm are more trustworthy than those of the existing algorithm because our algorithm better
minimized the objective function.
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Next, we evaluate the selection probability of the true joins under the optimal tuning param-
eter selected by minimizing BIC (Schwarz, 1978), where the candidates for the optimal tuning
parameter are the 100 points defined by λmax(3/4)( j−1) ( j = 1, . . . , 100). We consider the same
situation as above except for the true parameters: here, the true parameters are defined by

ξ∗j = −2 +
4( j − 1)
b∗ − 1

( j = 1, . . . , b∗).

Moreover, the numbers of trials are defined by m1 = · · · = mn = nζ and ζ ∈
{1,000, 10,000, 100,000}. Table 2 shows the results for selection probability (%) via 1,000
iterations. From the table, we found that the selection probability increases as the numbers of
trials increase.

Table 2. Selection probability of true join

Selection probability (%)
b∗ ζ n = 300 n = 1,000

n/10 1,000 45.8 18.0
10,000 88.1 84.2

100,000 92.1 95.7

⌊n/3⌋ 1,000 12.5 2.4
10,000 76.5 64.0

100,000 89.0 91.3

⌊·⌋ is the floor function.

3.2. Real Data Analysis

In this section, we apply GFL logistic regression to spatio-temporal analysis. We use a
dataset about the crime rate in the Kinki region of Japan. The dataset is same as that used in
Yamamura et al. (2021) and comprises the municipality data K4201 and A1101 of the Sys-
tem of Social and Demographic Statistics downloaded from e-Stat of the Statistics Bureau of
the Ministry of Internal Affairs and Communications (see https://www.e-stat.go.jp/).
The data items are the number of crimes (K4201), the total population (A1101), city, and
year, where city indicates one of the 227 cities of the Kinki region (see Figure 3) and year
indicates one of the 14 years between 1995 and 2008. Note that the total population was re-
ported for 1995, 2000, and 2005. Therefore, for the years in which there were no observed
values for the total population, the values for the most recent past year are used. Hence, the
sample size is n = 227 × 14 = 3,178. In this analysis, we focus on a spatio-temporal fac-
tor, the city and year pair, and estimate the spatio-temporal trend for the crime rate. That is,
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Figure 3. The 227 cities in the Kinki region

we consider a logistic regression model in which mi is the population and yi is the number
of crimes for spatio-temporal i, and we estimate µi expressing spatio-temporal trend by GFL.
The adjacent information in the dataset is obtained as combined adjacent information of that
for city and year, similar to as in Figure 2. Regarding city, for example, Osaka is adjacent
to 11 cities, which are Sakai, Toyonaka, Suita, Moriguchi, Yao, Matsubara, Daito, Kadoma,
Settsu, Higashi-Osaka, and Amagasaki. Regarding year, for example, 2000 is adjacent to 1999
and 2001. Therefore, regarding the spatio-temporal relation, for example, Osaka in 2000 is
adjacent to Osaka in 1999 and 2001 and 11 cities in 2000 which are adjacent to Osaka. More-
over, the optimal tuning parameter is selected from 100 points, which are the same as those in
section 3.1, by minimizing BIC.

Figures 4 and 5 are choropleth maps showing the estimates of the crime rate for each year.
From the figures, the crime rates of the central part tend to be high for any year and particularly,
the crime rates are high as a whole in the early 2000s. Figure 6 shows crime rate estimates for
8 cities, which are the prefectural capitals of the prefectures of the Kinki region, as represen-
tative cities. Since years are not joined together very much in the figure, we can consider that
the trend of time changes is large changes each year.

4. Conclusion

In this paper, we proposed a coordinate descent algorithm for GFL logistic regression and
derived the update equations in closed form. Although parameters are often estimated by
minimizing an approximation of an objective function, our algorithm can minimize the ob-
jective function without any approximation. Since our algorithm does not use approximation
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1995 0.01
0.02
0.03
0.04
0.05

1996 0.01
0.02
0.03
0.04
0.05

1997 0.01
0.02
0.03
0.04
0.05

1998 0.01
0.02
0.03
0.04
0.05

1999 0.01
0.02
0.03
0.04
0.05

2000 0.01
0.02
0.03
0.04
0.05

2001 0.01
0.02
0.03
0.04
0.05

2002 0.01
0.02
0.03
0.04
0.05

2003 0.01
0.02
0.03
0.04
0.05

Figure 4. Crime rate estimates for each year (1/2)

and the minimizer along a coordinate direction is obtained exactly, our algorithm was able to
minimize the objective function better than the existing algorithm (which minimizes a linear
approximation of the objective function) in simulations. Moreover, although we applied GFL
to multivariate trend filtering based on two factors—time and space—in a real data analysis,
GFL can deal with the general case of multivariate trend filtering based on p factors.
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2004 0.01
0.02
0.03
0.04
0.05

2005 0.01
0.02
0.03
0.04
0.05

2006 0.01
0.02
0.03
0.04
0.05

2007 0.01
0.02
0.03
0.04
0.05

2008 0.01
0.02
0.03
0.04
0.05

Figure 5. Crime rate estimates for each year (2/2)
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Figure 6. Crime rate estimates for each city
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