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Abstract

In this paper, we consider high-dimensional consistencies of KOO

methods for selection of variables in multivariate regression model

with covariance structures. The covariance structures considered are

(1) independent covariance structure with the same variance, (2) inde-

pendent covariance structure with different variances, and (3) uniform

covariance structure. Sufficient conditions for our KOO methods to

be consistent are derived under a high-dimensional asymptotic frame-

work such that the sample size n, the number p of response variables

and the number k of explanatory variables are large as in the way

p/n → c1 ∈ (0, 1) and k/n → c2 ∈ [0, 1), where c1 + c2 < 1.
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1. Introduction

We consider a multivariate linear regression of p response variables

y1, . . . , yp on a subset of k explanatory variables x1, . . . , xk. Suppose that

there are n observations on y = (y1, . . . , yp)
′ and x = (x1, . . . , xk)

′, and let

Y : n×p and X : n×k be the observation matrices of y and x with the sam-

ple size n, respectively. The multivariate linear regression model including

all the explanatory variables under normality is written as

Y ∼ Nn×p(XΘ,Σ⊗ In), (1.1)

where Θ is a k × p unknown matrix of regression coefficients and Σ is a

p× p unknown covariance matrix. The notation Nn×p(·, ·) means the matrix

normal distribution such that the mean of Y isXΘ and the covariance matrix

of vec (Y) is Σ⊗ In, or equivalently, the rows of Y are independently normal

with the same covariance matrix Σ. Here, vec(Y) be the np × 1 column

vector obtained by stacking the columns of Y on top of one another. We

assume that rank(X) = k.

It is important to consider selection of regression variables in multivariate

analysis. One of the approaches is to first consider variable selection mod-

els and then apply model selection criteria such as AIC, BIC, etc. Such a

criterion for the full model (1.1) is expressed as

GIC = −2 logL(Ξ̂) + dg, (1.2)

where L(Ξ̂) is the maximum likelihood, Ξ = {Θ,Σ}, d > 0 is the penaty

term, and g is the number of unknown parameters given by {kp+ 1
2
p(p+1)}.

For AIC and BIC, d is defined as 2 and log n, respectively. In the seletion of k

variables x1, . . . , xk, we identify {x1, . . . , xk} with the index set {1, . . . , k} ≡
ω, and denote GIC for subset j ⊂ ω by GICj . Then, the model selection

based on GIC chooses the model

j̃ = argmin
j

GICj . (1.3)
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Here the minimum is usually taken for all subsets. It has been pointed that

there are computational problems for the methods based on GIC, including

AIC, BIC and Cp methods, since we need to compute 2k − 1 statistics for

the selection of k variables. To avoid this computational problem, Nishii

et al. (1988) proposed a method which is essentially due to Zhao et al.

(1988). The method, which was named the knock-one-out (KOO) method

by Bai et al. (2018), determines “selection” or “no selection” for each variable

by comparing the model removing that variable and the full model. More

precisely, the KOO method chooses the model or the set of variables given

by

ĵ = {j ∈ ω | GICω\j > GICω}, (1.4)

where ω\j is a short expression for ω\{j} which is the set obtained by

removing element j from the set ω.

When Σ is unknown positive definite, it has been pointed (see, e.g.,

Yanagihara et al. (2015), Fujikoshi et al. (2014), etc.) that in a high-

dimensional case, AIC and Cp have consistency properties, but BIC is not

necessarily consistent. The KOO methods in multivariate regression model

has been studied by Bai et al. (2018), Bai et al. (2022), Oda and Yanagihara

(2020, 2021). The KOO method in discriminant analysis, see Fujikoshi and

Sakurai (2019), Oda et al. (2020). For a review, see Fujikoshi (2022).

In this paper we assume that the covariance structure is one of three

covariance structures; (1) an independent covariance structure with the same

variance, (2) an independent covariance structure with different variances

and (3) a uniform covariance structure. Sufficient conditions for the KOO

method given by (1.4) to be consistent are derived under a high-dimensional

asymptotic framework such that the sample size n, the number p of response

variables and the number k of explanatory variables are large as in the way

p/n → c1 ∈ (0, 1) and k/n → c2 ∈ [0, 1), where c1 + c2 < 1. Sakurai and

Fujikoshi (2020) has considered similar problems under covariance structures

(1), (3) and (4) an autoregressive covariance structure, but do not consider

under (2). More over, in the study of asymptotic consistencies they assumed
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that k is fixed, but in this paper k may tend to infity such that k/n → c2 ∈
[0, 1).

The present paper is organized as follows. In section 2, we present nota-

tions and preliminaries. In Section 3, we state KOO methods with covariance

structures (1), (2) and (3) in termes of key statistics. Further, an approach

for their consistencies is stated in Section 3. In Sections 4, 5 and 6 we discuss

consistency properties of KOO methods under the covariance structures (1),

(2) and (3). In Section 7, our conclusions are discussed.

2. Notations and Preliminaries

Suppose that j denotes a subset of ω = {1, . . . , k} containing kj elements,

and Xj denotes the n × kj matrix consisting the columns of X indexed by

the elements of j. Then, Xω = X. Further, we assume that the covariance

matrix Σ have a covariance structure Σc. Then, we have a generic candidate

model

Mc,j : Y ∼ Nn×p(XjΘj ,Σc,j ⊗ In), (2.1)

where Θj is a kj × p unknown matrix of regression coefficients. We assume

that rank(X) = k.

When Σc,j is a p× p unknown covariance matrix, we can write the GIC

in (1.2) as

GICc,j = n log |Σ̂j|+ np(log 2π + 1) + d

{
kjp+

1

2
p(p+ 1)

}
, (2.2)

where nΣ̂j = Y′(In − Pj)Y and Pj = Xj(X
′
jXj)

−1X′
j . When j = ω, the

model Mc,ω is called the full model. Note that Σ̂c,ω and Pω are defined

from Σ̂c,j and Pj as j = ω, kω = k and Xω = X.

In this paper, we consider the cases that the covariance matrix Σc belongs
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to each of the following three structures;

(1) Independent covariance structure with the same variance (ICSS);

Σv = σ2
vIp,

(2) Independent covariance structure with different variances (ICSD);

Σb = diag(σ2
1, . . . , σ

2
p),

(3) Uniform covariance structure (UCS);

Σu = σ2
u(ρ

1−δij
u )1≤i,j≤p.

The models considered in this paper can be expressed as (2.1) with Σv,j ,

Σb,j , and Σu,j for Σc,j . Let f(Y;Θj ,Σc,j) be the density of Y in (2.1) with

Σ = Σc,j . In the derivation of the GIC under the covariance structute

Σ = Σc,j , we will use the following equality:

−2 log max
Θj ,Σc,j

f(Y;Θj ,Σc,j) = np log(2π)

+ min
Σc,j

{
np log |Σc,j|+ trΣ−1

c,jY
′(In −Pj)Y

}
. (2.3)

Let Σ̂c,j be the quantity minimizing the right side of (2.3). Then, in our

model, it satisfies trΣ̂
−1

c,jY
′(In −Pj)Y = np, and we obtain

GICc,j = −2 log f(Y; Θ̂j , Σ̂c) + dmc,j

= np log |Σ̂c,j|+ np(log 2π + 1) + dmc,j , (2.4)

where mc,j is the number of independent unknown parameters under Mc,j ,

and d is a positive constant which may depend on n. For AIC and BIC, d is

defined by 2 (Akaike (1973)) and log n (Schwarz (1978)), respectively.

3. Approach to Consistencies of KOO Meth-

ods

Our KOO method is based on

Tc,j;d = GICc,ω\j −GICc,ω. (3.1)

5



In fact, the KOO method chooses the model

ĵc;d = {j | Tc,j;d > 0} . (3.2)

Its consistency can be proved by showing the following two properties:

Q1 : [F1] ≡
∑
j∈j∗

Pr(Tc,j;d ≤ 0) → 0, (3.3)

Q2 : [F2] ≡
∑
j /∈j∗

Pr(Tc,j;d ≥ 0) → 0, (3.4)

as in Fujikoshi (2022). The result can be shown by using the following in-

equalty:

Pr(ĵc;d = j∗) = Pr

⋂
j∈j∗

“Tc,j;d > 0”
⋂
j /∈j∗

“Tc,j;d < 0”


= 1− Pr

⋃
j∈j∗

“Tc,j;d ≤ 0”
⋃
j /∈j∗

“Tc,j;d ≥ 0”


≥ 1−

∑
j∈j∗

Pr(Tc,j;d ≤ 0)−
∑
j /∈j∗

Pr(Tc,j;d ≥ 0).

Here, [F1] denotes the probability that the true variables are not selected,

and [F2] denotes the probability that the non-true variables are selected.

Such notations will be used for other variable selection methods. We call ”xj

is included in the true set of variables” if θj ̸= 0.

Here we list some of our main assumptions:

A1: The set j∗ of the true explanatory variables is included in the full

subset, i.e., j∗ ⊂ ω. and the set j∗ is finite.

A2: The high dimensional asymptotic framework:

p → ∞, n → ∞, k → ∞, p/n → c1 ∈ (0, 1), k/n → c2 ∈ [0, 1),

where 0 < c1 + c2 < 1.

It is said that a general model selection criterion ĵc;d is high-dimensional

consistent if

limPr(ĵc;d = j∗) = 1,
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under a high-dimensional asymptotic framework. Here, ”lim” means the

limit under A2.

4. Asymptotic Cosistency under an Indepen-

dent Covariance Structure

In this section we shall show an asymptotic consistency of KOO method

based on a general information criterion under an independent covariance

structure. A generic candidate model when the set of explanatory vaiables

is j can be expressed as

Mv,j : Y ∼ Nn×p(XjΘj ,Σv,j ⊗ In), (4.1)

where Σv,j = σ2
v,jIp and σ2

v,j > 0. Let us denote the density of Y under (4.1)

by f(Y; Θj , σv,j). Then, we have

−2 log f(Y;Θj , σ
2
v,j) = np log(2π) + np log σ2

v,j

+
1

σ2
v,j

tr(Y −XjΘj)
′(Y −XjΘj).

Therefore, it is easily seen that the maximum estimators ofΘj and σ2
v,j under

Mv,j are given as

Θ̂j = (X′
jXj)

−1X′
jY, σ̂2

v,j =
1

np
trY′(In −Pj)Y. (4.2)

The general information criterion (2.4) is given by

GICv,j = np log σ̂2
v,j + np(log 2π + 1) + dmv,j , (4.3)

where d is a positive constant and mv,j = kjp + 1. Using (3.1) and (4.3) we

have

Tv,j;d ≡ GICv,ω\j −GICv,ω

= np log
(
1 + U2jU

−1
1

)
− dp, (4.4)
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where

U1 = trY′(In −Pω)Y =

p∑
ℓ=1

y′
ℓ(In −Pω)yℓ,

U2j = trY′(Pω −Pω\j)Y =

p∑
ℓ=1

y′
ℓ(Pω −Pω\j)yℓ.

It is seen that U1/σ
2
v,j∗

and U2j/σ
2
v,j∗

are independently distributed as a cen-

tral chi-square distribution and a nocentral chi-square distribution, respec-

tively. More precisely, assume that

E(Y ) = Xj∗Θj∗ , (4.5)

and let σ2
v,∗ = σ2

v,j∗
. Then, using basic distributional propertites (see, Fu-

jikoshi et al. (2010)) on quadratic forms of normal variates and Wishart

matrices, we have the following results:

(1) U1/σ
2
v,∗ ∼ χ2

(n−k)p,

(2) U2j/σ
2
v,∗ ∼ χ2

p(δ
2
v,j), (4.6)

(3) U1 ⊥ U2j,

where the noncentrality parameter τ 2v,j is defined by

δ2v,j =
1

σ2
v,∗

tr(Xj∗Θj∗)
′(Pω −Pω\j)Xj∗Θj∗ .

It may be noted that if j /∈ j∗, δ
2
v,j = 0, and if j ∈ j∗, in general, τ 2v,j ̸= 0. For

a sufficient condition for consistency of the KOO method based on GICv,j ,

we assume

A3v : For any j ∈ j∗, δ2v,j = O(np), and lim
p/n→c1

1

np
δ2v,j = η2v,j > 0. (4.7)

Now we consider high-dimensional asymptotic consistency of the KOO

method based on GICv,j in (4.3), whose selection method is given by ĵv,j;d =

{j | Tv,j;d > 0}. When j ̸∈ j∗, from (4.4) we can write

Tv,j;d = np log
{
1 + χ2

p/χ
2
m

}
− dp, m = (n− k)p.
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Therefore we have

[F2] =
∑
j ̸∈j∗

Pr(np log
{
1 + χ2

p/χ
2
m

}
≥ dp)

= (k − kj∗) Pr(U ≥ h) (4.8)

≤ (k − kj∗) Pr(U ≥ h0),

where

U =
χ2
p

χ2
m

− p

m− 2
,

h = ed/n − 1− p

m− 2
, h0 =

d

n
− p

m− 2
. (4.9)

Note that h0 < h. Then, under the assumption h0 > 0 we have,

[F2] ≤ (k − kj∗)h
−2ℓE[U2ℓ] ≤ (k − kj∗)h

−2ℓ
0 E[U2ℓ]. (4.10)

Related to the assumption h0 > 0, we assume

A4v : d >
np

m− 2
→ 1

1− c2
, and d = O(na), 0 < a < 1. (4.11)

The first part in A4v implies h0 > 0. It is easy to see that

E[U2] =
2p(m+ p− 2)

(m− 2)2(m− 4)
= O((n2p)−1).

Further, h−2
0 = O(n2(1−a)). Therefore, from (4.10) with we have that [F2]

→ 0.

When j ∈ j∗, we can write Tv,j;d = np log
{
1 + χ2

p(δ
2
v,j)/χ

2
m

}
−dp. There-

fore we can express have [F1] as

[F1] =
∑
j∈j∗

Pr(T̃v,j;d ≤ 0),

where

T̃v,j;d =
p

n
log

{
1 +

χ2
p(δ

2
v,j)

χ2
m

}
− d

n
.
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From the assumptions A3v and A4v it is easily seen that

T̃v,j;d → c1 log(1 + η2v,j) > 0.

This implies that Pr(T̃v,j;d ≤ 0) → 0.

These imply the following theorem.

Theorem 4.1. Suppose that the assumptions A1, A2 A3v, and A4v are sat-

isfied. Then, the KOO method based on general information criteria GICv,j

defined by (4.3) is asymptotically consistent.

An alternative apporoach for ”[F1] → 0”. When j ∈ j∗, we can write

Tv,j;d = np log
{
1 + χ2

p(δ
2
v,j)/χ

2
m

}
− dp. Therefore we have

[F1] =
∑
j∈j∗

Pr(np log
{
1 + χ2

p(δ
2
v,j)/χ

2
m

}
≤ dp)

=
∑
j∈j∗

Pr(Ũj ≤ h̃j),

where for j ∈ j∗,

Ũj =
χ2
p(δ

2
v,j)

χ2
m

−
p+ δ2v,j
m− 2

, h̃j = ed/n − 1−
p+ δ2v,j
m− 2

= h−
δ2v,j

m− 2
.

Then, under d = O(na)(0 < a < 1), A3v in (4.7) and the assumption h̃j < 0

(or equivalently h < δ2j/(m− 2)) we have

[F1] ≤ kj∗ max
j

|h̃j|−2ℓE[Ũ2ℓ].

It is easily seen that

E[Ũ2
j ] =

2(p+ 2δ2v,j)(m+ p− 2 + δ2v,j)

(m− 2)2(m− 4)
= O((np)−1),

and under d = na(0 < a < 1) and A3v,

|h̃j|2 →
η2v,j

c1(1− c2)
.

These imply that [F1] → 0. In this approach, it has been assumed that

h̃j < 0 (or equivalently h < δ2j/(m− 2)).
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5. Asymptotic Cosistency under an Indepen-

dent Covariance Structure with Different

Variances

In this section we assume that the covariance matrix Σ has an indepen-

dent covariance matrix with different variances, i.e.,Σ = Σb = diag(σ2
b1, . . . , σbp).

First, let us consider to derive a key statistic Tb,j;d = GICb,ω\j−GICb,ω. Con-

sider a candidate model with E(Y) = XΘ,

Mb,ω : Y ∼ Nn×p(XΘ,Σb ⊗ In). (5.1)

Let the density in the full model express as f(Y;Θ,Σb). Then, we have

−2 log f(Y;Θ,Σb) = np log(2π)

+

p∑
ℓ=1

{
n log σ2

bℓ +
1

σ2
bℓ

(yℓ −Xθℓ)
′(yℓ −Xθℓ)

}
.

It holds that

−2 log max
Θ,Σb

f(Y;Θ,Σb) = np (log 2π + 1)

+

p∑
ℓ=1

n log
1

n
y′
ℓ(In −Pω)yℓ. (5.2)

Next, consider the model removing the jth explanatory variable from the full

model Mb,ω, which is denoted by Mb,ω\j or M ; b,ω\j. Similarly, it is shown

that

−2 log max
M ;b,ω\j

f(Y;Θ,Σb) = np (log 2π + 1)

+

p∑
ℓ=1

n log
1

n
y′
ℓ(In −Pω\j)yℓ. (5.3)

Using (5.2) and (5.3), we can obtain a general information criterion (2.4) for

two models Mb,ω and Mb,ω\j, and we have

Tb,j;d ≡ GICb,ω\j −GICb,ω

=

p∑
ℓ=1

n log
(
1 + U2ℓU

−1
1ℓ

)
− dp, (5.4)
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where

U1ℓ = y′
ℓ(In −Pω)yℓ, ℓ = 1, . . . , p,

U2ℓ = y′
ℓ(Pω −Pω\j)yℓ, ℓ = 1, . . . , p.

Let us assume that

E(Y) = Xj∗Θj∗ and σ2
b,∗ = σ2

b,j∗ (5.5)

Then, similarly as in (4.6), we have the following results:

(1) U1ℓ/σ
2
b,∗ ∼ χ2

n−k, ℓ = 1, . . . , p,

(2) U2ℓ/σ
2
b,∗ ∼ χ2

1(δ
2
b,j;ℓ), ℓ = 1, . . . , p, (5.6)

(3) U1ℓ, U2ℓ, (ℓ = 1, . . . , p) are independent,

where the noncentral parameters δ2b,j;ℓ are defined by

δ2b,j;ℓ =
1

σ2
b,∗
(Xj∗θ

(ℓ)
∗ )′(Pω −Pω\j)(Xj∗θ

(ℓ)
∗ ),

with Θ∗ = (θ(1)
∗ , . . . ,θ(p)

∗ ). It may be noted that if j /∈ j∗, δ
2
b,j;ℓ = 0. and

if j ∈ j∗, δ
2
b,j;ℓ ̸= 0. For a sufficient condition for consistency of the KOO

method based on GICb,j , we assume

A3b : For any j ∈ j∗, lim(n− k)−1δ2b,j;ℓ = η2b,j;ℓ > 0, and

lim
1

p

p∑
ℓ=1

log

{
1 +

1

n− k
δ2b,j;ℓ

}
→ η2b,j > 0. (5.7)

Now we consider high-dimensional asymptotic consistency of the KOO

method based on Tb,j;d in (3.1), whose selection method is given by ĵv,j;d =

{j | Tb,j;d > 0}. When j ̸∈ j∗, we have

[F2] =
∑
j ̸∈j∗

Pr(

p∑
ℓ=1

n log
{
1 + U2ℓU

−1
1ℓ

}
≥ d)

≤
∑
j ̸∈j∗

p∑
ℓ=1

Pr(n log
{
1 + U2ℓU

−1
1ℓ

}
≥ d).
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This implies that

[F2] ≤ p(k − kj∗) Pr(n log
{
1 + χ2

1/χ
2
n−k

}
≥ d)

= p(k − kj∗) Pr(V ≥ r), (5.8)

where

V =
χ2
1

χ2
n−k

− 1

n− k − 2
,

r = ed/n − 1− 1

n− k − 2
, r0 =

d

n
− 1

n− k − 2
. (5.9)

Note that r0 < r. Then, under the assumption r0 > 0 we have,

[F2] ≤ p (k − kj∗) r
−2ℓE[V 2ℓ] ≤ p (k − kj∗) r

−2ℓ
0 E[V 2ℓ]. (5.10)

Related to the assumption r0 > 0, we assume

A4b : d >
n

n− k − 2
→ 1

1− c2
, and d = O(na), 0 < a < 1. (5.11)

The first part in A4b implies r0 > 0. It is easy to see that

E[V 2] =
2(n− k − 1)

(n− k − 2)2(n− k − 4)
= O((n2)−1).

Further, r−2
0 = O(n2(1−a)). Therefore, from (5.10) we have that [F2] → 0.

When j ∈ j∗, we can write Tb,j;d = n
∑p

ℓ=1 log{1+U2ℓU
−1
1ℓ }−dp. Therefore

we can express [F1] as

[F1] =
∑
j∈j∗

Pr(T̃b,j;d ≤ 0),

where

T̃b,j;d =
1

p

p∑
ℓ=1

log

{
1 +

χ2
1;ℓ(δ

2
b,j;ℓ)

χ2
n−k;ℓ

}
− d

n
.

From the assumptions A3b and A4b it is easily seen that

T̃b,j;d → η2b,j > 0.

This implies that Pr(T̃b,j;d ≤ 0) → 0.

These imply the following theorem.
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Theorem 5.1. Suppose that the assumptions A1, A2, A3b and A4b are

satisfied. Then, the KOO method based on Tb,j:d in (5.4) is asymptotically

consistent.

Let us consider an alternative apporoach for ”[F1] → 0” as in the case of

independent covariance structure. When j ∈ j∗, we can write

[F1] =
∑
j∈j∗

Pr

(
p∑

ℓ=1

{
n log

(
1 +

χ2
1;ℓ(δ

2
b,j;ℓ)

χ2
n−k;ℓ

)
− d

}
≤ 0

)

≤
∑
j∈j∗

p∑
ℓ=1

Pr

(
n log

(
1 +

χ2
1;ℓ(δ

2
b,j;ℓ)

χ2
n−k;ℓ

)
− d ≤ 0

)

=
∑
j∈j∗

p∑
ℓ=1

Pr
(
Ṽj,ℓ ≤ r̃j,ℓ

)
.

Here, for j ∈ j∗,

Ṽj,ℓ =
χ2
1;ℓ(δ

2
b,j;ℓ)

χ2
n−k;ℓ

−
1 + δ2b,j;ℓ
n− k − 2

, ℓ = 1, . . . , p,

r̃j,ℓ = ed/n − 1−
1 + δ2b,j;ℓ
n− k − 2

= r −
δ2b,j

n− k − 2
, ℓ = 1, . . . , p,

where r is the same one as in (5.9). Note that χ2
1;ℓ(δ

2
b,j;ℓ), ℓ = 1, . . . , p are

distributed as a noncentral distribution χ2
1(δ

2
b,j;ℓ), and they are independent.

Then, under the assumption r̃j < 0 (or equivalently r < δ2bj;ℓ/(n− k− 2)) we

have

[F1] ≤ kj∗

p∑
ℓ=1

|r̃j,ℓ|−2sE[Ṽ 2s
j,ℓ ], s = 1, 2, . . . . (5.12)

In the above upper bound, it holds that

|r̃j,ℓ| ∼ δ2b,j;ℓ/(n− k) → η2b,j;ℓ. (5.13)

Useful bounds will be obtained by giving the first few moments of Ṽj;ℓ. For

example, note that

E[Ṽ 2
j,ℓ] =

2(1 + 2δ2v,j;ℓ)(n− k − 1 + δ2v,j;ℓ)

(n− k − 2)2(n− k − 4)
= O(n−1),

E[Ṽ 4
j,ℓ] = O(n−2).

14



Then, the bound (5.12) with s = 2 can be asymptotically expressed as

kj∗

p∑
ℓ=1

η−4
b,j;ℓE[Ṽ

4
j,ℓ] = kj∗p

(
1

p

p∑
ℓ=1

η−4
b,j;ℓ

)
×O(n−2).

The above expression shall be O(n−1) under the assumption that 1
p

∑p
ℓ=1 η

−4
b,j;ℓ

tends to a quantity.

6. Asymptotic Cosistency under a Uniform

Covariance Structure

In this section we shall show an asymptotic consistency of KOO method

based on a general information criterion under a uniform covariance struc-

ture. First, following to Sakurai and Fujikoshi (2020), we shall derive a

GICu,j as in (2.2) and a key statistic Tu,j;d as in (3.1). A uniform covariance

structure is givn by

Σu = σ2
u(ρ

1−δij
u ) = σ2

u{(1− ρu)Ip + ρu1p1
′
p}, (6.1)

with Kronecker delta δij. The covariance structure is expressed as

Σu = α

(
Ip −

1

p
Gp

)
+ β

1

p
Gp,

where

α = σ2
u(1− ρu), β = σ2

u{1 + (p− 1)ρu}, Gp = 1p1
′
p,

and 1p = (1, . . . , 1)′. Noting that the matrices Ip− 1
p
Gp and

1
p
Gp are orthog-

onal idempotent matrices, we have

|Σu| = βαp−1, Σ−1
u =

1

α

(
Ip −

1

p
Gp

)
+

1

β
· 1
p
Gp.

Now we consider the multivariate regression model Mu,j given by

Mu,j : Y ∼ Nn×p(XjΘj ,Σu,j ⊗ In), (6.2)

15



where Σu,j = αj (Ip − p−1Gp)+βjp
−1Gp. Let H = (h1,H2) be an orthognal

matrix where h1 = p−1/21p, and let

Wj = Y′(In −Pj)Y and Uj = H′WjH.

Here, h1 is a characteristic vector of Σu,j , and each column vectors of H2 are

the characteristic vectors of Σu,j . Let the density function of Y under Mu,j

denote by f(Y;Θj , αj , βj). Then, we have

g(αj , βj) = −2 logmax
Θj

f(Y;Θj , αj , βj)

= np log(2π) + n(p− 1) logαj + n log βj + trΨ−1
j Uj ,

where Ψj = diag(βj , αj , . . . , αj). Therefore, the maximum likelihood esti-

mators of αj and βj under Mu,j are given by

α̂j =
1

n(p− 1)
trH′

2Y
′(In −Pj)YH2,

β̂j =
1

n
h′

1Y
′(In −Pj)Yh1.

The number of independent parameters under Mu,j is mj = kjp + 2.

Noting that Ψj is diagonal, we can get the general information criterion GIC

in (2.4) for Y in (6.2) as

GICu,j = n(p− 1) log α̂j + n log β̂j + np(log 2π + 1) + d(kjp+ 2). (6.3)

Therefore we have

Tu,j;d ≡ GICu,ω\j −GICu,ω

= n(p− 1) log
{
α̂ω\j (α̂ω)−1}+ n log

{
β̂ω\j

(
β̂ω

)−1
}
− dp (6.4)

= Z1j + Z2j.

Here Z1j and Z2j are defined as follows:

Z1j = n(p− 1) log

{
1 + V

(1)
2j

(
V

(1)
1

)−1
}
− d(p− 1),

Z2j = n log

{
1 + V

(2)
2j

(
V

(2)
1

)−1
}
− d, (6.5)
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using the following V
(i)
1 , V

(i)
2j , i = 1, 2:

V
(1)
1 = trH′

2Y(In −Pω)YH2, V
(1)
2j = trH′

2Y
′(Pω −Pω\j)YH2,

V
(2)
1 = h′

1Y
′(In −Pω)Yh1, V

(2)
2j = h′

1Y
′(Pω −Pω\j)Yh1.

Related to the distributional reductions of Z1j, Z2j, j = 1, . . . , k, we use the

following Lemma frequently.

Lemma 6.1. Let W have a noncentral Whishart distribution Wp(m,Σ;Ω).

Let the covariance matrix Σ be decomposed into the characteristic roots and

vectors as

Σ = HΛH′

= (H1, . . . ,Hh)diag(λ1Iq1 , . . . , λhIqh)(H1, . . . ,Hh)
′,

where λ1 > . . . > λh > 0 and H is an orthogonal matrix. Then, trH′
jWjHj,

i = 1, . . . , h, are independently distributed to noncentral chi-square distribu-

tions with mkj degrees of freedom and noncentrality parameters δ2j = trH′
jΩHj.

Proof. The result may be proved by considering the characteristic function of

(trH′
1WH1, . . . , trH

′
qWHq) which is expressed as (see, Fujikoshi et al. (2010,

Theorem 2.1.2))

E
[
eit1trH

′
1WH1+···+ithtrH′

hWHh

]
= E [etr(K)]

= |Ip − 2ΣK|−m/2etr
{
ΩK(Ip − 2ΣK)−1)

}
,

where K = it1H1H
′
1 + · · · + it1HqH

′
q. The result can easily obtained by

checking that the above larst expression equals to

q∏
j=1

(1− 2itj)
−nkj/2 exp

{
itj

1− 2itj
trH′

jΩHj

}
.

17



Assume that the true model is expressed as

Mu,j∗ : Y ∼ Nn×p(Xj∗Θj∗ ,Σu,∗ ⊗ In), (6.6)

where Σu,∗ = α∗ (Ip − p−1Gp) + β∗p
−1Gp. Using Lemma 6.1, we have the

following lemma.

Lemma 6.2. Under the true model (6.6), it holds that

(1) V
(1)
1 /α∗ and V

(1)
2j /α∗ are independently distributed to a central chi-square

distributin χ2
(p−1)(n−k) and a noncentral chi-square distribution χ2

p−1(δ
2
1j), re-

spectively.

(2) V
(2)
1 /β∗ and V

(2)
2j /β∗ are independently distributed to a central chi-square

distributin χ2
n−k and a noncentral chi-square distribution χ2

1(δ
2
2j), respectively.

(3) The noncentrality parameters δ21j and δ22j are defined as follows:

δ21j =
1

α∗
trH′

2(Xj∗Θj∗)
′(Pω −Pω\j)(Xj∗Θj∗)H2

δ22j =
1

β∗
h′

1(Xj∗Θj∗)
′(Pω −Pω\j)(Xj∗Θj∗)h1.

Here, if j /∈ j∗, then δ21j = 0 and δ22j = 0.

Now we consider high-dimensional asymptotic consistency of the KOO

method based on Tb,j;d in (5.4), whose selection method is given by ĵv,j;d =

{j | Tb,j;d > 0}. For a sufficient condition for consistency of ĵv,j;d, we assume

A3u: For any j ∈ j∗, δ
2
1j = O(np), δ22j = O(n) and

lim
1

np
δ21j = η21j > 0, lim

1

n
δ22j = η22j > 0, (6.7)

When j ̸∈ j∗, we have

[F2] =
∑
j ̸∈j∗

{Pr(Z1j + Z2j ≥ 0)}

≤
∑
j ̸∈j∗

{Pr(Z1j ≥ 0) + Pr(Z2j ≥ 0)}

= (k − kj∗)
{
Pr(Z(1) ≥ s

(1)
0 ) + Pr(Z(2) ≥ s

(2)
0 )
}
.
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Here,

Z(1) =
χ2
p−1

χ2
(p−1)(n−k)

− p− 1

(p− 1)(n− k)− 2
,

s(1) = ed/n − 1− p− 1

(p− 1)(n− k)− 2
, s

(1)
0 =

d

n
− p− 1

(p− 1)(n− k)− 2
,

Z(2) =
χ2
1

χ2
n−k

− 1

n− k − 2
,

s(2) = ed/n − 1− 1

n− k − 2
, s

(2)
0 =

d

n
− 1

n− k − 2
.

Note that s
(1)
0 < s(1) and s

(2)
0 < s(2). Then, under the assumption that

s
(1)
0 > 0 and s

(2)
0 > 0 we have

[F2] ≤ (k − kj∗)

[(
s
(1)
0

)−2ℓ

E
[
(Z(1))2ℓ

]
+
(
s
(2)
0

)−2ℓ

E
[
(Z(2))2ℓ

]]
. (6.8)

Related to the assumptions s
(1)
0 > 0 and s

(2)
0 > 0, we assume

A4u : d >
n(p− 1)

(p− 1)(n− k)− 2
→ 1

1− c2
, d >

n

n− k − 2
→ 1

1− c2
,

and d = O(na), 0 < a < 1. (6.9)

The first part in A4u implies s
(1)
0 > 0 and s

(2)
0 > 0. It is easy to see that

E[(Z(1))2] =
2(p− 1)2(n− k + 1)

{(p− 1)(n− k)− 2}2{(p− 1)(n− k)− 4}
= O((n3)−1),

E[(Z(2))2] =
2(n− k − 1)

(n− k − 2)2(n− k − 4)
= O((n2)−1).

Further, (s
(1)
0 )−2 = O(n2(1−a)) and (s

(2)
0 )−2 = O(n2(1−a)). Therefore, from

(6.8) we have that [F2] → 0.

When j ∈ j∗, we can write Tb,j;d = n
∑p

ℓ=1 log{1+U2ℓU
−1
1ℓ }−dp. Therefore

we can express [F1] as

[F1] =
∑
j∈j∗

Pr(T̃b,j;d ≤ 0),
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where

T̃b,j;d =
1

p

p∑
ℓ=1

log

{
1 +

χ2
1;ℓ(δ

2
b,j;ℓ)

χ2
n−k;ℓ

}
− d

n
.

From the assumptions A3b and A4b it is easily seen that

T̃v,j;d → log(1 + γ2
v,j) > 0.

This implies that Pr(T̃v,j;d ≤ 0) → 0, and [F1] → 0.

These imply the following theorem.

Theorem 6.1. Suppose that the assumptions A1, A2, A3u and A4u are

satisfied. Then, the KOO method based on Tu,j:d in (6.4) is asymptotically

consistent.

7. Concluding Remarks

In this paper, we consider to select regression variables in p variate regres-

sion model with one of three covariance structures; (1) ICSS (an independent

covariance structure with the same variance), (2) ICSD (an independent co-

variance structure with different variances), (3) UCS (a uniform covariance

structure). It was proposed to use a KOO method based on a general in-

formation criterion with a penality term d. We point high-dimensional con-

sistencies of the KOO methods with d = O(na), 0 < a < 1. In Sakurai and

Fujikoshi (2020), they studied asymptotic consistencies of KOO methods in

(1) and (3). However, in their approach, the number of explanatory variables

was fixed, but in this paper the number of explanatory variables may be tend

to infinity.

It may noted that KOO methods may be feasible in computation. The

idear goes back to Nishii et al. (1988) and Zhao et. al. (1988). However, high
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dimensional properties have been recently studied in Fujikoshi and Sakurai

(2019), Oda and Yanagihara (2021, 2022), Fujikoshi (2022).

A high-dimensional study KOO method under AUTO (autoregressive co-

variance structure) is left. It is also left to extend our results to the case of

non-normality.
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