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Abstract

The present paper is concerned with a constrained matrix optimization problem. The
constraint is referred to as the ℓ2,0-norm of the matrix, which is defined as the number of non-
zero row vectors of the matrix. We extend the discrete first-order algorithm by Bertsimas et
al. (2016) to solve the optimization problem. The extended algorithm is useful for selecting
variables in multivariate statistical models. Then, the convergence properties of the extended
algorithm are established. In numerical experiments, we apply the extended algorithm to
the optimization problem for the multivariate linear regression model. Furthermore, we also
incorporate selecting variables using information criteria into the optimization problem.

1 Introduction

Optimization problems exist in multiple areas and are widely required. Among optimization

problems, constrained matrix optimization problems are often used in estimating parameters

with constraints for multivariate statistical models, such as the multivariate linear regression

model [12, 13]. Consider the following constrained matrix optimization problem for a function

f : Rk×p → R:

min
Θ

f(Θ) subject to ∥Θ∥2,0 ≤ q, (1)

where ∥Θ∥2,0 is called the ℓ2,0-norm of a matrix Θ ∈ Rk×p and is defined as

∥Θ∥2,0 =

k∑
j=1

I(θj ̸= 0p), (2)

in which I(·) denotes the indicator function, θj is the j-th row vector of Θ, i.e., Θ = (θ1, . . . , θk)
′,

and 0p is a p-dimensional vector of zeros. Note that the ℓ2,0-norm is not a norm in the usual

sense because the ℓ2,0-norm lacks positive scalability: ∥aΘ∥2,0 = |a|∥Θ∥2,0 for any a ∈ R. For
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convenience, we refer to ∥·∥2,0 as the ℓ2,0-norm. By definition (2), the constraint in (1) explicitly

restricts the number of non-zero row vectors of Θ. From the viewpoint of statistical models,

such a constraint is useful for selecting variables in estimating parameters because variables

corresponding to zero-parameters can often be regarded as redundant in the model. Furthermore,

since it may be desirable to find variables that affect all of the responses in multivariate statistical

models (e.g., [9, 10, 14, 15]), it is important to consider the constraint in (1) because such variable

selection requires the use of a vector constraint, rather than a scalar constraint.

Optimization problems with the ℓ2,0-norm constraint are non-convex optimization problems

and are NP-hard because the ℓ2,0-norm is nonconvex and discontinuous. Hence, it is generally

desired to obtain algorithms to achieve a sensible solution of (1) within a reasonable computation

time. In multi-class classification with linear regression, Cai et al. [4] considered an efficient

algorithm based on the general method of augmented Lagrange multipliers for solving (1) when

the objective function is expressed as the ℓ2,1-norm of a matrix, where the ℓ2,1-norm is defined as

∥A∥2,1 =
∑p

j=1

(∑n
i=1 a

2
ij

)1/2
for a matrix A = (aij) ∈ Rn×p. For general objective functions,

Gotoh et al. [5] proposed a proximal algorithm for solving (1) when the objective function is

represented as a difference of two convex functions. On the other hand, Bertsimas et al. [3]

developed an algorithm for solving (1) only when p = 1 with smooth convex objective functions.

Note that when p = 1, the ℓ2,0-norm is equivalent to the ℓ0-norm of a vector, which is given by

∥a∥0 =
∑k

j=1 I(aj ̸= 0) for a vector a = (a1, . . . , ak)
′ ∈ Rk. Their algorithm is referred to as the

discrete first-order algorithm (DFA), and they derived the asymptotic convergence properties

and the global convergence results of the DFA. Moreover, they confirmed that a mixed integer

optimization initialized with a solution obtained from the DFA realized a near-optimal solution

of (1) in numerical studies.

In the present paper, we consider the DFA proposed by Bertsimas et al. [3], and we extend the

algorithm to solve (1) even when p ≥ 2. Moreover, in the numerical experiments, we combine

the extended DFA and information criteria to select variables for multivariate statistical models.

In the framework of multivariate analysis, information criteria are often used to select variables.

Examples of such information criteria include Akaike’s information criterion (AIC) [1, 2] and the

Bayesian information criterion (BIC) [11]. These criteria do not work or are not defined when

the number of variables exceeds the sample size unless the candidate set of variables is narrow.

However, it is expected that information criteria work because the candidate set becomes narrow

by using solutions to problem (1) via the extended DFA.

The remainder of the present paper is organized as follows. In section 2, we present the opti-

mization problem and extend the DFA. In section 3, we obtain several convergence properties of

the extended DFA. In section 4, we conduct numerical experiments using the extended DFA and

information criteria for selecting variables in the multivariate linear regression model. Technical

details are provided in the Appendix.
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2 Optimization problem and Algorithm

2.1 ℓ2,0-norm constrained optimization problem

Suppose that the function g : Rk×p → R is bounded below, is convex, and has a Lipschitz

continuous gradient with constant ℓ, i.e., there exists a constant ℓ > 0 for all Θ, Θ̃ ∈ Rk×p,

∥D(Θ)−D(Θ̃)∥F ≤ ℓ∥Θ− Θ̃∥F , (3)

where D(Θ) ∈ Rk×p is a matrix that is based on partial derivatives, i.e., D(Θ) = ∂g(Θ)/∂Θ,

and ∥ ·∥F is the Frobenius norm of a matrix that is given as ∥Θ∥F = tr(Θ′Θ)1/2 for a matrix Θ.

The function g defined in (3) was used by Bertsimas et al. [3]. Then, we consider the following

ℓ2,0-norm constrained optimization problem for the function g:

min
Θ

g(Θ) subject to Θ = (B′,Ξ′)′, ∥Ξ∥2,0 ≤ q, (4)

where B ∈ Rk1×p and Ξ ∈ Rk2×p are the partitioned matrices of Θ ∈ Rk×p, and k1 and k2 satisfy

k1+k2 = k. Problem (4) restricts the number of non-zero vectors of Ξ, but B is optimized without

constraints. Thus, (4) includes the following optimization problem:

min
Θ

g(Θ) subject to ∥Θ∥2,0 ≤ q, (5)

because problem (4) can be regarded as (5) by letting k1 = 0 or k2 = k. Problem (4) is useful

for estimating parameters without constraints for a part of Θ (e.g., the parameter corresponding

to the intercept term) in multivariate statistical models. An example of (4) in the following

multivariate statistical model is presented.

Example (Multivariate linear regression model). Suppose that Y = (y1, . . . ,yn)
′ ∈ Rn×p is an

observation matrix stacking individual p response variables and X = (x1, . . . ,xn)
′ ∈ Rn×(k−1) is

an observation matrix stacking individual k−1 explanatory variables, where n is the sample size.

We assume that the column vectors of X have unit ℓ2-norm, i.e., ∥xj∥2 = 1 (j = 1, . . . , k − 1),

where ∥·∥2 is the ℓ2-norm of vector, which is defined as ∥a∥2 = (a′a)1/2 for a vector a. Moreover,

we assume that the intercept term is included in this model. Hence, let Z = (1n,X) ∈ Rn×k be

the matrix including the intercept term, where 1n is an n-dimensional vector of ones. Then, the

residual sum of squares is widely used in estimating parameters:

g(Θ) = g1(Θ) =
1

2n
∥(Y −ZΘ)G−1/2∥2F , (6)

where G is a positive definite matrix. Note that the intercept term does not vanish, because

of non-centralizing of the column vectors of Y and X. When the constraint for the intercept

term is not set, we can apply (6) to problem (4) when k1 = 1 and k2 = k − 1. Moreover, we

observe that D(Θ) = −n−1Z ′(Y −ZΘ)G−1 and that one value of ℓ is n−1λmax(Z
′Z)/λmin(G),

where λmax(·) and λmin(·) are the maximum and minimum eigenvalues, respectively, of a square

matrix.
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2.2 Extended discrete first-order algorithm

We extend the DFA proposed by Bertsimas et al. [3] to solve (4). First of all, for a given

C = (c1, . . . , ck2
)′ ∈ Rk2×p, we consider the following optimization problem:

min
Ξ

∥Ξ−C∥2F subject to ∥Ξ∥2,0 ≤ q. (7)

Let Iq(C) be the set consisting of suffixes of the q largest row vectors of C in the sense of

ℓ2-norm, i.e.,

Iq(C) = {1 ≤ j ≤ k2 | ∥cj∥2 are among the largest q of all ∥cj∥2 s} . (8)

Then, the optimal solutions of (7) can be derived in closed form, as is shown in the following

proposition. (The proof is given in Appendix A.)

Proposition 1. Let Ξ̂ = (ξ̂1, . . . , ξ̂k2
)′ be an optimal solution to problem (7). Then, Ξ̂ is given

by

ξ̂j =

{
cj (j ∈ Iq(C))

0p (otherwise)
, (9)

where Iq(C) is defined in (8). We denote the set of optimal solutions (9) as Hq(C).

Note that Hq(C) is expressed as the set of solutions because problem (7) may have some

optimal solutions. The DFA is based on projected gradient decent methods in first-order convex

optimization problems (see [7, 8]). The following proposition gives an upper bound of g and its

minimizer with constraints. (The proof is given in Appendix B.)

Proposition 2. Let g be the function defined in (3). Then, for any L ≥ ℓ, we have

g(Θ̃) ≤ QL(Θ̃,Θ) = g(Θ) +
L

2
∥Θ̃−Θ∥2F + tr

{
D′(Θ)(Θ̃−Θ)

}
, (10)

for allΘ = (B′,Ξ′)′ ∈ Rk×p and Θ̃ = (B̃′
, Ξ̃′)′ ∈ Rk×p (B, B̃ ∈ Rk1×p; Ξ, Ξ̃ ∈ Rk2×p). Moreover,

the optimal solution Θ† = (B′
†,Ξ

′
†)

′ (B† ∈ Rk1×p, Ξ† ∈ Rk2×p) to minΘ̃: ∥Ξ̃∥2,0≤q QL(Θ̃,Θ) is

given by

B† = B − L−1D1(Θ), Ξ† ∈ Hq

(
Ξ− L−1D2(Θ)

)
, (11)

where Hq(·) is defined in (9) and D1(Θ) ∈ Rk1×p and D2(Θ) ∈ Rk2×p are the partitioned

matrices of D(Θ), i.e., D(Θ) = (D′
1(Θ),D′

2(Θ))′.

Using (11), we extend the DFA proposed by Bertsimas et al. [3] to solve (4), which is presented

as Algorithm 1. We observe that Algorithm 1 for the parameter without constraints behaves like

a vanilla gradient decent algorithm. Moreover, note that Algorithm 1 corresponds to the DFA

proposed by Bertsimas et al. [3] when p = 1 and k1 = 0.
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Algorithm 1 Extended discrete first-order algorithm to solve (4)

Require: An initial value Θ1 = (B′
1,Ξ

′
1)

′ satisfying ∥Ξ1∥2,0 ≤ q, a constant L (≥ ℓ), and a

small value ε > 0.

m = 1.

repeat

Obtain Θm+1 = (B′
m+1,Ξ

′
m+1)

′ from (11) as follows:

Bm+1 = Bm − L−1D1(Θm), Ξm+1 ∈ Hq

(
Ξm − L−1D2(Θm)

)
. (12)

Increment m by 1.

until g(Θm)− g(Θm+1) < ε holds.

3 Convergence properties of Algorithm 1

We present several convergence properties of Algorithm 1. First, we define a notion of first-

order optimality for problem (4).

Definition 1. For L ≥ ℓ, Θ̃ = (B̃′
, Ξ̃′)′ (B̃ ∈ Rk1×p, Ξ̃ ∈ Rk2×p) is said to be an ℓ2,0-constrained

first-order stationary point of problem (4) if ∥Ξ̃∥2,0 ≤ q holds and Θ̃ satisfies the following

equation:

B̃ = B̃ − L−1D1(Θ̃), Ξ̃ ∈ Hq

(
Ξ̃− L−1D2(Θ̃)

)
. (13)

If Θ̃ is an ℓ2,0-constrained first-order stationary point, we have D1(Θ̃) = Ok1,p, where Ok1,p ∈
Rk1×p is the matrix, the elements of which are zero. Moreover, letting Ξ̃ = (ξ̃1, . . . , ξ̃k2

)′, it holds

that ξ̃j = ξ̃j−L−1dj(Θ̃) for j ∈ Iq(Ξ̃−L−1D2(Θ̃)), where dj(Θ̃) is the j-th row vector ofD2(Θ̃),

i.e., D2(Θ̃) = (d1(Θ̃), . . . ,dk2
(Θ̃))′. Hence, we have dj(Θ̃) = 0p for j ∈ Iq(Ξ̃ − L−1D2(Θ̃)).

The following proposition is concerned with a sufficient condition for a global minimizer to the

unconstrained optimization problem minΘ g(Θ). (The proof is given in Appendix C.)

Proposition 3. If Θ̃ = (B̃′
, Ξ̃′)′ satisfies (13) and ∥Ξ̃∥2,0 < q, then we have Θ̃ ∈ argminΘ g(Θ).

Next, we give several asymptotic convergence properties of Algorithm 1. To do so, we make

several definitions for notational convenience. Let Θm = (B′
m,Ξ′

m)′ be the m-iterated solution

in (12) by Algorithm 1, and let Ξm = (ξm,1, . . . , ξm,k2
)′. Moreover, let rm = (rm,1, . . . , rm,k2

)′

be the k2-dimensional vector satisfying rm,j = I(ξm,j ̸= 0p). Denote as αm,q = ∥ξm,(q)∥2 the

ℓ2-norm of the q-th largest row vector of Ξm in the sense of ∥ξm,(1)∥2 ≥ · · · ≥ ∥ξm,(k2)∥2. Using

αm,q, we define ᾱq = lim supm→∞ αm,q and αq = lim infm→∞ αm,q. Then, we present the several

asymptotic convergence properties of Algorithm 1 as the following proposition. (The proof is

given in Appendix D.)

Proposition 4. For problem (4), let Θm be the m-iterated solution in (12) by Algorithm 1. Then,

the following properties of Algorithm 1 hold:

(a) Let L ≥ ℓ. Then, we have

g(Θm)− g(Θm+1) ≥
L− ℓ

2
∥Θm+1 −Θm∥2F . (14)

Moreover, g(Θm) monotonically decreases for m and converges as m → ∞.
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(b) For any L > ℓ, it holds that Θm+1 −Θm → Ok,p (m → ∞).

(c) Let L > ℓ, and αq > 0. Then, there exists M > 0 such that for all m ≥ M , rm = rm+1. Fur-

thermore, the sequence {Θm} converges to an ℓ2,0-constrained first-order stationary point.

(d) Let L > ℓ. Then, we have limm→∞ D1(Θm) = Ok1,p. Furthermore, if αq = 0, it holds that

lim infm→∞ maxj=1,...,k2
∥dj(Θm)∥2 = 0.

(e) Let L > ℓ. If ᾱq = 0 and the sequence {Θm} has a limit point, then g(Θm) → minΘ g(Θ)

(m → ∞).

The stopping rule of Algorithm 1 is based on (a) of Proposition 4. From (c), if the q-th largest

vector ξm,(q) is non-zero for sufficiently large m, then the suffixes of the non-zero vectors of

Ξm are fixed after that. Moreover, (c) ensures the global convergence to an ℓ2,0-constrained

first-order stationary point of Algorithm 1. From (e), the objective function g converges to an

optimal value for unconstrained optimization problem minΘ g(Θ) under minor assumptions.

Finally, we refer to the ℓ2,0-constrained first-order stationary point and a rate of convergence of

Algorithm 1. The following proposition is concerned with some properties of the ℓ2,0-constrained

first-order stationary point. (The proof is given in Appendix E.)

Proposition 5. For L ≥ ℓ, the following properties hold:

(a) If Θ̃ = (B̃′
, Ξ̃′)′ (B̃ ∈ Rk1×p, Ξ̃ ∈ Rk2×p) is an ℓ2,0-constrained first-order stationary point

in Definition 1, then Hq(Ξ̃− L−1D2(Θ̃)) has exactly one element.

(b) Global minimizers of problem (4) are ℓ2,0-constrained first-order stationary points.

The following theorem presents knowledge about the rate of convergence of Algorithm 1. (The

proof is given in Appendix F.)

Theorem 1. Let L ≥ ℓ. Then, Algorithm 1 iterated M times satisfies

min
m=1,...,M

∥Θm+1 −Θm∥2F ≤ 2{g(Θ1)− g∗}
M(L− ℓ)

,

where g(Θm) ↓ g∗ as m → ∞.

The result of Theorem 1 is an extension of Theorem 3.1 of Bertsimas et al. [3] and coincides

with it when p = 1 and k1 = 0.

4 Numerical Studies

We conduct numerical experiments based on Algorithm 1 for the ℓ2,0-norm constrained opti-

mization problem (4) in terms of variable selection for the multivariate linear regression model

(see Example). Denote the n × p multivariate normal distribution with mean matrix A and

covariance matrix B as Nn×p(A,B). The explanatory matrix X, the true parameter β∗ corre-

sponding to the intercept term, and Ξ∗ were determined as follows:

X ∼ Nn×k(On,k,Ψ⊗ In) ,Θ∗ = (β∗,Ξ
′
∗,O

′
k−k∗,p)

′,

β∗ ∼ Np×1(51p, Ip ⊗ 1), Ξ∗ ∼ Nk∗×p(51p1
′
p, Ip ⊗ Ik∗),
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where Ip ∈ Rp×p is the identity matrix, the (a, b)-th element of Ψ is (0.5)|a−b|, and k∗ is the

number of non-zero row vectors of Ξ∗. Note that X, β∗, and Ξ∗ were generated only once and

were used throughout the simulation studies. Then, we made the column vectors of X have

unit ℓ2-norm. Using the notation in Example, the response matrix Y was generated by Y =

(y(1), . . . ,y(p)) ∼ Nn×p(ZΘ∗,Σ⊗ In), where Z = (1n,X) and Σ = 0.4{(1− 0.8)Ip + 0.81p1
′
p}.

Then, we made the column vectors of Y have unit ℓ2-norm.

Since Algorithm 1 gives a solution for fixed q, we evaluate the best estimator by combining

Algorithm 1 and information criteria, which are used to select variables. We performed the

following steps:

Step 1. Give a value Θ̂∗,k2 = (B̂
′
∗,k2

, Ξ̂′
∗,k2

)′ (B̂∗,k2 ∈ Rk1×p, Ξ̂∗,k2 ∈ Rk2×p) satisfying ∥Ξ̂∗,k2∥2,0 ≤
k2 and set q = k2 − 1.

Step 2. Give a value Θ̃∗,q = (B̃′
∗,q, Ξ̃

′
∗,q)

′ (B̃∗,q ∈ Rk1×p, Ξ̃∗,q ∈ Rk2×p) satisfying ∥Ξ̃∗,q∥2,0 ≤ q.

Step 3. For the given q, obtain the solution Θ̂∗,q = (B̂
′
∗,q, Ξ̂

′
∗,q)

′ (B̂∗,q ∈ Rk1×p, Ξ̂∗,q ∈ Rk2×p)

by Algorithm 1 for the initial value Θ1 = Θ̃∗,q. Then, decrement q by 1.

Step 4. Repeat Steps 2 and 3 until q = 0.

Step 5. Decide the best selection number as k̂∗ = argminq=0,...,k2
IC(Θ̂∗,q) and obtain the best

estimator by Θ̂∗ = Θ̂∗,k̂∗
, where IC(·) is an information criterion.

In the above steps and Algorithm 1, k1 = 1, Θ̂∗,k2
= (Z ′Z)−1Z ′Y and ε = 10−4, and the value

Θ̃∗,q in Step 2 is given as follows:

Step 2-1. Denote Aq = {a1, . . . , aq+1} (a1 < · · · < aq+1) as the active set of Ξ̂∗,q+1 defined by

{k1 + 1 ≤ j ≤ k | θ̂∗,q+1,j ̸= 0p}, where θ̂∗,q+1,j is the j-th row vector of Θ̂∗,q+1 in

Step 3.

Step 2-2. Set Āq = {1, . . . , k1} ∪ Aq and

(B̄′
q, Ξ̄

′
q)

′ =
(
Z ′

Āq
ZĀq

)−1

Z ′
Āq

Y (B̄q ∈ Rk1×p, Ξ̄q ∈ R|Aq|×p),

where ZĀq
is the n× |Āq| matrix consisting of columns of Z indexed by the elements

of Āq. Furthermore, denote the j-th row vectors of B̄q and Ξ̄q as β̄q,j and ξ̄q,aj
,

respectively.

Step 2-3. Give the j-th row vector of Θ̃∗,q used in Step 2 as follows:
β̄q,j (1 ≤ j ≤ k1)

ξ̄q,aj ((j ∈ Aq) ∧ (j ̸= aq,min))

0p

(
(j ∈ {k1 + 1, . . . , k} ∩ Ac

q) ∨ (j = aq,min)
) ,

where aq,min = argminj∈Aq
∥ξ̄q,aj

∥2.

Furthermore, the BIC proposed by Schwarz [11] was used as an information criterion and is

defined by

IC(Θ) = n log
∣∣n−1(Y −ZΘ)′(Y −ZΘ)

∣∣+ p∥Θ∥2,0 log n.
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For problem (4), we set g = g1,G = (n−k)−1Y ′{In−Z(Z ′Z)−1Z ′}Y and L = ⌈n−1λmax(Z
′Z)/λmin(G)⌉,

where ⌈·⌉ is the ceiling function. For these settings, the above steps were carried out for 1,000

simulation iterations.

In these numerical studies, we examine the following properties.

� The two relative mean square errors (RMSEs):

RMSEΘ∗ =
E[∥Θ∗ − Θ̂∗∥2F ]

E[∥Θ∗ − Θ̂∗,k2
∥2F ]

× 100 (%),

RMSEY =
E[∥Y −ZΘ̂∗∥2F ]

E[∥Y −ZΘ̂∗,k2
∥2F ]

× 100 (%).

In our numerical settings, E[∥Θ∗−Θ̂∗,k2
∥2F ] = tr{(Z ′Z)−1}tr(Σ) and E[∥Y −ZΘ̂∗,k2

∥2F ] =
(n − k)tr(Σ). These RMSEs are approximated by the average value of 1,000 simulation

iterations. Note that the smaller the RMSEΘ∗ and RMSEY , the better the accuracy of

the estimation of Θ∗ and the prediction accuracy of Y , respectively.

� The probability (%) such that the suffixes of the non-zero vectors of Θ̂∗ and Θ∗ are

equivalent among 1,000 simulation iterations.

� The CPU time (s) obtained as the average value of 1,000 simulation iterations.

Table 1. Properties of the estimation results for Θ∗ by the combination of the extended DFA

and the BIC in the multivariate linear regression model.

n k RMSEΘ∗ RMSEY Probability CPU time

100 20 47.01 14.69 95.2 0.848

100 40 17.26 20.83 90.1 1.187

100 60 8.61 31.88 85.1 1.477

100 80 4.30 77.50 76.9 2.411

300 20 51.28 4.02 99.0 0.125

300 40 23.36 4.62 97.8 0.150

300 60 14.43 4.69 96.7 0.214

300 120 5.43 6.67 95.4 0.422

300 180 2.42 10.00 93.7 0.872

300 240 1.08 22.50 88.9 2.167

500 20 52.73 2.34 98.8 0.032

500 40 23.99 2.45 99.2 0.059

500 100 8.59 2.81 98.4 0.220

500 200 3.17 4.17 96.8 0.544

500 300 1.39 5.63 96.1 1.331

500 400 0.67 13.75 88.7 2.423

Table 1 shows the above properties when we set p = 3 and k∗ = 10. From Table 1, we

observe that both the RMSEs (RMSEΘ∗ and RMSEY ) are smaller than 100. This means that
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the estimator Θ̂∗ by the combination of the extended DFA and the BIC is better than the least

squares estimator Θ̂∗,k2
in terms of the accuracy of the estimation of Θ∗ and the prediction

accuracy of Y . Moreover, the probabilities are high and the CPU times are short. Therefore, we

can confirm that the combination of the extended DFA and the BIC is valid for the estimation

of Θ∗.

Appendix

A Proof of Proposition 1

Since the Frobenius norm is invariant to the exchange of rows, without loss of generality, the

given C = (c1, . . . , ck2)
′ in (7) can be regarded as ∥c1∥2 ≥ · · · ≥ ∥ck2∥2. Problem (7) can be

rewritten as

min
∥Ξ∥2,0≤q

k2∑
j=1

∥ξj − cj∥22.

From the above expression, we can see that the optimal solution for (7) is limited to the case in

which q row vectors of Ξ become cj and the (k2− q) remainder becomes 0p. On the other hand,

let S = {1 ≤ j ≤ k2 | ξj ̸= 0p}. Then, we have

min
∥Ξ∥2,0≤q

k2∑
j=1

∥ξj − cj∥22 = min
∥Ξ∥2,0≤q

∑
j∈S

∥ξj − cj∥22 +
∑
j /∈S

∥cj∥22

 .

Since the above problem is optimal when ξj = cj for j ∈ S and
∑

j /∈S ∥cj∥22 is minimum, we can

see that S = {1, . . . , q}. □

B Proof of Proposition 2

First, we show (10). Let θ = vec(Θ′) and θ̃ = vec(Θ̃′) for any Θ, Θ̃ ∈ Rk×p. Then, by

rewriting g(Θ̃) as h(θ̃), the following inequality can be derived (see, e.g., [7]):

h(θ̃) ≤ h(θ) +
L

2
∥θ̃ − θ∥22 + (∂h(θ)/∂θ)

′
(θ̃ − θ).

From the properties of the vec operator and the Frobenius norm, the above inequality can be

expressed as

g(Θ̃) ≤ g(Θ) +
L

2
∥Θ̃−Θ∥2F + tr

{
D′(Θ)(Θ̃−Θ)

}
.

Next, we show (11). The following equation can be derived:

QL(Θ̃,Θ) =
L

2

∥∥∥Θ̃−
(
Θ− L−1D(Θ)

)∥∥∥2
F
− 1

2L
∥D(Θ)∥2F + g(Θ)

=
L

2

∥∥∥B̃ −
(
B − L−1D1(Θ)

)∥∥∥2
F
+

L

2

∥∥∥Ξ̃−
(
Ξ− L−1D2(Θ)

)∥∥∥2
F

− 1

2L
∥D(Θ)∥2F + g(Θ).
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Hence, the optimal solution to minΘ̃: ∥Ξ̃∥2,0≤q QL(Θ̃,Θ), is derived as follows:

min
Θ̃: ∥Ξ̃∥2,0≤q

QL(Θ̃,Θ) =
L

2
min
B̃

∥∥∥B̃ −
(
B − L−1D1(Θ)

)∥∥∥2
F

+
L

2
min

∥Ξ̃∥2,0≤q

∥∥∥Ξ̃−
(
Ξ− L−1D2(Θ)

)∥∥∥2
F

− 1

2L
∥D(Θ)∥2F + g(Θ). (B.1)

This completes the proof of (11). □

C Proof of Proposition 3

Let M = (µ1, . . . ,µk2
)′, satisfying µj = ξ̃j −L−1dj(Θ̃) for j = 1, . . . , k2. First, we show that

dj(Θ̃) = 0p for all j /∈ Iq(M). From (13), it is straightforward to observe that µi = ξ̃i for i ∈
Iq(M). On the other hand, since ξ̃j = 0p for j /∈ Iq(M), we have µj = L−1dj(Θ̃) for j /∈ Iq(M).

These imply that ∥ξ̃i∥2 ≥ ∥L−1dj(Θ̃)∥2 for any i ∈ Iq(M) and j /∈ Iq(M) because ∥µi∥2 ≥
∥µj∥2. Note that it follows from ∥Ξ̃∥2,0 < q that mini∈Iq(M) ∥µi∥2 = mini∈Iq(M) ∥ξ̃i∥2 = 0.

Hence, we have dj(Θ̃) = 0p for all j /∈ Iq(M).

Next, we show that di(Θ̃) = 0p for all i ∈ Iq(M). From (13), it is straightforward to observe

that ξ̃i = ξ̃i−L−1di(Θ̃) for i ∈ Iq(M). Hence, we have di(Θ̃) = 0p for all i ∈ Iq(M). Therefore,

it holds that D2(Θ̃) = Ok2,p. Moreover, since it is straightforward to observe that D1(Θ̃) =

Ok1,p, we have D(Θ̃) = Ok,p. This fact and the convexity of g lead to Θ̃ ∈ argminΘ g(Θ). □

D Proof of Proposition 4

D.1 Proof of (a)

Let Θ† ∈ argminΘ̃: ∥Ξ̃∥2,0≤q QL(Θ̃,Θ), where QL(Θ̃,Θ) is as defined in (10). Then, for

Θ = (B′,Ξ′)′ (B ∈ Rk1×p,Ξ ∈ Rk2×p) such that ∥Ξ∥2,0 ≤ q, we have

g(Θ) = QL(Θ,Θ)

≥ inf
Θ̃: ∥Ξ̃∥2,0≤q

QL(Θ̃,Θ)

= QL(Θ†,Θ)

= g(Θ) +
L

2
∥Θ† −Θ∥2F + tr {D′(Θ)(Θ† −Θ)}

= g(Θ) +
L− ℓ

2
∥Θ† −Θ∥2F +

ℓ

2
∥Θ† −Θ∥2F + tr {D′(Θ)(Θ† −Θ)}

=
L− ℓ

2
∥Θ† −Θ∥2F +Qℓ(Θ†,Θ)

≥ L− ℓ

2
∥Θ† −Θ∥2F + g(Θ†). (D.1)

Since we can regard Θ† as Θm+1 by letting Θ = Θm, (D.1) is expressed as

g(Θm)− g(Θm+1) ≥
L− ℓ

2
∥Θm+1 −Θm∥2F .

Hence, g(Θm) monotonically decreases for m. Moreover, it is straightforward to observe that

g(Θm) converges as m → ∞ because it is bounded below. □
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D.2 Proof of (b)

Since g(Θm) converges as m → ∞ from (a) in Proposition 4, g(Θm)−g(Θm+1) converges to 0.

Hence, ∥Θm+1 −Θm∥2F in (14) also converges to 0 for L > ℓ. This implies that Θm+1 −Θm →
Ok,p (m → ∞). □

D.3 Proof of (c)

First, we prove that there exists M > 0 such that for all m ≥ M , rm = rm+1 by contradiction.

Assume that for any M > 0, there exists m̃ ≥ M such that rm̃ ̸= rm̃+1. Since αq > 0, we

observe that ∥Ξm∥2,0 = q for sufficiently large m. Hence, by considering M > m, we can see

that there exist i, j (i ̸= j) such that

ξm̃,i = 0p, ξm̃,j ̸= 0p, ξm̃+1,i ≠ 0p, ξm̃+1,j = 0p,

for infinitely many m̃ ≥ M . Using the above equations, the following inequality can be derived:

∥Ξm̃ −Ξm̃+1∥F ≥
√

∥ξm̃+1,i∥22 + ∥ξm̃,j∥22 ≥ ∥ξm̃+1,i∥2 + ∥ξm̃,j∥2√
2

.

From the above, we observe that the ℓ2-norms of the non-zero vectors ∥ξm̃+1,i∥2 and ∥ξm̃,j∥2
converge to 0 as m̃ → ∞ because ∥Θm̃−Θm̃+1∥F → 0 from (b) in Proposition 4. This contradicts

αq > 0.

Next, we show that the sequence {Θm} converges to an ℓ2,0-constrained first-order stationary

point. Since rm = rm+1 for sufficiently large m, we can set L = {1 ≤ j ≤ k2 | rm,j = 1}. Note

that the elements in L are invariant for sufficiently large m. Hence, using (B.1), for sufficiently

large m we have

min
Θ̃: ∥Ξ̃∥2,0≤q

QL(Θ̃,Θm)

=
L

2
min

∥Ξ̃∥2,0≤q

∥∥∥Ξ̃−
(
Ξm − L−1D2(Θm)

)∥∥∥2
F
− 1

2L
∥D(Θm)∥2F + g(Θm)

=
L

2
min

ξ̃j : j∈L

∑
j∈L

∥∥∥ξ̃j − (
ξm,j − L−1dj(Θm)

)∥∥∥2
2
+

L

2

∑
j /∈L

∥∥ξm,j − L−1dj(Θm)
∥∥2
2

− 1

2L
∥D(Θm)∥2F + g(Θm).

This implies that Algorithm 1 behaves like a vanilla gradient decent algorithm for minimizing

a convex function over a closed convex. Therefore, the sequence {Θm} converges to an ℓ2,0-

constrained first-order stationary point. □

D.4 Proof of (d)

From (12) and (b), it is straightforward to observe that limm→∞ D1(Θm) = Ok1,p. Assume

that αq = 0. Let Mm = (µm,1, . . . ,µm,k2
)′ = Ξm − L−1D2(Θm). From (12), for any i ∈

Iq(Mm) and j /∈ Iq(Mm), we have ∥µm,i∥2 ≥ ∥µm,j∥2. Hence, the following inequality can be

derived:

lim inf
m→∞

min
i∈Iq(Mm)

∥µm,i∥2 ≥ lim inf
m→∞

max
j /∈Iq(Mm)

∥µm,j∥2. (D.2)
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On the other hand, from (12) and (b), it is straightforward to observe that

ξm,i − ξm+1,i =

{
L−1di(Θm) → 0p (m → ∞) (i ∈ Iq(Mm))

ξm,i → 0p (m → ∞) (i /∈ Iq(Mm))
. (D.3)

Using (D.3) and the triangle inequality, we have

lim inf
m→∞

min
i∈Iq(Mm)

∥µm,i∥2

≤ lim inf
m→∞

min
i∈Iq(Mm)

∥ξm,i∥2 + lim inf
m→∞

max
i∈Iq(Mm)

∥L−1di(Θm)∥2

= lim inf
m→∞

min
i∈Iq(Mm)

∥ξm,i∥2, (D.4)

lim inf
m→∞

max
j /∈Iq(Mm)

∥µm,j∥2

≥ lim sup
m→∞

min
i/∈Iq(Mm)

∥ξm,i∥2 + lim inf
m→∞

max
i/∈Iq(Mm)

∥L−1di(Θm)∥2

= lim inf
m→∞

max
i/∈Iq(Mm)

∥L−1di(Θm)∥2. (D.5)

By combining (D.2), (D.4), and (D.5), the following inequality can be derived:

lim inf
m→∞

min
i∈Iq(Mm)

∥ξm,i∥2 ≥ lim inf
m→∞

max
j /∈Iq(Mm)

∥L−1di(Θm)∥2. (D.6)

Since αq = lim infm→∞ mini∈Iq(Mm) ∥ξm,i∥2 = 0, the right-hand side of (D.6) becomes 0. This

fact and (D.3) imply that lim infm→∞ maxj=1,...,k2 ∥dj(Θm)∥2 = 0. □

D.5 Proof of (e)

By modifying lim inf to lim sup in (D.6), we can derive the following inequality:

lim sup
m→∞

min
i∈Iq(Mm)

∥ξm,i∥2 ≥ lim sup
m→∞

max
j /∈Iq(Mm)

∥L−1di(Θm)∥2, (D.7)

where Mm = (µm,1, . . . ,µm,k2)
′ = Ξm − L−1D2(Θm). Since ᾱq = 0, the right-hand side of

(D.7) becomes 0. Since this fact and (D.3) imply that D2(Θm) → Ok2,p (m → ∞), we have

D(Θm) → Ok,p (m → ∞) from (d) in Proposition 4. Let Θ∞ be a limit point of the sequence

{Θm}. Then, there exists a subsequence {m̃} such that Θm̃ → Θ∞ and g(Θm̃) → g(Θ∞). Since

D(Θ) is Lipschitz continuous, it holds that D(Θm̃) → D(Θ∞) = Ok,p as m̃ → ∞. This implies

that Θ∞ is a solution to minΘ g(Θ). Therefore, g(Θm) → minΘ g(Θ) (m → ∞) holds. □

E Proof of Proposition 5

E.1 Proof of (a)

Suppose that Θ† = (B′
†,Ξ

′
†)

′ satisfies ∥Ξ†∥2,0 ≤ q and the following equation:

B† = B̃ − L−1D1(Θ̃), Ξ† ∈ Hq

(
Ξ̃− L−1D2(Θ̃)

)
.
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Using (D.1), we can derive the following inequality:

g(Θ̃)− g(Θ†) ≥
L− ℓ

2
∥Θ† − Θ̃∥2F . (E.1)

On the other hand, since the function g is convex and differentiable, we have

g(Θ†)− g(Θ̃) ≥ tr
{
D′(Θ̃)(Θ† − Θ̃)

}
. (E.2)

Since Θ† and Θ̃ are ℓ2,0-constrained first-order stationary points, we observe that D1(Θ̃) =

Ok1,p, dj(Θ̃) = 0p for j ∈ Iq(Ξ̃ − L−1D2(Θ̃)) and ξ†,j = ξ̃j = 0p for j /∈ Iq(Ξ̃ − L−1D2(Θ̃)),

where ξ†,j is the j-th row vector of Ξ†. Hence, we have tr{D′(Θ̃)(Θ† − Θ̃)} = 0. Therefore,

it follows from (E.1) and (E.2) that ∥Θ† − Θ̃∥2F = 0 holds for L > ℓ. This implies that

Hq(Ξ̃− L−1D2(Θ̃)) has exactly one element. □

E.2 Proof of (b)

For any global minimizer Θ̂glo = (B̂
′
glo, Ξ̂

′
glo)

′ of (4), let Θ̃ = (B̃′
, Ξ̃′)′ be the matrix satisfying

∥Ξ̃∥2,0 ≤ q and the following equation:

B̃ = B̂glo − L−1D1(Θ̂glo), Ξ̃ ∈ Hq

(
Ξ̂glo − L−1D2(Θ̂glo)

)
.

By the definition of Θ̂glo, we have g(Θ̃) ≥ g(Θ̂glo). Moreover, as with (E.1), the following

inequality can be derived:

g(Θ̂glo)− g(Θ̃) ≥ L− ℓ

2
∥Θ̃− Θ̂glo∥2F .

Hence, ∥Θ̃−Θ̂glo∥2F = 0 holds for L > ℓ. This implies that Θ̂glo is an ℓ2,0-constrained first-order

stationary point. □

F Proof of Theorem 1

By summing (14) for m = 1, . . . ,M , we have

M∑
m=1

{g(Θm)− g(Θm+1)} ≥ L− ℓ

2

M∑
m=1

∥Θm+1 −Θm∥2F .

Since g(Θm) monotonically decreases for m and converges to g∗ as m → ∞, we obtain the

following inequality:

g(Θ1)− g∗ ≥
M∑

m=1

{g(Θm)− g(Θm+1)}

≥ L− ℓ

2

M∑
m=1

∥Θm+1 −Θm∥2F

≥ M(L− ℓ)

2
min

m=1,...,M
∥Θm+1 −Θm∥2F .

This completes the proof of Theorem 1. □

13



Acknowledgments

Ryoya Oda is supported by JSPS KAKENHI Grant Numbers JP19K21672, JP20K14363, and

JP20H04151. Mineaki Ohishi is supported by JSPS KAKENHI Grant Numbers JP20H04151

and JP21K13834. Hirokazu Yanagihara is supported by JSPS KAKENHI Grant Numbers

JP16H03606, JP18K03415, and JP20H04151.

References

[1] Akaike, H. (1973). Information theory and an extension of the maximum likelihood princi-

ple. In 2nd International Symposium on Information Theory (eds. B. N. Petrov & F. Csáki),
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