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Abstract

This paper deals with a skew normal linear regression model in which the error is distributed
according to a skew normal distribution. The skew normal distribution has three parameters:
a location parameter, a scale parameter, and a slant parameter. Their maximum likelihood
estimators can be obtained with an R package sn, an EM algorithm, and so on. However,
estimation via likelihood maximization causes the estimate of the slant parameter to be par-
ticularly unstable. To improve the stability of the slant parameter estimation, we derive a new
algorithm based on the MM principle and propose a stable estimation method for the slant
parameter using ridge shrinkage.
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1. Introduction

A skew normal distribution is a generalization of a normal distribution that allows “skew-
ness” (for details of a skew normal distribution, see, e.g., Azzalini & Capitanio, 2014). If a
random variable y has the probability density function

2
ω
ϕ
(
y − η
ω

)
Φ

(
ν(y − η)

ω

)
, (1.1)

it is said that y is distributed according to a skew normal distribution with location parameter η,
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scale parameter ω (> 0), and slant parameter ν, which can be represented as y ∼ S N(η, ω2, ν).
The slant parameter ν is a measure of the asymmetry of the skew normal distribution. When
ν = 0, S N(η, ω2, ν) coincides with N(η, ω2). In the framework of regression, the skew normal
distribution is adopted in order to accommodate asymmetry in the error distribution (e.g., Az-
zalini & Capitanio, 1999; Cancho et al., 2010). For example, Aigner et al. (1977) expressed the
error distribution of a stochastic frontier model whose error distribution consists of a normal
distribution and another certain distribution in terms of a normal distribution and a half-normal
distribution. The skew normal distribution can be used for such an error distribution.

We consider the following skew normal linear regression model for a response variable yi

and k explanatory variables xi1, . . . , xik.

yi = β0 +

k∑
j=1

xi jβ j + εi (i = 1, . . . , n),

εi ∼ S N
(
0, ψ−1, γψ−1/2

)
(ψ > 0),

(1.2)

where β0, β1, . . . , βk, ψ, and γ are unknown parameters. When γ = 0, (1.2) reduces to a normal
linear regression model. Moreover, if the error term of the stochastic frontier model treated by
Aigner et al. (1977) is defined by

εi = ε1,i + ε2,i, ε1,1, . . . , ε1,n ∼ i.i.d. N(0, σ2
1), ε2,1, . . . , ε2,n ∼ i.i.d. N+(0, σ2

2),

there is the following relationship between the above error term and (1.2).

ψ =
1

σ2
1 + σ

2
2

, γ =
σ2/σ1√
σ2

1 + σ
2
2

,

where N+(0, σ2) represents the half-normal distribution with scale parameter σ. In this paper,
we identify γ rather than γψ−1/2 as the slant parameter and focus on the estimation of γ. From
(1.1), a negative log-likelihood function for (1.2) is given by

ℓ(ξ) = −n
2

log
2ψ
π
+
ψ

2

n∑
i=1

ri(β)2 −
n∑

i=1

logΦ(γri(β)), ξ = (β′, γ, ψ)′, (1.3)

ri(β) = yi − x′iβ, β = (β0, β1, . . . , βk)′, xi = (1, xi1, . . . , xik)′.

By minimizing ℓ(ξ), a maximum likelihood estimator (MLE) for (1.2) can be obtained. Al-
though the minimizer of ℓ(ξ) cannot be obtained in closed form, there are various algorithms
for solving the minimization problem. For example, we can use a function selm of a package
sn (e.g., Azzalini, 2022) in R (e.g., R Core Team, 2021) that minimizes ℓ(ξ) by a function
optim. As another option, the expectation-minimization (EM) algorithm (Dempster et al.,
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Figure 1. Unstableness of MLE of the slant parameter using selm

1977) can be applied (Azzalini & Capitanio, 2014). Although these algorithms give the MLE
for (1.2), the MLE of γ is particularly unstable. Figure 1 displays boxplots of the MLE of γ
obtained by selm when n = 100, k = 30, and the number of iterations is 1,000. The vertical
axis shows the MLE; the horizontal axis shows the true value of γ (for details of the setting,
see section 4). The figure confirms that the MLE of γ is far from the true value and that its
variance is large.

To reduce the unstableness of the maximum likelihood estimation procedure, this paper pro-
poses the use of ridge regression (Hoerl & Kennard, 1970). Ridge regression was first proposed
as a way to avoid problems associated with multicollinearity among the explanatory variables
by shrinking the estimator towards zero using penalized estimation with the ℓ2-norm. Although
the main purpose of ridge regression is to address multicollinearity, it can be applied for many
purposes, e.g., smoothing in nonparametric regression (Yanagihara, 2012) and the regulariza-
tion of the covariance matrix in multivariate regression (Yamamura et al., 2010; Kubokawa &
Srivastava, 2012). In this paper, we seek to reduce the unstableness of the MLE of slant pa-
rameter γ through ridge shrinkage. To incorporate ridge shrinkage into the estimation of γ, we
first devise a new algorithm to determine MLE based on the majorization-minimization (MM)
algorithm (Hunter & Lange, 2004). Since the MM algorithm minimizes a surrogate function
which gives an upper bound of an objective function, we essentially derive the surrogate func-
tion. In particular, we evaluate the objective function more tightly. Note that although, in a
broad sense, an EM algorithm is a type of MM algorithm, we distinguish between the two.
In our MM algorithm for MLE, each parameter (β, γ, and ψ) can be updated in closed form.
Moreover, the update equation of γ is obtained from a minimization of a quadratic function.
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Hence, ridge shrinkage can be easily introduced, and an update equation for ridge shrinkage
can be obtained in closed form as well.

The remainder of the paper is organized as follows: In section 2, we describe the MM algo-
rithm for calculating the MLE for model (1.2) by deriving surrogate functions for β and γ, and
discuss the initial values for the algorithm. In section 3, we introduce ridge shrinkage into our
MM algorithm to stabilize the estimation of slant parameter γ. In section 4, we evaluate the
performance of our proposed method. Technical details are provided in the Appendix.

2. MM Algorithm for Maximum Likelihood Estimation

In this section, we propose a new algorithm to minimize the objective function ℓ(ξ) in (1.3).
To minimize the function, we first apply a block-wise coordinate descent algorithm. Specifi-
cally, we search the solution by repeating the following minimizations for each parameter:

min
β∈Rk+1

ℓ(ξ), min
γ∈R

ℓ(ξ), min
ψ∈R

ℓ(ξ).

By ignoring the constant terms, the objective functions for these sub-problems are given by

ℓ1(β) =
ψ

2

n∑
i=1

ri(β)2 −
n∑

i=1

logΦ(γri(β)), (2.1)

ℓ2(γ) = −
n∑

i=1

logΦ(γri(β)), (2.2)

ℓ3(ψ) = −n
2

logψ +
ψ

2

n∑
i=1

ri(β)2. (2.3)

At the minimization of ℓ1(β), γ and ψ are regarded as constants. Similarly, β and ψ are re-
garded as constants at the minimization of ℓ2(γ), and β and γ are regarded as constants at
the minimization of ℓ3(ψ). Since ℓ3(ψ) is a strictly convex function of ψ, a stationary point
uniquely exists and is the minimizer. The derivative of ℓ3(ψ) is given by

ℓ̇3(ψ) =
d

dψ
ℓ3(ψ) = − n

2ψ
+

1
2

n∑
i=1

ri(β)2,

and hence, the minimizer of ℓ3(ψ) is given in closed form as

ψ̂ =
n∑n

i=1 ri(β)2 . (2.4)

Since ℓ1(β) and ℓ2(γ) are strictly convex functions of β and γ, respectively, their minimizers
are stationary points. However, it is difficult to obtain these stationary points directly. Hence,
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we adopt an MM algorithm to minimize ℓ1(β) and ℓ2(γ). The MM algorithm minimizes an ob-
jective function by repeating a minimization of its surrogate function giving the upper bound
of the objective function. The following property guarantees that a solution obtained by the
MM algorithm is the minimizer (Hunter & Lange, 2004):

Proposition 1. Let f (ξ) be a convex function and for given ξ0, let f +(ξ | ξ0) be a surrogate

function of f satisfying

f (ξ) ≤ f +(ξ | ξ0), f +(ξ0 | ξ0) = f (ξ0).

Then, we have

f (ξ†) ≤ f (ξ0), ξ† = arg min
ξ

f +(ξ | ξ0).

The following lemma is the key to obtaining surrogate functions of ℓ1(β) and ℓ2(γ) (the proof
is given in Appendix A.1).

Lemma 1. For all x ∈ R, we have

xϕ(x)
Φ(x)

+

{
ϕ(x)
Φ(x)

}2

≤ 1.

We describe the MM algorithms for minimizing ℓ1(β) and ℓ2(γ) in subsections 2.1 and 2.2.
From the results, the new algorithm to minimize the objective function ℓ(ξ) is summarized in
Algorithm 1, where Algorithm 2 with dmax and Algorithm 3 are given in the following subsec-
tions.

Algorithm 1 Main algorithm to minimize (1.3)
Require: initial vector for ξ = (β′, γ, ψ)′

repeat
Update β via Algorithm 2 with L1 = dmax(ψ + 3γ2)
Update γ via Algorithm 3 with L2 = 3

∑n
i=1 ri(β)2

Update ψ by (2.4)
until solution converges

2.1. Update β

We now consider minimizing ℓ1(β) in (2.1) under given γ and ψ to obtain an update equa-
tion for β. Although ℓ1(β) is a strictly convex function of β, directly minimizing it is difficult.
Hence, we minimize a surrogate function of ℓ1(β) based on the MM algorithm.

We first derive the surrogate function. The following theorem gives the upper bound of ℓ1(β)
(the proof is given in Appendix A.2).
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Theorem 1. Let dmax be the maximum eigenvalue of
∑n

i=1 xix
′
i and L1 = dmax(ψ+ γ2). More-

over, for b ∈ Rk+1, we define ℓ+1 (β | b) as

ℓ+1 (β | b) = ℓ1(b) + g(b)′(β − b) +
L1

2
∥β − b∥2,

g(β) =
∂

∂β
ℓ1(β) = −ψ

n∑
i=1

ri(β)xi + γ

n∑
i=1

ϕ(γri(β))
Φ(γri(β))

xi.

Then, we have

ℓ1(β) ≤ ℓ+1 (β | b), ℓ+1 (b | b) = ℓ1(b).

From the above theorem, we obtain the surrogate function ℓ+1 (β | b) of ℓ1(β). Hence, the
minimizer of ℓ1(β) can be obtained by repeating the following update:

β(m+1) = arg min
β∈Rk+1

ℓ+1 (β | β(m)) (m = 0, 1, . . .),

where m is an iteration number and β(0) is an initial vector for β. The ℓ+1 (β | b) can be rewritten
as

ℓ+1 (β | b) = ℓ1(b) +
L1

2
∥β − z(b)∥2 + L1

2
∥b∥2 − g(b)′b,

where z(b) = b − g(b)/L1. Hence, ℓ+1 (β | b) is minimized at

β̂ = z(b).

As a result, the MM algorithm for minimizing ℓ1(β) is given in Algorithm 2.

Algorithm 2 Update β

Require: γ, ψ, L1, initial vector β(0) for β
m← 0
repeat

β(m+1) = β(m) − g(β(m))/L1
m← m + 1

until solution converges

2.2. Update γ

We next consider minimizing ℓ2(γ) in (2.2) under given β and ψ to obtain an update equation
for γ. Similar to the minimization of ℓ1(β), we apply an MM algorithm to this minimization
problem.

The following theorem gives the upper bound of ℓ2(γ) (the proof is given in Appendix A.3).
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Theorem 2. Let L2 =
∑n

i=1 ri(β)2 and for c ∈ R, we define ℓ+2 (γ | c) as

ℓ+2 (γ | c) = ℓ2(c) + ℓ̇2(c)(γ − c) +
L2

2
(γ − c)2,

ℓ̇2(γ) =
d

dγ
ℓ2(γ) = −

n∑
i=1

ϕ(γri(β))ri(β)
Φ(γri(β))

.

Then, we have

ℓ2(γ) ≤ ℓ+2 (γ | c), ℓ+2 (c | c) = ℓ2(c).

From the above theorem, we obtain the surrogate function ℓ+2 (γ) of ℓ2(γ). Hence, the minimizer
of ℓ2(γ) can be obtained by repeating the following update:

γ(m+1) = arg min
γ∈R

ℓ+2 (γ | γ(m)) (m = 0, 1, . . .),

where γ(0) is an initial value for γ. Since ℓ+2 (γ | c) is a quadratic function of γ, ℓ+2 (γ | c) is
minimized at

γ̂ = c − ℓ̇2(c)
L2

. (2.5)

As a result, the MM algorithm for minimizing ℓ2(γ) is given in Algorithm 3.

Algorithm 3 Update γ

Require: β, ψ, L2, initial value γ(0) for γ
m← 0
repeat

γ(m+1) = γ(m) − ℓ̇2(γ(m))/L2
m← m + 1

until solution converges

2.3. Initial values

Although the objective function ℓ(ξ) in (1.3) is convex for each parameter (β, γ, and ψ),
i.e., ℓ1(β), ℓ2(γ), and ℓ3(ψ) are all convex, it is not convex for ξ. Hence, estimation results
may depend on the initial values and the algorithm. In fact, although the following point is a
stationary point, it is not a local minimum; rather, it is a saddle point.

ξ =


β

γ

ψ

 =


(X ′X)−1X ′y

0
n/y′

{
In −X(X ′X)−1X ′

}
y

 ,
7
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Figure 2. Unstableness of the MLE of the slant parameter using the EM algorithm

where X = (x1, . . . ,xn)′ and y = (y1, . . . , yn)′. Figure 2 is the EM algorithm version of figure
1 and shows a large difference between the two algorithms. Regarding the initial values for the
algorithms, selm and the EM algorithm adopt the following moment estimators:

β† = (X ′X)−1X ′y −
(
δ†

√
2/πψ†,0′k

)′
, γ† =

√
ψ†ν†, ψ† =

1 − (2/π)(δ†)2

s2 ,

where

ν† =
R√

2/π − (1 − 2/π)R2
, R =

(
2u

4 − π

)1/3

, δ† =
ν†√

1 + (ν†)2
,

s2 =
1
n

n∑
i=1

(yi − ȳ)2, ȳ =
1
n

n∑
i=1

yi, u =
1
n

n∑
i=1

(
yi − ȳ

s

)3
.

Problems with the sign of γ† then occur in the EM algorithm. Table 1 summarizes the sign of

Table 1. Summary of the sign results using the EM algorithm

True value of γ

-5 -3 -1 1 3 5

A 1000 0 999 54 46 0
B 0 − 0 0 0 −

the results in figure 2. Let s∗ be the sign of the true value of γ, ŝ be the sign of the MLE of γ
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obtained with the EM algorithm, and s† = sign(γ†). In the table, “A” denotes the number sat-
isfying s† , s∗, and “B” denotes the number satisfying ŝ = s∗ when s† , s∗. Table 1 suggests
that if the sign of the initial value differs from the sign of the true value, then the sign of the
MLE will also differ from the sign of the true value. The cause of this may be that γ = 0 is a
saddle point, and, in the algorithm, a current solution cannot move across a saddle point. From
the above, it appears that using the moment estimator as the initial value for γ is risky, and the
same problem may occur in our MM algorithm.

To mitigate this problem, we devised a simple approach. The procedure can be described as
follows:

1. Calculate the two MLEs ξ̂− and ξ̂+, where ξ̂− is the MLE of ξ under the initial value
γ(0) = −1 and ξ̂+ is the MLE of ξ under the initial value γ(0) = 1.

2. Select γ(0) = −1 if ℓ(ξ̂−) < ℓ(ξ̂+) and γ(0) = 1 if ℓ(ξ̂−) > ℓ(ξ̂+).

By selecting the sign of the initial value, we can expect that the problem with respect to the
sign of the initial value is solved. For simplicity, we refer to using the moment estimator as the
initial value for γ as initial value-type I (IV-I) and refer to selecting the sign of the initial value
for γ using the above approach as initial value-type II (IV-II). For IV-II, the initial vector and
value for β and ψ are their saddle points. The performances of IV-I and IV-II are numerically
compared in section 4.

3. Stable Estimation for the Slant Parameter via Ridge Shrinkage

In the previous section, we derived an MM algorithm to minimize the objective function ℓ(ξ)
in (1.3). In this section, we incorporate ridge shrinkage into our MM algorithm to reduce the
unstableness of the MLE of slant parameter γ. Specifically, γ is updated based on minimizing
the following penalized function, which adds a penalty term to the objective function for γ in
(2.2).

ℓ̃2(γ | θ) = ℓ2(γ) +
θ

2
γ2,

where θ ≥ 0 is a regularization parameter called the ridge parameter, which adjusts the strength
of the penalty. This means that ξ is estimated based on minimizing the following penalized
negative log-likelihood function:

ℓ̃(ξ | θ) = ℓ(ξ) +
θ

2
γ2.

Then, β and ψ are updated, similar to the previous section. On the other hand, the update of γ

9
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is accomplished by replacing the surrogate function in our MM algorithm with

ℓ̃+2 (γ | θ, c) = ℓ+2 (γ | c) +
θ

2
γ2,

and its minimizer is given by

γ̂θ =
L2c − ℓ̇2(c)

L2 + θ
.

When θ = 0, γ̂θ coincides with γ̂ in (2.5). Since θ is non-negative, the estimator of γ is shrunk
towards zero via ridge shrinkage. Hence, the MM algorithm with ridge shrinkage that provides
a stable estimator of γ is given by replacing the update equation of γ in Algorithm 3 in the
following equation:

γ(m+1) =
L2γ

(m) − ℓ̇2(γ(m))
L2 + θ

.

As above, ridge shrinkage for γ can be easily implemented. However, the ridge estimator of
γ depends on θ, which is an unknown parameter, and the amount of shrinkage of the estimator
varies according th the value of θ. Hence, the stableness of the ridge estimator is entrusted to
θ, meaning that the optimization of θ is extremely important. In general, as an optimization
method for regularization parameters in penalized estimation methods such as ridge regres-
sion and Lasso (Tibshirani, 1996), cross-validation or a model selection criterion minimization
method using, for example, the Cp criterion (Mallows, 1973) or the GCV criterion (Craven &
Wahba, 1979), is employed (e.g., Zou, 2006; Ohishi et al., 2020). In terms of the calculation
cost, the model selection criterion minimization method is more reasonable. In this paper,
for optimizing θ, the generalized information criterion (GIC; Konishi & Kitagawa, 1996) is
applied. Let ξ̂θ be the estimator for ξ under ridge parameter θ, i.e.,

ξ̂θ = arg min
ξ∈Rk+3

ℓ̃(ξ | θ),

and we rewrite ℓ(ξ) and ℓ̃(ξ | θ) as

ℓ(ξ) =
n∑

i=1

ℓ(i)(ξ), ℓ(i)(ξ) = −1
2

log
2ψ
π
+
ψ

2
ri(β)2 − logΦ(γri(β)),

ℓ̃(ξ | θ) =
n∑

i=1

ℓ̃(i)(ξ | θ), ℓ̃(i)(ξ | θ) = ℓ(i)(ξ) +
θ

2n
γ2.

Then, the GIC for optimizing θ is given by

GIC(θ) = 2ℓ(ξ̂θ) + 2 tr
{
B(ξ̂θ | θ)

}
, B(ξ | θ) =

{
∂2

∂ξ∂ξ′
ℓ̃(ξ | θ)

}−1 n∑
i=1

∂

∂ξ
ℓ̃(i)(ξ | θ)

∂

∂ξ′
ℓ(i)(ξ),

and the value of θ optimized by the GIC minimization method is given by

θ̂ = arg min
θ∈[0,∞)

GIC(θ).
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4. Numerical Study

In this section, we use simulation to evaluate the performance of our MM algorithm with
ridge shrinkage for the stable estimation of slant parameter γ. Performance is measured in
terms of the following mean square error (MSE):

MSE(θ) = E
[
(γ̂θ − γ)2

]
,

where γ̂θ is the ridge estimator of γ and the expectation in the MSE is evaluated via a Monte
Carlo simulation with 1,000 iterations. When θ = 0, γ̂θ is the MLE, and we can write
MSE0 = MSE(0). The simulation data are generated by

y ∼ S N (X1k, 1, γ) , X =X0Ψ(0.5)1/2,

where X0 is an n×k matrix in which the elements are identically and independently distributed
according to U(−1, 1), and Ψ(ρ) is a k× k matrix in which the (i, j)th element is given by ρ|i− j|.
The ridge parameter is compared for six values: θ̂, which is optimized by the GIC minimization
method, θ1 = |γ†|, θ2 = 1/n, θ3 = 1/

√
n, θ4 = 1/ log n, and θ5 = 1/2 log log n.

Tables 2, 3, and 4 show the MSE results when k = 10, 30, 50, respectively. The minimum
value in each row is in bold font; the “mean” and “s. d.” values in the bottom two rows are
the mean and standard deviation of the values in each column. In terms of the MLE values, it
can be seen that the estimation results are relatively stable when n is large or |γ| is small. In
other cases, MSE0 takes a very large value. Moreover, MSE0 becomes larger as k increases.
From the results, it appears that a substantial amount of shrinkage of the estimator is needed
when n is small or |γ| is large. On the other hand, under θ̂, which is optimized by the GIC
minimization method, we can see the relationship MSE(θ̂) < MSE0 in numerous cases and can
thus say that ridge shrinkage tends to stabilize the estimator of γ. However, despite the fact
that MSE(θ̂) is less than MSE0 in many cases, it is difficult to conclude that MSE(θ̂) is suffi-
ciently small. Hence, we compared five fixed values of θ: θ1, . . . , θ5. If |γ†| corresponds to |γ|,
we can expect that θ1 adjusts the amount of shrinkage of the estimator according to the data’s
skewness. Unfortunately, such a relationship does not occur in this simulation. Nevertheless,
when k = 10, we can see the relationship MSE(θ1) < MSE(θ̂) in many cases. On the other
hand, when k = 30, 50, MSE(θ1) decreases and the inequality is reversed. The reason for this
is that |γ†| decreases as k increases. The θ2, . . . , θ5 values decrease as n increases. Since these
values shrink more when n is small, we can expect an improvement in MSE when n is small.
In fact, θ4 and θ5 are shown to greatly improve MSE and perform well even when n is small.
Regarding the mean and standard deviation values, the tables show that MSE(θ4) with IV-II is
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Table 2. MSE of the ridge estimate of the slant parameter when k = 10

IV-I IV-II

γ n MLE θ̂ θ1 θ2 θ3 θ4 θ5 MLE θ̂ θ1 θ2 θ3 θ4 θ5

-5 100 3079.633 1755.592 4.642 64.639 4.329 4.218 8.832 3220.495 1883.991 2.411 69.157 2.012 1.989 8.932
300 29.426 28.635 21.185 24.486 21.492 21.168 21.305 53.171 49.971 0.697 18.343 1.827 0.637 2.264
500 12.043 11.323 10.996 11.957 11.347 10.982 11.399 2.327 1.112 0.539 2.191 1.133 0.494 1.321

-3 100 72.616 30.861 8.950 12.166 9.132 8.965 8.857 1352.255 659.376 1.420 49.390 2.759 1.390 3.093
300 1.362 1.308 0.445 1.164 0.738 0.517 0.415 1.278 1.175 0.317 1.070 0.627 0.389 0.284
500 7.841 7.667 7.773 7.840 7.822 7.780 7.667 0.329 0.194 0.213 0.327 0.291 0.223 0.151

-1 100 147.501 60.569 0.981 11.971 1.477 1.047 0.834 105.681 65.189 1.880 12.402 3.024 2.126 1.218
300 0.823 0.737 0.784 0.822 0.809 0.784 0.718 0.701 0.638 0.662 0.700 0.689 0.664 0.585
500 0.150 0.181 0.167 0.150 0.152 0.159 0.240 0.374 0.352 0.362 0.374 0.373 0.366 0.358

0 100 63.394 21.904 0.775 8.756 1.297 0.848 0.426 39.967 26.093 1.556 8.181 2.317 1.695 0.843
300 0.373 0.327 0.333 0.373 0.365 0.348 0.255 0.669 0.606 0.607 0.668 0.656 0.629 0.471
500 0.289 0.258 0.271 0.289 0.285 0.275 0.212 0.512 0.483 0.486 0.512 0.506 0.491 0.388

1 100 60.285 29.476 1.883 7.097 2.337 1.880 1.258 78.815 47.004 2.133 9.950 2.739 2.100 1.217
300 0.230 0.275 0.263 0.230 0.236 0.251 0.397 0.699 0.642 0.644 0.698 0.686 0.661 0.584
500 0.147 0.189 0.166 0.147 0.150 0.158 0.244 0.405 0.386 0.387 0.405 0.402 0.393 0.363

3 100 1373.003 611.626 1.053 45.785 2.127 1.005 2.084 1178.254 565.713 1.373 43.154 2.277 1.107 2.863
300 2.763 3.394 2.036 2.561 2.224 2.030 1.930 2.988 3.337 0.388 1.675 0.643 0.371 0.258
500 7.791 7.618 7.726 7.790 7.772 7.730 7.618 0.280 0.172 0.192 0.279 0.250 0.194 0.145

5 100 77.545 31.879 24.963 27.298 25.063 24.975 24.965 3193.562 1888.662 3.937 71.499 1.826 1.914 9.216
300 27.392 26.235 22.869 24.679 23.101 22.881 22.897 34.745 31.200 0.682 14.136 1.747 0.599 2.218
500 25.079 24.828 24.955 25.076 25.038 24.980 24.834 1.846 0.799 0.427 1.768 1.007 0.464 1.342

mean 237.604 126.423 6.820 13.585 7.014 6.809 7.018 441.398 248.909 1.015 14.613 1.323 0.900 1.815
s. d. 715.085 395.596 8.931 16.844 8.917 8.935 8.940 992.947 573.621 0.938 23.002 0.922 0.670 2.570
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Table 3. MSE of the ridge estimate of the slant parameter when k = 30

IV-I IV-II

γ n MLE θ̂ θ1 θ2 θ3 θ4 θ5 MLE θ̂ θ1 θ2 θ3 θ4 θ5

-5 100 3340.218 135.726 241.501 35.852 27.607 25.055 33.343 7740.139 383.102 239.430 10.417 4.769 16.932 199.353
300 2533.607 1257.167 615.286 16.652 1.921 1.733 565.294 2470.163 1247.638 612.927 16.838 1.990 1.740 577.862
500 178.721 270.903 103.445 7.723 2.372 2.011 181.459 187.718 278.012 108.746 7.165 1.420 1.011 188.720

-3 100 7915.044 512.400 298.282 18.743 4.696 3.327 376.412 6497.484 508.018 267.550 19.496 6.496 6.301 308.859
300 399.183 242.753 141.542 6.689 1.739 0.250 84.494 413.449 283.664 146.274 7.417 1.859 0.261 124.659
500 4.021 6.516 3.718 2.725 2.386 2.013 5.415 3.634 6.717 2.973 1.053 0.584 0.143 5.872

-1 100 2736.400 108.361 240.752 25.587 9.946 2.555 20.277 2673.413 171.049 228.397 28.202 11.553 1.953 88.468
300 1.914 1.552 1.911 1.837 1.747 1.351 1.601 1.374 3.463 1.314 1.089 0.997 0.771 2.764
500 0.165 0.195 0.166 0.168 0.175 0.257 0.227 0.479 0.430 0.479 0.473 0.461 0.418 0.471

0 100 2271.708 109.716 231.158 26.587 9.258 1.758 23.211 1869.591 138.810 217.745 30.876 13.431 2.447 64.039
300 0.449 0.355 0.448 0.437 0.415 0.302 0.426 0.888 0.730 0.887 0.869 0.831 0.610 0.877
500 0.304 0.257 0.304 0.300 0.289 0.221 0.277 0.592 0.533 0.592 0.586 0.569 0.449 0.581

1 100 3386.430 116.721 239.150 22.588 7.337 1.429 21.037 2798.681 181.635 233.451 29.631 11.947 2.155 91.135
300 0.435 0.416 0.434 0.418 0.401 0.486 0.499 1.052 2.823 1.047 0.995 0.927 0.729 2.405
500 0.623 0.554 0.623 0.618 0.607 0.579 0.567 0.471 0.438 0.471 0.467 0.459 0.423 0.475

3 100 7889.808 493.031 292.849 18.842 5.063 3.883 392.612 6464.111 491.159 264.161 19.524 6.241 6.185 313.556
300 9.256 9.018 9.253 9.212 9.138 8.993 8.985 417.582 279.631 150.591 7.919 1.834 0.238 127.439
500 9.225 9.033 9.225 9.208 9.168 9.033 9.001 4.141 5.230 3.166 1.052 0.549 0.131 4.414

5 100 8417.202 289.513 243.637 7.480 1.586 9.587 171.270 7113.067 296.824 223.972 9.613 4.698 17.615 127.497
300 446.758 227.894 123.793 24.066 21.879 21.729 126.054 2663.678 1317.416 653.165 16.894 1.931 1.718 649.095
500 175.403 250.940 101.697 7.225 1.381 1.009 158.937 178.716 259.486 104.498 7.446 1.429 1.016 165.827

mean 1891.280 192.525 138.056 11.569 5.672 4.646 103.876 1976.211 278.896 164.849 10.382 3.570 3.012 144.970
s. d. 2852.587 291.101 157.468 10.731 7.229 6.905 158.436 2688.666 372.682 187.270 10.307 4.107 5.046 184.230
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Table 4. MSE of the ridge estimate of the slant parameter when k = 50

IV-I IV-II

γ n MLE θ̂ θ1 θ2 θ3 θ4 θ5 MLE θ̂ θ1 θ2 θ3 θ4 θ5

-5 100 9743.796 1452.303 666.777 115.292 53.707 25.019 2101.914 10635.342 151.341 331.347 24.694 14.759 23.951 67.484
300 5749.722 953.460 1294.735 57.142 6.744 1.279 586.022 5433.928 903.467 1265.201 55.601 6.944 1.362 540.524
500 35.637 30.425 31.004 25.447 25.168 24.920 26.937 2415.377 1311.278 1255.374 48.227 5.387 0.704 627.718

-3 100 11884.151 277.741 396.865 35.793 10.004 4.853 205.160 9309.417 175.960 374.619 34.298 12.206 8.614 104.639
300 1529.782 231.142 448.550 28.400 8.818 4.983 103.383 3145.230 512.400 938.296 52.029 8.982 0.473 271.802
500 194.896 179.197 128.450 9.295 2.193 0.222 74.526 221.349 207.845 144.406 11.544 2.512 0.221 103.560

-1 100 5868.098 345.562 434.582 71.824 30.577 5.262 367.858 5951.734 185.704 378.801 51.852 20.610 2.049 123.726
300 111.912 21.212 52.147 4.474 1.358 0.722 5.983 58.135 29.767 34.802 5.170 2.249 1.059 22.471
500 1.534 1.248 1.533 1.514 1.464 1.217 1.250 0.585 0.486 0.585 0.578 0.558 0.481 0.579

0 100 4152.802 156.127 376.218 64.088 29.705 5.594 118.404 4309.235 127.267 369.093 58.601 25.962 3.369 55.291
300 61.373 13.530 36.078 3.777 1.258 0.462 2.572 26.980 16.654 19.413 4.576 2.245 0.945 11.327
500 0.418 0.335 0.418 0.413 0.398 0.310 0.388 0.721 0.613 0.721 0.713 0.692 0.546 0.710

1 100 6335.383 166.210 412.667 61.267 24.937 3.818 122.312 5607.683 160.266 368.736 49.260 19.301 2.040 90.422
300 74.549 14.641 34.422 3.770 1.874 1.135 4.383 57.487 28.230 34.282 5.300 2.356 1.036 18.338
500 0.237 0.239 0.237 0.219 0.224 0.301 0.293 0.611 0.518 0.610 0.602 0.584 0.502 0.597

3 100 7859.552 1576.954 537.355 88.945 36.213 9.574 3456.729 8599.791 185.280 355.797 32.496 11.171 8.677 89.105
300 9.443 9.044 9.418 9.293 9.197 9.012 9.000 3447.274 549.139 1023.605 54.833 8.999 0.444 298.168
500 9.231 9.027 9.230 9.211 9.165 9.015 8.982 154.715 184.893 103.369 8.453 2.066 0.196 92.881

5 100 11786.820 137.250 327.419 16.793 2.481 13.922 65.453 9494.834 117.185 306.663 23.216 15.430 23.833 45.073
300 5687.602 906.837 1280.751 56.431 6.715 1.284 583.921 5356.298 829.148 1249.881 55.002 6.848 1.325 479.613
500 25.339 25.063 25.338 25.311 25.244 25.038 25.000 2418.222 1351.036 1261.193 47.816 5.328 0.682 614.979

mean 3386.775 309.883 309.724 32.795 13.688 7.045 374.784 3649.759 334.689 467.466 29.755 8.342 3.929 174.238
s. d. 4216.805 483.028 388.946 33.206 14.880 8.392 846.468 3614.851 419.397 479.031 22.430 7.352 7.056 211.187
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best, except for the standard deviation when k = 30 (in this case, the standard deviation of
MSE(θ4) with IV-II is second best). From these results, it would appear that the combination
of θ = θ4 and IV-II is the best choice.

Finally, we can consider the initial values for the algorithm. Table 5 is our MM algorithm
version of Table 1, where “B1” and “B2” are same as “B” in Table 1 and they indicate IV-I and
IV-II, respectively. The figure indicates that the same problem that occurs in the case of the

Table 5. Summary of the sign results using the MM algorithm

True value of γ

-5 -3 -1 1 3 5

A 1000 0 999 54 46 0
B1 0 − 0 0 0 −
B2 968 − 638 30 42 −

EM algorithm also occurs with IV-I, but the problem is less serious with IV-II. However, tables
2, 3, and 4 show that IV-II does not necessarily improve the MSE relative to IV-I. Nevertheless,
IV-II is superior to IV-I if the estimate is appropriately shrunk. In MSE(θ3) and MSE(θ4), IV-II,
on average, improves the MSE when compared to IV-I.

Acknowledgment This work was supported by JSPS KAKENHI Grant number JP18K03415,
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Appendix

A.1. Proof of Lemma 1

Let f (x) be a function on R defined by

f (x) =
xϕ(x)
Φ(x)

+

{
ϕ(x)
Φ(x)

}2

=
xϕ(x)Φ(x) + ϕ(x)2

Φ(x)2 .

To prove f (x) ≤ 1 for all x ∈ R, we show (1) limx→−∞ f (x) = 1 and (2) f (x) is strictly
decreasing on R. The (1) is proved by repeatedly applying l’Hôpitals’s rule as

lim
x→−∞

f (x) = lim
x→−∞

Φ(x)(1 − x2) − xϕ(x)
2Φ(x)

= lim
x→−∞

−xΦ(x)
ϕ(x)

= lim
x→−∞

−Φ(x) − xϕ(x)
−xϕ(x)

= lim
x→−∞

x2 − 2
x2 − 1

= lim
x→−∞

{
1 − 1

x2 − 1

}
= 1.

Regarding (2), the derivative of f (x) is given by

d
dx

f (x) =
ϕ(x)
Φ(x)3 g(x), g(x) = (1 − x2)Φ(x)2 − 3xϕ(x)Φ(x) − 2ϕ(x)2.

To show that f (x) is strictly decreasing, it is sufficient to show g(x) < 0. Since limx→−∞ g(x) =
0, it is sufficient to show ġ(x) = dg(x)/dx < 0. The first-order and second-order derivatives of
g(x) are given by

ġ(x) = −2xΦ(x)2 + (x2 − 1)ϕ(x)Φ(x) + xϕ(x)2,

g̈(x) =
d2

dx2 g(x) = −2Φ(x)2 − (x3 + x)ϕ(x)Φ(x) − x2ϕ(x)2.

Since ġ(0) = −ϕ(0)/2 < 0, and g̈(x) < 0 for x ≥ 0, we have ġ(x) < 0 for x ≥ 0. For the case
x < 0, we consider a higher derivative. The third-order derivative of g(x) is given by

...
g (x) =

d3

dx3 g(x) = ϕ(x)h(x), h(x) = (x4 − 2x2 − 5)Φ(x) + (x3 − 3x)ϕ(x),

and the first-order and second-order derivatives of h(x) are given by

ḣ(x) = 4(x3 − x)Φ(x) + 4(x2 − 2)ϕ(x),

ḧ(x) = 4(3x2 − 1)Φ(x) + 12xϕ(x) = −4Φ(x) + 12x {xΦ(x) + ϕ(x)} .

Now, the following equations hold:

lim
x→−∞

{xΦ(x) + ϕ(x)} = 0,
d
dx
{xΦ(x) + ϕ(x)} = Φ(x) > 0.
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These results give xΦ(x) + ϕ(x) > 0, and hence, ḧ(x) < 0 holds for x < 0, which gives, with
the fact that limx→−∞ ḣ(x) = 0, that ḣ(x) < 0 for x < 0 and limx→−∞ h(x) = 0. Hence, h(x) < 0
holds for x < 0. Moreover, we have ...

g (x) < 0 for x < 0. This result and limx→−∞ g̈(x) = 0
lead g̈(x) < 0 for x < 0. Thus, g̈(x) is always negative and limx→−∞ ġ(x) = 0 holds. From the
above, ġ(x) < 0 holds and f (x) is strictly decreasing.

Consequently, Lemma 1 is proved.

A.2. Proof of Theorem 1

The second-order Taylor expansion near β = b gives

ℓ1(β | 0) = ℓ1(b | 0) + g(b)′(β − b) +
1
2

(β − b)′H (τβ + (1 − τ)b) (β − b) (τ ∈ (0, 1)) ,

H(β) =
∂2

∂β∂β′
ℓ1(β | 0) = ψ

n∑
i=1

xix
′
i + γ

2
n∑

i=1

ϕ(γri(β)){γri(β)Φ(γri(β)) + ϕ(γri(β))}
Φ(γri(β))2 xix

′
i .

Moreover, H(β) can be rewritten as

H(β) =
n∑

i=1

xix
′
i

ψ + γ2

γri(β)ϕ(γri(β))
Φ(γri(β))

+

(
ϕ(γri(β))
Φ(γri(β))

)2

 .

For all a ∈ Rk+1, it holds from Lemma 1 that

a′H(β)a =
n∑

i=1

a′xix
′
ia

ψ + γ2

γri(β)ϕ(γri(β))
Φ(γri(β))

+

(
ϕ(γri(β))
Φ(γri(β))

)2



≤ (ψ + γ2)a′
n∑

i=1

xix
′
ia ≤ dmax(ψ + γ2)∥a∥2,

where dmax is the maximum eigenvalue of
∑n

i=1 xix
′
i . Consequently, we have

ℓ1(β | 0) ≤ ℓ1(b | 0) + g(b)′(β − b) +
dmax(ψ + γ2)

2
∥β − b∥2,

and Theorem 1 is proved.

A.3. Proof of Theorem 2

The second-order Taylor expansion near γ = c gives

ℓ2(γ) = ℓ2(c) + ℓ̇2(c)(γ − c) +
1
2
ℓ̈2 (τγ + (1 − τ)c) (γ − c)2 (τ ∈ (0, 1)) ,

ℓ̈2(γ) =
d2

dγ2 ℓ2(γ) =
n∑

i=1

ri(β)2ϕ(γri(β)){γri(β)Φ(γri(β)) + ϕ(γri(β))}
Φ(γri(β))2 .

Moreover, Lemma 1 leads to
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ℓ̈2(γ) =
n∑

i=1

ri(β)2

γri(β)ϕ(γri(β))
Φ(γri(β))

+

{
ϕ(γri(β))
Φ(γri(β))

}2 ≤ n∑
i=1

ri(β)2.

Consequently, Theorem 2 is proved.
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