
A Behrens-Fisher problem for general factor models in

high dimensions

Masashi Hyodoa, Takahiro Nishiyamab, Tatjana Pavlenkoc

aFaculty of Economics, Kanagawa University, 3-27-1 Rokkakubashi, Kanagawa-ku,
Yokohama-shi, Kanagawa, Japan. caicmhy@gmail.com

bDepartment of Business Administration, Senshu University, 2-1-1, Higashimita,
Tama-ku, Kawasaki-shi, Kanagawa 214-8580, Japan. nishiyama@isc.senshu-u.ac.jp

cDepartment of Mathematics, KTH Royal Institute of Technology, SE-100, 44,
Stockholm, Sweden

Abstract

We revisit, in an original and challenging high-dimensional framework, the
well-known Behrens-Fisher problem and propose a testing procedure which
accommodates a low-dimensional latent factor model. The developed inferen-
tial framework is general, as it applies to the problems where the underlying
populations may be non-normal, the dimension of the population mean vec-
tors may highly exceed the sample size, design may be unbalanced and the
loading factor dimensions may be different. Under high-dimensional asymp-
totic regime combined with fairly weak technical conditions, we show that
null limiting distributions of the test statistics follow a weighted mixture of
chi-square distributions, which depends only on the spectrum of the noise
covariance matrix and the number of latent factors. As these latter are usu-
ally unknown in practice, we exploit an estimation procedure which builds
on recent advances in random matrix theory. The asymptotic power of the
proposed test is established. The numerical study confirms good analytical
properties of the new test that compares favorably to the existing procedures
used in a similar context. Real data applications are demonstrated with an
empirical study on a leukemia data set.
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1. Introduction

Let xgi � pxgi1, . . . , xgipqJ � Fg be iid p-dimensional random vectors
collected from the ith subject in the gth population with mean vector µg

and covariance matrix Σg , where Fg denotes the distribution function for
gth population, i P vngw, g P v2w and vkw denotes the set t1, . . . , ku for k P N.
Specifically, we design the test procedure for testing

H : µ1 � µ2, A : µ1 � µ2 (1.1)

in the setting where p may be large and even p " ng, Fg may be non-normal
and Σg may be unequal which, along with ng also allowed to be unequal.

As the classical methods of mean comparisons for low-dimensional data,
of which the best-known is Hotelling’s T 2 test, do not work when p ¡ ng

and need to be modified, a number of useful two-sample tests have been pro-
posed for high-dimensional settings. The construction of many such tests has
been motivated by the work of Bai and Saranadasa (1996), who proposed to
substitute an identity matrix I for the pooled sample covariance matrix in
Hotelling’s T 2 statistic under the assumption of a common covariance matrix
Σ1 � Σ2 � Σ. Chen and Qin (2010) extended the L2-norm-based construc-
tion and established asymptotic properties of the proposed test under much
weaker conditions, in particular by relaxing the homoscedasticity assumption
of Bai and Saranadasa (1996). Note that their tests are guaranteed under
the weak dependence–type condition (sphericity condition) which stated as

trpΣiΣjΣℓΣhq � ortr2tpΣ1 �Σ2q2us for i, j, ℓ, h � 1 or 2, as pÑ 8, (1.2)

see e.g., assumption (3.6) in Chen and Qin (2010). Here, trp�q is the trace
operator of a matrix. The sphericity assumption is crucial for establishing
the asymptotic normality of the test statistic proposed by Chen and Qin
(2010); see Theorem 1 of their paper. However, besides of being difficult to
verify in practice, sphericity assumption can be easily violated in covariance
models where the eigenvalues of Σg are dominated by few top ones.

Therefore, it is necessary to establish a test method in a situation where
the sphericality condition is not satisfied. Recently, some of proposals has
been put forth in the literature with this motivations in mind. There are
two different approaches to this effort. One is the test under the covariance
structure called the strongly spiked structure, and the other is test under
the low-dimensional factor model. Under these two settings, the sphericity
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conditions (1.2) is not satisfied, and the essential difference between the two
settings is the structure of the noise term. The test for (1.1) under strongly
spiked structure is proposed by Ishii (2017), Aoshima and Yata (2018), and
Ishii et al. (2019). On the other hands, Ma et al. (2015) proposed the
test for (1.1) under the low-dimensional factor model with homoscedasticity
assumption, i.e., an assumption of common covariance matrix Σ1 � Σ2 � Σ.
However, this assumption is a very strong assumption which is hard to be
practically verified in p " ng settings.

As mentioned above, while the tests under the strongly spiked structure
are well developed, the test under the factor model are still evolving. There-
fore, in this research, we are interested to develop a high-dimensional test
for difference of mean vectors, by relaxing the standard latent factor model
assumptions, e.g., large-sample setting p   ng, normality and homoscedas-
ticity. In other words, we aim to improve the Ma et al.’s method under the
low-dimensional factor model.

A factor model is a convenient structural assumption on the covariance
matrix which is popular in a wide spectrum of modern applied fields like ge-
netics, microbiome and metagenomic, fMRI, economics and finance, or more
generally in high-dimensional data where the dependence of measurements
can be attributed to a relatively small number of latent factors. A factor
model assumes that for each g P v2w, the observable vector xgi is decompos-
able into a latent factor and an idiosyncratic (noise) component as follows:

xgi � µg �Bgzgi �Ψ1{2
g ϵgi, (1.3)

where µg P Rp is a deterministic intercept vector, zgi � pzgi1, . . . , zgidgqJ is the
dg-dimensional latent (unobservable) factor vector, and ϵgi � pϵgi1, . . . , ϵgipqJ
is the p-dimensional error (noise) vector which is uncorrelated with the
latent factor. In what follows, we assume that dg P N is a fixed num-
ber. Further, Bg � pbg1, . . . ,bgpqJ denotes the loading matrix where for
each j P vpw, bgj � pbgj1, . . . , bgjdgqJ P Rdg is a non-random vector, and
Ψg � diagpψg1, . . . , ψgpq is the non-random p � p diagonal matrix whose
elements are ψg1 ¡ 0, . . . , ψgp ¡ 0. For the latent vector zgi and error vec-
tor ϵgi, we further assume that zgiℓ are iid with Epzgiℓq � 0, Epz2giℓq � 1
and Epz4giℓq � κzg   8, and ϵgij are iid with Epϵgijq � 0, Epϵ2gijq � 1 and
Epϵ4gijq � κϵg   8 for g P v2w, i P vngw, j P vpw and ℓ P vdgw. Structural
assumptions of the model (1.3) imply that

Epxgiq � µg, covpxgiq � BgB
J
g �Ψg :� Σg, (1.4)
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where Σg P Rp�p
¡0 , g P v2w and Rp�p

¡0 denotes the space of real, symmetric,
positive definite, p� p matrices.

We do not assume that Σ1 � Σ2; out test statistics, along with their
limit properties are studied under heteroscedasticity, i.e., solves a general,
two-sample Behrens-Fisher problem for the latent factor model (1.3). In
addition, with our approach, the test can still work well even when the two
underlying covariance matrices are actually equal. Our testing procedure can
accommodate the class of highly spiked high-dimensional covariance models
of Σg’s where the few leading eigenvalues may be extremely large. Further-
more, this relaxation is of crucial importance for the asymptotic theory of the
proposed tests. Due to the restrictive framework of the normal asymptotic
theory, we shift focus to more flexible approximation types, specifically, to
a chi-square mixture-type of asymptotic approximation, which leads to the
totally different testing procedures compared to those of Bai and Saranadasa
(1996) or Chen and Qin (2010). Our asymptotic results are valid with no spe-
cific distributional or moment assumptions on the data. Numerical studies
demonstrate that the chi-square mixture asymptotic approximation allows
for better size control under a variety of practical scenarios of the factor
model in high dimensions.

The rest of this paper is organized as follows. Section 2 lays out a high-
dimensional asymptotic framework, presents the new test statistics along
with their limiting properties, and provides the data-driven test procedures.
Section 3 provides evaluation of a finite sample performance of the proposed
tests where the simulation study is followed by the real-data applications.
Discussion and concluding remarks are provided in Section 4. All proofs and
auxiliary technical results are delegated to Appendix.

1.1. Notational convention

Let v P Rp and M P Rp�p
¡0 . Throughout the paper, we let }v} and trpMq

denote the L2-norm of a vector v and the trace operator of a matrix M,
respectively. λ1pMq ¥ λ2pMq ¥ � � � ¥ λppMq denote the eigenvalues of a

matrix M. The symbols ù and
PÝÑ denote convergence in distribution and

convergence in probability, respectively. The symbol χ2pνq denotes a central
chi-square distribution with ν degrees of freedom. We recall that vmw denotes
the set t1, . . . ,mu for m P N, and denote by vℓ,mw the set tℓ, ℓ�1, . . . ,mu for
1   ℓ   m P N. For two sequences of real numbers tanu and tbnu, we write
an � opbnq if lim supnÑ8 |an|{|bn| � 0, an � Opbnq if lim supnÑ8 |an|{|bn|   8
and an � bn if an � Opbnq and bn � Opanq, these asymptotic notations extend
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naturally to probabilistic setups, denoted by oP, OP and
P� where limits are

in the sense of convergence in probability.

2. Methodology and main results

This section considers the testing problem (1.1) in the high-dimensional
asymptotic setting specified in Section 2.1. We shall first present our testing
procedure in the oracle setting in Section 2.2 where the number of factors
dg and the noise covariance matrices Ψg in the model (1.3) are assumed to
be known. Clearly, in practice, the assumption of known model parameters
imposes limitations of the use of the results. A data-driven testing procedure
is given in Section 2.3 for a general case of unknown dg and Ψg, as a natural
next logical step in this line of research.

2.1. Asymptotic set up and some preliminary studies

We shall now formalize the asymptotic viewpoint which we adopt for the
latent factor model of our interest. Our analysis takes place in an asymptotic
setting where both the number of features p as well as the sample sizes ng go
to infinity. In the model (1.3), we choose the loading matrix Bg and the noise
covariance matrix Ψg according to ng and p with the following assumptions.

(A1) p � ppnq Ñ 8 as a function of n � n1�n2 such that p tents to infinity
along with n Ñ 8 and n{p Ñ η P p0,8q. n1, n2 Ñ 8 in such a way
that n1{n2 Ñ γ P p0,8q.

(A2) Let ψgmax � maxtψg1, . . . , ψgpu for g P v2w. Then, ψgmax{p Ñ 0 and
p1{pqBJ

g Bh Ñ Agh as pÑ 8, where A11 and A22 are positive definite
matrices.

Assumption (A1) specifies the general regime of p growth relative to n �
n1�n2 in the high-dimensional asymptotic setting to provide valid inference
when both indices go to infinity. This general regime, in what follows will
be denoted by pn, pq Ñ 8. The second part of (A1) is a natural regularity
condition for the two-sample problem which ensures that the sample sizes n1

and n2 grow proportionally. It is needed to keep the limit non-degenerate
when ng Ñ 8. Technical assumption (A2) is set to take care of the limiting
behavior of the loading matrices Bg, g P v2w.

To appreciate these assumptions we note that, unlike common practice in
the literature on high-dimensional testing, our approach is less restrictive as
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it does not impose any structural conditions on Σg. The boundary conditions
on the maximum eigenvalue of Σg, e.g., λmaxpΣq � opp1{2q required in Bai and
Saranadasa (1996), or sphericity condition (1.2) required in Chen and Qin
(2010) for the normal convergence of the proposed test statistics under non-
normality and heteroscedasticity (see eq. (3.6)-(3.8) in Chen and Qin (2010)),
may collapse for many covariance structures useful for high-dimensional mean
testing. One specific example of such structure is the latent factor model at
hand. It is for such cases that our test is designed.

Let

B �
� b

n
n1
B1 �

b
n
n2
B2

	
.

Under (A1) and (A2), p1{pqBJBÑ A, where

A �
� p1� γ�1qA11 �ap1� γqp1� γ�1qA12

�ap1� γqp1� γ�1qA21 p1� γqA22



is a semi positive definite matrix. The following theorem is the result of the
spectral properties of the covariance matrices covpan{n1x11 �

a
n{n2x21q,

Σ1, and Σ2 under the factor model (1.3).

Theorem 1. Let Ω � covpan{n1x11 �
a
n{n2x21q. For the factor model

(1.3) satisfying condition (A2), the eigenvalues of Ω and Σg obey the follow-
ing properties

piq λℓpΩq
p

�
#
λℓpAq � op1q, ℓ P vd1 � d2w
op1q, ℓ P vd1 � d2 � 1, pw

piiq λℓpΣgq
p

�
#
λℓpAggq � op1q, ℓ P vdgw
op1q, ℓ P vdg � 1, pw.

Proof. See, Appendix B.

As the discussion given just before Theorem 1 states, we note that by
the result (ii) the sphericity condition p1.2q does not hold for the model
(1.3) as p Ñ 8. Indeed, to illustrate this in a simplified case, consider the
homoscedastic model of Ma et al. (2015) and set B1 � B2 and Ψ1 � Ψ2,
that is, Σ1 � Σ2 � Σ. Then it follows from (ii) that

ttrpΣ2qu2 � p4

�
d0̧

ℓ�1

tλℓpA0qu2
�2

� opp4q, trpΣ4q � p4
d0̧

ℓ�1

tλℓpA0qu4 � opp4q,
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where d0 � d1 � d2 and p1{pqBJ
1B1 � p1{pqBJ

2B2 Ñ A0 as p Ñ 8. Hence,
we note that trpΣ4q{ttrpΣ2qu2 Û 0 as p Ñ 8, implying that the spericity
condition does not hold.

2.2. Asymptotic distribution theory for the oracle procedure

For the latent factor model data set up specified by (1.3) and (1.4), let xg

and Sg be the gth group sample mean vector and sample covariance matrix,
respectively, defined as

xg � 1

ng

ng¸
i�1

xgi, Sg � 1

ng � 1

ng¸
i�1

pxgi � xgqpxgi � xgqJ, g P v2w.

To obtain some initial theoretical results in testing (1.1), we temporarily
assume that the noise covariance matrices Ψg as well as the number of latent
factors dg in (1.3) are known (to an oracle) and introduce the following oracle
statistic

T � n

p

"
}x1 � x2}2 � 1

n1

trpΨ1q � 1

n2

trpΨ2q
*
. (2.1)

The following theorem states the null asymptotic distribution of the oracle
test statistic T .

Theorem 2. Suppose that the null hypothesis H from (1.1) is true. For a
latent factor model (1.3) satisfying conditions (A1)-(A2), the statistic T is
asymptotically distributed as

°d1�d2
ℓ�1 λℓpAqχ2

ℓp1q, where χ2
1p1q, . . . , χ2

d1�d2
p1q

are mutually independent, chi-square distributed random variables with 1 de-
gree of freedom and λℓpAq is the ℓth largest eigenvalue of matrix A.

Proof. See, Appendix C.

Remark 1. The convergence result stated in Theorem 2 holds in a more
general asymptotic regime when pp, nq Ñ 8 without imposing any explicit
restrictions between n and p.

Some comments are in order to explain the structure of the statistic T
defined in (2.1). Under the null hypothesis H from (1.1) and a latent fac-
tor model (1.3) satisfying conditions (A1)-(A2), a careful study of the proof
of Theorem 2 reveals that E tpn{pq}x1 � x2}2u � trpAq � pn{pn1qtrpΨ1q �
pn{pn2qtrpΨ2q�op1q. It is well known that the expectation of

°d1�d2
ℓ�1 λℓpAqχ2

ℓp1q
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is trpAq, (see, e.g., eq. (11) in Zhang et al. (2021)). Hence, we need to remove
pn{pn1qtrpΨ1q�pn{pn2qtrpΨ2q from pn{pq}x1�x2}2, which results in the test
statistic proposed in (2.1). It is important to note that the suggested bias-
adjustment yields almost surely nonnegative statistic T ; indeed, by noting
that T � yJAy� oPp1q we get P tT ¥ 0u Ñ 1, where y � p?n1z

J
1 ,
?
n2z

J
2 qJ,

zg � n�1
g

°ng

i�1 zgi for g P v2w.
On the basis of the limiting null distribution, the asymptotically α-level

oracle test can be defined as follows:

ϕαpd,Ψq � 1lpT ¥ tαq, (2.2)

where d � td1, d2u, 1lp�q is the indicator function, Ψ � tΨ1,Ψ2u, tα is the
p1�αq-quantile of the cumulative distribution function of the random variable°d1�d2

ℓ�1 λℓpAqχ2
ℓp1q. The null hypothesis is rejected if and only if ϕαp�q � 1.

The message is that the chi-square mixture approximation approach of
Theorem 2 is of obvious appeal for the development of L2-norm-based mean
testing procedures for (1.1) under factor models. Ma et al. (2015) exploited
this approximation and derived the asymptotic null distribution of their pro-
posed statistic under homoscedastisity assumption. As we will see in Section
2.3, to apply Theorem 2 in studying the statistics considered in the present
paper, we simply need to properly determine estimators of dg and trpΨgq.

2.3. Data-driven test procedure

Estimation of the number of factors, dg, is another important issue of the
practical use of high-dimensional factor models. There is a rich source of
literature where the number of factors is determined by leveraging random
matrix theory and the present study is aligned with this perspective. Specif-
ically, we exploit the covariance matrix eigenvalue’s ratio-based estimation
technique presented in Onatski (2010), and later in Wang (2012) and Ahn
and Horenstein (2013), and propose a simple, tuning parameter-free estima-
tor of dg which is consistent for high-dimensional factor models. This in turn
makes it possible to construct a fully data-driven test procedure for testing
(1.1).

We have so far focused on the oracle case in which dg and trpΨgq are
known. Obviously, in practice, the consistency is expected to hold with
unknown parameters replaced by their estimators. In what follows, we show
with a bit of technical work, that the statement of Theorem 2 remains valid
for the ”plug-in” version of T , where the unknown dg and trpΨgq are replaced
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with any consistent estimators pdg and {trpΨgq, respectively, specified under
the general asymptotic regime of (A1). This latter fact will be used to develop
the asymptotic theory of the proposed test. In fact, since only consistency

is required for estimators pdg and {trpΨgq, our asymptotic theory developed in
this section is valid for a general class of tests for mean difference in factor
models with consistently estimated parameters dg and trpΨgq.

To estimate the number of factors dg, we explore the idea of Wang (2012)
and Ahn and Horenstein (2013). We focus on the criteria function which is
proposed by Ahn and Horenstein (2013)

ERgpkq � λkpSgq
λk�1pSgq ,

where ER refers to eigenvalue ratio. The estimator of dg is k which satisfiespdg � arg max
1¤k¤kg,max

ERgpkq, (2.3)

where kg,max is the prespecified upper bound of k. By using Ahn and Horen-
stein (2013), we obtain the following lemma which provides consistency of

the estimator pdg in high-dimensional setting.

Lemma 1. Suppose that the factor model (1.3) satisfies conditions (A1)-

(A2). Then, there exists cg P p0, 1s such that Pppdg � dgq Ñ 1 as mintp, ngu Ñ
8, for any kg,max P pdg, tcg mintp, nguu�dg�1s, where g P v2w and t�u denotes
the floor function.

Proof. See, Appendix D.

The following lemma also derived asymptotic properties for the first dg
eigenvalues of Sg by using Ahn and Horenstein (2013).

Lemma 2. Suppose that the factor model (1.3) satisfies conditions (A1) and
(A2). Then, for ℓ P vdgw, λℓpSgq{p � λℓpAggq{p � oPp1q as mintp, ngu Ñ 8
with g P v2w.
Proof. See, Appendix E.

Based on Lemma 1 and 2, we define the consistent plug-in estimators of
trpΨgq as

{trpΨgq � trpSgq �
pdg¸

ℓ�1

λℓpSgq. (2.4)
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Being equipped with consistent estimator (2.4), we define the data-driven
test statistic as

TFA � n

p

"
}x1 � x2}2 � 1

n1

{trpΨ1q � 1

n2

{trpΨ2q
*
. (2.5)

Below we will show that for all large enough p and n the limiting null distri-
bution of TFA remains the same as that of the oracle statistic T .

Theorem 3. Suppose that the null hypothesis H of (1.1), is true. For a factor
model (1.3) satisfying conditions (A1)-(A2), the statistic TFA is asymptoti-
cally distributed as

°d1�d2
ℓ�1 λℓpAqχ2

ℓp1q, where λℓpAq and χ2
ℓp1q are specified

in Theorem 2.

Proof. See, Appendix F.

Theorem 4. For a factor model (1.3) satisfying conditions (A1)-(A2), we
have

pd1� pd2¸
ℓ�1

{λℓpAqχ2
ℓp1q �

d1�d2¸
ℓ�1

λℓpAqχ2
ℓp1q � oPp1q.

Proof. See, Appendix G.

Now, on the basis the results Lemmas 1-2 and Theorems 3 and 4 we
furnish a fully data-driven test of significance of H. Given a test statistic
TFA, we writeϕαppd, pΨq for the test that uses estimators of dg andΨ specified
respectively by (2.3) and (2.4), and has asymptotic size α. The following are
six steps of the test procedure.

1. For each g P v2w, draw ng observations from Fg and calculate xg, pdg,{trpΨgq and TFA.

2. Let n0 � mintn1, n2u. For each i P vn0w obtain x0i �
a
n{n1px1i �

x1q �
a
n{n2px2i � x2q and calculate the empirical covariance matrix

as

S0 �
n0̧

i�1

x0ix
J
0i{pn0 � 1q.

3. Using S0, estimate λℓpAq by {λℓpAq � λℓpS0q{p for ℓ P vpd1 � pd2w.
4. Draw a sample of pd1 � pd2 independent, χ2p1q-distributed random vari-

ables and obtain
°

pd1� pd2
ℓ�1

{λℓpAqχ2
ℓp1q.

10



5. Repeat step 4 sufficiently many times p104q, obtain a Monte-Carlo esti-

mate of the distribution of the random variable
°

pd1� pd2
ℓ�1

{λℓpAqχ2
ℓp1q and

find its p1� αq-quantile, t̂α.
6. Define the corresponding test as

ϕαpd̂, pΨq � 1lpTFA ¥ t̂αq

and reject the null hypothesis if and only if ϕαpd̂, pΨq � 1.

We note that, by consistency of pdg and {λℓpAq, ℓ P vpd1 � pd2w stated in Lem-

mas 1-2, the Monte-Carlo estimate of the distribution of
°

pd1� pd2
ℓ�1

{λℓpAqχ2
ℓp1q

specified by steps 4-5 is obtained by resampling of the χ2p1q components
only.

2.4. Aspects of power

The asymptotic power of ϕαppd, pΨq is analyzed under certain conditions
on the separation between µ1 and µ2. While our null distribution results in
Section 2 are valid under the more general asymptotic regime of (A1), we
treat here its particular case where pp, nq Ñ 8 in such a way that n{p Ñ
η P p0,8q. Recall the definition in p2.5q and let Sn � tpx1 � µ1q � px2 �
µ2quJpµ1 � µ2q. In our exploration of power, it is at times convenient to
write

}x1 � x2}2 � }px1 � µ1q � px2 � µ2q}2 � 2Sn � }µ1 � µ2}2. (2.6)

Theorem 5. Suppose that conditions (A1) and (A2) hold. Under the alter-
native hypothesis A, for any 0   α   1

P pTFA ¥ tαq �
#
1� F ptα � η}µ1 � µ2}2q � op1q if }µ1 � µ2} � Op1q
1 if }µ1 � µ2} Ñ 8,

(2.7)

where tα is the p1�αq-quantile of the distribution of
°d1�d2

ℓ�1 λℓpAqχ2
ℓp1q, F p�q

is cumulative distribution function of the random variable

yJ0 Ay0 � 2
?
n

p
yJ0 B

Jpµ1 � µ2q (2.8)

for y0 � Nd1�d2p0, Id1�d2q.
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Proof. See, Appendix H.

In words, Theorem 5 says that for the test of asymptotic size α based on
TFA, under the regime n{p Ñ η, the maximum achievable power against a
specific alternative with }µ1�µ2} � Op1q is 1�F ptα � η}µ1 � µ2}2q�op1q.
The test has full power when }µ1 � µ2} Ñ 8. Both these scenarios for
the magnitude of deviation from H will be numerically demonstrated in our
simulations in the next section.

3. Numerical studies

3.1. Simulation experiments

In this section we compare, through simulations, the performance of the
proposed test ϕαpd̂, Ψ̂q and existing procedures suitable for a two-sample,
Behrens-Fisher problem in high-dimensional data with latent factor struc-
ture. Focusing on the tests constructed via L2-norm, we examine numerical
performance of procedures by Chen and Qin (2010) and Zang et al. (2021)
in terms of their size control and power. These tests are denoted respec-
tively by Ch-Q and L2D and our proposed test is denoted by FA, in the rest
of this section. Before turning to the simulations, however, we discuss the
implementation of the test procedures.

Without loss of generality, we shall always take µ1 � 0 in the simulations.
Under the null hypothesis, H : µ1 � µ2 � 0, whereas under the alternative
hypothesis we consider two different scenarios

A1 : µ1 � 0, µ2 �
?
6δ1ap2p� 1qpp� 1qpp1, � � � , pq

J,

A2 : µ1 � 0, µ2 �
a
p{np1Jrpδ2 s, 0

J
p�rpδ2 sqJ,

where δ1 P t1.6, 3.2, 6.4u and δ2 P t0.4, 0.6, 0.8u are tuning parameters which
control the magnitude of departure from the null hypothesis. A1 represents
the alternative when }µ1�µ2} � Op1q, whereas A2 illustrates the case when
alternative depends on p in such a way that }µ1 � µ2} � Oppδ2q.

To examine the test performance for spiked covariance structure of Fg ,
we consider the following two models.

M1: Under heteroscedasticity, i.e., assuming that Σ1 � Σ2, we set Bg and
Ψg as

B1 � pb11, � � � ,b1pq, B2 � pb21, � � � ,b2pq, Ψ1 � Ip, Ψ2 � 0.5Ip,
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with bgj for g P v2w and j P vpw generated as dg-dimensional, normally
distributed vectors

b11, � � � ,b1p
iid� Nd1p0,Ω1q, b21, � � � ,b2p

iid� Nd2p0,Ω2q,

where Ωg are set to be a first-order autoregressive covariance structure
parameterized respectively as Ω1 � p0.3|i�j|q and Ω2 � p0.1|i�j|q. For
the loading factor dimensions, we take pd1, d2q P tp2, 1q, p3, 2qu.

M2: Under homoscedasticity, i.e., assuming that Σ1 � Σ2, we set

B1 � B2 � pb11, � � � ,b1pq, Ψ1 � Ψ2 � Ip,

where bgj are generated as for the M1 and the loading factor dimension
is set to pd1, d2q P tp2, 2q, p3, 3qu.

Observe that the specific choice of the loading matrix Bg in M1 and M2
is motivated by the technical assumption (A2) and a spiky nature of the
covariance structure representing the latent factor model at hand. Indeed,
one can see that

1

p
BJ

1B1
PÝÑ Ω1,

1

p
BJ

2B2
PÝÑ Ω2

as pÑ 8, which implies that both B1 and B2 satisfy (A2).
To include effects such as asymmetry and heavy-tailed nature of the factor

vector and error term of (1.3), we consider the following three distribution
scenarios for the latter.

D1: zgij and ϵgij are iid N p0, 1q.

D2: Let z̃gij , ϵ̃gij
iid� χ2

10, then

zgij � z̃gij � 10?
20

, ϵgij � ϵ̃gij � 10?
20

.

D3: Let z̃gij , ϵ̃gij
iid� t10, then

zgij � z̃gija
5{4 , ϵgij �

ϵ̃gija
5{4 .
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To mimic the ”large p, small n” situation in a finite-sample setting and
to represent an unbalanced design, we examine the test performance for the
following dimensionality and sample sizes

pp, n1, n2q P tp100, 40, 50q, p300, 80, 100q, p500, 160, 200qu.

We set the nominal significance levels to α P t0.1, 0.05, 0.01u.
Monte-Carlo estimates of finite-sample test sizes and powers are obtained

as follows. The test statistics under consideration are then computed and
empirical size of each test is obtained from 104 simulation runs. To assess the
power of the proposed test, we fix the nominal significance level α � 0.05.
The empirical power of each test statistic is calculated under A1 and A2

with varying range of tuning parameters δ1 and δ2, for each combination of
M1-M2, D1-D3 and pp, n1, n2q, and averaged over 104 simulation runs.

Monte-Carlo estimates of the test size of ϕαpd̂, pΨq along with Ch-Q’s
and L2D procedures are summarized in Tables 1-6. Tables 1 and 2 compare
the empirical sizes of the tests under Models 1 and 2, respectively, whereas
Tables 3-6 report the estimated power of the same.

From Tables 1 and 2, we observe that our proposed test FA provides valid
asymptotic test with an accurate size control for most of the simulation set-
tings. The accuracy of FA for D2 (chi-square distributed factor vectors and
error terms) as a seriously non-normal case is particularly noticeable. Like-
wise, is the case for the dependence structures M1-M2 involving compound
symmetry, both being highly spiked covariance matrices with only two dis-
tinct eigenvalues. The test sizes for FA get very close to the nominal levels
even for pp, n1, n2q � p100, 40, 50q, indicating that the asymptotic described
by Theorem 3 kicks in even with relatively small sample sizes. Furthermore,
it is seen that FA systematically outperforms both Ch-Q and L2D tests in
terms of their size control for both heteroscedastic and homoscedastic set-
tings, and across different distributions generating factor vectors and error
terms. The stability of the accurate size control for FA with increasing p
a lot greater than n, and in a seriously unbalanced setting, is also evident.
Moreover, while being constructed for a heteroscedastic setting, our proposed
test demonstrates stably accurate size control when being applied to the ho-
moscedastic case of M2. As expected, both Ch-Q and L2D tests exhibited
inflated size in almost all the simulation settings, and in contrast to FA, sizes
do not converge to the nominal level as both p and ng increase together. This
could be due to blindly using normal approximation for Ch-Q and due to slow
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convergence of the L2D test statistic to its asymptotic distribution. How-
ever, we can admit that the Welch-Satterthwaite approximation approach
explored by Zang et al. (2021) for the chi-square distribution (L2D) main-
tains the test sizes better compared to that of the normal approximation
used by Chen and Qin (2010).

More accurate results on the size control indicate that the new test FA is
adapted to the presence of low-dimensional latent factor structure in high-
dimensional data. This supports the main analytical findings of the present
study summarized in Theorems 2 and 3, according to which the use of chi-
square mixture approximation of the limit distribution of an L2-based test
statistic is preferable for high-dimensional data in presence of a latent factor
structure.

Next, we consider the power of the tests, as studied in Section 2.4. As
expected, FA is well adapted for detecting the alternatives we generated.
As the results in Tables 3-6 show, the power of FA increases steadily with
increasing the magnitude of δ1. Under A2, the power grows monotonically
and quickly approaches 1 not only for increasing sample size but also for
increasing dimension p.

These numerical results confirm the theoretical analysis that was given in
the last sections, specifically high-dimensional asymptotics for the power of
TFA derived in Theorem 5. As a numerical illustration of Theorem 5, powers
underA2, as reported in Tables 5-6, increase much faster than those under A1

reported in Tables 3-4, as the sample size and dimension are increased. When
δ2 has been increased from 0.4 to 0.8 under A2, many entries of the empirical
powers of the tests are observer to be 1. This could be viewed as an empirical
indication of the proposed test being consistent in high dimensions. We also
note in comparison, that the Ch-Q’s and L2D procedures show slightly better
power under lower values of δ1 and δ2, but this is due to the fact that the
size of both these tests far exceeds the nominal significance level α.

Also, for the heteroscedastic model M1, the test FA under A2 has full
power for sample sizes as small as 40 or 50, even for χ2-distribution of error
term. These results depict strong robustness of the proposed test against
violation of classical large-sample factor model assumption such as normality.

3.2. A real-data application

For illustration, we apply the proposed test procedure to the leukemia
dataset which has expression levels for 3, 571 human genes, for 47 patients
with acute limphoblastic leukemia (ALL-group, n1 � 47) and 25 patients
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Table 1: Empirical sizes based on 10,000 simulation runs for M1: Σ1 � Σ2

pd1, d2q � p2, 1q pd1, d2q � p3, 2q
(zgij , ϵgij) pp, n1, n2q α FA Ch-Q L2D FA Ch-Q L2D

1 1.06 3.96 2.17 0.87 3.62 1.75
p100, 40, 50q 5 4.73 7.43 6.04 4.33 7.44 5.99

10 9.43 10.39 10.10 9.26 11.01 10.53
1 0.84 3.78 1.64 0.86 3.26 1.58

(i) N p0, 1q p300, 80, 100q 5 5.04 7.59 5.92 4.37 6.72 5.41
10 10.15 10.88 10.35 9.13 10.37 9.79
1 0.98 4.06 1.73 0.78 2.93 1.35

p500, 160, 200q 5 5.36 7.60 6.22 4.64 6.75 5.28
10 10.19 10.88 10.42 9.68 10.45 9.84
1 1.16 4.02 2.02 0.86 3.53 1.92

p100, 40, 50q 5 4.92 7.63 6.21 4.25 7.28 5.76
10 9.88 10.92 10.54 9.05 10.79 10.46
1 0.97 3.61 1.74 0.92 3.75 1.65

(ii) χ2
10 p300, 80, 100q 5 4.81 7.10 5.64 4.98 7.93 6.07

10 10.00 10.72 10.13 10.29 11.45 10.85
1 1.06 3.64 1.90 1.04 3.18 1.53

p500, 160, 200q 5 4.86 7.39 5.87 4.70 6.82 5.29
10 10.22 10.71 10.23 9.63 10.43 9.72
1 0.85 3.96 2.17 0.87 3.56 1.87

p100, 40, 50q 5 4.73 7.43 6.04 4.39 7.15 5.76
10 9.43 10.39 10.10 8.85 10.65 10.30
1 1.06 3.61 1.74 0.83 3.32 1.56

(iii) t10 p300, 80, 100q 5 4.81 7.10 5.64 4.60 6.94 5.41
10 10.00 10.72 10.13 9.28 10.60 10.08
1 0.96 3.59 1.75 1.01 3.37 1.48

p500, 160, 200q 5 4.79 7.18 5.76 5.08 7.20 5.63
10 9.70 10.49 10.05 9.94 10.67 10.18

with acute myeloid leukemia (AML-group, n2 � 25). We are interested in
testing the null hypothesis H on whether these two groups have the same
mean expression levels. It is thus an unbalanced, high-dimensional, two-
sample Behrens-Fisher problem.

The data were obtained from affymetrix oligonucleotide microarrays and
are publicly available at

https://web.stanford.edu/~hastie/CASI_files/DATA/leukemia.html.

The description of the datasets and preprocessing protocols are due to Dudoit
et al. (2002). Following the protocol, we preprocessed the dataset which
resulted in p � 3, 571 variables representing genes with highest minimal
intensity across the samples, with n1 and n2 given above.

Applying the six steps of the data-driven test procedure from Section
2.3 to the data, we obtain the estimators of the number of loading factors
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Table 2: Empirical sizes based on 10,000 simulation runs for M2: Σ1 � Σ2

d1 � d2 � 2 d1 � d2 � 3
(zgij , ϵgij) pp, n1, n2q α FA Ch-Q L2D FA Ch-Q L2D

1 1.00 5.27 1.69 0.90 4.86 1.42
p100, 40, 50q 5 5.05 9.39 5.76 4.67 9.15 5.77

10 10.01 12.66 10.42 9.65 12.65 10.20
1 1.04 5.00 1.54 0.87 4.81 1.38

(i) N p0, 1q p300, 80, 100q 5 4.86 8.54 5.41 4.85 9.08 5.43
10 9.60 11.65 9.53 9.75 12.22 9.96
1 1.05 4.73 1.59 1.02 4.60 1.44

p500, 160, 200q 5 4.83 8.46 5.25 4.69 8.84 5.20
10 9.62 11.59 9.35 9.92 12.24 9.69
1 1.26 5.15 1.80 0.91 5.02 1.52

p100, 40, 50q 5 4.92 8.96 5.81 4.81 9.13 5.79
10 9.70 12.25 9.89 9.43 12.41 10.16
1 0.97 4.79 1.52 0.90 4.63 1.29

(ii) χ2
10 p300, 80, 100q 5 4.83 8.26 5.20 4.77 8.62 5.16

10 9.53 11.36 9.18 9.32 12.09 9.51
1 0.91 4.85 1.43 1.14 4.97 1.73

p500, 160, 200q 5 5.00 8.56 5.44 5.16 8.96 5.43
10 9.56 11.37 9.48 9.80 12.06 9.80
1 1.28 5.12 1.95 0.96 4.98 1.57

p100, 40, 50q 5 4.96 9.07 5.79 4.51 8.69 5.58
10 9.97 12.58 10.26 9.28 12.21 9.74
1 1.05 4.74 1.72 0.97 4.86 1.50

(iii) t10 p300, 80, 100q 5 4.66 8.34 5.24 4.90 9.05 5.38
10 9.48 11.44 9.14 10.11 12.65 10.04
1 0.94 4.66 1.52 1.03 4.65 1.57

p500, 160, 200q 5 4.80 8.46 5.12 4.76 8.5 5.04
10 9.62 11.54 9.32 9.69 11.91 9.63

and eigenvalues of A, respectively as pd1 � 3, pd2 � 2, and {λ1pAq � 0.14,{λ2pAq � 0.11, {λ3pAq � 0.11, {λ4pAq � 0.09, and {λ5pAq � 0.07. The observed
value of the test statistic is TFA � 9.45. We further obtain an approximate
critical value of the test as an upper 5% quantile of the empirical distribution

of the test statistic
°

pd1� pd2
ℓ�1

{λℓpAqχ2
ℓp1q, which is derived by 106 simulation

runs. This gives pt0.05 � 1.16. The results indicate that the null hypothesis
H is rejected, i.e., the ALL- and AML-group means, statistically, discernibly
different from each other at the level 0.05 and at any reasonable nominal
level.

4. Concluding remarks

A test statistic for testing the equality of mean vectors is presented for
high-dimensional, non-normal, unbalanced data under two-sample Behrens-

17



Table 3: Empirical powers under A1 based on 10,000 simulation runs for M1: Σ1 � Σ2

pd1, d2q � p2, 1q pd1, d2q � p3, 2q
(zgij , ϵgij) pp, n1, n2q δ1 FA Ch-Q L2D FA Ch-Q L2D

1.6 7.43 12.12 9.78 6.66 10.41 8.36
p100, 40, 50q 3.2 25.46 39.77 32.27 17.35 27.71 22.52

6.4 100.00 100.00 100.00 99.93 100.00 99.99
1.6 6.72 10.01 8.01 7.83 12.06 9.44

(i) N p0, 1q p300, 80, 100q 3.2 17.54 26.06 20.83 33.81 47.05 38.15
6.4 100.00 100.00 100.00 99.99 100.00 99.97
1.6 6.99 11.05 8.68 6.51 10.19 7.92

p500, 160, 200q 3.2 24.51 34.82 28.04 16.7 24.99 19.46
6.4 100.00 100.00 100.00 100.00 100.00 100.00
1.6 7.33 11.67 9.30 5.98 9.98 7.96

p100, 40, 50q 3.2 25.13 38.97 31.69 17.52 27.54 22.74
6.4 100.00 100.00 100.00 99.80 99.98 99.96
1.6 7.06 10.20 8.31 7.78 11.53 8.93

(ii) χ2
10 p300, 80, 100q 3.2 17.64 26.66 21.16 34.81 47.86 38.80

6.4 100.00 100.00 100.00 99.97 99.99 99.98
1.6 7.84 11.19 8.69 6.61 9.85 7.55

p500, 160, 200q 3.2 24.37 35.18 27.60 17.30 24.50 19.40
6.4 100.00 100.00 100.00 100.00 100.00 100.00
1.6 7.17 11.86 9.19 6.50 10.41 8.36

p100, 40, 50q 3.2 25.33 39.41 32.02 17.45 27.71 22.56
6.4 99.99 100.00 100.00 99.86 100.00 99.93
1.6 6.34 9.87 7.62 7.88 11.81 9.04

(iii) t10 p300, 80, 100q 3.2 17.56 26.04 20.86 34.33 47.65 37.85
6.4 100.00 100.00 100.00 100.00 100.00 100.00
1.6 7.03 10.36 7.99 6.69 9.46 7.42

p500, 160, 200q 3.2 24.51 34.82 28.04 16.69 24.02 18.85
6.4 100.00 100.00 100.00 100.00 100.00 100.00

Fisher problem for the low-dimensional factor model. The test statistic is
formulated as a bias-adjusted, squared L2-norm of the sample mean differ-
ence, where the adjustment terms are adapted to the correlation structure of
the noise component of the latent factor model. The corresponding asymp-
totic theory is then used to derive the null- and non-null limiting distributions
of the proposed test when both sample size and dimension go to infinity. The
asymptotic theory of the test is developed under few mild assumptions and
accommodates a wide class of highly spiked, high-dimensional covariance
models for Fg, which usually represent a factor structure.

We propose the chi-square mixture type of asymptotic approximations of
the test statistic along with a Monte Carlo simulation scheme for compu-
tation of the test’s critical values. This is in contrast with the approach in
e.g., Chen and Qin (2010) where the asymptotic theory of the proposed tests
centers around the normal limits of the null distribution. Both our theo-
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Table 4: Empirical powers under A1 based on 10,000 simulation runs for M2: Σ1 � Σ2

d1 � d2 � 2 d1 � d2 � 3
(zgij , ϵgij) pp, n1, n2q δ1 FA Ch-Q L2D FA Ch-Q L2D

1.6 6.99 12.92 8.04 5.89 11.25 6.82
p100, 40, 50q 3.2 18.03 33.93 21.82 10.46 19.14 11.98

6.4 99.98 100.00 100.00 80.96 99.15 90.67
1.6 5.62 9.69 6.13 5.62 10.72 6.59

(i) N p0, 1q p300, 80, 100q 3.2 14.08 21.11 15.14 15.11 22.32 16.88
6.4 100.00 100.00 100.00 100.00 100.00 100.00
1.6 5.33 9.40 5.78 5.45 10.34 6.70

p500, 160, 200q 3.2 17.47 23.73 18.17 16.96 22.88 17.94
6.4 100.00 100.00 100.00 100.00 100.00 100.00
1.6 6.79 12.51 8.03 5.78 10.71 6.60

p100, 40, 50q 3.2 17.93 33.59 21.51 10.42 19.54 11.99
6.4 99.84 100.00 100.00 80.46 98.71 89.34
1.6 6.11 10.28 6.55 5.67 10.37 6.25

(ii) χ2
10 p300, 80, 100q 3.2 14.18 21.32 15.25 13.31 21.21 14.74

6.4 100.00 100.00 100.00 100.00 100.00 100.00
1.6 5.67 9.88 6.36 5.39 9.92 5.87

p500, 160, 200q 3.2 18.31 25.91 18.11 16.74 22.17 17.19
6.4 100.00 100.00 100.00 100.00 100.00 100.00
1.6 7.05 12.32 8.21 6.09 10.90 7.11

p100, 40, 50q 3.2 18.18 34.22 22.00 10.92 19.95 12.44
6.4 99.91 100.00 99.99 81.19 98.94 90.00
1.6 5.82 10.15 6.15 5.61 10.35 6.21

(iii) t10 p300, 80, 100q 3.2 13.31 20.01 15.41 14.22 23.20 16.43
6.4 100.00 100.00 100.00 100.00 100.00 100.00
1.6 5.28 9.28 5.79 5.51 9.73 6.06

p500, 160, 200q 3.2 17.13 23.32 18.73 16.21 22.13 17.91
6.4 100.00 100.00 100.00 100.00 100.00 100.00

retical findings and numerical studies justify that the proposed construction
of the bias-adjusted L2-based test statistic as well as its chi-square mixture
approximation allows for better test size control and are therefore more suit-
able for the high-dimensional models with a latent factor structure than the
tests proposed by e.g., Chen and Qin (2010) or Zang et al. (2021) where the
structural aspects of the underlying population’s distributions are not taken
into account.

To conclude, the proposed testing methodology can be generally con-
sidered for high-dimensional, two-sample Behrens-Fisher problem when the
data poses an unknown degree of heteroscedasticity with underlying low-
dimensional latent factor structure. A very good performance of the test is
observed for a number of practically used distributions of the factor vector
and error term of (1.1) and spiked, heteroscedastic covariance structures of
Fg, where the dimension may far exceed the sample size, and for a moderate
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Table 5: Empirical powers under A2 based on 10,000 simulation runs for M1: Σ1 � Σ2

pd1, d2q � p2, 1q pd1, d2q � p3, 2q
(zgij , ϵgij) pp, n1, n2q δ2 FA Ch-Q L2D FA Ch-Q L2D

0.4 16.20 24.41 19.98 12.48 20.32 16.03
p100, 40, 50q 0.6 62.74 82.25 72.84 42.81 63.51 54.17

0.8 100.00 100.00 100.00 99.99 100.00 100.00
0.4 30.86 45.52 36.28 23.33 33.27 27.06

(i) N p0, 1q p300, 80, 100q 0.6 100.00 100.00 100.00 99.96 100.00 99.99
0.8 100.00 100.00 100.00 100.00 100.00 100.00
0.4 53.18 72.39 58.37 38.03 51.68 42.11

p500, 160, 200q 0.6 100.00 100.00 100.00 100.00 100.00 100.00
0.8 100.00 100.00 100.00 100.00 100.00 100.00
0.4 16.45 45.09 36.32 12.37 21.08 16.52

p100, 40, 50q 0.6 62.11 80.42 71.51 43.82 64.53 54.60
0.8 100.00 100.00 100.00 99.99 100.00 100.00
0.4 31.57 45.09 36.32 21.88 31.81 25.68

(ii) χ2
10 p300, 80, 100q 0.6 100.00 100.00 100.00 99.89 99.98 99.96

0.8 100.00 100.00 100.00 100.00 100.00 100.00
0.4 52.53 71.91 57.85 39.41 52.58 42.86

p500, 160, 200q 0.6 100.00 100.00 100.00 100.00 100.00 100.00
0.8 100.00 100.00 100.00 100.00 100.00 100.00
0.4 16.21 25.45 20.49 12.27 20.56 16.25

p100, 40, 50q 0.6 63.99 81.39 73.26 43.28 63.85 54.05
0.8 99.99 100.00 100.00 99.98 100.00 100.00
0.4 31.99 45.82 36.86 22.93 33.42 27.02

(iii) t10 p300, 80, 100q 0.6 100.00 100.00 100.00 99.92 100.00 99.97
0.8 100.00 100.00 100.00 100.00 100.00 100.00
0.4 53.88 72.93 58.92 37.86 51.64 41.81

p500, 160, 200q 0.6 100.00 100.00 100.00 100.00 100.00 100.00
0.8 100.00 100.00 100.00 100.00 100.00 100.00

number of independent samples.
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Appendix: Proof of main results

A. Technical lemma

The proofs of some main results rely on the following technical lemma.
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Table 6: Empirical powers under A2 based on 10,000 simulation runs for M2: Σ1 � Σ2

d1 � d2 � 2 d1 � d2 � 3
(zgij , ϵgij) pp, n1, n2q δ2 FA Ch-Q L2D FA Ch-Q L2D

0.4 10.27 19.33 12.43 8.88 15.88 9.96
p100, 40, 50q 0.6 28.01 51.47 31.80 19.35 35.77 22.06

0.8 99.24 100.00 99.96 89.81 99.85 97.03
0.4 15.82 26.52 16.34 13.22 23.22 14.11

(i) N p0, 1q p300, 80, 100q 0.6 97.30 100.00 99.55 75.43 98.92 84.29
0.8 100.00 100.00 100.00 100.00 100.00 100.00
0.4 20.84 37.40 22.73 16.91 28.77 16.86

p500, 160, 200q 0.6 100.00 100.00 100.00 99.94 100.00 100.00
0.8 100.00 100.00 100.00 100.00 100.00 100.00
0.4 10.20 18.22 11.64 9.02 16.55 10.32

p100, 40, 50q 0.6 28.62 51.92 32.62 19.08 36.19 22.11
0.8 98.86 100.00 99.82 89.26 99.67 96.02
0.4 15.65 27.25 16.75 12.54 22.71 13.76

(ii) χ2
10 p300, 80, 100q 0.6 96.44 99.99 99.10 76.12 98.61 83.13

0.8 100.00 100.00 100.00 100.00 100.00 100.00
0.4 21.06 37.65 22.39 16.67 29.23 17.64

p500, 160, 200q 0.6 100.00 100.00 100.00 99.84 100.00 99.96
0.8 100.00 100.00 100.00 100.00 100.00 100.00
0.4 9.88 18.39 11.38 9.01 16.78 10.35

p100, 40, 50q 0.6 28.81 50.96 31.91 19.61 36.90 23.42
0.8 98.72 100.00 99.90 89.19 99.72 95.99
0.4 15.83 27.53 17.08 12.73 23.22 14.14

(iii) t10 p300, 80, 100q 0.6 96.29 99.99 99.15 75.97 98.58 83.04
0.8 100.00 100.00 100.00 100.00 100.00 100.00
0.4 21.12 38.00 22.37 17.05 29.32 18.16

p500, 160, 200q 0.6 100.00 100.00 100.00 99.86 100.00 99.98
0.8 100.00 100.00 100.00 100.00 100.00 100.00

Lemma A 1. Let zi � pzi1, . . . , zidqJ be a d-dimensional random vector such
that Epziℓq � 0, Epz2iℓq � 1, Epz4iℓq � κz   8, and ziℓ are iid for i P vngw and
ℓ P vdw, Then for any A P Rd�d

¡0 it holds that

EtpzJi Aziqu � trpAq, EtpzJi Aziq2u � κztrpAdAq � ttrpAqu2 � 2trpA2q,

where d denotes the Hadamard product defined as pAdAqij � pAqij�pAqij.
Proof. See, Watanabe et al. (2019).
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B. Proof of Theorem 1

At first, we show (i). By using Lemma 1 in Ma et al. (2015), for ℓ P
vd1 � d2w,

λℓpΩq � λℓpBBJ �Ψ0q
¤ λℓpBBJq � λ1pΨ0q � λℓpBJBq � n

n1

ψ1max � n

n2

ψ2max,

λℓpΩq � λℓpBBJ �Ψ0q ¥ λℓpBBJq � λℓpBJBq,
where Ψ0 � pn{n1qΨ1�pn{n2qΨ2. From this result, under (A2), λℓpΩq{pÑ
λℓpAq for ℓ P vd1�d2w. On the other hand, by Lemma 1 in Ma et al. (2015),
for ℓ P vd1 � d2 � 1, pw

λℓpΩq � λℓpBBJ �Ψ0q ¤ λℓpBBJq � λ1pΨ0q � n

n1

ψ1max � n

n2

ψ2max.

From this result, under (A2), λℓpΩq{pÑ 0 for ℓ P vd1 � d2 � 1, pw.
Next, we show (ii). Under (A2), A11 andA22 are positive definite matrices

since A is positive definite matrix and 1 � γ�1, 1 � γ ¡ 0. From this fact,
we can also prove (ii) using arguments similar to those used in proof of the
statement (i). The proof of Theorem 1 is then complete.

C. Proof of Theorem 2

We define zg � n�1
g

°ng

i�1 zgi and ϵg � n�1
g

°ng

i�1 ϵgi for g P v2w. Then
under the null hypothesis H and the factor model (1.3), T can be rewritten
as

T �n
p
pB1z1 �B2z2qJpB1z1 �B2z2q � 2n

p
pB1z1 �B2z2qJpΨ1{2

1 ϵ1 �Ψ
1{2
2 ϵ2q

� n

p
pΨ1{2

1 ϵ1 �Ψ
1{2
2 ϵ2qJpΨ1{2

1 ϵ1 �Ψ
1{2
2 ϵ2q � n

pn1

trpΨ1q � n

pn2

trpΨ2q
�T1 � 2T2 � T3, (C.1)

where

T1 �1

p
yJBJBy, T2 � 1

p
yJBJpΨ1{2

1 ϵ1 �Ψ
1{2
2 ϵ2q,

T3 �n
p

"
pΨ1{2

1 ϵ1 �Ψ
1{2
2 ϵ2qJpΨ1{2

1 ϵ1 �Ψ
1{2
2 ϵ2q � 1

n1

trpΨ1q � 1

n2

trpΨ2q
*
,
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and y � p?n1z
J
1 ,
?
n2z

J
2 qJ. Then under (1.3) and (A1)-(A2), the following

results hold true

T1 � OPp1q, T2 � oPp1q, T3 � oPp1q. (C.2)

The detailed evaluation of the claims (C.2) is presented in what follows.
At first, we verify that T1 � OPp1q. Direct calculations give the first two
moments of T1 as

EpT1q � n

pn1

trpBJ
1B1q � n

pn2

trpBJ
2B2q � trpAq � op1q,

EpT 2
1 q �

κz1n
2

n3
1

trpA11 dA11q � n2

n2
1

ttrpA11qu2 � 2n2

n2
1

trpA2
11q

� 2n2

n1n2

trpA11qtrpA22q � 4n2

n1n2

trpA12A21q � κz2n
2

n3
2

trpA22 dA22q

� n2

n2
2

ttrpA22qu2 � 2n2

n2
1

trpA2
22q � op1q

�ttrpAqu2 � 2trpA2q � op1q.
It is now straightforward to see that varpT1q � Op1q which gives the first
claim of (C.2). Following analogous steps to prove the two remaining claims,
we obtain the first two moments of T2 and T3 as

EpT2q �0,

EpT 2
2 q �

2̧

g�1

n2

pn2
g

trpAggΨgq � n2

pn1n2

trpA11Ψ2q � n2

pn1n2

trpA22Ψ1q � opp�1q

�Opp�1q,
and

EpT3q �0,

EpT 2
3 q �

2

p2
tr

#�
n

n1

Ψ1 � n

n2

Ψ2


2
+
� κϵ
np2

tr

�
n3

n3
1

Ψ2
1 �

n3

n3
2

Ψ2
1



� O

�
p�1
�
,

respectively. These yield T2 � oPp1q and T3 � oPp1q. Consequently, in
a view of (C.2), the terms T2 and T3 are stochastically negligible in the
representation (C.1) and the asymptotics of T is dominated by T1, which we
analyze below.
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To derive the asymptotic distribution of T1, we first observe that by the
multivariate central limit theorem,

?
n1z1 ù Nd1p0, Id1q and

?
n2z2 ù

Nd2p0, Id2q as mintn1, n2u Ñ 8. Also, by independence of
?
n1z1 and

?
n1z2

we get y � p?n1z
J
1 ,
?
n2z

J
2 qJ ù Nd1�d2p0, Id1�d2q as mintn1, n2u Ñ 8. Fur-

ther, for the matrix A under (A2), there exist an orthogonal matrix P such
that PPJ � PJP � Id1�d2 and A � PΛPJ, where Λ � diagpλ1pAq, . . . ,
λd1�d2pAqq. Since w � PJy ù Nd1�d2p0, Id1�d2q as mintn1, n2u Ñ 8, we
get

T1 ù
d1�d2¸
ℓ�1

λℓpAqχ2
ℓp1q. (C.3)

Combining (C.2), (C.3), and Slutsky’s theorem, we have Theorem 1.

D. Proof of Lemma 1

We define x̃gi � xgi�µg and rXJ

g � px̃g1, . . . , x̃gngq. Then the result when

changing λℓpSg{pq to λℓtrXg
rXJ

g {pngpqu in ERgpkq is directly proved by Ahn
and Horenstein (2013).

For the concrete proof, denote

ZJg � pzg1, . . . , zgngq, EJ � pΨgϵg1, . . . ,Ψgϵgngq

for each g P v2w. In these notations, the factor model (1.3) becomes rXg �
ZgB

J
g � Eg. Further, it is easy to see that

1

ng � 1
rXg
rXJ

g � Sg � ng

ng � 1
pxg � µgqpxg � µgqJ.

Now, by Lemma A.5 and Lemma A.6 in Ahn and Horenstein (2013), for all
ℓ P vpw

λℓ

�
1

ng � 1
rXg
rXJ

g



� ng}xg � µg}2

ng � 1
¤ λℓ pSgq ¤ λℓ

�
1

ng � 1
rXg
rXJ

g



. (D.1)

Since }xg � µg}2 � OpttrpΣgq{ngu � Oppp{ngq,

λℓ

�
1

ng � 1
rXg
rXJ

g



� ng}xg � µg}2

ng � 1
� λℓ

�
1

ng � 1
rXg
rXJ

g



�Op

�
p

ng



.

(D.2)
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Furthermore, the inspection of Section 2 in Ahn and Horenstein (2013) re-
viles that the factor model (1.3) at hand, along with (A1) and (A2), is a
special case of the factor model (1) under assumptions (A)–(D) in Ahn and
Horenstein’s asymptotic setting. Therefore, we can apply Lemma A.9 in Ahn
and Horenstein (2013), by which for all ℓ P vdg � 1, tcg mintng, puu � dgw it
holds that

λℓ

�
1

ngp
rXrXJ



P� 1

mintng, pu . (D.3)

By Lemma A.11 of Ahn and Horenstein (2013), for all ℓ P vdgw,

λℓ

�
1

ngp
rXg
rXJ

g



� λℓ pAggq � oPp1q. (D.4)

Combining (D.1)–(D.4) yields

λℓ

�
1

p
Sg



�λℓ pAggq � oPp1q, ℓ P vdgw, (D.5)

λℓ

�
1

p
Sg



P� 1

mintng, pu , ℓ P vdg � 1, tcg mintng, puu� dgw. (D.6)

For ℓ P vtcg mintng, puu� dg � 1w,

ERgpℓq P�
#
mintng, pu ℓ � dg

1 ℓ � dg
,

which gives consistency of d̂g in high dimensions.

E. Proof of Lemma 2

Let rSg �
°ng

i�1pxgi�µgqpxgi�µgqJ{png�1q � rXg
rXJ

g {png�1q. If assuming
(A1) and (A2) with the factor model (1.3), then the factor model (1) and
assumptions (A)–(D) in Ahn and Horenstein (2013) are satisfied. Therefore,

Lemma 2 when changing λℓpSg{pq to λℓprSg{pq is directly proved by Ahn

and Horenstein (2013). Since Sg and rSg are asymptotically equivalent, after

replacing rSg with Sg, the result is still justified.
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F. Proof of Theorem 3

Using Lemma A1,

EttrpSgqu �trpΣgq,

E
�ttrpSgqu2

� �κzgtrpAgg dAggq � κϵgtrpΨ2
gq

ng

� 2

ng � 1
trpΣ2

gq � ttrpΣgqu2.

From these results, under the model 1.3 and assumptions (A1)-(A2), varttrpΣgq{pu �
Op1{ngq. Thus,

trpSgq
p

� trpΣgq
p

� oPp1q. (F.1)

From Lemma 1 and Lemma 2,° pdg
ℓ�1 λℓpSgq

p
�
°dg

ℓ�1 λℓpAggq
p

� oPp1q � trpAggq
p

� oPp1q. (F.2)

Combining (F.1) and (F.2),{trpΨgq
p

� trpΣgq
p

� trpAggq
p

� oPp1q � trpΨgq
p

� oPp1q.

From this result, under the model (1.3) and assumptions (A1) and (A2),
TFA � T � oPp1q. Thus, combining Theorem 2 and Slutsky’s theorem, we
have Theorem 3.

G. Proof of Theorem 4

From Ahn and Horenstein (2013), under (A1) and (A2),

{λℓpAq �#λℓpAq � oPp1q for ℓ P vd0w
oPp1q for ℓ P vd0 � 1, d1 � d2w

.

We write

pd1� pd2¸
ℓ�1

pλℓpAqχ2
ℓp1q �

d1�d2¸
ℓ�1

λℓpAqχ2
ℓp1q,

�
pd1� pd2¸
ℓ�1

!pλℓpAq � λℓpAq
)
χ2
ℓp1q �

pd1� pd2¸
ℓ�1

λℓpAqχ2
ℓp1q �

d1�d2¸
ℓ�1

λℓpAqχ2
ℓp1q.
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Thus, it is sufficient to show the following (i) and (ii):

(i)

pd1� pd2¸
ℓ�1

!pλℓpAq � λℓpAq
)
χ2
ℓp1q � oPp1q

(ii)

pd1� pd2¸
ℓ�1

λℓpAqχ2
ℓp1q �

d1�d2¸
ℓ�1

λℓpAqχ2
ℓp1q � oPp1q.

At first, we show (i). For any ϵ ¡ 0, we have

Pr

��������
pd1� pd2¸
ℓ�1

!pλℓpAq � λℓpAq
)
χ2
ℓp1q

������ ¡ ϵ

�

¤ Pr

������d1�d2¸
ℓ�1

!pλℓpAq � λℓpAq
)
χ2
ℓp1q

����� ¡ ϵ

�
� Pr

!
ppd1, pd2q � pd1, d2q

)
. (G.1)

Since pλℓpAq � λℓpAq � oPp1q, we get

Pr

������d1�d2¸
ℓ�1

!pλℓpAq � λℓpAq
)
χ2
ℓp1q

����� ¡ ϵ

�
� op1q. (G.2)

Also, by Lemma 1, we note that

Pr
!
ppd1, pd2q � pd1, d2q

)
¤ Pr

�pd1 � d1

	
� Pr

�pd2 � d2

	
� op1q. (G.3)

Plugging (G.2) and (G.3) into (G.1) yields

Pr

��������
pd1� pd2¸
ℓ�1

!pλℓpAq � λℓpAq
)
χ2
ℓp1q

������ ¡ ϵ

�
� op1q,

which proves (i).
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Next, we show (ii). For any ϵ ¡ 0, we have

Pr

��������
pd1� pd2¸
ℓ�1

λℓpAqχ2
ℓp1q �

d1�d2¸
ℓ�1

λℓpAqχ2
ℓp1q

������ ¡ ϵ

�

� Pr

$&%
������
pd1� pd2¸
ℓ�1

λℓpAqχ2
ℓp1q �

d1�d2¸
ℓ�1

λℓpAqχ2
ℓp1q

������ ¡ ϵ, ppd1, pd2q � pd1, d2q
,.-

¤ Pr
!
ppd1, pd2q � pd1, d2q

)
¤ Pr

�pd1 � d1

	
� Pr

�pd2 � d2

	
� op1q.

This proves (ii) and finishes the proof of Theorem 4.

H. Proof of Theorem 5

From (2.6), we note that

TFA � T0 � 2n

p
Sn � n

p
}µ1 � µ2}2, (H.1)

where

T0 �n
p

"
}px1 � µ1q � px2 � µ2q}2 �

1

n1

trpΨ1q � 1

n2

trpΨ2q
*
,

Sn �tpx1 � µ1q � px2 � µ2quJpµ1 � µ2q.
If }µ1 � µ2}2 � Op1q, then under (A1) and (A2),

T0 ù yJ0 Ay0,
n

p
Sn ù

?
n

p
yJ0 B

Jpµ1 � µ2q, (H.2)

where y0 � Nd1�d2p0, Id1�d2q. Combining (H.1) and (H.2), we obtain the
asymptotic power under }µ1 � µ2}2 � Op1q.

If }µ1 � µ2}2 Ñ 8 under (A1) and (A2),

T0 � OPp1q, n
p
Sn � OPp}µ1 � µ2}q. (H.3)

Combining (H.1) and (H.3), TFA � η}µ1�µ2}2�oPp}µ1�µ2}2q under (A1),
(A2) and }µ1 � µ2}2 Ñ 8. In other words, the power converges to 1 under
(A1), (A2) and }µ1 � µ2}2 Ñ 8.
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