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Abstract

This paper deals with the construction of a post-selection confidence interval for a regression co-
efficient via the kick-one-out (KOO) method in multiple linear regression. We derive a confidence
interval for a regression coefficient with 1 − α coverage conditioned on the selection event whereby
the specific model is selected by the KOO method. In the KOO method, it is necessary to estab-
lish a discriminant function that is a difference of variable selection criteria when deciding whether
to select a particular variable. In this paper, by deriving a general expression for the discriminant
function, we systematically construct confidence intervals conditioned on the selection event via the
KOO method when more than one variable selection criteria are used. Our results consider the case
of the KOO method when various well-known variable selection criteria such as the AIC, BIC, and
Cp criterion are employed.
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selection.

∗Corresponding author
E-mail address: yanagi-hiro@hiroshima-u.ac.jp (Hirokazu Yanagihara)

1. Introduction

Consider the following situation: Let y = (y1, . . . , yn)⊤ be an n-dimensional vector of response
variables, and let X = (x1, . . . ,xn)⊤ be an n × k matrix of non-stochastic k explanatory variables,
where n is the sample size, and ⊤ denotes the transpose of a matrix or vector. The multiple linear
regression model with an assumption of normality can be expressed as

y ∼ Nn(Xβ, σ2In),

†Current Address: Innovation Technology Laboratories, AGC Inc, 1-1 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa
230-0045, Japan
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where β = (β1, . . . , βk)⊤ is a k-dimensional vector of unknown regression coefficients, σ2 is an
unknown variance, and In is the n × n identity matrix. Here, in order to ensure a possibility of
estimating the model, we assume that rank(X) = k (< n).

With regard to the interpretability of the model and its prediction accuracy, it is not known whether
the model that includes all of the potential explanatory variables is best; thus, it is necessary to search
for the optimal subset of explanatory variables. Given k candidate variables, 2k−1 subsets are pos-
sible. The variable selection task, then, is to choose the optimal subset of explanatory variables
among the 2k−1 candidates. One variable selection method, commonly referred to as the “full search
method”, would have us search the subset of explanatory variables minimizing the variable selection
criterion among all candidate subsets of explanatory variables. However, since the computation of
2k−1 variable selection criterion values is required with this approach, the full search method is not
feasible in terms of computational complexity when the number of explanatory variables is large.
The kick-one-out (KOO) method proposed by Zhao, Krishnaiah and Bai (1986) and named by Bai,
Fujikoshi and Hu (2018) is a simpler method than the forward-backward stepwise method and offers
a variable selection approach that dramatically reduces computational complexity.

In the general flow of data analysis, after the best subset of variable is selected, confidence inter-
vals of the regression coefficients are constructed for each selected variable. We derive a confidence
interval for the regression coefficient of the jth explanatory variable in the model with 1−α coverage
when the model is the product of a specific selection method. Lee et al. (2016) constructed such
confidence intervals when the specific model is selected by the lasso (Tibshirani, 1996). Charkhi and
Claeskens (2017) constructed confidence intervals when the specific model is selected by the full
search method using Akaike’s information criterion (AIC) proposed by Akaike (1973; 1974). The
purpose of this paper is to derive conditional confidence intervals when the model is selected by the
KOO method, following the idea of the derivation in Charkhi and Claeskens (2017). In particular,
we derive a general expression for the discriminant function to decide whether or not to select each
variable in the KOO method when more than one variable selection criteria are being applied, in-
cluding the AIC, BIC (Bayesian information criterion) (Schwarz, 1978), and Cp criterion (Mallows,
1973; 1995).

The paper is organized as follows: In Section 2, we describe the discriminant function for the
KOO method when various variable selection criteria are used and show a general expression for
the discriminant function in the KOO method. Importantly, we show that the statistic in each dis-
criminant function is exactly the same even when a different variable selection criterion is used and
establish that only the threshold determining whether a variable is selected changes as a function of
the variable selection criterion being applied. In Section 3, we construct the target confidence inter-
val by following the approach of Charkhi and Claeskens (2017). The proposed confidence interval
consists of a truncated normal distribution, where the truncated region of the truncated normal distri-
bution is expressed systematically using a general form of the discriminant function. We also show
that the truncated region depends on the selected variables but not on any of the unselected variables.
In Section 4, we report the results of numerical experiments comparing the coverage probabilities of
the proposed confidence interval constructions with those obtained by a naive method that does not
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consider post-selection inference. In addition, we investigate how the proposed confidence intervals
behave when the threshold in the discriminant function is increased. Technical details are provided
in the Appendix.

2. General Expression of the Discriminant Function in the KOO Method

Let M be a subset of Ω = {1, . . . , k}, i.e., M ⊆ Ω, which indicates the variables used in the model.
Accordingly, in this paper, the model will be identified by the set M. Let x( j) be an n-dimensional
vector of the jth column of X , i.e., X = (x(1), . . . ,x(n)), and let XM be an n× kM matrix consisting
of columns of X corresponding to the elements of M, where kM denotes the number of elements of
M, i.e., kM = #(M). As an example of XM , if M = {2, 4, 6}, XM = (x(2),x(4),x(6)) and kM = 3. In
particular, we note that XΩ = X and kΩ = k. Using XM , the candidate model can be expressed as
follows:

y ∼ Nn(XMβM , σ
2In), (1)

where βM is the kM-dimensional vector of regression coefficients given by minimizing the mean
square error, that is,

βM = arg min
b∈RkM

E
[
∥y −XMb∥2

]
=X+

Mµ,

where µ = E[y] and X+
M is the Moore-Penrose inverse matrix of XM , i.e., X+

M = (X⊤
MXM)−1X⊤

M

(for details of the Moore-Penrose inverse matrix, see, e.g., Harville, 1997, chap. 20). Here, we call
(1) model M. It is well known that the estimator of βM can be obtained by minimizing the sum of
squared residuals

β̂M = arg min
b∈RkM

1
n
∥y −XMb∥2 =X+

My. (2)

Let SC(M) denote a variable selection criterion for the model M. In the KOO method with SC(M),
the ith variable is selected if SC(Ωi) − SC(Ω) > 0 holds, where Ωi is a model in which only the ith
variable is removed from Ω, i.e., Ωi = Ω\{i}. Therefore, in this paper, SC(Ωi) − SC(Ω) > 0 is called
the discriminant function of the ith variable, or the ith discriminant function. The model selected
via the KOO method using SC(M) is formulated by the discriminant functions as

M̂ = {i ∈ Ω | SC(Ωi) − SC(Ω) > 0} . (3)

Let PM be the projection matrix to the subspace spanned by the columns of XM , i.e., PM =XMX
+
M ,

and let s2
M be an unbiased estimator of the variance σ2 under the model M defined by

s2
M =

1
n − kM

y⊤ (In − PM)y.

In this paper, the following six variable selection criteria are used in the KOO method:
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GCp(M|γ) = ncM
s2

M

s2
Ω

+ γkM , GIC(M|γ) = n log
(
cM s2

M

)
+ γkM ,

GBNP(M|γ) = −
c2
Ω

s2
Ω

cM s2
M

+ γkM , GCVC(M|γ) = log
{

ncM

(
cM −

γ

n

)−2
s2

M

}
,

AICC(M) = n log
(
cM s2

M

)
+

2n(kM + 1)
n − kM − 2

, EGCV(M|γ) = log
(
nc1−γ

M s2
M

)
,

where cM is a constant depending on kM and n, i.e., cM = 1 − kM/n, and γ is a positive parame-
ter to adjust the strength of the penalty for increasing the number of variables. The GCp criterion
was first proposed by Atkinson (1980), GIC was proposed by Nishii (1984), the GCVC criterion
was proposed by Boonstra, Mukherjee and Taylor (2015), AICC was proposed by Sugiura (1978),
Hurvich & Tsai (1989), and the EGCV criterion was proposed by Ohishi, Yanagihara and Fujikoshi
(2020). For computational convenience, the GCVC and EGCV criteria are expressed as logarithmic
transformations of the original criteria. The GBNP criterion (in particular, the GBNP criterion with
γ = 2 is called the BNP criterion) is a variable selection criterion measuring the goodness of fit
of the model using a Bartlett-Nanda-Pillai-type test statistic, and is included in the class of vari-
able selection criteria proposed by Ohishi (2021). The GCp criterion can be regarded as a variable
selection criterion measuring the goodness of fit of the model using the Lawley-Hoteling-type test
statistic. GIC is essentially a variable selection criterion measuring the goodness of fit of a model
using a likelihood ratio-type test statistic. In GIC and the GCp, GCVC and EGCV criteria, the var-
ious existing variable selection criteria can be expressed by changing γ. The relationship between
these criteria and existing variable selection criteria is as follows:

GCp : γ =


2 (Cp; Mallows, 1973, 1995)

2
(
1 − 2

ncM

)−1

(MCp; Fujikoshi & Satoh, 1997)
,

GIC : γ =



2 (AIC; Akaike, 1973, 1974)

log n (BIC; Schwarz, 1978)

2 log log n (HQC; Hannan & Quinn, 1979)

1 + log n (CAIC; Bozdogan, 1987)

,

GCVC : γ = 0, EGCV : γ = 2, (GCV; Craven & Wahba, 1979).

It follows from equation (3.4) in Oda and Yanagihara (2020) that

PΩ − PΩi = rir
⊤
i , ri =

1
∥(X+)⊤ei∥

(X+)⊤ei (i = 1, . . . , k), (4)

where ei is a k-dimensional vector in which only the ith element is 1 and the other elements are 0.
Equation (4) implies that

y⊤(In − PΩi )y = y⊤(In − PΩ)y +
(
y⊤ri

)2
. (5)

Let Ti be a statistic defined by
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Ti =

(
y⊤ri

)2

s2
Ω

. (6)

Using equations (5) and (6), the ith discriminant function SC(Ωi) − SC(Ω) is calculated as follows
(the proof is given in Appendix A.1):

SC(Ωi) − SC(Ω) =



Ti − γ (GCp),

n log
(
1 +

Ti

n − k

)
− γ, (GIC),

Ti

(
1 +

Ti

n − k

)−1

− γ (GBNP),

log
(
1 +

Ti

n − k

)
− 2 log

(
n − k − γ + 1

n − k − γ

)
(GCVC),

n log
(
1 +

Ti

n − k

)
− 2n(n − 1)

(n − k − 1)(n − k − 2)
(AICC),

log
(
1 +

Ti

n − k

)
− γ log

(
n − k + 1

n − k

)
(EGCV).

(7)

Equation (7) indicates that for any variable selection criterion, the first term of the discriminant
function of the ith variable is a function of (y⊤ri)2/s2

Ω
and the second term is a function of γ. Thus,

using strictly monotonically increasing functions whose domain of definition is non-negative f and
g (for GCVC , the domain of definition of g is [0, n− k)), the discriminant function can be expressed,
in general, as

SC(Ωi) − SC(Ω) = f (Ti) − g(γ).

Notice that

SC(Ωi) − SC(Ω) > 0 ⇐⇒ f (Ti) − g(γ) > 0 ⇐⇒ Ti − f −1(g(γ)) > 0.

Here, f −1(g(γ)) for each variable selection criterion is as follows (the proof is given in Appendix
A.2):

f −1(g(γ)) =



γ (GCp),

(n − k)
{
exp

(
γ

n

)
− 1

}
(GIC),

γ(n − k)
γ + n − k

(GBNP),

(n − k)


(

n − k − γ + 1
n − k − γ

)2

− 1

 (GCVC),

(n − k)
{

exp
(

2(n − 1)
(n − k − 1)(n − k − 2)

)
− 1

}
(AICC),

(n − k)
{(

n − k + 1
n − k

)γ
− 1

}
(EGCV).

(8)

Let δ = f −1(g(γ)). Using these equations, the selected model M̂ in (3) can be rewritten as follows,
with Ti − δ as the discriminant function of the ith variable:

M̂ = {i ∈ Ω | Ti − δ > 0} , Ti =

(
y⊤ri

)2

s2
Ω

, δ = f −1(g(γ)) (i = 1, . . . , k). (9)
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3. Confidence Interval Conditioned on the Selection Event

In this section, under the condition that the model M is selected via the KOO method, we con-
struct a confidence interval for the regression coefficient of the jth explanatory variable in the model
M that satisfies the following equation:

P
(
β

( j)
M ∈ C( j)

M (δ)
∣∣∣ S(M|δ)

)
= 1 − α ( j ∈ M), (10)

where S(M|δ) denotes the selection event that the model M is selected via the KOO method, i.e.,
{M̂ = M}. Let t( j)

M be the jth element of β̂M given by (2), which is given by

t( j)
M = y⊤η( j)

M , η( j)
M = (X+

M)⊤e j, (11)

where e j is a k-dimensional vector in which only the jth element is 1 and the other elements are 0,
as defined in Section 2. Then, we consider the following conditional distribution of the jth element
of β̂M to obtain the target confidence interval C( j)

M ( j) satisfying (10):

t( j)
M

∣∣∣ S(M|δ), t( j)
M ∼ N

(
µ⊤η( j)

M , σ
2
∥∥∥∥η( j)

M

∥∥∥∥2)
. (12)

In the following, we consider rewriting the selection event S(M|δ) as the region of t( j)
M to obtain the

conditional distribution in (12). It follows from equation (9) that the selection event can be expressed
as

S(M|δ) =
⋂
i∈M

{Ti − δ > 0} ∩
⋂
i<M

{Ti − δ ≤ 0} . (13)

Let z( j)
M and w( j)

M be n-dimensional vectors of random variables and constants, respectively, defined
by

z( j)
M = y − t( j)

M w( j)
M , w( j)

M =
η( j)

M

∥η( j)
M ∥2
. (14)

We note that t( j)
M and z( j)

M , t( j)
M and s2

Ω
, s2
Ω

and z( j)
M are independent (the proof is given in A.3). The

definition of z( j)
M in (14) implies that y = z( j)

M + t( j)
M w( j)

M . Expanding Ti after substituting this equation
into (6) yields

Ti =
1
s2
Ω

{(
r⊤i w

( j)
M

)2 (
t( j)
M

)2
+ 2

(
r⊤i z

( j)
M

) (
r⊤i w

( j)
M

)
t( j)
M +

(
r⊤i z

( j)
M

)2
}

=
1
s2
Ω

q
(
t( j)
M

∣∣∣∣ (
r⊤i w

( j)
M

)2
, 2

(
r⊤i z

( j)
M

) (
r⊤i w

( j)
M

)
,
(
r⊤i z

( j)
M

)2
)
,

where ri is an n-dimensional vector given by (4), and q(x|a, b, c) denotes a quadratic function with
coefficients a, b, and c, i.e., q(x|a, b, c) = ax2 + bx + c. Here, since M ⊂ Ωi is satisfied if i < M,
PΩiXM =XM for i < M holds. Hence, we have

rir
⊤
i η

( j)
M =

(
PΩ − PΩi

)
XM

(
X⊤

MXM

)−1
e j = 0n ⇐⇒ r⊤i η

( j)
M = 0.

Since the above result also shows r⊤i w
( j)
M = 0, Ti for unused variables in the model M can be
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rewritten as
Ti =

1
s2
Ω

(
r⊤i z

( j)
M

)
.

This indicates that t( j)
M does not appear in the region Ti − δ < 0 for the unselected variables. Since

t( j)
M is independent of z( j)

M and s2
Ω

, respectively, we can see that the events on unselected variables via
the KOO method are independent of the target conditional distribution in (12). From this result, the
selection event in (13) is rewritten by using only events on the selected variables as

S(M|δ) =
⋂
i∈M

{
q
(
t( j)
M

∣∣∣∣ (
r⊤i w

( j)
M

)2
, 2

(
r⊤i z

( j)
M

) (
r⊤i w

( j)
M

)
,
(
r⊤i z

( j)
M

)2 − s2
Ωδ

)
> 0

}
. (15)

Applying the quadratic formula to q, we have

q
(
t( j)
M

∣∣∣∣ (
r⊤i w

( j)
M

)2
, 2

(
r⊤i z

( j)
M

) (
r⊤i w

( j)
M

)
,
(
r⊤i z

( j)
M

)2 − s2
Ωδ

)
> 0

⇐⇒ t( j)
M ∈

(
∞, A( j)

i (δ)
]
∪

[
B( j)

i (δ),∞
)
,

where boundaries A( j)
i (δ) and B( j)

i (δ) are given by

A( j)
i (δ) = −

r⊤i z
( j)
M

r⊤i w
( j)
M

−

√
s2
Ω
δ

|r⊤i w
( j)
M |
, B( j)

i (δ) = −
r⊤i z

( j)
M

r⊤i w
( j)
M

+

√
s2
Ω
δ

|r⊤i w
( j)
M |
.

Let I( j)
M (δ) be a region defined by

I( j)
M (δ) =

⋂
i∈M

{(
∞, A( j)

i (δ)
]
∪

[
B( j)

i (δ),∞
)}
. (16)

It should be emphasized that from a simple calculation, the region I( j)
M (δ) can be represented as the

union of several disjoint intervals. Using the region in (16), the selection event in (15) can be given
by

S(M|δ) =
{
t( j)
M ∈ I( j)

M (δ)
}
.

This implies that the conditional distribution in (12) is the truncated normal distribution with mean
µ⊤η( j)

M and variance σ2 constrained by the truncated region I( j)
M (δ). Here, although the truncated

region I( j)
M (δ) includes closed intervals, the cumulative probability remains the same whether or not

it includes boundary values, since the truncated normal distribution is a continuous distribution.
Consequently, region I( j)

M (δ) will be treated hereafter as the union of disjoint open intervals.
Let Φ(x) be the distribution function of N(0, 1), and F(x; µ, σ2,D) denote the distribution func-

tion of the truncated normal distribution with mean µ and variance σ2 constrained by the truncated
region D = ∪m

i=1(ai, bi) which is written as, for x ∈ (ar, br),

F(x; µ, σ2,D) =
∑r−1

i=1 pi + Φ ((x − µ)/σ) − Φ ((ar − µ)/σ)∑m
i=1 pi

, (17)

where pi = Φ((bi − µ)/σ) − Φ((ai − µ)/σ). From Lemma A.1 in Lee et al. (2016), we can see that
F(x; µ, σ2,D) is monotone decreasing in µ. Let L( j)

M (δ) and U( j)
M (δ) be the solutions of the following
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equations for L and U, respectively:

F
(
y⊤η( j)

M ; L, σ2, I( j)
M (δ)

)
= 1 − α

2
, F

(
y⊤η( j)

M ; U, σ2, I( j)
M (δ)

)
= α.

Using the solutions, the 1 − α confidence interval C( j)
M (δ) in (10), the focus of this section, can be

given as
C( j)

M (δ) =
[
L( j)

M (δ),U( j)
M (δ)

]
. (18)

That C( j)
M (δ) in (18) satisfies (10) is clear from the fact that the distribution function in (17) is mono-

tonic decreasing with respect to µ. In addition, since L( j)
M (δ) and U( j)

M (δ) in C( j)
M (δ) include an un-

known variance σ2, in practice, these can be derived using s2
Ω

instead of σ2.

4. Numerical Experiments

4.1. Examining Confidence Interval Coverage Probabilities

We performed a series of numerical experiments to determine whether the confidence intervals for
the regression coefficients produced by the proposed method actually contained the true regression
coefficients at a rate of 100 × (1 − α)%. The motivation for this relates to the fact that the actual
coverage probability in the case of naive interval estimation without conditioning, i.e., an ordinary
confidence interval based on the t-distribution, differs from the nominal confidence level of 1 − α.
Thus, we compared the coverage probabilities of ordinary confidence intervals in the naive case with
the coverage probabilities of the proposed confidence interval estimates.

In our numerical experiments, vectors of the explanatory variables were generated as

x1, . . . ,xn ∼ i.i.d. Nk(0k,Ψk),

where 0k denotes a k-dimensional vector of zeros, and Ψk denotes a k × k autocorrelation matrix in
which the (a, b)th element is 0.6|a−b|. Using these vectors, simulation data were generated as

y ∼ Nn
(
Xθ∗a, In

)
, θ∗a = (1.04, 1.71, 2.26, 0.85, 2.20/a,0⊤k−5)⊤. (19)

It should be noted that the first five coefficients of θ∗a in (19) are non-zero and the remaining k − 5
coefficients are all zero. In the experiments, one of three models was selected, with a sample size
n = 100, 500, and 1,000. and with k = 10 and 30 explanatory variables. The three models consid-
ered were the true model M∗ = {1, 2, 3, 4, 5}, an overspecified model M+∗ = {1, 2, 3, 4, 5, 6} with a
sixth explanatory variable not included in the true model added to M∗, and an underspecified model
M−∗ = {1, 2, 3, 4}, where the fifth variable in the true model was removed. The calculations were
repeated until each of the M∗, M+∗ , and M−∗ models was selected 10,000 times using the six variable
selection criteria: the Cp criterion, AIC, BIC, HQC, CAIC, and the BNP criterion. When conducting
the experiment in the case of M̂ = M∗ or M̂ = M+∗ , we used 1 as a in (19). On the other hand, in the
case of M̂ = M−∗ , a in (19) was set to 30 in order to facilitate the selection of model M−∗ . For each
specified model selected, a 95% confidence interval was constructed using the method we propose
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Table 1. Coverage probabilities when M̂ = M∗ and n = 100

Cp AIC BIC HQC CAIC BNP

k j P N P N P N P N P N P N

10 1 93.85 95.69 93.63 95.46 93.68 95.48 94.00 95.65 93.53 95.42 93.80 95.65
2 93.81 94.29 93.73 94.22 93.28 93.81 93.74 94.23 93.33 93.84 93.82 94.27
3 93.61 94.20 93.45 94.06 93.23 93.83 93.61 94.14 93.42 94.00 93.66 94.25
4 93.94 94.64 94.02 94.64 93.51 94.29 93.99 94.67 93.60 94.42 93.97 94.67
5 93.46 96.48 93.69 96.57 93.52 96.61 93.72 96.82 93.52 96.60 93.43 96.47

Prob. 47.42 42.99 82.47 64.01 89.21 48.26

30 1 91.49 96.80 92.33 97.15 90.58 96.03 91.09 96.66 90.05 95.83 91.39 96.72
2 91.35 94.66 92.00 94.99 90.52 93.62 91.57 94.62 90.44 93.66 91.51 94.75
3 91.91 95.32 92.06 95.38 90.73 94.63 91.41 95.01 90.75 94.84 91.83 95.22
4 91.50 96.67 92.11 96.61 90.19 95.90 91.20 96.37 90.54 96.22 91.22 96.45
5 91.48 97.96 92.07 97.94 90.75 97.79 91.21 97.69 90.69 97.89 91.44 97.91

Prob. 3.54 0.61 21.97 5.06 35.96 3.88

Table 2. Coverage probabilities when M̂ = M∗ and n = 500

Cp AIC BIC HQC CAIC BNP

k j P N P N P N P N P N P N

10 1 94.48 94.92 94.52 94.97 94.18 94.65 94.35 94.79 94.15 94.60 94.46 94.90
2 94.83 95.13 94.80 95.11 94.84 95.11 94.65 94.95 94.81 95.07 94.78 95.08
3 94.84 94.92 94.85 94.94 94.91 94.99 94.96 95.04 94.96 95.04 94.84 94.92
4 93.92 94.40 93.92 94.41 93.97 94.58 94.06 94.59 94.06 94.56 93.93 94.41
5 94.78 98.08 94.74 98.07 95.00 98.32 94.85 98.21 94.85 98.35 94.98 98.09

Prob. 46.90 45.99 93.83 75.75 96.39 47.10

30 1 94.06 94.99 93.92 94.85 93.81 94.71 94.23 95.05 93.65 94.56 94.01 94.96
2 94.44 95.09 94.31 95.00 94.09 94.77 94.35 95.05 94.05 94.73 94.41 95.04
3 95.10 95.50 95.29 95.68 94.18 94.60 94.86 95.23 94.30 94.76 95.07 95.48
4 94.05 94.91 94.22 95.06 93.94 94.79 93.81 94.63 93.74 94.61 94.01 94.87
5 94.44 97.79 94.50 97.89 94.68 97.86 94.60 97.91 94.67 97.90 94.58 97.79

Prob. 2.69 1.99 69.86 23.82 80.66 2.76

and a naive method using the t-distribution; the proportion of true regression coefficients included
in the confidence interval was then calculated as the coverage probability.

Tables 1 through 9 show the coverage probabilities, i.e., the probability that the regression coef-
ficient of the jth variable is within the corresponding confidence interval. The “P” column gives
the coverage probabilities for the confidence intervals produced by the proposed method; the “N”
column gives the coverage probabilities for the confidence intervals produced by the naive method.
“Prob.” indicates the probability that the specific model was selected. A dash (“–”) indicates that
no values were entered. (Depending on the values of n and k, and the applied variable selection
criterion, the specified model may not be selected at all, meaning that a probability and confidence
interval could not be calculated.) As shown, for the confidence intervals produced by the proposed
method, the coverage probability differed slightly from 95% when n was small but was very close
to 95% when n was large. On the other hand, for the confidence intervals constructed with the
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Table 3. Coverage probabilities when M̂ = M∗ and n = 1,000

Cp AIC BIC HQC CAIC BNP

k j P N P N P N P N P N P N

10 1 94.37 94.82 94.40 94.84 94.42 94.89 94.54 95.02 94.42 94.91 94.38 94.83
2 94.25 94.65 94.31 94.71 94.48 94.95 94.49 94.96 94.49 94.95 94.26 94.65
3 94.19 94.86 94.17 94.84 94.84 95.39 94.59 95.17 94.80 95.35 94.20 94.85
4 95.07 95.60 95.03 95.55 94.70 95.26 94.97 95.51 94.64 95.19 95.08 95.62
5 94.80 98.18 94.80 98.16 94.82 98.11 94.88 98.19 94.83 98.11 94.80 98.18

Prob. 46.75 46.32 95.92 79.74 97.70 46.87

30 1 94.21 94.89 94.13 94.78 93.97 94.79 94.05 94.79 93.97 94.75 94.23 94.91
2 94.47 95.04 94.35 95.00 94.19 94.85 94.18 94.80 94.22 94.82 94.44 95.01
3 93.97 94.99 94.01 95.03 94.01 94.82 94.23 94.98 94.02 94.84 94.02 95.02
4 93.82 94.78 93.71 94.66 94.13 95.03 94.24 95.01 94.27 95.17 93.85 94.81
5 94.87 97.95 94.07 97.95 94.21 97.98 94.29 97.91 94.16 97.94 94.09 97.95

Prob. 2.59 2.21 79.83 30.61 87.57 2.62

Table 4. Coverage probabilities when M̂ = M+∗ and n = 100

Cp AIC BIC HQC CAIC BNP

k j P N P N P N P N P N P N

10 1 93.04 94.81 93.05 94.94 92.54 94.18 93.06 94.80 92.16 93.91 92.88 94.79
2 93.68 93.58 93.51 93.47 92.77 92.57 93.43 93.34 92.68 92.37 93.56 93.53
3 93.50 93.65 93.64 93.80 92.64 92.71 93.29 93.58 92.64 92.70 93.35 93.67
4 93.70 94.45 93.73 94.45 92.66 93.31 92.96 93.65 92.35 93.16 93.73 94.41
5 94.27 88.77 94.22 89.02 93.14 84.49 93.96 87.34 92.88 82.60 94.34 88.79
6 91.39 77.19 91.25 79.08 90.72 46.00 91.28 67.09 90.96 33.40 92.22 76.74

Prob. 8.09 8.43 3.41 6.26 2.19 8.04

30 1 91.60 95.46 92.33 95.75 90.39 94.66 91.57 95.77 90.35 94.31 91.55 95.54
2 90.82 94.00 91.70 95.73 89.90 93.35 91.25 94.27 90.14 93.47 90.82 94.00
3 91.26 94.59 91.77 95.17 94.43 93.72 91.14 94.78 89.31 92.94 91.41 94.69
4 91.62 95.77 92.01 96.18 90.65 95.33 90.98 95.50 90.62 94.88 91.57 95.67
5 92.88 88.34 93.37 90.19 90.84 84.32 92.20 87.21 90.77 81.86 92.61 87.97
6 91.28 87.15 91.42 90.75 90.97 77.97 91.25 85.74 91.21 72.12 91.63 86.62

Prob. 0.40 0.11 1.11 0.51 1.23 0.43

naive method, there were cases where the coverage probability did not approach 95% even when n

increased, especially for M+∗ .
Figure 1 shows the confidence intervals and estimated regression coefficients when each model is

selected by BIC for n = 1,000 and k = 30. The red intervals correspond to the proposed method;
the blue intervals correspond to the naive method. The black dots show the value of the estimated
regression coefficient. From the figure, it is apparent that the intervals for the proposed method
tended to be slightly narrower than the those based on the naive method for M∗ and M−∗ , and wider
for M+∗ . It can also be seen that for a variable whose true value was zero (the sixth variable in M+∗ ),
the confidence interval produced by the proposed method includes zero, while the interval produced
by the naive method does not.

10
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Table 5. Coverage probabilities when M̂ = M+∗ and n = 500

Cp AIC BIC HQC CAIC BNP

k j P N P N P N P N P N P N

10 1 94.03 94.63 94.04 94.68 94.07 94.72 94.01 94.67 93.80 94.45 94.03 94.66
2 94.66 94.93 94.74 94.91 94.34 94.53 94.91 95.09 94.02 94.34 94.75 94.94
3 94.90 94.90 94.88 94.91 94.18 94.22 94.70 94.75 94.53 94.61 94.96 94.92
4 94.18 94.57 94.26 94.52 94.21 94.33 94.65 95.07 94.57 94.74 94.20 94.57
5 96.14 86.31 96.11 86.35 94.71 74.65 95.55 81.35 94.57 71.12 96.10 86.29
6 93.93 84.29 94.02 84.57 94.41 39.76 93.34 68.38 94.58 30.79 93.92 84.20

Prob. 7.55 7.53 1.21 4.18 0.73 7.53

30 1 94.83 95.03 94.20 95.24 93.95 94.77 94.30 95.10 93.60 94.45 94.17 95.05
2 94.10 94.65 93.96 94.67 93.99 94.40 94.30 94.65 93.52 94.19 94.06 94.61
3 93.80 94.66 93.67 94.60 94.07 94.74 93.96 94.68 93.61 94.37 93.77 94.61
4 93.96 94.57 93.70 94.34 93.82 94.37 94.30 94.73 93.85 94.41 93.88 94.49
5 94.84 86.85 95.08 87.49 93.21 77.45 93.67 83.51 92.91 74.51 94.90 86.91
6 93.24 83.61 93.10 84.54 93.93 42.46 92.86 67.80 93.64 33.03 93.29 83.57

Prob. 0.41 0.33 1.00 1.35 0.69 0.41

Table 6. Coverage probabilities when M̂ = M+∗ and n = 1,000

Cp AIC BIC HQC CAIC BNP

k j P N P N P N P N P N P N

10 1 94.69 95.13 94.82 95.21 – – 94.73 95.08 – – 94.71 95.15
2 94.96 95.19 94.96 95.25 – – 94.60 94.80 – – 94.91 95.18
3 94.97 95.09 94.98 95.03 – – 94.60 94.53 – – 94.97 95.04
4 94.97 95.14 95.00 95.16 – – 94.28 94.47 – – 95.04 95.13
5 95.13 86.83 95.02 86.83 – – 94.55 81.74 – – 95.16 86.80
6 93.79 84.00 93.79 84.15 – – 93.72 65.18 – – 93.84 83.97

Prob. 7.38 7.42 – 3.64 – 7.37

30 1 94.42 95.13 94.25 94.91 94.35 94.96 94.21 94.63 94.32 94.77 94.50 95.11
2 94.34 95.01 94.43 95.03 94.27 94.85 94.24 94.66 94.39 94.82 94.45 95.01
3 94.54 95.15 94.69 95.24 93.97 94.44 94.15 94.64 94.44 94.80 94.57 95.13
4 94.12 94.81 94.08 94.74 94.21 94.93 94.24 95.01 94.06 94.78 94.20 94.79
5 95.30 88.09 95.19 88.11 93.65 75.01 94.26 81.94 93.70 71.95 95.12 88.13
6 93.65 82.28 93.69 82.91 94.04 29.11 93.94 62.57 94.60 20.37 93.63 82.24

Prob. 0.40 0.36 0.72 1.45 0.46 0.40

4.2. Behavior of Confidence Intervals with Increasing δ

In the previous subsection, we conducted numerical experiments regarding the coverage probabil-
ity of the proposed confidence interval with a fixed δ in (18). However, as the value of δ is changed,
the truncated region in (16) is also changed, and the confidence interval in (18) is changed as well.
Since the selected model will transition if δ exceeds a certain value that exists for the number of
variables, it is easy to see that the confidence interval shifts discretely once δ exceeds one of these
points. In this subsection, we use a numerical experiment to examine the behavior of the truncated
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Table 7. Coverage probabilities when M̂ = M−∗ and n = 100

Cp AIC BIC HQC CAIC BNP

k j P N P N P N P N P N P N

10 1 93.79 95.51 93.81 95.58 93.77 95.49 93.97 95.56 93.73 95.48 93.77 95.51
2 93.80 94.37 93.76 94.36 93.36 93.89 93.62 94.10 93.45 93.98 93.76 94.33
3 93.90 94.66 93.47 94.65 93.40 94.21 93.85 94.60 93.22 94.07 93.91 94.65
4 93.77 96.45 94.04 96.56 93.51 96.28 93.68 96.48 93.58 96.38 93.69 96.42

Prob. 37.85 33.32 76.32 54.79 84.59 38.66

30 1 91.80 96.91 92.34 97.22 90.60 96.24 91.15 96.63 90.20 96.03 91.55 96.78
2 91.71 94.87 92.14 95.37 90.64 93.86 91.69 94.75 90.65 93.70 91.67 94.83
3 92.20 95.49 91.92 95.59 91.06 94.95 91.85 95.21 90.72 94.91 92.23 95.42
4 91.61 99.00 91.81 98.99 90.73 98.72 91.39 98.94 90.68 98.82 91.44 99.00

Prob. 3.09 0.49 20.43 4.44 34.26 3.38

Table 8. Coverage probabilities when M̂ = M−∗ and n = 500

Cp AIC BIC HQC CAIC BNP

k j P N P N P N P N P N P N

10 1 94.22 94.83 94.21 94.83 94.12 94.72 94.47 95.02 94.13 94.75 94.23 94.84
2 94.90 95.17 94.88 95.15 94.88 95.16 94.76 95.05 94.84 95.10 94.90 95.15
3 94.62 94.70 94.67 94.75 94.83 94.90 94.95 95.03 94.87 94.94 94.64 94.72
4 93.92 97.30 94.02 97.38 93.82 97.24 93.93 97.27 93.88 97.30 93.93 97.32

Prob. 29.11 28.29 85.91 59.84 90.97 29.25

30 1 93.83 94.84 94.01 95.01 94.02 94.98 94.14 95.10 93.76 94.73 93.76 94.78
2 94.22 95.05 94.04 94.86 94.12 94.83 94.42 95.01 94.01 94.68 94.29 95.09
3 94.89 95.37 94.74 95.21 94.04 94.51 95.18 95.53 94.23 94.73 94.97 95.46
4 94.13 97.67 94.12 97.67 93.53 97.52 93.84 97.56 93.25 97.48 94.11 97.68

Prob. 1.71 1.23 63.99 18.76 75.96 1.75

Table 9. Coverage probabilities when M̂ = M−∗ and n = 1,000

Cp AIC BIC HQC CAIC BNP

k j P N P N P N P N P N P N

10 1 94.27 94.83 94.28 94.83 94.35 94.84 94.25 94.72 94.38 94.87 94.28 94.84
2 94.15 94.63 94.18 94.66 94.46 95.04 94.18 94.74 94.48 95.10 94.15 94.63
3 93.90 94.89 93.92 94.92 94.76 95.36 94.58 95.36 94.96 95.52 93.92 94.89
4 94.83 98.09 94.85 98.09 94.81 97.93 94.65 97.98 94.83 97.95 94.81 98.08

Prob. 7.51 7.37 59.03 27.81 66.55 7.54

30 1 – – – – 94.51 95.33 94.81 95.54 94.36 95.19 – –
2 – – – – 94.30 95.12 94.48 95.25 94.20 94.97 – –
3 – – – – 93.96 94.65 94.12 95.15 94.06 94.71 – –
4 – – – – 93.69 97.34 93.83 97.57 93.70 97.29 – –

Prob. – – 48.79 10.54 59.53 –

region and confidence interval under an increasing δ when (n, k) = (500, 10). The simulation data
were generated by the model in (19) used in subsection 4.1, with θ∗a replaced by
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Case of M̂ = M∗ Case of M̂ = M+∗

Case of M̂ = M−∗

Figure 1. Confidence intervals when BIC is used and (n, k) = (1,000, 30) (1st of 10,000 iterations)

(−0.08, 0.26,−0.14, 0.06, 0.31, 0, 0, 0, 0, 0)⊤.

Figure 2 shows the confidence intervals and truncated regions of the fifth variable for increas-
ing δ. They were created using the slider object in the R package “plotly” (see Sievert, 2019).
In the upper portion of each figure, the horizontal axis represents δ, the red dot denotes the esti-
mate of β( j)

M , and the black lines denote the upper and lower boundaries of the confidence interval
C( j)

M (δ). The purple or green vertical bars indicate the model change points at which each variable
is no longer selected, with the purple vertical bars representing the model change point at which
variables with true regression coefficients of zero are no longer selected, and the green vertical
bars representing the model change point at which variables with true non-zero regression coeffi-
cients are no longer selected. We note that the model change points are the ordered statistics of
T1, ..., Tk. The lower part of each figure shows the truncated region of the distribution function for
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δ = 0.0, 1.4×10−3, 1.96×10−2, 3.39×10−2, 7.13×10−2 and 19.579, for which an orange vertical bar
is drawn in the upper part of the figure. The red × is an estimate of β( j)

M . Figure 3 shows the change
in estimates and confidence intervals for the first to the tenth variables when increasing δ, i.e., the
upper part of each figure in Figure 2 for the first to the tenth variables. We found the following
tendencies in the behavior of the confidence intervals and the truncated regions for increases in δ by
moving the slider object:

• The closer δ is to the model change point, the more extreme the transition of one side of the
confidence interval.

• The closer δ is to the model change point, the narrower the truncated region becomes.

• When the truncated region is narrow, the closer the boundary of an open interval containing the
estimated regression coefficient is to the estimated value, the more extreme the transition of the
confidence interval.

• The confidence interval shifts in the positive or negative direction as the right or left boundary
of the truncated interval approaches the estimate of the regression coefficient.

5. Conclusion

In this paper, we derive conditional confidence intervals for β( j)
M with 1 − α coverage, conditioned

on the model M selected by the KOO method. To systematically construct such confidence intervals
when applying various variable selection criteria, we give a general expression of the discriminant
function used in the KOO method. For the variable selection criteria considered in this paper, the ith
discriminant function SC(Ω) − SC(Ωi) is represented as the difference between Ti in (6), which is a
statistic common to all the variable selection criteria, and the threshold δ in (9), which varies with
the variable selection criterion. The confidence interval is derived from the conditional distribution
of t( j)

M in (11) conditioned on the selection event consisting of the general expression of the discrim-
inant function, that is, the truncated normal distribution with the truncated region I( j)

M (δ) in (16). We
showed that the truncated region depends on the selected variables, but not on the unselected vari-
ables. Numerical experiments confirmed that the coverage probability of the proposed confidence
intervals tends to be closer to the nominal confidence level than that of confidence intervals obtained
from the naive method. Furthermore, various transitions of the confidence interval were confirmed
by increasing the threshold δ in numerical experiments.

In addition to the variable selection criteria considered in this paper, there are other widely known
variable selection criteria, including the cross-validation (CV) criterion proposed by Stone (1974)
and the extended information criterion (EIC) proposed by Ishiguro, Sakamoto and Kitagawa (1997),
which uses bootstrapping. It should be noted that the confidence interval expression in this paper
cannot be used when the model is selected by the KOO method with the CV criterion, EIC, or the
bias-corrected CV criteria proposed by Yanagihara, Tonda and Matsumoto (2006), and Yanagihara
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δ = 0.0 δ = 0.0014

δ = 0.0196 δ = 0.0399

δ = 0.0713 δ = 19.579

Figure 2. Truncated region when increasing δ for the 5th variable

and Fujisawa (2012). It is left to future work to obtain a general expression of the confidence inter-
val that includes the case in which variables are selected by the KOO method using these additional
criteria. For more information on variable selection criteria in linear regression, see, for example,
Yanagihara et al. (2017).

Finally, although the behavior of the proposed confidence interval in response to increases in the
threshold δ was studied, we did not produce any theoretical results regarding this behavior. We hope
that further study will lead to a solution to the problem of how to optimize δ.
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1st. variable 2nd. variable

3rd. variable 4th variable

5th variable 6th variable

7th variable 8th variable

9th variable 10th variable

Figure 3. Behavior of confidence intervals when increasing δ for each variable
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Appendix

A. Mathematical Details

A.1. Proof of (7)

It follows from (5) and = y⊤(In − PΩ)y = (n − k)s2
Ω

that

y⊤(In − PΩi )y
y⊤(In − PΩ)y

= 1 +
Ti

n − k
, (A.1)

where Ti is given by (6). Equation (A.1) and the result kΩi = k − 1 imply that
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ncΩi

s2
Ωi

s2
Ω

− ncΩ
s2
Ω

s2
Ω

= (n − k)
y⊤(In − PΩi )y
y⊤(In − PΩ)y

− (n − k) = Ti,

log
(
cΩi s

2
Ωi

)
− log

(
cΩs2

Ω

)
= log

{
y⊤(In − PΩi )y/n
y⊤(In − PΩ)y/n

}
= log

(
1 +

Ti

n − k

)
,

−
c2
Ω

s2
Ω

cΩi s
2
Ωi

+
c2
Ω

s2
Ω

cΩs2
Ω

= −(n − k)
y⊤(In − PΩ)y
y⊤(In − PΩi )y

+ (n − k)

= (n − k)
{

1 −
(
1 +

Ti

n − k

)−1}
= Ti

(
1 +

Ti

n − k

)−1

.

(A.2)

Moreover, we have

log
{(

cΩi −
γ

n

)−2
}
− log

{(
cΩ −

γ

n

)−2
}
= −2 log

(
n − k − γ + 1

n − k − γ

)
,

2n(kΩi + 1)
n − kΩi − 2

− 2n(kΩ + 1)
n − kΩ − 2

= − 2n(n − 1)
(n − k − 1)(n − k − 2)

,

log(c−γ
Ωi

) − log(c−γ
Ω

) = −γ log
(

n − k + 1
n − k

) . (A.3)

Consequently, from (A.2) and (A.3), (7) can be derived.

A.2. Proof of (8)

Notice that for any positive values a and b,

f (x) = a log(1 + bx) ⇐⇒ f −1(x) =
1
b

{
exp

( x
a

)
− 1

}
,

f (x) = x(1 + bx)−1 ⇐⇒ f −1(x) = x(1 − bx)−1.

From the above inverse functions and the definitions of g in (7), (8) can be derived.

A.3. Proof of Independence

Notice that t( j)
M = y⊤η( j)

M , s2
Ω
= y′(In − PΩ)y/(n − k) and

z( j)
M = y −w( j)

M t( j)
M = y − 1

∥η( j)
M ∥2

η( j)
M η( j)

M
⊤
y =

{
In − η( j)

M

(
η( j)

M
⊤
η( j)

M

)−1
η( j)

M
⊤
}
y =H ( j)

M y,

r⊤i z
( j)
M = r⊤i H

( j)
M y.

It follows from elementary linear algebra and the equation PΩXM =XM that

H ( j)
M η( j)

M = 0n, (In − PΩ)η( j)
M = (In − PΩ)XM(X⊤

MXM)−1e j = 0n. (A.4)

The right-hand side of the above equation implies that

(In − PΩ)H ( j)
M = (In − PΩ) − (In − PΩ)η( j)

M

(
η( j)

M
⊤
η( j)

M

)−1
η( j)

M
⊤
= In − PΩ. (A.5)

From the definition of ri in (4) and the result Ωi ⊂ Ω, we can see that
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(In − PΩ)rir
⊤
i = (In − PΩ)(PΩ − PΩi ) = On,n ⇐⇒ (In − PΩ)ri = 0n. (A.6)

Using (A.5) and (A.6), we have

r⊤i H
( j)
M (In − PΩ) = r⊤i (In − PΩ) = 0⊤n . (A.7)

Independence can be proved from (A.4), (A.7) and Cochran’s theorem.
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