TR-No. 22-05, Hiroshima Statistical Research Group, 1-19

# Stable Estimation of the Slant Parameter in Skew Normal Regression via an MM Algorithm and Ridge Shrinkage

## Mineaki Ohishi<sup>1\*</sup>, Hirokazu Yanagihara<sup>2</sup>, Hirofumi Wakaki<sup>2</sup> and Masahiko Ono<sup>2</sup>

<sup>1</sup>Education and Research Center for Artificial Intelligence and Data Innovation, Hiroshima University 1-1-89 Higashi-Senda-machi, Naka-ku, Hiroshima 730-0053, Japan <sup>2</sup>Graduate School of Advanced Science and Engineering, Hiroshima University 1-3-1 Kagamiyama, Higashi-Hiroshima 739-8526, Japan

#### Abstract

This paper deals with a skew normal linear regression model in which the error is distributed according to a skew normal distribution. The skew normal distribution has three parameters: a location parameter, a scale parameter, and a slant parameter. Their maximum likelihood estimators can be obtained with an R package sn, an EM algorithm, and so on. However, estimation via likelihood maximization causes the estimate of the slant parameter to be particularly unstable. To improve the stability of the slant parameter estimation, we derive a new algorithm based on the MM principle and propose a stable estimation method for the slant parameter using ridge shrinkage.

(Last Modified: October 26, 2022)

Key words: MM algorithm, Ridge regression, Skew normal distribution,

\*Corresponding author

E-mail address: mineaki-ohishi@hiroshima-u.ac.jp (Mineaki Ohishi)

## 1. Introduction

A skew normal distribution is a generalization of a normal distribution that allows "skewness" (for details of a skew normal distribution, see, e.g., Azzalini & Capitanio, 2014). If a random variable *y* has the probability density function

$$\frac{2}{\omega}\phi\left(\frac{y-\eta}{\omega}\right)\Phi\left(\frac{\nu(y-\eta)}{\omega}\right),\tag{1.1}$$

it is said that y is distributed according to a skew normal distribution with location parameter  $\eta$ ,

scale parameter  $\omega$  (> 0), and slant parameter v, which can be represented as  $y \sim SN(\eta, \omega^2, v)$ . The slant parameter v is a measure of the asymmetry of the skew normal distribution. When v = 0,  $SN(\eta, \omega^2, v)$  coincides with  $N(\eta, \omega^2)$ . In the framework of regression, the skew normal distribution is adopted in order to accommodate asymmetry in the error distribution (e.g., Azzalini & Capitanio, 1999; Cancho *et al.*, 2010). For example, Aigner *et al.* (1977) expressed the error distribution of a stochastic frontier model whose error distribution consists of a normal distribution and another certain distribution in terms of a normal distribution and a half-normal distribution. The skew normal distribution can be used for such an error distribution.

We consider the following skew normal linear regression model for a response variable  $y_i$ and k explanatory variables  $x_{i1}, \ldots, x_{ik}$ .

$$y_i = \beta_0 + \sum_{j=1}^k x_{ij}\beta_j + \varepsilon_i \quad (i = 1, ..., n),$$
  

$$\varepsilon_i \sim SN\left(0, \psi^{-1}, \gamma \psi^{-1/2}\right) \quad (\psi > 0),$$
(1.2)

where  $\beta_0, \beta_1, \dots, \beta_k, \psi$ , and  $\gamma$  are unknown parameters. When  $\gamma = 0$ , (1.2) reduces to a normal linear regression model. Moreover, if the error term of the stochastic frontier model treated by Aigner *et al.* (1977) is defined by

$$\varepsilon_i = \varepsilon_{1,i} + \varepsilon_{2,i}, \quad \varepsilon_{1,1}, \dots, \varepsilon_{1,n} \sim i.i.d. \ N(0, \sigma_1^2), \quad \varepsilon_{2,1}, \dots, \varepsilon_{2,n} \sim i.i.d. \ N^+(0, \sigma_2^2),$$

there is the following relationship between the above error term and (1.2).

$$\psi = \frac{1}{\sigma_1^2 + \sigma_2^2}, \quad \gamma = \frac{\sigma_2/\sigma_1}{\sqrt{\sigma_1^2 + \sigma_2^2}},$$

where  $N^+(0, \sigma^2)$  represents the half-normal distribution with scale parameter  $\sigma$ . In this paper, we identify  $\gamma$  rather than  $\gamma \psi^{-1/2}$  as the slant parameter and focus on the estimation of  $\gamma$ . From (1.1), a negative log-likelihood function for (1.2) is given by

$$\ell(\boldsymbol{\xi}) = -\frac{n}{2}\log\frac{2\psi}{\pi} + \frac{\psi}{2}\sum_{i=1}^{n}r_{i}(\beta)^{2} - \sum_{i=1}^{n}\log\Phi(\gamma r_{i}(\beta)), \quad \boldsymbol{\xi} = (\beta', \gamma, \psi)', \quad (1.3)$$
$$r_{i}(\beta) = y_{i} - \boldsymbol{x}_{i}'\beta, \quad \beta = (\beta_{0}, \beta_{1}, \dots, \beta_{k})', \quad \boldsymbol{x}_{i} = (1, x_{i1}, \dots, x_{ik})'.$$

By minimizing  $\ell(\boldsymbol{\xi})$ , a maximum likelihood estimator (MLE) for (1.2) can be obtained. Although the minimizer of  $\ell(\boldsymbol{\xi})$  cannot be obtained in closed form, there are various algorithms for solving the minimization problem. For example, we can use a function selm of a package sn (e.g., Azzalini, 2022) in R (e.g., R Core Team, 2021) that minimizes  $\ell(\boldsymbol{\xi})$  by a function optim. As another option, the expectation-minimization (EM) algorithm (Dempster *et al.*,





Figure 1. Unstableness of MLE of the slant parameter using selm

1977) can be applied (Azzalini & Capitanio, 2014). Although these algorithms give the MLE for (1.2), the MLE of  $\gamma$  is particularly unstable. Figure 1 displays boxplots of the MLE of  $\gamma$  obtained by selm when n = 100, k = 30, and the number of iterations is 1,000. The vertical axis shows the MLE; the horizontal axis shows the true value of  $\gamma$  (for details of the setting, see section 4). The figure confirms that the MLE of  $\gamma$  is far from the true value and that its variance is large.

To reduce the unstableness of the maximum likelihood estimation procedure, this paper proposes the use of ridge regression (Hoerl & Kennard, 1970). Ridge regression was first proposed as a way to avoid problems associated with multicollinearity among the explanatory variables by shrinking the estimator towards zero using penalized estimation with the  $\ell_2$ -norm. Although the main purpose of ridge regression is to address multicollinearity, it can be applied for many purposes, e.g., smoothing in nonparametric regression (Yanagihara, 2012) and the regularization of the covariance matrix in multivariate regression (Yamamura et al., 2010; Kubokawa & Srivastava, 2012). In this paper, we seek to reduce the unstableness of the MLE of slant parameter  $\gamma$  through ridge shrinkage. To incorporate ridge shrinkage into the estimation of  $\gamma$ , we first devise a new algorithm to determine MLE based on the majorization-minimization (MM) algorithm (Hunter & Lange, 2004). Since the MM algorithm minimizes a surrogate function which gives an upper bound of an objective function, we essentially derive the surrogate function. In particular, we evaluate the objective function more tightly. Note that although, in a broad sense, an EM algorithm is a type of MM algorithm, we distinguish between the two. In our MM algorithm for MLE, each parameter ( $\beta$ ,  $\gamma$ , and  $\psi$ ) can be updated in closed form. Moreover, the update equation of  $\gamma$  is obtained from a minimization of a quadratic function.

Hence, ridge shrinkage can be easily introduced, and an update equation for ridge shrinkage can be obtained in closed form as well.

The remainder of the paper is organized as follows: In section 2, we describe the MM algorithm for calculating the MLE for model (1.2) by deriving surrogate functions for  $\beta$  and  $\gamma$ , and discuss the initial values for the algorithm. In section 3, we introduce ridge shrinkage into our MM algorithm to stabilize the estimation of slant parameter  $\gamma$ . In section 4, we evaluate the performance of our proposed method. Technical details are provided in the Appendix.

#### 2. MM Algorithm for Maximum Likelihood Estimation

In this section, we propose a new algorithm to minimize the objective function  $\ell(\boldsymbol{\xi})$  in (1.3). To minimize the function, we first apply a block-wise coordinate descent algorithm. Specifically, we search the solution by repeating the following minimizations for each parameter:

$$\min_{\boldsymbol{\beta}\in\mathbb{R}^{k+1}}\ell(\boldsymbol{\xi}),\quad \min_{\boldsymbol{\gamma}\in\mathbb{R}}\ell(\boldsymbol{\xi}),\quad \min_{\boldsymbol{\psi}\in\mathbb{R}}\ell(\boldsymbol{\xi}).$$

By ignoring the constant terms, the objective functions for these sub-problems are given by

$$\ell_1(\beta) = \frac{\psi}{2} \sum_{i=1}^n r_i(\beta)^2 - \sum_{i=1}^n \log \Phi(\gamma r_i(\beta)),$$
(2.1)

$$\ell_2(\gamma) = -\sum_{i=1}^n \log \Phi(\gamma r_i(\beta)), \tag{2.2}$$

$$\ell_3(\psi) = -\frac{n}{2}\log\psi + \frac{\psi}{2}\sum_{i=1}^n r_i(\beta)^2.$$
 (2.3)

At the minimization of  $\ell_1(\beta)$ ,  $\gamma$  and  $\psi$  are regarded as constants. Similarly,  $\beta$  and  $\psi$  are regarded as constants at the minimization of  $\ell_2(\gamma)$ , and  $\beta$  and  $\gamma$  are regarded as constants at the minimization of  $\ell_3(\psi)$ . Since  $\ell_3(\psi)$  is a strictly convex function of  $\psi$ , a stationary point uniquely exists and is the minimizer. The derivative of  $\ell_3(\psi)$  is given by

$$\dot{\ell}_{3}(\psi) = \frac{d}{d\psi}\ell_{3}(\psi) = -\frac{n}{2\psi} + \frac{1}{2}\sum_{i=1}^{n}r_{i}(\beta)^{2},$$

and hence, the minimizer of  $\ell_3(\psi)$  is given in closed form as

$$\hat{\psi} = \frac{n}{\sum_{i=1}^{n} r_i(\beta)^2}.$$
(2.4)

Since  $\ell_1(\beta)$  and  $\ell_2(\gamma)$  are strictly convex functions of  $\beta$  and  $\gamma$ , respectively, their minimizers are stationary points. However, it is difficult to obtain these stationary points directly. Hence,

we adopt an MM algorithm to minimize  $\ell_1(\beta)$  and  $\ell_2(\gamma)$ . The MM algorithm minimizes an objective function by repeating a minimization of its surrogate function giving the upper bound of the objective function. The following property guarantees that a solution obtained by the MM algorithm is the minimizer (Hunter & Lange, 2004):

**Proposition 1.** Let  $f(\boldsymbol{\xi})$  be a convex function and for given  $\boldsymbol{\xi}_0$ , let  $f^+(\boldsymbol{\xi} \mid \boldsymbol{\xi}_0)$  be a surrogate function of f satisfying

$$f(\boldsymbol{\xi}) \le f^+(\boldsymbol{\xi} \mid \boldsymbol{\xi}_0), \quad f^+(\boldsymbol{\xi}_0 \mid \boldsymbol{\xi}_0) = f(\boldsymbol{\xi}_0)$$

Then, we have

$$f(\boldsymbol{\xi}^{\dagger}) \leq f(\boldsymbol{\xi}_0), \quad \boldsymbol{\xi}^{\dagger} = \arg\min_{\boldsymbol{\xi}} f^+(\boldsymbol{\xi} \mid \boldsymbol{\xi}_0).$$

The following lemma is the key to obtaining surrogate functions of  $\ell_1(\beta)$  and  $\ell_2(\gamma)$  (the proof is given in Appendix A.1).

**Lemma 1.** For all  $x \in \mathbb{R}$ , we have

$$\frac{x\phi(x)}{\Phi(x)} + \left\{\frac{\phi(x)}{\Phi(x)}\right\}^2 \le 1.$$

We describe the MM algorithms for minimizing  $\ell_1(\beta)$  and  $\ell_2(\gamma)$  in subsections 2.1 and 2.2. From the results, the new algorithm to minimize the objective function  $\ell(\xi)$  is summarized in Algorithm 1, where Algorithm 2 with  $d_{\text{max}}$  and Algorithm 3 are given in the following subsections.

## Algorithm 1 Main algorithm to minimize (1.3)

```
Require: initial vector for \boldsymbol{\xi} = (\boldsymbol{\beta}', \boldsymbol{\gamma}, \boldsymbol{\psi})'

repeat

Update \boldsymbol{\beta} via Algorithm 2 with L_1 = d_{\max}(\boldsymbol{\psi} + 3\boldsymbol{\gamma}^2)

Update \boldsymbol{\gamma} via Algorithm 3 with L_2 = 3 \sum_{i=1}^{n} r_i(\boldsymbol{\beta})^2

Update \boldsymbol{\psi} by (2.4)

until solution converges
```

#### **2.1.** Update $\beta$

We now consider minimizing  $\ell_1(\beta)$  in (2.1) under given  $\gamma$  and  $\psi$  to obtain an update equation for  $\beta$ . Although  $\ell_1(\beta)$  is a strictly convex function of  $\beta$ , directly minimizing it is difficult. Hence, we minimize a surrogate function of  $\ell_1(\beta)$  based on the MM algorithm.

We first derive the surrogate function. The following theorem gives the upper bound of  $\ell_1(\beta)$  (the proof is given in Appendix A.2).

**Theorem 1.** Let  $d_{\max}$  be the maximum eigenvalue of  $\sum_{i=1}^{n} x_i x'_i$  and  $L_1 = d_{\max}(\psi + \gamma^2)$ . Moreover, for  $\mathbf{b} \in \mathbb{R}^{k+1}$ , we define  $\ell_1^+(\boldsymbol{\beta} \mid \mathbf{b})$  as

$$\ell_1^+(\boldsymbol{\beta} \mid \boldsymbol{b}) = \ell_1(\boldsymbol{b}) + \boldsymbol{g}(\boldsymbol{b})'(\boldsymbol{\beta} - \boldsymbol{b}) + \frac{L_1}{2} ||\boldsymbol{\beta} - \boldsymbol{b}||^2,$$
$$\boldsymbol{g}(\boldsymbol{\beta}) = \frac{\partial}{\partial \boldsymbol{\beta}} \ell_1(\boldsymbol{\beta}) = -\psi \sum_{i=1}^n r_i(\boldsymbol{\beta}) \boldsymbol{x}_i + \gamma \sum_{i=1}^n \frac{\phi(\gamma r_i(\boldsymbol{\beta}))}{\Phi(\gamma r_i(\boldsymbol{\beta}))} \boldsymbol{x}_i.$$

Then, we have

$$\ell_1(\boldsymbol{\beta}) \leq \ell_1^+(\boldsymbol{\beta} \mid \boldsymbol{b}), \quad \ell_1^+(\boldsymbol{b} \mid \boldsymbol{b}) = \ell_1(\boldsymbol{b}).$$

From the above theorem, we obtain the surrogate function  $\ell_1^+(\beta \mid b)$  of  $\ell_1(\beta)$ . Hence, the minimizer of  $\ell_1(\beta)$  can be obtained by repeating the following update:

$$\beta^{(m+1)} = \arg\min_{\beta \in \mathbb{R}^{k+1}} \ell_1^+(\beta \mid \beta^{(m)}) \quad (m = 0, 1, \ldots),$$

where *m* is an iteration number and  $\beta^{(0)}$  is an initial vector for  $\beta$ . The  $\ell_1^+(\beta \mid b)$  can be rewritten as

$$\ell_1^+(\beta \mid b) = \ell_1(b) + \frac{L_1}{2} ||\beta - z(b)||^2 + \frac{L_1}{2} ||b||^2 - g(b)'b,$$

where  $z(b) = b - g(b)/L_1$ . Hence,  $\ell_1^+(\beta \mid b)$  is minimized at

$$\hat{\boldsymbol{\beta}} = \boldsymbol{z}(\boldsymbol{b})$$

As a result, the MM algorithm for minimizing  $\ell_1(\beta)$  is given in Algorithm 2.

## Algorithm 2 Update $\beta$

```
Require: \gamma, \psi, L_1, initial vector \beta^{(0)} for \beta

m \leftarrow 0

repeat

\beta^{(m+1)} = \beta^{(m)} - g(\beta^{(m)})/L_1

m \leftarrow m + 1

until solution converges
```

#### **2.2.** Update $\gamma$

We next consider minimizing  $\ell_2(\gamma)$  in (2.2) under given  $\beta$  and  $\psi$  to obtain an update equation for  $\gamma$ . Similar to the minimization of  $\ell_1(\beta)$ , we apply an MM algorithm to this minimization problem.

The following theorem gives the upper bound of  $\ell_2(\gamma)$  (the proof is given in Appendix A.3).

Ohishi, M., Yanagihara, H., Wakaki, H. & Ono, M.

**Theorem 2.** Let  $L_2 = \sum_{i=1}^n r_i(\beta)^2$  and for  $c \in \mathbb{R}$ , we define  $\ell_2^+(\gamma \mid c)$  as  $\ell_2^+(\gamma \mid c) = \ell_2(c) + \dot{\ell}_2(c)(\gamma - c) + \frac{L_2}{2}(\gamma - c)^2$ ,  $\dot{\ell}_2(\gamma) = \frac{d}{d\gamma}\ell_2(\gamma) = -\sum_{i=1}^n \frac{\phi(\gamma r_i(\beta))r_i(\beta)}{\Phi(\gamma r_i(\beta))}$ .

Then, we have

$$\ell_2(\gamma) \le \ell_2^+(\gamma \mid c), \quad \ell_2^+(c \mid c) = \ell_2(c).$$

From the above theorem, we obtain the surrogate function  $\ell_2^+(\gamma)$  of  $\ell_2(\gamma)$ . Hence, the minimizer of  $\ell_2(\gamma)$  can be obtained by repeating the following update:

$$\gamma^{(m+1)} = \arg\min_{\gamma \in \mathbb{R}} \ell_2^+(\gamma \mid \gamma^{(m)}) \quad (m = 0, 1, \ldots),$$

where  $\gamma^{(0)}$  is an initial value for  $\gamma$ . Since  $\ell_2^+(\gamma \mid c)$  is a quadratic function of  $\gamma$ ,  $\ell_2^+(\gamma \mid c)$  is minimized at

$$\hat{\gamma} = c - \frac{\ell_2(c)}{L_2}.$$
(2.5)

As a result, the MM algorithm for minimizing  $\ell_2(\gamma)$  is given in Algorithm 3.

#### Algorithm 3 Update $\gamma$

```
Require: \beta, \psi, L_2, initial value \gamma^{(0)} for \gamma

m \leftarrow 0

repeat

\gamma^{(m+1)} = \gamma^{(m)} - \dot{\ell}_2(\gamma^{(m)})/L_2

m \leftarrow m + 1

until solution converges
```

#### 2.3. Initial values

Although the objective function  $\ell(\boldsymbol{\xi})$  in (1.3) is convex for each parameter ( $\beta$ ,  $\gamma$ , and  $\psi$ ), i.e.,  $\ell_1(\beta)$ ,  $\ell_2(\gamma)$ , and  $\ell_3(\psi)$  are all convex, it is not convex for  $\boldsymbol{\xi}$ . Hence, estimation results may depend on the initial values and the algorithm. In fact, although the following point is a stationary point, it is not a local minimum; rather, it is a saddle point.

$$\boldsymbol{\xi} = \begin{pmatrix} \boldsymbol{\beta} \\ \boldsymbol{\gamma} \\ \boldsymbol{\psi} \end{pmatrix} = \begin{pmatrix} (\boldsymbol{X}'\boldsymbol{X})^{-1}\boldsymbol{X}'\boldsymbol{y} \\ \boldsymbol{0} \\ n/\boldsymbol{y}' \left\{ \boldsymbol{I}_n - \boldsymbol{X}(\boldsymbol{X}'\boldsymbol{X})^{-1}\boldsymbol{X}' \right\} \boldsymbol{y} \end{pmatrix}$$

Stable Slant Parameter Estimation via MM Algorithm and Ridge Shrinkage



Figure 2. Unstableness of the MLE of the slant parameter using the EM algorithm

where  $X = (x_1, ..., x_n)'$  and  $y = (y_1, ..., y_n)'$ . Figure 2 is the EM algorithm version of figure 1 and shows a large difference between the two algorithms. Regarding the initial values for the algorithms, selm and the EM algorithm adopt the following moment estimators:

$$\boldsymbol{\beta}^{\dagger} = (\boldsymbol{X}'\boldsymbol{X})^{-1}\boldsymbol{X}'\boldsymbol{y} - \left(\delta^{\dagger}\sqrt{2/\pi\psi^{\dagger}}, \mathbf{0}'_{k}\right)', \quad \gamma^{\dagger} = \sqrt{\psi^{\dagger}}v^{\dagger}, \quad \psi^{\dagger} = \frac{1 - (2/\pi)(\delta^{\dagger})^{2}}{s^{2}}$$

where

$$v^{\dagger} = \frac{R}{\sqrt{2/\pi - (1 - 2/\pi)R^2}}, \quad R = \left(\frac{2u}{4 - \pi}\right)^{1/3}, \quad \delta^{\dagger} = \frac{v^{\dagger}}{\sqrt{1 + (v^{\dagger})^2}}$$
$$s^2 = \frac{1}{n} \sum_{i=1}^n (y_i - \bar{y})^2, \quad \bar{y} = \frac{1}{n} \sum_{i=1}^n y_i, \quad u = \frac{1}{n} \sum_{i=1}^n \left(\frac{y_i - \bar{y}}{s}\right)^3.$$

Problems with the sign of  $\gamma^{\dagger}$  then occur in the EM algorithm. Table 1 summarizes the sign of

Table 1. Summary of the sign results using the EM algorithm

|   |      | True value of $\gamma$ |     |    |    |   |  |  |  |  |  |  |
|---|------|------------------------|-----|----|----|---|--|--|--|--|--|--|
|   | -5   | -3                     | -1  | 1  | 3  | 5 |  |  |  |  |  |  |
| А | 1000 | 0                      | 999 | 54 | 46 | 0 |  |  |  |  |  |  |
| В | 0    | -                      | 0   | 0  | 0  | - |  |  |  |  |  |  |

the results in figure 2. Let  $s^*$  be the sign of the true value of  $\gamma$ ,  $\hat{s}$  be the sign of the MLE of  $\gamma$ 

obtained with the EM algorithm, and  $s^{\dagger} = \operatorname{sign}(\gamma^{\dagger})$ . In the table, "A" denotes the number satisfying  $s^{\dagger} \neq s^*$ , and "B" denotes the number satisfying  $\hat{s} = s^*$  when  $s^{\dagger} \neq s^*$ . Table 1 suggests that if the sign of the initial value differs from the sign of the true value, then the sign of the MLE will also differ from the sign of the true value. The cause of this may be that  $\gamma = 0$  is a saddle point, and, in the algorithm, a current solution cannot move across a saddle point. From the above, it appears that using the moment estimator as the initial value for  $\gamma$  is risky, and the same problem may occur in our MM algorithm.

To mitigate this problem, we devised a simple approach. The procedure can be described as follows:

- 1. Calculate the two MLEs  $\hat{\xi}^-$  and  $\hat{\xi}^+$ , where  $\hat{\xi}^-$  is the MLE of  $\xi$  under the initial value  $\gamma^{(0)} = -1$  and  $\hat{\xi}^+$  is the MLE of  $\xi$  under the initial value  $\gamma^{(0)} = 1$ .
- 2. Select  $\gamma^{(0)} = -1$  if  $\ell(\hat{\xi}^-) < \ell(\hat{\xi}^+)$  and  $\gamma^{(0)} = 1$  if  $\ell(\hat{\xi}^-) > \ell(\hat{\xi}^+)$ .

By selecting the sign of the initial value, we can expect that the problem with respect to the sign of the initial value is solved. For simplicity, we refer to using the moment estimator as the initial value for  $\gamma$  as initial value-type I (IV-I) and refer to selecting the sign of the initial value for  $\gamma$  using the above approach as initial value-type II (IV-II). For IV-II, the initial vector and value for  $\beta$  and  $\psi$  are their saddle points. The performances of IV-I and IV-II are numerically compared in section 4.

## 3. Stable Estimation for the Slant Parameter via Ridge Shrinkage

In the previous section, we derived an MM algorithm to minimize the objective function  $\ell(\xi)$  in (1.3). In this section, we incorporate ridge shrinkage into our MM algorithm to reduce the unstableness of the MLE of slant parameter  $\gamma$ . Specifically,  $\gamma$  is updated based on minimizing the following penalized function, which adds a penalty term to the objective function for  $\gamma$  in (2.2).

$$\tilde{\ell}_2(\gamma\mid\theta)=\ell_2(\gamma)+\frac{\theta}{2}\gamma^2,$$

where  $\theta \ge 0$  is a regularization parameter called the ridge parameter, which adjusts the strength of the penalty. This means that  $\boldsymbol{\xi}$  is estimated based on minimizing the following penalized negative log-likelihood function:

$$\tilde{\ell}(\boldsymbol{\xi} \mid \boldsymbol{\theta}) = \ell(\boldsymbol{\xi}) + \frac{\theta}{2}\gamma^2.$$

Then,  $\beta$  and  $\psi$  are updated, similar to the previous section. On the other hand, the update of  $\gamma$ 

is accomplished by replacing the surrogate function in our MM algorithm with

$$\tilde{\ell}_2^+(\gamma\mid\theta,c)=\ell_2^+(\gamma\mid c)+\frac{\theta}{2}\gamma^2,$$

and its minimizer is given by

$$\hat{\gamma}_{\theta} = \frac{L_2 c - \dot{\ell}_2(c)}{L_2 + \theta}.$$

When  $\theta = 0$ ,  $\hat{\gamma}_{\theta}$  coincides with  $\hat{\gamma}$  in (2.5). Since  $\theta$  is non-negative, the estimator of  $\gamma$  is shrunk towards zero via ridge shrinkage. Hence, the MM algorithm with ridge shrinkage that provides a stable estimator of  $\gamma$  is given by replacing the update equation of  $\gamma$  in Algorithm 3 in the following equation:

$$\gamma^{(m+1)} = \frac{L_2 \gamma^{(m)} - \dot{\ell}_2(\gamma^{(m)})}{L_2 + \theta}.$$

As above, ridge shrinkage for  $\gamma$  can be easily implemented. However, the ridge estimator of  $\gamma$  depends on  $\theta$ , which is an unknown parameter, and the amount of shrinkage of the estimator varies according th the value of  $\theta$ . Hence, the stableness of the ridge estimator is entrusted to  $\theta$ , meaning that the optimization of  $\theta$  is extremely important. In general, as an optimization method for regularization parameters in penalized estimation methods such as ridge regression and Lasso (Tibshirani, 1996), cross-validation or a model selection criterion minimization method using, for example, the  $C_p$  criterion (Mallows, 1973) or the GCV criterion (Craven & Wahba, 1979), is employed (e.g., Zou, 2006; Ohishi *et al.*, 2020). In terms of the calculation cost, the model selection criterion minimization method is more reasonable. In this paper, for optimizing  $\theta$ , the generalized information criterion (GIC; Konishi & Kitagawa, 1996) is applied. Let  $\hat{\xi}_{\theta}$  be the estimator for  $\xi$  under ridge parameter  $\theta$ , i.e.,

$$\hat{\boldsymbol{\xi}}_{\theta} = \arg\min_{\boldsymbol{\xi}\in\mathbb{R}^{k+3}} \tilde{\ell}(\boldsymbol{\xi}\mid\theta),$$

and we rewrite  $\ell(\boldsymbol{\xi})$  and  $\tilde{\ell}(\boldsymbol{\xi} \mid \boldsymbol{\theta})$  as

$$\ell(\boldsymbol{\xi}) = \sum_{i=1}^{n} \ell_{(i)}(\boldsymbol{\xi}), \quad \ell_{(i)}(\boldsymbol{\xi}) = -\frac{1}{2} \log \frac{2\psi}{\pi} + \frac{\psi}{2} r_i(\beta)^2 - \log \Phi(\gamma r_i(\beta)),$$
$$\tilde{\ell}(\boldsymbol{\xi} \mid \theta) = \sum_{i=1}^{n} \tilde{\ell}_{(i)}(\boldsymbol{\xi} \mid \theta), \quad \tilde{\ell}_{(i)}(\boldsymbol{\xi} \mid \theta) = \ell_{(i)}(\boldsymbol{\xi}) + \frac{\theta}{2n} \gamma^2.$$

Then, the GIC for optimizing  $\theta$  is given by

$$\operatorname{GIC}(\theta) = 2\ell(\hat{\boldsymbol{\xi}}_{\theta}) + 2\operatorname{tr}\left\{\boldsymbol{B}(\hat{\boldsymbol{\xi}}_{\theta} \mid \theta)\right\}, \ \boldsymbol{B}(\boldsymbol{\xi} \mid \theta) = \left\{\frac{\partial^2}{\partial \boldsymbol{\xi} \partial \boldsymbol{\xi}'}\tilde{\ell}(\boldsymbol{\xi} \mid \theta)\right\}^{-1} \sum_{i=1}^n \frac{\partial}{\partial \boldsymbol{\xi}}\tilde{\ell}_{(i)}(\boldsymbol{\xi} \mid \theta)\frac{\partial}{\partial \boldsymbol{\xi}'}\ell_{(i)}(\boldsymbol{\xi}),$$

and the value of  $\theta$  optimized by the GIC minimization method is given by

$$\hat{\theta} = \arg\min_{\theta \in [0,\infty)} \text{GIC}(\theta).$$

#### 4. Numerical Study

In this section, we use simulation to evaluate the performance of our MM algorithm with ridge shrinkage for the stable estimation of slant parameter  $\gamma$ . Performance is measured in terms of the following mean square error (MSE):

$$MSE(\theta) = E\left[\left(\hat{\gamma}_{\theta} - \gamma\right)^{2}\right],$$

where  $\hat{\gamma}_{\theta}$  is the ridge estimator of  $\gamma$  and the expectation in the MSE is evaluated via a Monte Carlo simulation with 1,000 iterations. When  $\theta = 0$ ,  $\hat{\gamma}_{\theta}$  is the MLE, and we can write MSE<sub>0</sub> = MSE(0). The simulation data are generated by

$$y \sim SN(X1_k, 1, \gamma), \quad X = X_0 \Psi(0.5)^{1/2},$$

where  $X_0$  is an  $n \times k$  matrix in which the elements are identically and independently distributed according to U(-1, 1), and  $\Psi(\rho)$  is a  $k \times k$  matrix in which the (i, j)th element is given by  $\rho^{|i-j|}$ . The ridge parameter is compared for six values:  $\hat{\theta}$ , which is optimized by the GIC minimization method,  $\theta_1 = |\gamma^{\dagger}|$ ,  $\theta_2 = 1/n$ ,  $\theta_3 = 1/\sqrt{n}$ ,  $\theta_4 = 1/\log n$ , and  $\theta_5 = 1/2 \log \log n$ .

Tables 2, 3, and 4 show the MSE results when k = 10, 30, 50, respectively. The minimum value in each row is in bold font; the "mean" and "s. d." values in the bottom two rows are the mean and standard deviation of the values in each column. In terms of the MLE values, it can be seen that the estimation results are relatively stable when n is large or  $|\gamma|$  is small. In other cases,  $MSE_0$  takes a very large value. Moreover,  $MSE_0$  becomes larger as k increases. From the results, it appears that a substantial amount of shrinkage of the estimator is needed when n is small or  $|\gamma|$  is large. On the other hand, under  $\hat{\theta}$ , which is optimized by the GIC minimization method, we can see the relationship  $MSE(\hat{\theta}) < MSE_0$  in numerous cases and can thus say that ridge shrinkage tends to stabilize the estimator of  $\gamma$ . However, despite the fact that MSE( $\hat{\theta}$ ) is less than MSE<sub>0</sub> in many cases, it is difficult to conclude that MSE( $\hat{\theta}$ ) is sufficiently small. Hence, we compared five fixed values of  $\theta$ :  $\theta_1, \ldots, \theta_5$ . If  $|\gamma^{\dagger}|$  corresponds to  $|\gamma|$ , we can expect that  $\theta_1$  adjusts the amount of shrinkage of the estimator according to the data's skewness. Unfortunately, such a relationship does not occur in this simulation. Nevertheless, when k = 10, we can see the relationship  $MSE(\theta_1) < MSE(\hat{\theta})$  in many cases. On the other hand, when  $k = 30, 50, MSE(\theta_1)$  decreases and the inequality is reversed. The reason for this is that  $|\gamma^{\dagger}|$  decreases as k increases. The  $\theta_2, \ldots, \theta_5$  values decrease as n increases. Since these values shrink more when n is small, we can expect an improvement in MSE when n is small. In fact,  $\theta_4$  and  $\theta_5$  are shown to greatly improve MSE and perform well even when *n* is small. Regarding the mean and standard deviation values, the tables show that  $MSE(\theta_4)$  with IV-II is

|    |       | IV-I     |               |            |            |            |           |            |          | IV-II         |            |            |            |            |            |  |
|----|-------|----------|---------------|------------|------------|------------|-----------|------------|----------|---------------|------------|------------|------------|------------|------------|--|
| γ  | n     | MLE      | $\hat{	heta}$ | $\theta_1$ | $\theta_2$ | $\theta_3$ | $	heta_4$ | $\theta_5$ | MLE      | $\hat{	heta}$ | $\theta_1$ | $\theta_2$ | $\theta_3$ | $\theta_4$ | $\theta_5$ |  |
| -5 | 100   | 3079.633 | 1755.592      | 4.642      | 64.639     | 4.329      | 4.218     | 8.832      | 3220.495 | 1883.991      | 2.411      | 69.157     | 2.012      | 1.989      | 8.932      |  |
|    | 300   | 29.426   | 28.635        | 21.185     | 24.486     | 21.492     | 21.168    | 21.305     | 53.171   | 49.971        | 0.697      | 18.343     | 1.827      | 0.637      | 2.264      |  |
|    | 500   | 12.043   | 11.323        | 10.996     | 11.957     | 11.347     | 10.982    | 11.399     | 2.327    | 1.112         | 0.539      | 2.191      | 1.133      | 0.494      | 1.321      |  |
| -3 | 100   | 72.616   | 30.861        | 8.950      | 12.166     | 9.132      | 8.965     | 8.857      | 1352.255 | 659.376       | 1.420      | 49.390     | 2.759      | 1.390      | 3.093      |  |
|    | 300   | 1.362    | 1.308         | 0.445      | 1.164      | 0.738      | 0.517     | 0.415      | 1.278    | 1.175         | 0.317      | 1.070      | 0.627      | 0.389      | 0.284      |  |
|    | 500   | 7.841    | 7.667         | 7.773      | 7.840      | 7.822      | 7.780     | 7.667      | 0.329    | 0.194         | 0.213      | 0.327      | 0.291      | 0.223      | 0.151      |  |
| -1 | 100   | 147.501  | 60.569        | 0.981      | 11.971     | 1.477      | 1.047     | 0.834      | 105.681  | 65.189        | 1.880      | 12.402     | 3.024      | 2.126      | 1.218      |  |
|    | 300   | 0.823    | 0.737         | 0.784      | 0.822      | 0.809      | 0.784     | 0.718      | 0.701    | 0.638         | 0.662      | 0.700      | 0.689      | 0.664      | 0.585      |  |
|    | 500   | 0.150    | 0.181         | 0.167      | 0.150      | 0.152      | 0.159     | 0.240      | 0.374    | 0.352         | 0.362      | 0.374      | 0.373      | 0.366      | 0.358      |  |
| 0  | 100   | 63.394   | 21.904        | 0.775      | 8.756      | 1.297      | 0.848     | 0.426      | 39.967   | 26.093        | 1.556      | 8.181      | 2.317      | 1.695      | 0.843      |  |
|    | 300   | 0.373    | 0.327         | 0.333      | 0.373      | 0.365      | 0.348     | 0.255      | 0.669    | 0.606         | 0.607      | 0.668      | 0.656      | 0.629      | 0.471      |  |
|    | 500   | 0.289    | 0.258         | 0.271      | 0.289      | 0.285      | 0.275     | 0.212      | 0.512    | 0.483         | 0.486      | 0.512      | 0.506      | 0.491      | 0.388      |  |
| 1  | 100   | 60.285   | 29.476        | 1.883      | 7.097      | 2.337      | 1.880     | 1.258      | 78.815   | 47.004        | 2.133      | 9.950      | 2.739      | 2.100      | 1.217      |  |
|    | 300   | 0.230    | 0.275         | 0.263      | 0.230      | 0.236      | 0.251     | 0.397      | 0.699    | 0.642         | 0.644      | 0.698      | 0.686      | 0.661      | 0.584      |  |
|    | 500   | 0.147    | 0.189         | 0.166      | 0.147      | 0.150      | 0.158     | 0.244      | 0.405    | 0.386         | 0.387      | 0.405      | 0.402      | 0.393      | 0.363      |  |
| 3  | 100   | 1373.003 | 611.626       | 1.053      | 45.785     | 2.127      | 1.005     | 2.084      | 1178.254 | 565.713       | 1.373      | 43.154     | 2.277      | 1.107      | 2.863      |  |
|    | 300   | 2.763    | 3.394         | 2.036      | 2.561      | 2.224      | 2.030     | 1.930      | 2.988    | 3.337         | 0.388      | 1.675      | 0.643      | 0.371      | 0.258      |  |
|    | 500   | 7.791    | 7.618         | 7.726      | 7.790      | 7.772      | 7.730     | 7.618      | 0.280    | 0.172         | 0.192      | 0.279      | 0.250      | 0.194      | 0.145      |  |
| 5  | 100   | 77.545   | 31.879        | 24.963     | 27.298     | 25.063     | 24.975    | 24.965     | 3193.562 | 1888.662      | 3.937      | 71.499     | 1.826      | 1.914      | 9.216      |  |
|    | 300   | 27.392   | 26.235        | 22.869     | 24.679     | 23.101     | 22.881    | 22.897     | 34.745   | 31.200        | 0.682      | 14.136     | 1.747      | 0.599      | 2.218      |  |
|    | 500   | 25.079   | 24.828        | 24.955     | 25.076     | 25.038     | 24.980    | 24.834     | 1.846    | 0.799         | 0.427      | 1.768      | 1.007      | 0.464      | 1.342      |  |
| 1  | mean  | 237.604  | 126.423       | 6.820      | 13.585     | 7.014      | 6.809     | 7.018      | 441.398  | 248.909       | 1.015      | 14.613     | 1.323      | 0.900      | 1.815      |  |
|    | s. d. | 715.085  | 395.596       | 8.931      | 16.844     | 8.917      | 8.935     | 8.940      | 992.947  | 573.621       | 0.938      | 23.002     | 0.922      | 0.670      | 2.570      |  |

Table 2. MSE of the ridge estimate of the slant parameter when k = 10

| IV-I |       |          |               |            |            |            |            | IV-II      |          |               |            |            |            |            |            |
|------|-------|----------|---------------|------------|------------|------------|------------|------------|----------|---------------|------------|------------|------------|------------|------------|
| γ    | n     | MLE      | $\hat{	heta}$ | $\theta_1$ | $\theta_2$ | $\theta_3$ | $\theta_4$ | $\theta_5$ | MLE      | $\hat{	heta}$ | $\theta_1$ | $\theta_2$ | $\theta_3$ | $\theta_4$ | $\theta_5$ |
| -5   | 100   | 3340.218 | 135.726       | 241.501    | 35.852     | 27.607     | 25.055     | 33.343     | 7740.139 | 383.102       | 239.430    | 10.417     | 4.769      | 16.932     | 199.353    |
|      | 300   | 2533.607 | 1257.167      | 615.286    | 16.652     | 1.921      | 1.733      | 565.294    | 2470.163 | 1247.638      | 612.927    | 16.838     | 1.990      | 1.740      | 577.862    |
|      | 500   | 178.721  | 270.903       | 103.445    | 7.723      | 2.372      | 2.011      | 181.459    | 187.718  | 278.012       | 108.746    | 7.165      | 1.420      | 1.011      | 188.720    |
| -3   | 100   | 7915.044 | 512.400       | 298.282    | 18.743     | 4.696      | 3.327      | 376.412    | 6497.484 | 508.018       | 267.550    | 19.496     | 6.496      | 6.301      | 308.859    |
|      | 300   | 399.183  | 242.753       | 141.542    | 6.689      | 1.739      | 0.250      | 84.494     | 413.449  | 283.664       | 146.274    | 7.417      | 1.859      | 0.261      | 124.659    |
|      | 500   | 4.021    | 6.516         | 3.718      | 2.725      | 2.386      | 2.013      | 5.415      | 3.634    | 6.717         | 2.973      | 1.053      | 0.584      | 0.143      | 5.872      |
| -1   | 100   | 2736.400 | 108.361       | 240.752    | 25.587     | 9.946      | 2.555      | 20.277     | 2673.413 | 171.049       | 228.397    | 28.202     | 11.553     | 1.953      | 88.468     |
|      | 300   | 1.914    | 1.552         | 1.911      | 1.837      | 1.747      | 1.351      | 1.601      | 1.374    | 3.463         | 1.314      | 1.089      | 0.997      | 0.771      | 2.764      |
|      | 500   | 0.165    | 0.195         | 0.166      | 0.168      | 0.175      | 0.257      | 0.227      | 0.479    | 0.430         | 0.479      | 0.473      | 0.461      | 0.418      | 0.471      |
| 0    | 100   | 2271.708 | 109.716       | 231.158    | 26.587     | 9.258      | 1.758      | 23.211     | 1869.591 | 138.810       | 217.745    | 30.876     | 13.431     | 2.447      | 64.039     |
|      | 300   | 0.449    | 0.355         | 0.448      | 0.437      | 0.415      | 0.302      | 0.426      | 0.888    | 0.730         | 0.887      | 0.869      | 0.831      | 0.610      | 0.877      |
|      | 500   | 0.304    | 0.257         | 0.304      | 0.300      | 0.289      | 0.221      | 0.277      | 0.592    | 0.533         | 0.592      | 0.586      | 0.569      | 0.449      | 0.581      |
| 1    | 100   | 3386.430 | 116.721       | 239.150    | 22.588     | 7.337      | 1.429      | 21.037     | 2798.681 | 181.635       | 233.451    | 29.631     | 11.947     | 2.155      | 91.135     |
|      | 300   | 0.435    | 0.416         | 0.434      | 0.418      | 0.401      | 0.486      | 0.499      | 1.052    | 2.823         | 1.047      | 0.995      | 0.927      | 0.729      | 2.405      |
|      | 500   | 0.623    | 0.554         | 0.623      | 0.618      | 0.607      | 0.579      | 0.567      | 0.471    | 0.438         | 0.471      | 0.467      | 0.459      | 0.423      | 0.475      |
| 3    | 100   | 7889.808 | 493.031       | 292.849    | 18.842     | 5.063      | 3.883      | 392.612    | 6464.111 | 491.159       | 264.161    | 19.524     | 6.241      | 6.185      | 313.556    |
|      | 300   | 9.256    | 9.018         | 9.253      | 9.212      | 9.138      | 8.993      | 8.985      | 417.582  | 279.631       | 150.591    | 7.919      | 1.834      | 0.238      | 127.439    |
|      | 500   | 9.225    | 9.033         | 9.225      | 9.208      | 9.168      | 9.033      | 9.001      | 4.141    | 5.230         | 3.166      | 1.052      | 0.549      | 0.131      | 4.414      |
| 5    | 100   | 8417.202 | 289.513       | 243.637    | 7.480      | 1.586      | 9.587      | 171.270    | 7113.067 | 296.824       | 223.972    | 9.613      | 4.698      | 17.615     | 127.497    |
|      | 300   | 446.758  | 227.894       | 123.793    | 24.066     | 21.879     | 21.729     | 126.054    | 2663.678 | 1317.416      | 653.165    | 16.894     | 1.931      | 1.718      | 649.095    |
|      | 500   | 175.403  | 250.940       | 101.697    | 7.225      | 1.381      | 1.009      | 158.937    | 178.716  | 259.486       | 104.498    | 7.446      | 1.429      | 1.016      | 165.827    |
| 1    | mean  | 1891.280 | 192.525       | 138.056    | 11.569     | 5.672      | 4.646      | 103.876    | 1976.211 | 278.896       | 164.849    | 10.382     | 3.570      | 3.012      | 144.970    |
|      | s. d. | 2852.587 | 291.101       | 157.468    | 10.731     | 7.229      | 6.905      | 158.436    | 2688.666 | 372.682       | 187.270    | 10.307     | 4.107      | 5.046      | 184.230    |

Table 3. MSE of the ridge estimate of the slant parameter when k = 30

|    | IV-I  |           |               |            |            |            |            |            |           |               | Г          | V-II       |            |            |            |
|----|-------|-----------|---------------|------------|------------|------------|------------|------------|-----------|---------------|------------|------------|------------|------------|------------|
| γ  | n     | MLE       | $\hat{	heta}$ | $\theta_1$ | $\theta_2$ | $\theta_3$ | $\theta_4$ | $\theta_5$ | MLE       | $\hat{	heta}$ | $\theta_1$ | $\theta_2$ | $\theta_3$ | $\theta_4$ | $\theta_5$ |
| -5 | 100   | 9743.796  | 1452.303      | 666.777    | 115.292    | 53.707     | 25.019     | 2101.914   | 10635.342 | 151.341       | 331.347    | 24.694     | 14.759     | 23.951     | 67.484     |
|    | 300   | 5749.722  | 953.460       | 1294.735   | 57.142     | 6.744      | 1.279      | 586.022    | 5433.928  | 903.467       | 1265.201   | 55.601     | 6.944      | 1.362      | 540.524    |
|    | 500   | 35.637    | 30.425        | 31.004     | 25.447     | 25.168     | 24.920     | 26.937     | 2415.377  | 1311.278      | 1255.374   | 48.227     | 5.387      | 0.704      | 627.718    |
| -3 | 100   | 11884.151 | 277.741       | 396.865    | 35.793     | 10.004     | 4.853      | 205.160    | 9309.417  | 175.960       | 374.619    | 34.298     | 12.206     | 8.614      | 104.639    |
|    | 300   | 1529.782  | 231.142       | 448.550    | 28.400     | 8.818      | 4.983      | 103.383    | 3145.230  | 512.400       | 938.296    | 52.029     | 8.982      | 0.473      | 271.802    |
|    | 500   | 194.896   | 179.197       | 128.450    | 9.295      | 2.193      | 0.222      | 74.526     | 221.349   | 207.845       | 144.406    | 11.544     | 2.512      | 0.221      | 103.560    |
| -1 | 100   | 5868.098  | 345.562       | 434.582    | 71.824     | 30.577     | 5.262      | 367.858    | 5951.734  | 185.704       | 378.801    | 51.852     | 20.610     | 2.049      | 123.726    |
|    | 300   | 111.912   | 21.212        | 52.147     | 4.474      | 1.358      | 0.722      | 5.983      | 58.135    | 29.767        | 34.802     | 5.170      | 2.249      | 1.059      | 22.471     |
|    | 500   | 1.534     | 1.248         | 1.533      | 1.514      | 1.464      | 1.217      | 1.250      | 0.585     | 0.486         | 0.585      | 0.578      | 0.558      | 0.481      | 0.579      |
| 0  | 100   | 4152.802  | 156.127       | 376.218    | 64.088     | 29.705     | 5.594      | 118.404    | 4309.235  | 127.267       | 369.093    | 58.601     | 25.962     | 3.369      | 55.291     |
|    | 300   | 61.373    | 13.530        | 36.078     | 3.777      | 1.258      | 0.462      | 2.572      | 26.980    | 16.654        | 19.413     | 4.576      | 2.245      | 0.945      | 11.327     |
|    | 500   | 0.418     | 0.335         | 0.418      | 0.413      | 0.398      | 0.310      | 0.388      | 0.721     | 0.613         | 0.721      | 0.713      | 0.692      | 0.546      | 0.710      |
| 1  | 100   | 6335.383  | 166.210       | 412.667    | 61.267     | 24.937     | 3.818      | 122.312    | 5607.683  | 160.266       | 368.736    | 49.260     | 19.301     | 2.040      | 90.422     |
|    | 300   | 74.549    | 14.641        | 34.422     | 3.770      | 1.874      | 1.135      | 4.383      | 57.487    | 28.230        | 34.282     | 5.300      | 2.356      | 1.036      | 18.338     |
|    | 500   | 0.237     | 0.239         | 0.237      | 0.219      | 0.224      | 0.301      | 0.293      | 0.611     | 0.518         | 0.610      | 0.602      | 0.584      | 0.502      | 0.597      |
| 3  | 100   | 7859.552  | 1576.954      | 537.355    | 88.945     | 36.213     | 9.574      | 3456.729   | 8599.791  | 185.280       | 355.797    | 32.496     | 11.171     | 8.677      | 89.105     |
|    | 300   | 9.443     | 9.044         | 9.418      | 9.293      | 9.197      | 9.012      | 9.000      | 3447.274  | 549.139       | 1023.605   | 54.833     | 8.999      | 0.444      | 298.168    |
|    | 500   | 9.231     | 9.027         | 9.230      | 9.211      | 9.165      | 9.015      | 8.982      | 154.715   | 184.893       | 103.369    | 8.453      | 2.066      | 0.196      | 92.881     |
| 5  | 100   | 11786.820 | 137.250       | 327.419    | 16.793     | 2.481      | 13.922     | 65.453     | 9494.834  | 117.185       | 306.663    | 23.216     | 15.430     | 23.833     | 45.073     |
|    | 300   | 5687.602  | 906.837       | 1280.751   | 56.431     | 6.715      | 1.284      | 583.921    | 5356.298  | 829.148       | 1249.881   | 55.002     | 6.848      | 1.325      | 479.613    |
|    | 500   | 25.339    | 25.063        | 25.338     | 25.311     | 25.244     | 25.038     | 25.000     | 2418.222  | 1351.036      | 1261.193   | 47.816     | 5.328      | 0.682      | 614.979    |
|    | mean  | 3386.775  | 309.883       | 309.724    | 32.795     | 13.688     | 7.045      | 374.784    | 3649.759  | 334.689       | 467.466    | 29.755     | 8.342      | 3.929      | 174.238    |
|    | s. d. | 4216.805  | 483.028       | 388.946    | 33.206     | 14.880     | 8.392      | 846.468    | 3614.851  | 419.397       | 479.031    | 22.430     | 7.352      | 7.056      | 211.187    |

Table 4. MSE of the ridge estimate of the slant parameter when k = 50

best, except for the standard deviation when k = 30 (in this case, the standard deviation of MSE( $\theta_4$ ) with IV-II is second best). From these results, it would appear that the combination of  $\theta = \theta_4$  and IV-II is the best choice.

Finally, we can consider the initial values for the algorithm. Table 5 is our MM algorithm version of Table 1, where "B1" and "B2" are same as "B" in Table 1 and they indicate IV-I and IV-II, respectively. The figure indicates that the same problem that occurs in the case of the

|            |      | True value of $\gamma$ |     |    |    |   |  |  |  |  |  |  |
|------------|------|------------------------|-----|----|----|---|--|--|--|--|--|--|
|            | -5   | -3                     | -1  | 1  | 3  | 5 |  |  |  |  |  |  |
| Α          | 1000 | 0                      | 999 | 54 | 46 | 0 |  |  |  |  |  |  |
| <b>B</b> 1 | 0    | _                      | 0   | 0  | 0  | _ |  |  |  |  |  |  |
| B2         | 968  | -                      | 638 | 30 | 42 | - |  |  |  |  |  |  |

Table 5. Summary of the sign results using the MM algorithm

EM algorithm also occurs with IV-I, but the problem is less serious with IV-II. However, tables 2, 3, and 4 show that IV-II does not necessarily improve the MSE relative to IV-I. Nevertheless, IV-II is superior to IV-I if the estimate is appropriately shrunk. In  $MSE(\theta_3)$  and  $MSE(\theta_4)$ , IV-II, on average, improves the MSE when compared to IV-I.

Acknowledgment This work was supported by JSPS KAKENHI Grant number JP18K03415, JP20H04151, JP21K13834.

## References

- Aigner, D., Lovell, C. A. K. & Schmidt, P. (1977). Formulation and estimation of stochastic frontier production function models. J. Econometrics, 6, 21–37.
- Azzalini, A. (2022). The R package sn: The skew-normal and related distributions such as the skew-t and the SUN (version 2.0.2). Università degli Studi di Padova, Italia. URL: https://cran.r-project.org/package=sn
- Azzalini, A. & Capitanio, A. (1999). Statistical applications of the multivariate skew normal distribution. J. R. Stat. Soc. Ser. B. Stat. Methodl., 61, 579–602.
- Azzalini, A. & Capitanio, A. (2014). The Skew-Normal and Related Families. Cambridge University Press. Cambridge.

Stable Slant Parameter Estimation via MM Algorithm and Ridge Shrinkage

- Cancho, V. G., Lachos, V. H. & Ortega, E. M. M. (2010). A nonlinear regression model with skew-normal errors. *Statist. Papers*, 51, 547–558.
- Craven, P. & Wahba, G. (1979). Smoothing noisy data with spline functions: estimating the correct degree of smoothing by the method of generalized cross-validation. *Numer. Math.*, 31, 377–403.
- Dempster, A. P., Laird, N. M. & Rubin, D. B. (1977). Maximum likelihood from incomplete data via the EM algorithm. J. R. Stat. Soc. Ser. B. Stat. Methodl., 39, 1–38.
- Hoerl, A. E. & Kennard, R. W. (1970). Ridge regression: biased estimation for nonorthogonal problems. *Technometrics*, 12, 55–67.
- Hunter, D. R. & Lange, K. (2004). A tutorial on MM algorithms. Amer. Statist., 58, 30-37.
- Konishi, S. & Kitagawa, G. (1996). Generalized information criteria in model selection. *Biometrika*, 83, 875–890.
- Kubokawa, T. & Srivastava, M. S. (2012). Selection of variables in multivariate regression models for large dimensions. *Comm. Statist. Theory Methods*, **41**, 2465–2489.
- Mallows, C. L. (1973). Some comments on C<sub>p</sub>. Technometrics, 15, 661–675.
- Ohishi, M., Yanagihara, H. & Fujikoshi, Y. (2020). A fast algorithm for optimizing ridge parameters in a generalized ridge regression by minimizing a model selection criterion. J. Statist. Plann. Inference, 204, 187–205.
- R Core Team (2021). R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing. Vienna, Austria. URL: https://www.R-project.org/
- Tibshirani, R. (1996). Regression shrinkage and selection via the Lasso. J. R. Stat. Soc. Ser. B. Stat. Methodol., **58**, 267–288.
- Yamamura, M., Yanagihara, H. & Srivastava, M. S. (2010). Variable selection in multivariate linear regression models with fewer observations than the dimension. *Japan. J. Appl. Stat.*, **39**, 1–19.
- Yanagihara, H. (2012). A non-iterative optimization method for smoothness in penalized spline regression. *Stat. Comput.*, 22, 527–544.
- Zou, H. (2006). The adaptive Lasso and its oracle properties. J. Amer. Statist. Assoc., **101**, 1418–1429.

Ohishi, M., Yanagihara, H., Wakaki, H. & Ono, M.

## Appendix

## A.1. Proof of Lemma 1

Let f(x) be a function on  $\mathbb{R}$  defined by

$$f(x) = \frac{x\phi(x)}{\Phi(x)} + \left\{\frac{\phi(x)}{\Phi(x)}\right\}^2 = \frac{x\phi(x)\Phi(x) + \phi(x)^2}{\Phi(x)^2}.$$

To prove  $f(x) \le 1$  for all  $x \in \mathbb{R}$ , we show (1)  $\lim_{x\to\infty} f(x) = 1$  and (2) f(x) is strictly decreasing on  $\mathbb{R}$ . The (1) is proved by repeatedly applying l'Hôpitals's rule as

$$\lim_{x \to -\infty} f(x) = \lim_{x \to -\infty} \frac{\Phi(x)(1 - x^2) - x\phi(x)}{2\Phi(x)} = \lim_{x \to -\infty} \frac{-x\Phi(x)}{\phi(x)} = \lim_{x \to -\infty} \frac{-\Phi(x) - x\phi(x)}{-x\phi(x)}$$
$$= \lim_{x \to -\infty} \frac{x^2 - 2}{x^2 - 1} = \lim_{x \to -\infty} \left\{ 1 - \frac{1}{x^2 - 1} \right\} = 1.$$

Regarding (2), the derivative of f(x) is given by

$$\frac{d}{dx}f(x) = \frac{\phi(x)}{\Phi(x)^3}g(x), \quad g(x) = (1 - x^2)\Phi(x)^2 - 3x\phi(x)\Phi(x) - 2\phi(x)^2.$$

To show that f(x) is strictly decreasing, it is sufficient to show g(x) < 0. Since  $\lim_{x\to-\infty} g(x) = 0$ , it is sufficient to show  $\dot{g}(x) = dg(x)/dx < 0$ . The first-order and second-order derivatives of g(x) are given by

$$\dot{g}(x) = -2x\Phi(x)^2 + (x^2 - 1)\phi(x)\Phi(x) + x\phi(x)^2,$$
  
$$\ddot{g}(x) = \frac{d^2}{dx^2}g(x) = -2\Phi(x)^2 - (x^3 + x)\phi(x)\Phi(x) - x^2\phi(x)^2.$$

Since  $\dot{g}(0) = -\phi(0)/2 < 0$ , and  $\ddot{g}(x) < 0$  for  $x \ge 0$ , we have  $\dot{g}(x) < 0$  for  $x \ge 0$ . For the case x < 0, we consider a higher derivative. The third-order derivative of g(x) is given by

$$\ddot{g}(x) = \frac{d^3}{dx^3}g(x) = \phi(x)h(x), \quad h(x) = (x^4 - 2x^2 - 5)\Phi(x) + (x^3 - 3x)\phi(x),$$

and the first-order and second-order derivatives of h(x) are given by

$$\begin{split} \dot{h}(x) &= 4(x^3 - x)\Phi(x) + 4(x^2 - 2)\phi(x),\\ \ddot{h}(x) &= 4(3x^2 - 1)\Phi(x) + 12x\phi(x) = -4\Phi(x) + 12x\left\{x\Phi(x) + \phi(x)\right\}. \end{split}$$

Now, the following equations hold:

$$\lim_{x \to -\infty} \{x \Phi(x) + \phi(x)\} = 0, \quad \frac{d}{dx} \{x \Phi(x) + \phi(x)\} = \Phi(x) > 0.$$

These results give  $x\Phi(x) + \phi(x) > 0$ , and hence,  $\ddot{h}(x) < 0$  holds for x < 0, which gives, with the fact that  $\lim_{x\to-\infty} \dot{h}(x) = 0$ , that  $\dot{h}(x) < 0$  for x < 0 and  $\lim_{x\to-\infty} h(x) = 0$ . Hence, h(x) < 0 holds for x < 0. Moreover, we have  $\ddot{g}(x) < 0$  for x < 0. This result and  $\lim_{x\to-\infty} \ddot{g}(x) = 0$  lead  $\ddot{g}(x) < 0$  for x < 0. Thus,  $\ddot{g}(x)$  is always negative and  $\lim_{x\to-\infty} \dot{g}(x) = 0$  holds. From the above,  $\dot{g}(x) < 0$  holds and f(x) is strictly decreasing.

Consequently, Lemma 1 is proved.

## A.2. Proof of Theorem 1

The second-order Taylor expansion near  $\beta = b$  gives

$$\ell_{1}(\boldsymbol{\beta} \mid 0) = \ell_{1}(\boldsymbol{b} \mid 0) + \boldsymbol{g}(\boldsymbol{b})'(\boldsymbol{\beta} - \boldsymbol{b}) + \frac{1}{2}(\boldsymbol{\beta} - \boldsymbol{b})'\boldsymbol{H}(\tau\boldsymbol{\beta} + (1 - \tau)\boldsymbol{b})(\boldsymbol{\beta} - \boldsymbol{b}) \quad (\tau \in (0, 1)),$$
$$\boldsymbol{H}(\boldsymbol{\beta}) = \frac{\partial^{2}}{\partial\boldsymbol{\beta}\partial\boldsymbol{\beta}'}\ell_{1}(\boldsymbol{\beta} \mid 0) = \psi \sum_{i=1}^{n} \boldsymbol{x}_{i}\boldsymbol{x}_{i}' + \gamma^{2} \sum_{i=1}^{n} \frac{\phi(\gamma r_{i}(\boldsymbol{\beta}))\{\gamma r_{i}(\boldsymbol{\beta})\boldsymbol{\Phi}(\gamma r_{i}(\boldsymbol{\beta})) + \phi(\gamma r_{i}(\boldsymbol{\beta}))\}}{\boldsymbol{\Phi}(\gamma r_{i}(\boldsymbol{\beta}))^{2}}\boldsymbol{x}_{i}\boldsymbol{x}_{i}'.$$

Moreover,  $H(\beta)$  can be rewritten as

$$\boldsymbol{H}(\boldsymbol{\beta}) = \sum_{i=1}^{n} \boldsymbol{x}_{i} \boldsymbol{x}_{i}^{\prime} \left[ \boldsymbol{\psi} + \gamma^{2} \left\{ \frac{\gamma r_{i}(\boldsymbol{\beta}) \boldsymbol{\phi}(\gamma r_{i}(\boldsymbol{\beta}))}{\Phi(\gamma r_{i}(\boldsymbol{\beta}))} + \left( \frac{\boldsymbol{\phi}(\gamma r_{i}(\boldsymbol{\beta}))}{\Phi(\gamma r_{i}(\boldsymbol{\beta}))} \right)^{2} \right\} \right].$$

For all  $a \in \mathbb{R}^{k+1}$ , it holds from Lemma 1 that

$$a' \boldsymbol{H}(\boldsymbol{\beta}) \boldsymbol{a} = \sum_{i=1}^{n} a' \boldsymbol{x}_{i} \boldsymbol{x}_{i}' \boldsymbol{a} \left[ \psi + \gamma^{2} \left\{ \frac{\gamma r_{i}(\boldsymbol{\beta}) \phi(\gamma r_{i}(\boldsymbol{\beta}))}{\Phi(\gamma r_{i}(\boldsymbol{\beta}))} + \left( \frac{\phi(\gamma r_{i}(\boldsymbol{\beta}))}{\Phi(\gamma r_{i}(\boldsymbol{\beta}))} \right)^{2} \right\} \right]$$
$$\leq (\psi + \gamma^{2}) \boldsymbol{a}' \sum_{i=1}^{n} \boldsymbol{x}_{i} \boldsymbol{x}_{i}' \boldsymbol{a} \leq d_{\max}(\psi + \gamma^{2}) ||\boldsymbol{a}||^{2},$$

where  $d_{\max}$  is the maximum eigenvalue of  $\sum_{i=1}^{n} x_i x'_i$ . Consequently, we have

$$\ell_1(\boldsymbol{\beta} \mid 0) \leq \ell_1(\boldsymbol{b} \mid 0) + \boldsymbol{g}(\boldsymbol{b})'(\boldsymbol{\beta} - \boldsymbol{b}) + \frac{d_{\max}(\boldsymbol{\psi} + \boldsymbol{\gamma}^2)}{2} ||\boldsymbol{\beta} - \boldsymbol{b}||^2,$$

and Theorem 1 is proved.

## A.3. Proof of Theorem 2

The second-order Taylor expansion near  $\gamma = c$  gives

$$\ell_2(\gamma) = \ell_2(c) + \dot{\ell}_2(c)(\gamma - c) + \frac{1}{2}\ddot{\ell}_2(\tau\gamma + (1 - \tau)c)(\gamma - c)^2 \quad (\tau \in (0, 1)),$$
  
$$\ddot{\ell}_2(\gamma) = \frac{d^2}{d\gamma^2}\ell_2(\gamma) = \sum_{i=1}^n \frac{r_i(\beta)^2\phi(\gamma r_i(\beta))\{\gamma r_i(\beta)\Phi(\gamma r_i(\beta)) + \phi(\gamma r_i(\beta))\}}{\Phi(\gamma r_i(\beta))^2}.$$

Moreover, Lemma 1 leads to

Ohishi, M., Yanagihara, H., Wakaki, H. & Ono, M.

$$\ddot{\ell}_{2}(\gamma) = \sum_{i=1}^{n} r_{i}(\beta)^{2} \left[ \frac{\gamma r_{i}(\beta) \phi(\gamma r_{i}(\beta))}{\Phi(\gamma r_{i}(\beta))} + \left\{ \frac{\phi(\gamma r_{i}(\beta))}{\Phi(\gamma r_{i}(\beta))} \right\}^{2} \right] \leq \sum_{i=1}^{n} r_{i}(\beta)^{2}.$$

Consequently, Theorem 2 is proved.