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Abstract

In this paper, we review recent developments in high-dimensional consis-

tencies of KOO methods for selection of variables in multivariate regression

models and discriminant analysis models. The KOO methods considered

are mainly based on general information criteria, but we also take up KOO

methods based on some other selection methods. Some references are given

for high-dimensional consistencies in some other multivariate models.

Key Words and Phrases: Discriminant analysis, General information

criteria, High-dimensional consistency, KOO Methods, Multivariate

regression model, Selection of variables.

2020 MSC: Primary 62H12, Secondary 62H30

1. Introduction

It is important to consider selection of variables in multivariate analysis.

One of the approaches is to first consider variable selection models and then

apply model selection criteria such as AIC, BIC, Cp. The AIC and BIC are

to find the model which minimizes

GIC = −2 logL(θ̂) + dg,
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where L(θ̂) is the maximum likelihood, dg is the penalty term, and g is the

number of unknown parameters. For AIC and BIC, d is defined as 2 and

log n, respectively, where n denotes the sample size. Cp is defined by using

the mean squared error instead of −2 logL(θ̂).

In the seletion of k variables x1, . . . , xk, we identify {x1, . . . , xk} with the

index set {1, . . . , k} ≡ ω, and denote GIC for subset j ⊂ ω by GICj . Then,

the model selection based on GIC chooses the model

j̃G = argmin
j

GICj .

Here the minimum is usually taken over all subsets. It has been pointed out

that there are computational problems for GIC methods, like AIC, BIC and

Cp methods, since we need to compute 2k − 1 statistics for the selection of k

variables. To avoid this computational problem, Nishii et al. (1988) proposed

a method which is essentially due to Zhao et al. (1988). The method,

which was named the knock-one-out (KOO) method by Bai et al. (2018),

determines “selection” or “no selection” for each variable by comparing the

model aftr removing a variable and the full model. More precisely, the KOO

method chooses the model or the set of variables given by

ĵG = {j ∈ ω | GICω\j > GICω},

where ω\j is the set obtained by removing element j from the set ω.

In large-sample setting, Nishii et al. (1988) studied strong consistency of

ĵG and j̃G in discriminant analysis, canonical correlation analysis and multi-

variate calibration analysis. It is well known that BIC is consistent, but AIC

is not consistent. On the other hand, from some recent work in multivariate

regression models by Fujikoshi et al. (2014), Yanagihara et al. (2015) and

Bai et al. (2018), it is known that if the BIC selection rule is consistent so

is the AIC selection rule, but not vice versa. There are considerably many

results on the KOO methods besides these high-dimensional consistency re-

sults, but the purpose of this paper is to review only the recent of the latter.

Though we consider mainly the KOO methods based on general information
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criteria, ones based on some other selection methods are also considered.

Some results in multivariate regression models have been studied for strong

consistency under nonnormality by Bai et al. (2018). However, those results

are under revision, in the present paper we discuss only with results on weak

consistency under normality.

The remainder of the present paper is organized as follows. In Section

2, we present KOO methods based on a general information criterion in

a multivariate regression model, as well as KOO methods based on some

other criteria. In Section 3, we present KOO methods based on a general

information criterion for selection of variables in discriminant analysis. The

methods are discussed in two-group and multiple group cases separately. In

Section 4, we briefly discuss selection of vriables in some other models.

2. Multivariate regression model

2.1. KOO Methods based on GIC

Suppose that there are n observations y1, . . . ,yn on p response variables

y = (y1, . . . , yp)
⊤ and n observations x1, . . . ,xn on k explanatory variables

x = (x1, . . . , xk)
⊤. Here, yi and xi are observations of y and x, respectively,

for the ith subject. Let Y = (y1, . . . ,yn)
⊤ and X = (x1, . . . ,xn)

⊤. The

multivariate regression model is written as

Y = XΘ+ E,

where Θ is a k × p regression coefficient matrix, and E = (ϵ1, . . . , ϵn)
⊤ is

the error matrix. It is assumed that the ϵi’s are independently distributed

as a p−variate normal distribution Np(0,Σ). In order to explore a simpler

linear structure, we consider how to select the explanatory variables. In

general, the selection of xi may be decided by whether or not the ith row
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θi of Θ = (θ1, . . . ,θk)
⊤ is the null vector. We consider such a selection

problem, assuming that Σ is unknown positive definite, though in the last

part of this section we consider three covariance structures. For notational

simplicity, let us identify the set {x1, . . . , xk} with ω = {1, . . . , k}, and let

kj be the cardinality of j. Further, let j be a subset of ω, xj = (xj, j ∈ j)⊤,

and Xj = (xj, j ∈ j). Denote the model based on xj by

Mj : Y = XjΘj + E.

Then, GIC is expressed as

Gd,j = n log |Σ̂j |+ d {kjp+ p(p+ 1)/2)}+ np{log(2π) + 1}. (2.1)

Here, Σ̂j is the MLE of Σ given by

nΣ̂j = Y⊤(In −Pj)Y, Pj = Xj(X
⊤
j Xj)

−1X⊤
j ,

where Pj is an orthogonal projection matrix onto to the space spanned by

the colomn vectors ofXj. It is assumed that the rank ofXj is kj , and further,

it is assumed that n− k ≥ p when we use (2.1). Using

Td,j = Gd,ω\j −Gd,ω = n log(|Σ̂ω\j|/|Σ̂ω|)− dp, (2.2)

the KOO method chooses the model

ĵd = {j ∈ ω | Td,j > 0}. (2.3)

Recently, high-dimensional consistency properties of KOO methods have

been studied by Bai et al. (2018), Sakurai and Fujikoshi (2020) and Oda

and Yanagihara (2020, 2021). These considered KOO methods based on the

Cp criterion, as well as GIC. Bai et al. (2018) studied strong consistency

properties under nonnormality. Sakurai and Fujikoshi (2020) studied the

case when a certain covariance structure holds, specifically, an independent

covariance structure, a uniform covariance structure, and an autoregressive

covariance structure. In our model the sample size is not necessarily larger
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than the number of response variables. Sufficient conditions for these criteria

to be consistent are derived under a high-dimensional asymptotic framework

such that the sample size and the dimensionality proceed to infinity together,

with their ratio converging to a finite nonzero constant. However, we consider

the case that the number of variables k is fixed.

2.2. Consistency of KOO methods based on GIC

First we consider the distributional reduction of Td,j in (2.2). Note that the

first term of Td,j is −2 log λj, where λj is the likelihood ratio crterion for

testing the hypothesis θj = 0. More precisely,

−2 log λj = n log(|Σ̂ω\j|/|Σ̂ω|) = n log |Se|/|Se + Sh,j|.

Here, Se = Y⊤(In − Pω)Y ∼ Wp(n − k,Σ), Sh,j = Y⊤(Pω − Pω\j)Y ∼
Wp(1,Σ;Γj), and Se and Sh are independent. The noncentrality matrix may

be expressed as

Γj = (XΘ)⊤(Pω −Pω\j)XΘ = γjγ
⊤
j ,

where γj = θjx
⊤
j x̃j(x̃

⊤
j x̃j)

−1/2 and x̃j = (In − Pω\j)xj. In this case, we

may write Sh,j = uju
⊤
j , where uj ∼ Np(γj,Σ). Then, using |Se + uju

⊤
j | =

|Se|(1+u⊤
j S

−1
e uj) and a well-known result (see, e.g., Fujikoshi et al. (2010),

Theorem 3.1.1), we have

Td,j = n log

{
1 +

χ2
j(p; δ

2
j )

χ2(m)

}
− dp, (2.4)

where χ2(m) denotes a random variable with the chi-square distribution with

m = n − p − k + 1 degrees of freedom, χ2
j(p; δ

2
j ) denotes the noncentral

χ2 distributed random variable with p degree of freedom and noncentrality

δ2j = γ⊤
j Σ

−1γj, and χ2(m) and χ2
j(p; δ

2
j ) are independent.

In this section, we examine the high-dimensional consistency of KOO

method based on GIC which is expressed as (2.3) in term of Td,j. Consistency
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here will be proved by showing the following two properties:

[F1] ≡
∑
j∈j∗

Pr(Td,j ≤ 0) → 0. (2.5)

[F2] ≡
∑
j /∈j∗

Pr(Td,j ≥ 0) → 0. (2.6)

The sufficiency of these properties can be shown by using the following in-

equalty:

Pr(ĵG = j∗) = Pr

∩
j∈j∗

“Td,j > 0”
∩
j /∈j∗

“Td,j < 0”


= 1− Pr

∪
j∈j∗

“Td,j ≤ 0”
∪
j /∈j∗

“Td,j ≥ 0”


≥ 1−

∑
j∈j∗

Pr(Td,j ≤ 0)−
∑
j /∈j∗

Pr(Td,j ≥ 0).

Here, [F1] denotes the probability that the true variables are not selected,

and [F2] denotes the probability that the non-true variables are selected. The

same notation is used for other variable selection methods.

We make the following assumptions.

P1: The true subset j∗ is included in the full set ω, i.e., j∗ ⊂ ω.

P2: A high-dimensional asymptotic framework holds:

p/n → c1 ∈ (0, 1), k/n → c2 ∈ [0, 1), where c1 + c2 < 1.

P3: The noncentrality parameters satisfy δ2j = O(n) for j ∈ j∗.

The assumption c1 + c2 < 1 in P2 comes from n− p− k > 0 . In P3, the

noncentrality parameters may be expressed as

δ2j = θ⊤
j Σ

−1θj(x
⊤
j x̃j)

2(x̃⊤
j x̃j)

−1.

Here we denote the true covariance matrix Σ∗ by Σ simply.
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When j ̸∈ j∗, from (2.4) we can write Td,j = n log
{
1 + χ2

j(p)/χ
2(m)

}
−

dp, and therefore we have

[F2] =
∑
j ̸∈j∗

Pr(n log
{
1 + χ2

j(p)/χ
2(m)

}
≥ dp)

= (k − kj∗) Pr(U ≥ h)

≤ (k − kj∗) Pr(U ≥ h0),

where

U =
χ2(p)

χ2(m)
− p

m− 2
,

h = edp/n − 1− p

m− 2
, h0 =

dp

n
− p

m− 2
. (2.7)

Note that h0 < h. Then, under the assumption h0 > 0 we have,

[F2] ≤ (k − kj∗)h
−2ℓE[U2ℓ] ≤ (k − kj∗)h

−2ℓ
0 E[U2ℓ].

Under P2, it is easy to see that E[U2] = O(n−1),E[U4] = O(n−2). Assuming

that h−4 ≤ O(n1−ϵ) for some ϵ > 0, we have that [F2] → 0.

When j ∈ j∗, we can write Td,j = n log
{
1 + χ2

j(p; δ
2
j )/χ

2(m)
}
− dp, and

therefore we have

[F1] =
∑
j∈j∗

Pr(n log
{
1 + χ2

j(p; δ
2
j )/χ

2(m)
}
≤ dp) =

∑
j∈j∗

Pr(Ũj ≤ h̃j),

where for j ∈ j∗,

Ũj =
χ2
j(p; δ

2
j )

χ2(m)
−

p+ δ2j
m− 2

, h̃j = edp/n − 1−
p+ δ2j
m− 2

= h−
δ2j

m− 2
. (2.8)

Then, under the assumption h̃j < 0, or equivalently h < δ2j/(m−2), we have

[F1] ≤ kj∗ |h̃j|−2ℓE[Ũ2ℓ].

Under P1 and P3, it is easy to see that E[Ũ2
j ] = O(n−1),E[Ũ4

j ] = O(n−2).

Assuming that |h̃j|−4 ≤ O(n1−ϵ) for some a < 1, we can see that [F2] → 0.

These imply the following theorem.
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Theorem 2.1. Suppose that assumptions P1 and P2 hold. Then, for the

KOO method (2.3) based on GIC, the following asymptotic results hold.

(i) Suppose that the quantity h0 in (2.7) is asymptotically positive or ∞, and

h−4
0 ≤ O(na) for some a < 1. Then, [F2] → 0.

(ii) Suppose that P3 holds, the quantity h̃0 in (2.8) is asymptotically negative,

and |h̃j|−4 = O(na) for some a < 1. Then, [F1] → 0.

(iii) Suppose that the assumptions in (i) and (ii) hold. Then, the KOO method

(2.3) based on GIC is asymptoticaly consistent.

Note that

limh0 = c1

{
lim d− 1

1− c1 − c2

}
,

and so, the condition for h0 in Theorem 2.1 for AIC is satisfied if 2− 1/(1−
c1 − c2) > 0.

Bai et al. (2018) have studied high-dimensional strong consistency of

KOO methods based on AIC, BIC and Cp by examining their strong conver-

gences. On the other hand, Oda and Yanagihara (2020, 2021) and Sakurai

and Fujikoshi (2020) used the above method. Further, Oda and Yanagihara

(2021) considered a transformation from d to b given by

d =
n

p
log

{
1 +

p

m− 2
(1 + b)

}
, (2.9)

with b > 0. Then, writing ρ = (pb)/(m− 2), we have

h = ρ, h̃j = ρ− δ2j/(m− 2).

Using these expressions, we can write

[F2] = (k − kj∗)Pr(U ≥ ρ) ≤ kρ−2ℓE(U2ℓ), (2.10)

[F1] =
∑
j∈j∗

Pr

(
Ũj ≤ ρ−

δ2j
m− 2

)
. (2.11)

Instead of the assumption P3, we use more precise conditions P4 and P5

on the noncentralty parameter as the one in terms of x⊤
j (In −Pω\j)xj and
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θ′
jΣ

−1θj, j ∈ j∗:

P4: There exists c1 > 0 such that n−1minj∈j∗ x
⊤
j (In −Pω\j)xj ≥ c1.

P5: There exist c1 > 0 and c3 ≥ 1/2 such that n1−c3 minj∈j∗ θ
⊤
j Σ

−1θj ≥
c2, where θj and Σ are their true values.

Evaluating (2.10) and (2.11), Oda and Yanagihara (2021) described a

class of b having a high-dimensional consistency as in the following theorem.

Theorem 2.2. Suppose that assumptions P1, P4 and P5 hold. Then, the

KOO method (2.3) based on GIC has the selection consistency under the high-

dimensional asymptotic framework P2, if for some integer r the following

conditions are satisfied:

√
pb/k1/(2r) → ∞, and pb/nc3 → 0. (2.12)

If we can take r = 2 in the assumption of Theorem 2.2, we have

d = d̃ =
n

p
log

(
1 +

p

m− 2
+

k1/4√p log n

m− 2

)
,

as an example of d satisfying (2.12).

2.3. KOO Methods based on some other criteria

As a criterion with behavior similar to that of AIC, we have the Cp criterion

(see Fujikoshi and Satoh (1997), Sparks et al. (1983)). Its generalization

may be defined (see, e.g., Yanagihara (2016)) by

GCd,j = (n− k)trΣ̂jΣ̂
−1

ω + dpkj.
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The GC2,j case, with d = 2, is the usual Cp criterion. The KOO method

based on GCd,j is to select j such that Td,j;GC is positive, where

Td,j;GC = GCd,ω\j −GCd,ω.

Using the same notation as for GIC, we can express

Td,j;GC = (n− k)trY⊤(Pω −Pω\j)Y
{
Y⊤(In −Pω)Y

}−1 − dp

= (n− k)u⊤
j S

−1
e uj − dp

= (n− k)χ2
j(p; δ

2
j )
{
χ2(m)

}−1 − dp.

Therefore we have∑
j ̸∈j∗

Pr(Td,j;GC ≥ 0) =
∑
j ̸∈j∗

Pr((n− k)χ2(p){χ2(m)}−1 ≥ dp)

= (k − kj∗)Pr(U ≥ h̃0),

where h̃0 = dp(n− k)−1 − p(m− 2)−1. Similarly, we have∑
j∈j∗

Pr(Td,j;GC ≤ 0) =
∑
j∈j∗

Pr((n− k)χ2
j(p; δ

2
j ){χ2(m)}−1 ≥ dp)

=
∑
j∈j∗

Pr(Ũj ≥ h̄j),

where h̄j = dp(n− k)−1 − (p+ δ2j )(m− 2)−1 = h̃0 − δ2j (m− 2)−1.

From the above reduction, we can get a result similar to Thorem 2.1. Oda

and Yanagihara (2020) considered the transformation d = (n−k)(m−2)−1+r

and gave a condition for r having high-dimensional consistency.

Next we consider the generalized prediction error criterion defined by

GPd,j = (n− k)
trΣ̂j

trΣ̂ω
+ dkj .

The criterion in a special case d = 2 was proposed by Fujikoshi et al. (2011).

For its generalization, see Oda (2020).

It may be noted that the criterion can be used in the case of (n− k) < p.

The KOO method based on GPd,j is to select a subset given by

ĵd,GP = {j ∈ ω | Td,j,GP > 0},
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where

Td,j;GP = GPd,ω\j −GPd,ω = (n− k)
trSh,j

trSω
− d.

One of our interests is to examine a sufficient condition for ĵd,GP to be asymp-

totically consistent. Some results has been obtained under P1, P3 and the

following additional assumptions:

P̃2: The high-dimensional asymptotic framework is as follows:

p/n → c̃1 ∈ (0,∞), k/n → c2 ∈ [0, 1).

P̃3: The covariance matrix Σ satisfies the following conditions;

(1/p)trΣ → O(1), (1/p)trΣ2 → O(1).

P̃4: The covariance matrix Σ and the noncentrality matrix satisfy the

following conditions;

(1/p)trΣΩ → O(1), (1/p)trΣ2Ω → O(1).

3. Discriminant analysis

3.1. Two-group case

In two-group discriminant analysis, suppose that we have independent sam-

ples y
(i)
1 , . . . ,y

(i)
ni from p-dimensional normal distributions Πi : Np(µ

(i),Σ),

i ∈ {1, 2}. Let Y be the total sample matrix defined by

Y = (y
(1)
1 , . . . ,y(1)

n1
,y

(2)
1 , . . . ,y(2)

n2
)⊤.

The coefficients of the population discriminant function are given by

β = Σ−1(µ(1) − µ(2)) = (β1, . . . , βp)
⊤.
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Let ∆ andD be the population and the sample Mahalanobis distances defined

by ∆ =
{
(µ(1) − µ(2))⊤Σ−1(µ(1) − µ(2))

}1/2
and

D =
{
(y(1) − y(2))′S−1(y(1) − y(2))

}1/2
,

respectively. Here, y(1) and y(2) are the sample mean vectors, and S is the

pooled sample covariance matrix based on n = n1 + n2 samples.

In this section, ω is used for {1, . . . , p}, and we let j denote a subset

of ω containing pj elements, and yj denote the pj vector consisting of the

elements of y, indexed by the elements of j. We use the notation Dj and

Dω for D based on yj and yω(= y), respectively. Let Mj be the variable

selection model, defined by

Mj : βj ̸= 0 if j ∈ j, βj = 0, j ̸∈ j.

Model Mj assume that ∆j = ∆ω, i.e., that the Mahalanobis distance based

on yj is the same as the one based on the full set of variables, y. We identify

the selection of Mj with the selection of yj . Let GICj be the GIC for Mj

in two-group discriminant analysis, and Td,j = GICω\j − GICω. Then, we

have (see, e.g., Fujikoshi and Sakurai (2019)) that

Td,j = n log

{
1 +

g2(D2
ω −D2

ω\j)

n− 2 + g2D2
ω\j

}
− d, (3.1)

where g =
√

(n1n2)/n and d is a positive constant that may depend on p

and n. Our KOO method is defined by selecting the set of suffixes or the set

of variables given by

ĵd = {j ∈ ω | Td,j > 0}, Td,j given by (3.1). (3.2)

Consistency of ĵd for some d > 0 shall be shown following a similar

outline as in the multivariate regression model. Denote a subset ω\j by

{−j} simply. The square of the Mahalanobis distance of y is decomposed as

a sum of the squares of the Mahalanobis distance of y{−j} and the conditional

Mahalanobis distance of y{j} given y{−j}

∆2 = ∆2
{−j} +∆2

{j}·{−j}, (3.3)
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and hence ∆2
{j}·{−j} = ∆2 −∆2

{−j}.

Note that in the use of the KOO method, we have assumed n − 2 ≥ p.

For high-dimensional data such that p > n, Lasso and other regularization

methods have been extended. For such studies, see, e.g., Clemmensen et al.

(2011), Witten and Tibshirani (2011), and Hao and Dong (2015).

For a distributional reduction of Td,j in (3.1), we use the following Lemma

(see, e.g., Fujikoshi et al. (2010)).

Lemma 3.1. Let D1 and D be the sample Mahalanobis distances based on

y1; p1×1 and y = (y⊤
1 ,y

⊤
2 )

⊤, respectively, and let D2
2·1 = D2−D2

1. Similarly,

the corresponding population quantities are expressed as ∆1, ∆ and ∆2
2·1.

Then, it holds that

(i) D2
1 = (n− 2)g−2R, R = χ2(p1; g

2∆2
1)
{
χ2(n− p1 − 1)

}−1
.

(ii) D2
2·1 = (n− 2)g−2χ2

(
p2; g

2∆2
2·1(1 +R)−1

) {
χ2(n− p− 1)

}−1
(1 +R).

(iii)
g2(D2 −D2

1)

n− 2 + g2D2
1

= χ2(p2; g
2∆2

2·1(1 +R)−1){χ2(n− p− 1)}−1.

Here, χ2(p1; ·), χ2(n−p1−1), χ2(p2; ·) and χ2(n−p−1) denote independent

chi-square variables.

Using Lemma 3.1 (iii), we have

Td,j = n log

{
1 +

χ2(1; g2∆2
{j}·{−j}(1 +Rj)

−1)

χ2(n− p− 1)

}
− d, (3.4)

where Rj = χ2(p − 1; g2∆2
{−j}) {χ2(n− p)}−1

. When j ̸∈ j∗, ∆
2
{j}·{−j} = 0,

and we have

Td,j = n log

{
1 +

χ2(1)

χ2(n− p− 1)

}
− d. (3.5)

Here, we list some of our main assumptions. Assumptions A1 and A2 are

assumed under our high-dimensional asymptotic framework.
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A1(The true model): The true subset j∗ is included in the full set ω,

i.e., j∗ ⊂ ω;

A2(The high-dimensional asymptotic framework): p → ∞, n → ∞, p/n →
c ∈ (0, 1), ni/n → ki > 0, i ∈ {1, 2}.

For a proof of “[F1] → 0”, we use the following two assumptions:

A3: p∗ is finite, and ∆2 = O(1);.

A4: For j ∈ j∗, lim∆2
{j}·{−j} > 0 and lim∆2

{−j} > 0, under ∆2 = O(1).

For the constant d in (3.1), we consider the following conditions:

B1: d/n → 0;

B2: h ≡ d/n− 1/(n− p− 3) > 0, and h = O(n−a), where 0 < a < 1.

The following results were given by Fujikoshi and Sakurai (2019).

Theorem 3.1. Suppose that assumptions A1 and A2 hold. Then, for the

KOO method (3.2), the following asymptotic results hold.

(i) Suppose that A3 and A4 hold. Then, [F1] → 0;

(ii) Suppose that B1 and B2 hold. Then, [F2] → 0;

(iii) Suppose that the assumptions in (1) and (2) hold. Then, the KOO

method (2.3) is asymptoticaly consistent.

Proof of Theorem 3.1: First we show “[F1] → 0”. Let j ∈ j∗. Then,

∆2
{−j} < ∆2, and ∆2

{j}·{−j} > 0. Using (3.4) and Lemma 3.1 (iii)

Td,j = n log

{
1 +

χ2(1; g2∆2
{j}·{−j}(1 +Rj)

−1)

χ2
n−p−1

}
− d,
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where Rj = χ2(p − 1; g2∆2
{−j})

{
χ2
n−p

}−1
. Since j∗ is finite, it is sufficient

to show Td,j
p→ tj > 0 or Td,j

p→ ∞. It is easily seen that Rj ≈ (p +

g2∆2
{−j})(n− p)−1 and hence

(1 +Rj)
−1 ≈ n− p

n+ g2∆2
{−j}

,

where “ ≈ ” means asymptotic equivalence. Therefore, we obtain

1

n
Td,j → log

(
1 +

k1k2 lim∆2
{j}·{−j}

1 + k1k2 lim∆2
{−j}

)
> 0,

which implies our assertion.

Next we show “[F2] → 0”. Using (3.5), we can write

[F2] = (p− p∗)Pr(U > ed/n − 1− (n− p− 3)−1)

≤ (p− p∗)Pr(U ≥ h)

≤ (p− p∗)h
−2ℓE(U2ℓ), ℓ ∈ {1, 2, . . . , },

where U = χ2(1)/χ2(n − p − 1) − 1/(n − p − 3). Noting h = O(n−a) and

E[U2ℓ] = O(n−2ℓ) (see, e.g., Theorem 16.2.2 in Fujikoshi et al. (2010)), we

have

[F2] ≤ O(n1−2ℓ(1−a)).

Choosing ℓ > 1/{2(1− a)}, we have “[F2] → 0”.

Let d = nr, where 0 < r < 1. Then, h = O(n−(1−r)), and condition B2 is

satisfied. Thus, the KOO method (3.2) with

d ∈
{
n3/4, n2/3, n1/2, n1/3, n1/4

}
has a high-dimensional consistency. Among these, it has been pointed in

Fujikoshi and Sakurai (2019) that the one with d =
√
n has numerically a

good behavior. Note that ĵ2 and ĵlogn as in (3.2) do not satisfy B2.

From our discussions, a consistency result under a large sample framework

“p; fixed, ni/n → ki > 0, i ∈ {1, 2}.
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may be noted. That is, ĵlogn and ĵ√n are consistent under a large-sample

framework, since d → ∞ and d/n → 0. Similar results was given by Nishii

et al. (1988) in multiple-group case.

3.2. Multiple-group case

In multiple-group discriminant analysis, suppose that we have independent

samples y
(i)
1 , . . . ,y

(i)
ni from p-dimensional normal distributions Πi : Np(µ

(i),Σ),

i ∈ {1, . . . , q + 1} of y = (y1, . . . , yp)
⊤. Let

Y = (y
(1)
1 , . . . ,y(1)

n1
, . . . ,y

(q+1)
1 , . . . ,y(q+1)

nq+1
)⊤

be the total sample matrix. The population between groups matrix is defined

by

Ω =

q+1∑
i=1

ni

n
(µ(i) − µ)(µ(i) − µ)⊤,

where n = n1 + · · · + nq+1 and µ = n−1(n1µ
(1) + · · · + nq+1µ

(q+1)). Let

λ1 ≥ · · · ≥ λq be the non-zero characteristic roots of ΩΣ−1. Then, the

corresponding characteristic vectors are denoted by β1, . . . ,βq with normal-

izations β⊤
i Σβi = 1, i ∈ {1, . . . , q}. They are the solutions of

Ωβi = λiΣβi, β⊤
i Σβj = δij.

Then, βi is the coefficient vector of the ith population linear discriminant

function. For simplicity, assume that p > q and λq > 0. Related to a

partition of y = (y⊤
1 ,y

⊤
2 )

⊤, yi : pi × 1, let µ(i) and Σ be partitioned as

µ(i) =

(
µ

(i)
1

µ
(i)
2

)
, Σ =

(
Σ11 Σ12

Σ21 Σ22

)
.

Similarly, let βi and Ω be partitioned as

βi =

(
β1i

β2i

)
, Ω =

(
Ω11 Ω12

Ω21 Ω22

)
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in the same way as µ(i) and Σ. The sufficiency hypothesis of y1 or the

redundancy hypothesis of y2 was introduced by Rao (1970, 1973)) as

H2·1 : µ
(1)
2·1 = · · · = µ

(q+1)
2·1 ,

where µ
(i)
2·1 = µ

(i)
2 −Σ21Σ

−1
11 µ

(i)
1 , i ∈ {1, . . . , q + 1}. Then the statement H2·1

is equivalent to one of the following equalifications:

(i) β2i = 0, i ∈ {1, . . . , q}, (ii) trΣ−1Ω = trΣ−1
11 Ω11.

Related to a selection of variables, we need to consider slight modifications

of H2·1, (i) or (ii) themselves. The modification of (i) may be defined by

M{1,...,p1} : β2j = 0, βij ̸= 0, i ∈ {1, . . . , p1}, j ∈ {1, . . . , q}.

Let B and W be the matrices of sums of squares and products due to

between-groups and within-groups, respectively, i.e.,

B =

q+1∑
i=1

ni(y
(i) − y)(y(i) − y)⊤, W =

q+1∑
i=1

(y
(i)
j − y)(y

(i)
j − y)⊤.

The matrix T = B+W is called the matrix of sums of squares and products

due to the total variation. We use the same partions for B,W and T as in

the partitions of Σ, Ω, etc. Then, GIC for M2·1 is given (see, e.g., Fujikoshi

et al. (2010)) as

GIC{1,...,p1} = −n log{|W22·1|/|T22·1|}+ n log |n−1W|

+ np(1 + log 2π) + d

{
qp1 + p+

1

2
p(p+ 1)

}
. (3.6)

In general, let us denote the GIC for model Mj by GICd,j or simply

GICj . For expressing the KOO method based on GICd in (3.6) in a simple

way, we use the following notation: For ℓ ∈ ω, ℓ is used for any subset of

p − 1 elements in ω such that ℓ = {−ℓ}. We arrange the elements of y as

y = (y⊤
ℓ , yℓ)

⊤. Corresponding to this partition, we express the partitions of

µ(i), 1 ≤ i ≤ q + 1, Σ ,W and T = W + B as follows:

µ(i) =

(
µ

(i)
ℓ

µ
(i)
ℓ

)
, Σ =

(
Σℓℓ σℓℓ

σ′
ℓℓ σℓℓ

)
, W =

(
Wℓℓ wℓℓ

w′
ℓℓ wℓℓ

)
, T =

(
Tℓℓ tℓℓ
t′ℓℓ tℓℓ

)
.
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The sufficiency condition of yℓ may be written as µ
(1)
ℓ·ℓ = · · · = µ

(q+1)
ℓ·ℓ , where

µ
(i)
ℓ·ℓ = µ

(i)
ℓ − σ′

ℓℓΣ
−1
ℓℓ µ

(i)
ℓ (1 ≤ i ≤ q + 1). Then, we have

Td,ℓ ≡ GICℓ −GICω = −n log
wℓℓ·ℓ

tℓℓ·ℓ
− dq, (3.7)

where wℓℓ·ℓ = wℓℓ−w′
ℓℓW

−1
ℓℓ wℓℓ and tℓℓ·ℓ = tℓℓ− t′ℓℓT

−1
ℓℓ tℓℓ. The KOO method

based on Td,ℓ is to select

ĵd = {j ∈ ω | Td,j > 0}, Td,j given by (3.7). (3.8)

The following results on consistency of ĵd are mainly based on Oda et al.

(2020). For a distributional reduction of Td,ℓ, we use the following Lemma.

Lemma 3.2. When dealing with wℓℓ·ℓ/tℓℓ·ℓ, we may assume without loss of

generality that W and B are independent and W ∼ Wp(n − q − 1, Ip) and

B ∼ Wp(q, Ip;Ψ), where

Ψ = nΓΩΓ⊤ = ΘΘ⊤, Γ =

(
Σ

−1/2
ℓℓ 0p−1

σ
−1/2
ℓℓ·ℓ σ′

ℓℓΣ
−1
ℓℓ σ

−1/2
ℓℓ·ℓ

)
, Θ =

(
Θℓ

θ⊤
ℓ

)
,

and Θℓ; (p− 1)× q, θℓ; q × 1. We can express wℓℓ·ℓ/tℓℓ·ℓ and Td,ℓ as

wℓℓ·ℓ

tℓℓ·ℓ
=

wℓℓ·ℓ

wℓℓ·ℓ + (tℓℓ·ℓ − wℓℓ·ℓ)
=

se
se + sh

,

Td,ℓ = n log
(
1 + shs

−1
e

)
− dq,

where se and sh are conditionally independent given U and Z, and

se ∼ χ2(n− p− q), sh | U,Z ∼ χ2(q; γ2
ℓ ).

Here,

γ2
ℓ = θ⊤

ℓ {Iq + Z⊤(U⊤U)−1Z}−1θℓ,

where U; p−1×(n−q−1) and Z; q×(p−1) are independent random matrices

whose elements are independent normal variabes with the same variance 1,

E(U) = O, and E(Z) = Θℓ.
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In the special case of q = 1, se ∼ χ2(n − p − 1), sh ∼ χ2(1; γ2
ℓ ), γ2

ℓ =

g2∆2
ℓ·ℓ(1 +R)−1, R = χ2(p− 1; g2∆2

ℓ)/χ
2(n− p). Here, we use that

θ⊤
ℓ θℓ = g2∆2

ℓ·ℓ, trΘ⊤
ℓ Θℓ = g2∆2

ℓ.

These distributional results are coincident with the results in Lemma 3.1.

Note that

Td,ℓ > 0 ⇔ χ2(q; γ2
ℓ )

χ2(n− p− q)
> edq/n − 1,

and when ℓ /∈ j∗, γ
2
ℓ = 0. In this section we use the penalty term β given by

β = edq/n − 1− q

n− p− q − 2
, (3.9)

instead of d, assuming β > 0.

For the multiple-group case, assumptions A2, A3 and A4 are generalized

as follows:

Ã2: p → ∞, n → ∞, p/n → c ∈ (0, 1), ni/n → ki > 0, i ∈ {1, . . . , q +
1};

Ã3: The number p∗ of true variables is finite, and limn−1trΘ⊤Θ > 0;

Ã4: For ℓ ∈ j∗, limn−1θ⊤
ℓ θℓ > 0, and limn−1trΘ⊤

ℓ Θℓ > 0.

The assumption B2 is changed to

B̃2: hq ≡ q {dn−1 − (n− p− q − 2)−1} > 0 and hq = O(n−a), for 0 <

a < 1.

Theorem 3.2. Let [F1] and [F2] be the quantities defined in (2.5) and (2.6)

with Td,j in (3.7). Suppose that assumptions A1 and A2 hold. Then, for the

KOO method (3.8), the following asymptotic results hold.

(i) Suppose that Ã3 and Ã4 hold. Then, [F1] → 0;
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(ii) Suppose that B1 and B̃2 hold. Then, [F2] → 0;

(iii) Suppose that the assumptions in (i) and (ii) hold. Then, the KOO method

(3.8) is asymptotically consistent.

Proof of Theorem 3.2: First, we consider the case of ℓ /∈ j∗. Then, θℓ = 0,

and sh is distributed according to χ2(q), and we have

[F2] = (p− p∗)Pr(Uq > e(dq)/n − 1− q(n− p− q − 2)−1)

≤ (p− p∗)Pr(Uq ≥ hq)

≤ (p− p∗)h
−2ℓ
q E(U2ℓ

q ), ℓ ∈ {1, 2, . . . , },

where Uq = χ2(q)/χ2(n−p− q)− q/(n−p− q− 2). Noting hq = O(n−a) and

E[U2ℓ
q ] = O(n−2ℓ) (see, e.g., Theorem 16.2.2 in Fujikoshi et al. [?]), we have

[F2] ≤ O(n1−2ℓ(1−a)).

Therefore, choosing ℓ > 1/{2(1−a)}, we have “[F2] → 0”. Next, we consider

the case of ℓ ∈ j∗. Note that [F1] =
∑

ℓ∈j∗ Pr(T̃d,ℓ ≤ 0), where T̃d,ℓ =

(1/n)Td,ℓ. In this case, we assume that kj∗ is finite. To show that [F1] →
0, it is sufficient to show that there exists a positive number t̃ℓ such that

lim T̃d,ℓ ≥ t̃ℓ , or lim T̃d,j→∞. Note that

T̃d,ℓ ≈ log

(
1 +

γ2
ℓ

n− p− q

)
,

and γ2
ℓ ≥ θ⊤

ℓ θℓ

[
1 + tr

{
Z⊤(U⊤U)−1Z

}]−1
. Further, we can write

tr
{
Z⊤(U⊤U)−1Z

}
= tr(V−1ZZ⊤),

where V = (Z⊤Z)1/2
{
Z⊤(U⊤U)−1Z

}−1
(Z⊤Z)1/2. Since V ∼ Wq(n − p, Iq)

(see, e.g., Fujikoshi et al. [?], Theorem 2.3.3), V ≈ (n − p)Iq. Similarly,

Z⊤Z ∼ Wq(p − 1, Iq;Θ
⊤
ℓ Θℓ), Z

⊤Z ≈ (p − 1)Iq +Θ⊤
ℓ Θℓ. From these results

we can get the required result. For more details, see Outline of Proof of

Theorem 3.3 and also Oda et al. (2020).
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In the following, we give some further results due to Oda et al. (2020).

Without loss of generality, the penalty term d may be rewritten as

d = nq−1 log(1 + b), or b = edq/n − 1, (3.10)

assuming b > 0. Then, we have

[F2] ≡
∑
ℓ/∈j∗

Pr(Td,ℓ ≥ 0) = (p− p∗)Pr

(
sh
se

> b

)

≤ (p− p∗)b
−2rE

[{
χ2(q)

χ2(n− p− q)

}2r
]
. (3.11)

The above last inequality is derived by the Markov inequality. The order

of the expectation in the above last equation is O(n−2r) (see, e.g., Theorem

16.2.2 in Fujikoshi et al. (2010)). Now we make the following assumption for

the penalty term b:

B3: p−1/(2r)nb → ∞, for some positive integer r, and b → 0.

Therefore, from B3, we have∑
ℓ/∈j∗

Pr(Td,ℓ0) ≤ O(pn−2rb−2r) → 0. (3.12)

Here, we note that B3 is equivalent to

B̃3: p−1/(2r)d → ∞, for some positive integer r, and d/n → 0.

Relating to evaluation of “[F1] =
∑

ℓ∈j∗ Pr(Td,ℓ ≤ 0)”, let us denote a

compliment of {ℓ} with respect to ω by ℓ or ℓ. Then, the number of elements

in ♯(ℓ) = ♯(ℓ) is p − 1. Let δ2 = trΣ−1Ω, which is an information quantity

in discriminant analysis. This quantity for yj is denoted by δ2j , which is

trΣ−1
jj Ωjj . Instead of Ã3 and Ã4, we consider the following assumptions.
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C1: For all ℓ ⊂ ω such that ♯(ℓ) = p − 1 and ℓ = ℓ ∈ j∗, there exists

c1 > 0 such that for all n and p, δ2 − δ2ℓ > c1 .

C2: There exists c2 > such that for all p, λmin(Σ) > c2 > 0, where

λmin(Σ) is the minimum characteristic root of Σ.

The following result was given by Oda et al. [?].

Theorem 3.3. Suppose that assumptions A1, A2, B3, C1 and C2 hold.

Then, the KOO method (3.8) based on GIC is consistent if the number p∗ of

true variables is finite.

Outline of Proof of Theorem 3.3: The result can be shown by proving

(i); [F1]→ 0 and (ii); [F2]→ 0. The result (ii) has been pointed out by (3.11)

and (3.12). For a proof of (i), first we can see that assumptions C̃1 and C̃2

imply the assumptions Ã3 and Ã4. Therefore, the result (i) will follow from

the proof of Theorem 3.2. On the other hand, instead of using the proof of

Theorem 3.2, we can prove by using

[F1] =
∑
ℓ∈j∗

Pr(Td,ℓ ≤ 0) =
∑
ℓ∈j∗

Pr (Lℓ ≤ 0) ,

where

Lℓ =
sh
se

− q

n− p− q − 2
− β, β = b− q(n− p− q − 2)−1.

It is assumed that β > 0. Here, sh and se depend on ℓ, but we may assume

that se ∼ χ2(n − p − q), and sh ∼ χ2(q; γ2
ℓ ) when γ2

ℓ is given in Lemma

3.2. The result (ii) will be shown by noting that Lℓ converges to a positive

value.

As in the case q = 1, it has been pointed out that the KOO method with

d =
√
n has numerically good behavior.
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4. Conclusions

In this paper we overview of high-dimensional consistency of KOO methods

based on general information criteria in multivariate regression model and

discriminant analysis. Consistency of KOO method based on some other

model section criteria are also examined in multivariate regression model.

Our results have been restricted in the case of normality and weak consis-

tency. For some results in the case of non-normality and strong consistency

have been discussed in Bai et al. (2018) in multivariate regression model.

However, since their results are under revision, we have not discussed here.

The consistency results in this paper are obtained by prooving two properties

[F1] and [F2] in (2.5) and (2.6). Sufficient conditions for each of [F1] and

[F2] were given. In a high-dimensional asymptotic framework in discriminant

analysis, we assume that the number of groups, q + 1, is fixed. However, it

would also be important to consider the case of q being large.

Some high-dimensional consistency results on information criteria of se-

lection of variables in some other multivariate models have been reported.

For examples, see Oda et al. (2019) for selection of variables in canonical

correlation analysis, Fujikoshi et al. (2013) and Enomoto (2019) for selec-

tion of within individual variables in growth curve model, Oda et al. (2019)

for selection of response variables in multivariate calibration, and Oda et al.

(2021) for selection of response variables in multivariate regression model.

Enomoto (2019) has dicussed consistency of KOO method in growth curve

model, assuming that the covariance matrix has a uniform structure. It is

expected that high-dimensional properties of KOO methods in these models

shall be further studied.
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